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a b s t r a c t

In this paper, we treat convolutions of heterogeneous geometric random variables with
respect to the p-larger order and the hazard rate order. It is shown that the p-larger
order between two parameter vectors implies the hazard rate order between convolutions
of two heterogeneous geometric sequences. Specially in the two-dimensional case, we
present an equivalent characterization. The casewhen one convolution involves identically
distributed variables is discussed, and we reveal the link between the hazard rate order of
convolutions and the geometric mean of parameters. Finally, we drive the ‘‘best negative
binomial bounds’’ for the hazard rate function of any convolution of geometric sequence
under this setup.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Because of its nice mathematical form and the memoryless property, the exponential distribution has been widely
used in many areas, including life-testing, reliability, and operations research. One may refer to [1,2] for an encyclopedic
treatment of developments on the exponential distribution. Convolutions of independent exponential random variables
often occur naturally in many problems, and many researchers have investigated ordering properties based on exponential
convolutions, including [3–8]. Also, we refer to [9–13] for ordering results of sums of independent random variables. The
geometric randomvariablemay be regarded as the discrete counterpart of the exponential randomvariable in the sense that
both of them have constant hazard rate. In many practical situations and especially in reliability scenarios, convolutions of
independent geometric random variables appear in a natural way; see [14,3] regarding some nice applications. This also
motivates the present investigations. Since the distribution theory is quite complicated when the convolution involves
non-identical random variables, it will be of great interest to derive bounds and approximations on some characteristics
of interest in this setup.
In this paper, we investigate the ordering properties of the convolutions of heterogeneous geometric random variables.

Let Xp1 , . . . , Xpn and Xp∗1 , . . . , Xp∗n be two sequences of independent geometric random variables with parameters p1, . . . , pn
and p∗1, . . . , p

∗
n , respectively. It is shown that for the two-dimensional case,
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Xp1 + Xp2 ≥hr Xp∗1 + Xp∗2
⇐⇒ Xp1 + Xp2 ≥st Xp∗1 + Xp∗2

⇐⇒ (p1, p2)
p
� (p∗1, p

∗

2),

and for the general case,

(p1, . . . , pn)
p
� (p∗1, . . . , p

∗

n) H⇒

n∑
i=1

Xpi ≥hr
n∑
i=1

Xp∗i ,

where the formal definitions of related partial orderings will be given in Section 2. Themain results for the two-dimensional
case and the general case are given in Sections 3 and 4, respectively. Specially, we discuss the case when one convolution
involves identically distributed random variables and show in this case that the hazard rate order is actