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a b s t r a c t

In many scientific areas the observations are collected with measurement errors. We
are interested in measuring and testing independence between random vectors which
are subject to measurement errors. We modify the weight functions in the classic
distance covariance such that, the modified distance covariance between the random
vectors of primary interest is the same as its classic version between the surrogate
random vectors, which is referred to as the invariance law in the present context.
The presence of measurement errors may substantially weaken the degree of nonlinear
dependence. An immediate issue arises: The classic distance correlation between the
surrogate vectors cannot reach one even if the two random vectors of primary interest
are exactly linearly dependent. To address this issue, we propose to estimate the distance
variance using repeated measurements. We study the asymptotic properties of the
modified distance correlation thoroughly. In addition, we demonstrate its finite-sample
performance through extensive simulations and a real-world application.

© 2021 Published by Elsevier Inc.

1. Introduction

Measuring nonlinear dependence and testing statistical independence are fundamental problems in statistics. Let
= (X1, . . . , Xp)⊤ ∈ Rp and y = (Y1, . . . , Yq)⊤ ∈ Rq be two random vectors of primary interest. For example, x stands for

he systolic and diastolic pressures, and y stands for the degree of exposures to air pollutants. It is of scientific importance
o investigate whether the blood pressures are relevant to the exposures to pollutants. However, in such scientific studies,
oth x and y are measured with non-ignorable random errors. Instead of observing x and y directly, we observe the
urrogate random vectors, u ∈ Rp and v ∈ Rq, which are related to x and y, respectively, through

u = αx + Bx
⊤x + εx, v = αy + By

⊤y + εy, (1)

where αx ∈ Rp, αy ∈ Rq are non-random vectors, Bx ∈ Rp×p, By ∈ Rq×q are full-rank matrices, and εx ∈ Rp, εy ∈ Rq are
unobservable random errors. In some real-world applications, Bx and By can be identity matrices. We assume εx, εy, and
(x, y) are mutually independent, and allow x and y to be dependent. The measurement error model (1) is widely assumed
in literature. See, for example, [7] and [12].

Extensive studies have been conducted to investigate how y dependents on x in the regression context, where the
covariates are measured with linear errors. Ignoring measurement errors will induce non-ignorable bias in parameter
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stimation, which would lead misleading results in practice. [3] proposed an efficient estimation for linear measurement
rror model in which y depends on x linearly. [23] and [32] considered partially linear model and generalized linear

model, respectively. Interested readers may refer to [7] for a comprehensive review. Recent advances include [1,20,24,26]
and [34]. In these recent studies, the covariate vectors are allowed to be high dimensional.

The measurement error models have also been considered in the context of sufficient dimension reduction [11], which
falls into the framework of semi-parametric regression. [6] observed that, the central subspace of y given the unobservable
covariate vector x, recovered through ordinary least squares and sliced inverse regression [19], is the same as that of y
given a particular linear transformation of u. In their context this surprising phenomenon is referred to as the invariance
property, which was later found to be generally applicable to many other sufficient dimension reduction methods [21].
Similar observation has also been made by [10] in the context of the score test.

Measuring nonlinear dependence between x and y in the absence of measurement errors has been extensively studied
in literature. See, for example, [2,4,8,14,16,30,33,35] and [36]. Interested readers may refer to [31] for a comprehensive
review. However, measuring nonlinear dependence between x and y in the presence of measurement errors is rarely
ouched in the literature. To the best of our knowledge, [9] is perhaps the first attempt to measure nonlinear dependence
f x and y through the distance correlation between u and v [33]. In their context, both x and y are restricted to be
nivariate, and the random errors εx and εy are assumed to be normal with zero means and known variances. These

requirements indeed limit the usefulness of [9]’s proposal in real-world problems. In addition, the metric proposed by [9]
cannot attain one even when x and y are perfectly linearly dependent. This is because the variabilities of u and v are
lways larger than those of x and y when Bx = By = 1 and p = q = 1 in Model (1), due to the presence of measurement
rrors.
In this paper, we propose to test statistical independence and measure nonlinear dependence between x and y, the

andom vectors of primary interest, through distance correlation between the surrogate random vectors u and v. We
llow for non-normal measurement errors and multivariate random vectors. The distance correlation consists of two
omponents: distance covariance and distance variance. Throughout we use dcov(u, v) to stand for the classic distance
ovariance between u and v, and dcov(v, v) to stand for the distance variance of v [33]. To test statistical independence, it
uffices to use distance covariance. In particular, to test statistical independence between x and y, we suggest to modify the
eight functions in the classic distance covariance such that the modified distance covariance between x and y is exactly
he same as dcov(u, v). We refer to this property as an invariance law. To measure the degree of nonlinear dependence, it is
equired to quantify the variabilities of x and y, which are usually smaller than those of u and v. An immediate issue arises:
he classic distance correlation between u and v cannot attain one even when x and y are exactly linearly dependent.
n other words, the presence of measurement errors may substantially weaken the degree of nonlinear dependence. We
se a toy example to demonstrate this phenomenon. Suppose for now that in Model (1), both x and y are univariate and
x = By = 1. In addition, x and y follow bivariate standard normal distribution with correlation coefficient r . The squared
istance correlation between x and y, averaged over 1000 replications and denoted as dcorr2(x, y), is displayed in Fig. 1.
e also report dcorr2(u, v) with dashed line in the same figure for the purposes of comparison. It can be clearly seen

hat, when the correlation coefficient between x and y, denoted as r , approaches 1 or -1, dcorr2(x, y) is very near to 1.
owever, dcorr2(u, v) is smaller than 0.2 throughout. This indicates that, directly using dcorr2(u, v) to quantify the degree
f nonlinear dependence between x and y is substantially biased. To address this issue, we suggest to modify the distance
ariances slightly, by assuming the repeated measurements, ũ and ṽ, which are indeed the respective independent copies
f u and v when x and y are fixed, are available. We suggest to use dcov(u, ũ) and dcov(v, ṽ), to replace dcov(u,u) and
cov(v, v) in distance correlation, which leads to a new metric, denoted as ρ2(x, y) in Fig. 1. It can be clearly seen that,
he modified squared distance correlation, ρ2(x, y), is indeed very close to dcorr2(x, y), across all r values.

This paper is organized as follows. In Section 2, we introduce an invariance law to test independence in the presence
f measurement errors. At the sample level, we propose to estimate the modified distance correlation with U-statistic
heory and the distance variances with repeated measurements. The asymptotic properties of these estimates are also
tudied. In Section 3 we illustrate the finite-sample performance of our proposal through extensive simulations and an
pplication. We conclude this paper with brief discussions in Section 4.

. A modified distance correlation in the presence of measurement errors

.1. The population level

Let ϕ(·) be a characteristic function. Throughout our goal is to test H0: the two random vectors of primary interest, x
nd y, are independent. Under H0, ϕx,y(t, s) = ϕx(t)ϕy(s) for all t ∈ Rp and s ∈ Rq, or equivalently,∫∫

∥ϕx,y(t, s) − ϕx(t)ϕy(s)∥2ω1(t)ω2(s)dtds, (2)

here ω1(·) and ω2(·) are positive weight functions such that the integration (2) exists. However, in the present context
and y are not observable directly. Instead, we merely observe u and v, which admit the measurement error model (1).
2
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Fig. 1. The vertical axis: the averages over 1000 replications for our proposed metric ρ2(x, y) (solid line), the distance correlations dcorr2(u, v)
(dashed line) and dcorr2(x, y) (dash-dotted line). The horizontal axis: the Pearson correlation coefficient r between x and y.

Therefore, we have to work with u and v to test independence between x and y. By Model (1), it follows immediately
that

ϕu(B−1
x t) = exp(iαx

⊤B−1
x t)ϕx(t)ϕεx (B

−1
x t), ϕv(B−1

y s) = exp(iαy
⊤B−1

y s)ϕy(s)ϕεy (B
−1
y s),

ϕu,v(B−1
x t,B−1

y s) = exp(iαx
⊤B−1

x t + iαy
⊤B−1

y s)ϕx,y(t, s)ϕεx (B
−1
x t)ϕεy (B

−1
y s).

herefore, (2) can be expanded as follows,∫∫
∥ϕu,v(B−1

x t,B−1
y s) − ϕu(B−1

x t)ϕv(B−1
y s)∥2

∥ϕ−1
εx (B−1

x t)∥2
∥ϕ−1

εy (B−1
y s)∥2ω1(t)ω2(s)dtds

=

∫∫
∥ϕu,v(t, s) − ϕu(t)ϕv(s)∥2

·
{
∥ϕ−1

εx (t)∥2ω1(Bxt) |Bx|
}

·
{
∥ϕ−1

εy (s)∥2ω2(Bys) |By|
}
dtds.

hroughout we use the same notation ∥ · ∥ to stand for the modulus if the argument is a complex number, the norm
f the argument is a vector. We use |·| to stand for the determinant if the argument is a matrix. We define ω̃1(t) =

∥ϕ−1
εx (t)∥2ω1(Bxt) |Bx|

}
, and ω̃2(Bys) =

{
∥ϕ−1

εy (s)∥2ω2(Bys) |By|
}
. Therefore, the above display, or equivalently, (2), can

e reduced to the form of∫∫
∥ϕu,v(t, s) − ϕu(t)ϕv(s)∥2ω̃1(t)ω̃2(s)dtds,

ollowing [33], we set ω̃1(t) = Γ {(1 + p)/2}/{π (1+p)/2
∥t∥1+p

}, ω̃2(s) = Γ {(1 + q)/2}/{π (1+q)/2
∥s∥1+q

}, where Γ (·) is the
amma function. The above display has an explicit form of

V 2(u, v) = E(∥u1 − u2∥∥v1 − v2∥ − 2∥u1 − u2∥∥v1 − v3∥ + ∥u1 − u2∥∥v3 − v4∥),

here {(ui, vi), i ∈ {1, . . . , 4}}, are four independent copies of (u, v). It is important to remark here that V 2(u, v) is indeed
he squared distance covariance dcov2(u, v) between u and v, which indicates that we can simply use dcov2(u, v) to
easure the departure from independence between x and y.
If we had set ω1(t) = Γ {(1 + p)/2}/{π (1+p)/2

∥t∥1+p
} and ω2(s) = Γ {(1 + q)/2}/{π (1+q)/2

∥s∥1+q
} in (2), then (2) would

e V 2(x, y) [33], which replaces u and v in V 2(u, v) with x and y respectively. We propose to modify the weight functions
y letting ω̃1(t) = Γ {(1+ p)/2}/{π (1+p)/2

∥t∥1+p
}, and ω̃2(s) = Γ {(1+ q)/2}/{π (1+q)/2

∥s∥1+q
}, which leads (2) to have the

orm of V 2(u, v). Both V 2(u, v) = dcov2(u, v) and V 2(x, y) = dcov2(x, y) have the same form, although the arguments are
hanged. We refer to this phenomenon as the invariance law throughout the present context.

heorem 1. Assume E(∥x∥ + ∥y∥ + ∥εx∥ + ∥εy∥) < ∞ in Model (1). Then x is independent of y if and only if V 2(u, v) = 0.

roof of Theorem 1. It suffices to show that x is independent of y if and only if u is independent of v. In Model (1),
x, εy and (x, y) are mutually independent. On one hand, if x is independent of y, it then follows that εx, εy, x and y are
utually independent. Therefore, by the form of Model (1), u is independent of v.
3
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One the other hand, if u is independent of v, it follows that ϕu,v(t, s) = ϕu(t)ϕv(s). By Model (1), we have

ϕu(B−1
x t) = exp(iαx

⊤B−1
x t)ϕx(t)ϕεx (B

−1
x t), ϕv(B−1

y s) = exp(iαy
⊤B−1

y s)ϕy(s)ϕεy (B
−1
y s),

ϕu,v(B−1
x t,B−1

y s) = exp(iαx
⊤B−1

x t + iαy
⊤B−1

y s)ϕx,y(t, s)ϕεx (B
−1
x t)ϕεy (B

−1
y s).

herefore, ϕx,y(t, s)ϕεx (B−1
x t)ϕεy (B−1

y s) = ϕx(t)ϕy(s)ϕεx (B−1
x t)ϕεy (B−1

y s). This implies that x is independent of y. The proof
s now completed. □

Theorem 1 reveals that, it suffices to work with V 2(u, v) = dcov2(u, v) to measure the departure from independence
etween x and y in the presence of measurement errors.
To quantify the degree of dependence between x and y in the presence of measurement errors, we desire to obtain a

umber which ranges from zero to one. By the Cauchy–Schwartz inequality, V 2(u, v) ≤ V (u,u)V (v, v). It is thus natural
o normalize V 2(u, v) with V 2(u, v)

/
{V (u,u)V (v, v)}, which ranges from zero to one. However, this normalized quantity,

2(u, v)
/

{V (u,u)V (v, v)}, attains one if u and v are linearly dependent [33]. In the measurement error model (1), we are
nterested in measuring the degree of dependence between x and y, rather than u and v. This normalized quantity does
ot attain one even if x and y are exactly linearly dependent. This phenomenon is described through the toy example in
ection 1. Throughout the present context our goal is to characterize the dependence between x and y. The invariance
aw ensures that we can use V 2(u, v) to characterize the dependence between x and y. However, V (u,u) and V (v, v)
haracterize the respective variabilities of u and v. They cannot be used to describe the variabilities of x and y. The
ariabilities of x and y are quite different from those of u and v.
It is important to describe the variabilities of x and y precisely. Suppose a repeated measurement of (u, v), denoted

s (̃u, ṽ), is available. It also admits the measurement error model (1) in the sense that ũ = αx + Bx
⊤x + ε̃x, and

= αy + By
⊤y + ε̃y, where (̃εx, ε̃y) is an independent copy of (εx, εy). We define

ρ2(x, y) =
V 2(u, v)

V (u, ũ)V (v, ṽ)
.

n other words, we use V (u, ũ) and V (v, ṽ), rather than V (u,u) and V (v, v), to characterize the variabilities of x and
y, respectively. The squared distance covariance, V 2(u, v), characterizes the dependence between x and y. In this way,
2(x, y) has been normalized to be from zero to one, which is summarized below.

heorem 2. Assume E(∥x∥ + ∥y∥ + ∥εx∥ + ∥εy∥) < ∞, then we have ρ2(x, y) ≤ 1, and the equality holds if and only if
E{d(u1,u2) | (x1, x2)} is linear in E{d(v1, v2) | (y1, y2)}, where

d(z1, z2) = ∥z1 − z2∥ − E (∥z1 − z2∥ | z1) − E (∥z1 − z2∥ | z2) + E (∥z1 − z2∥) .

Proof of Theorem 2. According to [25], we can write V 2(u, v) as cov{d(u1,u2), d(v1, v2)}. By the law of total covariance,
cov{d(u1,u2), d(v1, v2)} is equal to

cov[E{d(u1,u2) | (x1, x2)}, E{d(v1, v2) | (y1, y2)}] + E[cov{d(u1,u2), d(v1, v2) | (x1, x2, y1, y2)}].

It is straightforward to verify that, conditional on (x1, x2, y1, y2), d(u1,u2) is independent of d(v1, v2). This is because
εx is independent of εy. Therefore, cov{d(u1,u2), d(v1, v2)} = cov[E{d(u1,u2) | (x1, x2)}, E{d(v1, v2) | (y1, y2)}]. By the
Cauchy–Schwarz inequality, {V 2(u, v)}2 ≤ var[E{d(u1,u2) | (x1, x2)}]var[E{d(v1, v2) | (y1, y2)}], and the equality holds
true if and only if E{d(u1,u2) | (x1, x2)} is linear in E{d(v1, v2) | (y1, y2)}.

Next it suffices to show that V 2(u, ũ) = var[E{d(u1,u2) | (x1, x2)}]. Following similar arguments, we have

V 2(u, ũ) = cov[E{d(u1,u2) | (x1, x2)}, E{d(̃u1, ũ2) | (x1, x2)}],

hich equals var[E{d(u1,u2) | (x1, x2)}] by noting that E{d(̃u1, ũ2) | (x1, x2)} = E{d(u1,u2) | (x1, x2)}. Therefore, we
ave shown that V 2(u, v) ≤ V (u, ũ)V (̃v, v), and the equality holds true if and only if E{d(u1,u2) | (x1, x2)} is linear in
{d(v1, v2) | (y1, y2)}. □

Theorem 2 ensures that ρ2(x, y) ranges from zero to one, with the value of one attainable. It is generally anticipated
hat using ρ2(x, y) to describe the dependence between x and y is more precise than using dcorr2(u, v). To verify this
rom the finite-sample level, one may refer to Example 2 in Section 3 for the superior performance of ρ2(x, y) in terms
f feature screening in the presence of measurement errors.

.2. The sample level

Suppose a random sample of size n, {(ui, vi), i ∈ {1, . . . , n}}, is available. At the sample level, we can estimate V 2(u, v)
ith V 2

n (u, v), where

V 2
n (u, v) def

= {n(n − 1)}−1
∑
(i,j)

∥ui − uj∥∥vi − vj∥ − 2{n(n − 1)(n − 2)}−1
∑
(i,j,k)

∥ui − uj∥∥vi − vk∥

+{n(n − 1)(n − 2)(n − 3)}−1
∑

∥ui − uj∥∥vk − vl∥. (3)

(i,j,k,l)

4
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hroughout we use the notations (i, j), (i, j, k) and (i, j, k, l) to denote the summands which are all distinctive from each
ther. Apparently, V 2

n (u, v) is trivially small if x and y are independent, and relatively large otherwise. The properties
f V 2

n (u, v), including the asymptotic behaviors [33] and fast computation algorithms [17,18], have been extensive
nvestigated in literature. We summarize the asymptotic properties under the null hypothesis in what follows.

roposition 1 (33). Assume E(∥x∥ + ∥y∥ + ∥εx∥ + ∥εy∥) < ∞. If x and y are independent,

n V 2
n (u, v) d

−→

∞∑
j=1

λj{χ
2
j (1) − 1},

where
d

−→ stands for ‘‘convergence in distribution’’, {χ2
j (1), j ∈ {1, 2, . . .}}, are independent chi-square random variables with

one degree of freedom, and {λj, j ∈ {1, 2, . . .}}, are unknown weights which depend upon the joint distribution of u and v.

Proof of Proposition 1. We merely sketch the proof here because it is an existing result in [33]. According to Theorem
4.12 of [17], V 2

n (u, v) can be written as

{n(n − 1)}−1
∑
i̸=j

d(ui,uj)d(vi, vj) + op(n−1).

he desired conclusion is an immediate consequence of Theorem 5.5.2 of [29]. We remark here that the weights λj, j ∈

1, 2, . . .}, are the solutions to the equation E{d(u1,u2)d(v1, v2)g(u2, v2) | (u, v)} = λg(u, v). □

[17] showed that the weights λjs satisfy that
∞∑
j=1

λj = E (∥u1 − u2∥) E (∥v1 − v2∥) and
∞∑
j=1

λ2
j = V 2(u,u)V 2(v, v).

This motivates us to approximate the asymptotic null distribution with Gamma distribution by matching the first two
moments. However, this approximation is not sufficiently accurate when the sample size n is small. There are some other
approximation methods in literature. See, for example, [5]. In this paper, we advocate using random permutations to
approximate the asymptotic null distribution. The p-value is calculated as the fraction of replicated test statistics under
random permutations. One may refer to [13] and [27] for a detailed description of permutation tests.

To measure the departure from independence between x and y, the normalized quantity requires to estimate the
distance variances V (u, ũ) and V (v, ṽ). Towards this goal, we assume the repeated measurements are available. Let
(ui, vi, ũi, ṽi), i ∈ {1, . . . , n} be a random sample of size n. We estimate V (u, ũ) and V (v, ṽ) in the same way as (3) to
obtain Vn(u, ũ) and Vn(v, ṽ), and estimate ρ2(x, y) with

ρ̂2(x, y) =
V 2
n (u, v) + V 2

n (u, ṽ) + V 2
n (̃u, v) + V 2

n (̃u, ṽ)
4Vn(u, ũ)Vn(v, ṽ)

.

ecause V 2
n (u, v), V 2

n (u, ṽ), V 2
n (̃u, v), V 2

n (̃u, ṽ) are all consistent estimates of V 2(u, v), we take average of these four
stimates to improve estimation efficacy. The asymptotic distribution of ρ̂2(x, y), when x and y are not necessarily
ndependent, is summarized in the following.

heorem 3. Assume E(∥x∥ + ∥y∥ + ∥εx∥ + ∥εy∥) < ∞. If x and y are dependent, then

n1/2
{̂ρ2(x, y) − ρ2(x, y)} d

−→ N (0, σ 2),

here σ 2
= var(Z) and Z is defined in (5).

roof of Theorem 3. By using the Hoeffding decomposition of U-statistic theory [29, Lemma 5.1.5A], V 2
n (u, v)− V 2(u, v)

an be written as

2n−1
n∑

i=1

{h(ui, vi) − Eh(u, v)} + op(n−1/2). (4)

n the above decomposition, we merely keep the leading term. In addition, h(ui, vi), for i ∈ {1, . . . , n}, are independent
copies of h(u, v), which is defined by

h(u, v) def
= E

{
∥u − u1∥∥v − v1∥ − ∥u − u1∥∥v − v2∥ − ∥u1 − u2∥∥v − v2∥

− ∥u − u ∥∥v − v ∥ + ∥u − u ∥∥v − v ∥ + ∥u − u ∥∥v − v ∥
⏐⏐(u, v)

}
.
1 2 1 1 2 3 1 2 3

5
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e emphasize that h(u, v) is a function of (u, v). Similarly, we derive that

V 2
n (u, ṽ) − V 2(u, ṽ) = 2n−1

n∑
i=1

{h(ui, ṽi) − Eh(u, ṽ)} + op(n−1/2),

V 2
n (̃u, v) − V 2 (̃u, v) = 2n−1

n∑
i=1

{h(̃ui, vi) − Eh(̃u, v)} + op(n−1/2),

V 2
n (̃u, ṽ) − V 2 (̃u, ṽ) = 2n−1

n∑
i=1

{h(̃ui, ṽi) − Eh(̃u, ṽ)} + op(n−1/2).

pparently, V 2(u, v) = V 2(u, ṽ) = V 2 (̃u, v) = V 2 (̃u, ṽ) and Eh(u, v) = Eh(u, ṽ) = Eh(̃u, v) = Eh(̃u, ṽ). We have

4−1 {
V 2
n (u, v) + V 2

n (u, ṽ) + V 2
n (̃u, v) + V 2

n (̃u, ṽ)
}

− V 2(u, v)

= (2n)−1
n∑

i=1

{h(ui, vi) + h(ui, ṽi) + h(̃ui, vi) + h(̃ui, ṽi) − 4Eh(u, v)} + op(n−1/2).

y using the Hoeffding decomposition of U-statistic theory again, we have

V 2
n (u, ũ) − V 2(u, ũ) = 2n−1

n∑
i=1

{h(ui, ũi) − Eh(u, ũ)} + op(n−1/2),

hich yields

Vn(u, ũ) − V (u, ũ) = {nV (u, ũ)}−1
n∑

i=1

{h(ui, ũi) − Eh(u, ũ)} + op(n−1/2).

imilarly, we can obtain that

Vn(v, ṽ) − V (v, ṽ) = {nV (v, ṽ)}−1
n∑

i=1

{h(vi, ṽi) − Eh(v, ṽ)} + op(n−1/2).

t follows that

Vn(u, ũ)Vn(v, ṽ) − V (u, ũ)V (v, ṽ) = {nV (u, ũ)}−1 V (v, ṽ)
n∑

i=1

{h(ui, ũi) − Eh(u, ũ)}

+ {nV (v, ṽ)}−1 V (u, ũ)
n∑

i=1

{h(vi, ṽi) − Eh(v, ṽ)} + op(n−1/2).

ith Taylor’s expansion, we can write ρ̂2(x, y) − ρ2(x, y) as

V 2
n (u, v) + V 2

n (u, ṽ) + V 2
n (̃u, v) + V 2

n (̃u, ṽ) − 4V 2(u, v)
4V (u, ũ)V (v, ṽ)

−
V 2(u, v) {Vn(u, ũ)Vn(v, ṽ) − V (u, ũ)V (v, ṽ)}

V 2(u, ũ)V 2(v, ṽ)
+ op(n−1/2).

ombining the above results, we obtain that

ρ̂2(x, y) − ρ2(x, y) = n−1
n∑

i=1

Zi + op(n−1/2),

here Zi, i ∈ {1, . . . , n}, are independent copies of Z defined as

Z def
= {2V (u, ũ)V (v, ṽ)}−1

{h(u, v) + h(u, ṽ) + h(̃u, v) + h(̃u, ṽ) − 4Eh(u, v)}
−V 2(u, v)V −3(u, ũ)V −1(v, ṽ){h(u, ũ) − Eh(u, ũ)} − V 2(u, v)V −1(u, ũ)V −3(v, ṽ){h(v, ṽ) − Eh(v, ṽ)}. (5)

hen the proof is completed by using the central limit theory and Cramér–Slutsky’s theorem. □

. Numerical studies

We conduct numerical studies to evaluate the finite-sample performance of V 2(u, v) and ρ2(x, y) in the presence of
easurement errors. We remark here that, to test independence between x and y, we merely use V 2(u, v) together
6
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Table 1
Empirical sizes for Model I and powers for Models II and III for different dimensions and different
levels of measurement errors. The significance level is fixed at α = 0.05.
Model d c

0 0.2 0.4 0.6 0.8 1

I
5 0.060 0.046 0.054 0.060 0.044 0.054
10 0.033 0.045 0.054 0.057 0.041 0.039
20 0.049 0.054 0.041 0.066 0.047 0.049

II
5 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000

III
5 1.000 1.000 1.000 1.000 0.999 0.972
10 1.000 1.000 1.000 1.000 0.994 0.960
20 1.000 0.998 0.999 0.992 0.947 0.871

with random permutations, and do not require repeated measurements be available. However, to measure nonlinear
dependence, we shall have to use ρ2(x, y) and require the repeated measurements be available. We shall also demonstrate
ow to use ρ2(x, y) to perform feature screening in high dimensions.

Example 1. We use V 2(u, v) to test independence between x = (X1, . . . , Xp)⊤ and y = (Y1, . . . , Yq)⊤ in the presence of
measurement errors. In this example, p = q = d. We consider three models, for k ∈ {1, . . . , d},

Model I : Yk = εk, Model II : Yk = Xk + εk, Model III : Yk = exp(Xk)εk.

In the above models, x is multivariate normal with mean zero and covariance matrix Σ = (σkℓ)d×d, where σkℓ = 0.5|k−ℓ|,
k, ℓ ∈ {1, . . . , d}. In addition, εks are all independent standard normal. In Model I, x and y are independent, whereas in
Models II and III, x and y are dependent. Instead of using (x, y), we merely use (u, v), where u = x+ cεx and v = y+ cεy,
εx ∼ N (0, Id) and εy ∼ N (0, Id) are independent measurement errors. The intensity parameter c is used to control the
magnitude of measurement errors. We set the sample size n = 100, vary the dimension d from {5, 10, 20}. We increase
the intensity parameter c from 0 to 1, step by 0.2. We fix the significance level α = 0.05.

The empirical sizes for Model I and powers for Models II and III are charted in Table 1. The results for Model I imply
that, we can maintain the type-I error rates pretty well. For Models II and III, our proposed test is powerful to detect both
linear and nonlinear dependence in the presence of measurement errors. When p = q = 20 and c = 1, the empirical
power of our proposed test is still as high as 0.871 in Model III.

Example 2. We demonstrate how to use ρ2(Xk, y), for k ∈ {1, . . . , p}, to perform feature screening in regressions with
high dimensional covariates x = (X1, . . . , Xp)⊤. Let y = (Y1, . . . , Yq)⊤. We consider three models,

Model IV : y = X1 + X2X3 + X4 + ε,

Model V : y = X2
1 + X2

2 + 2 sin(X3) + exp(X4)ε,
Model VI : Y1 = sin(X1) + X2

2 + ε, Y2 = X2
3 + exp(X4 )̃ε.

In the above models, x is multivariate normal with mean zero and covariance matrix Σ = (σkℓ)p×p, where σkℓ = 0.5|k−ℓ|,
k, ℓ ∈ {1, . . . , p}. In addition, ε and ε̃ are independent standard normal. The response y is univariate in Models IV and V,
and multivariate in Model VI. Let u = (U1, . . . ,Up)⊤, where Uk = Xk +εxk , k ∈ {1, . . . , 100} and Uk = Xk, k ∈ {101, . . . , p}.
Let v = (V1, . . . , Vq)⊤, and Vk = Yk +εyk . All measurement errors are independent standard normal. In these experiments,
n = 200 and p = 2000. In addition, we assume the repeated measurements (u, v, ũ, ṽ) are available to measure the
degree of dependence between x and y.

Existing screening procedures proceed as follows. A particular marginal utility is used to quantify the degree of
dependence between Xk and y, for k ∈ {1, . . . , p}. The importance of each covariate Xk is measured by the magnitude
of this marginal utility. The larger the magnitude is, the more important this covariate is. We retain the top ⌊n/ln n⌋
covariates which have the largest utilities, where ⌊x⌋ denotes the integer part of x.

We evaluate the performance of three independent screening procedures, ‘‘ρ-SIS", ‘‘Naive" DC-SIS and ‘‘Oracle"
DC-SIS. The corresponding marginal utilities are ρ2(Xk, y), dcorr(Uk, v) and dcorr(Xk, y), respectively. We remark here that
we estimate ρ2(Xk, y) using (ui, vi), i ∈ {1, . . . , n} instead of using (xi, yi), i ∈ {1, . . . , n}.

We replicate each experiment 1000 times, and use three criteria to compare the performance of screening procedures:
(1) the proportion that each single important covariate (denoted by Ps) are selected out of 1000 replications, (2) the
proportion that all important covariates (denoted by Pa) are selected, and (3) the 5%, 25%, 50%, 75%, and 95% quantiles of
the minimum model size required to include all important covariates.

The simulation results for Models IV, V and VI are reported in Table 2. The ‘‘Oracle" DC-SIS procedure is not surprisingly
the best, which serves as a benchmark for comparison. The ‘‘ρ-SIS" follows, which is in line with our anticipations.
However, the ‘‘Naive" DC-SIS is the worst across all scenarios. This phenomenon echoes the observation we made in
the toy example in Section 1.
7
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Table 2
The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size, the proportion that each
single important covariate and all important covariates are selected for Example 2.
Model Method Minimum Model Size Ps Pa

5% 25% 50% 75% 95% X1 X2 X3 X4

IV
ρ-SIS 4 4 5 7 18 1.000 0.996 0.993 1.000 0.990
Naive 4 5 11 38 170 1.000 0.863 0.848 0.999 0.748
Oracle 4 4 4 4 6 1.000 0.999 0.999 1.000 0.998

V
ρ-SIS 4 7 13 23 54 0.941 0.981 1.000 0.976 0.903
Naive 16 65 135 286 666 0.317 0.608 0.982 0.607 0.140
Oracle 4 4 5 8 27 0.996 0.999 1.000 0.965 0.961

VI
ρ-SIS 6 11 18 30 55 0.953 0.951 0.964 0.961 0.841
Naive 18 52 128 252 582 0.692 0.556 0.574 0.627 0.159
Oracle 4 4 4 4 10 0.997 1.000 1.000 0.998 0.995

Table 3
The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size, the proportion that each
single important covariate and all important covariates are selected for Example 3.
Method Minimum Model Size Ps Pa

5% 25% 50% 75% 95% Msa.2877.0 Msa.2134.0

ρ-SIS 2 4 6 8 36 0.882 0.898 0.790
Naive 47 154 246 419 748 0.054 0.038 0.005

Example 3. We apply the screening procedures in Example 2 to the Cardiomyopathy microarray dataset. This dataset
was analyzed by [15,28], and [22], etc. It contains n = 30 samples. The response y is the Ro1 expression level, and the
covariates x is p = 6319 gene expression levels. [22] identified two genes, labeled Msa.2134.0 and Msa.2877.0, as the two
most important covariates. They fitted an additive model using these two covariates, yielding the adjusted R2 of 96.8%
and the deviance explained of 98.3%. It is thus natural to treat these two genes as the two most important covariates.

We standardize all covariates marginally. To increase the difficulty of identifying these two genes, we add standard
normal noises to the top 10 genes selected by [22]. We treat these noise-added data as surrogate observations. We apply
the‘‘Naive" DC-SIS procedure to these surrogate observations, and re-select the important covariates. We replicate this
procedure 1000 times. The corresponding 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size that includes
both Msa.2134.0 and Msa.2877.0 are reported in Table 3. We also include Ps and Pa, the proportions that Msa.2134.0 and
sa.2877.0 are selected individually and simultaneously, if we select the top ⌊n/ln n⌋ = 8 genes. The results are charted

n Table 3. The proportion of either Msa.2134.0 or Msa.2877.0 is selected is around 0.05. Moreover, the 5% quantile of the
inimum model size is 47, which means that, if we select the top 47 genes ranked by the ‘‘Naive" DC-SIS procedure, we
nly have a 5% chance to include both Msa.2134.0 and Msa.2877.0.
For the purposes of comparison, we apply the ρ-SIS procedure when repeated measurements are available in the

surrogate observations. These results are also charted in Table 3. The proportion of selecting Msa.2134.0 and Msa.2877.0
simultaneously when we only select the top 8 genes is 0.79, which is much larger than that of the ‘‘Naive" DC-SIS
procedure. The 95% quantile of the minimum model size is 36, much smaller than that of the ‘‘Naive" DC-SIS procedure.
This indicates that the ρ-SIS procedure is much more effective than the ‘‘Naive" DC-SIS procedure when the observations
re subject to substantial measurement errors.

. Conclusions

All observations are measured with random errors. In some situations these measurement errors are ignorable, but
ot in others. We consider testing statistical independence and measuring nonlinear dependence when the measurement
rrors are substantial. This issue has rarely been touched in literature. To test statistical independence, we observe an in-
ariance law, which simply replaces the random vectors of primary interest with the surrogate ones. To measure nonlinear
ependence, we introduce a novel estimation procedure for the distance variances when the repeated measurements are
vailable. In addition, we propose an independence screening procedure when the random vectors are high dimensional.
There are several issues which deserve delicate investigations. For example, in the present context our observations are

ll based on distance correlation. It is natural to ask whether similar results carry over to other independence measures
uch as projection correlation. How to conduct conditional independence test in the presence of measurement errors is
nother important issue. Investigations along these directions are under way.
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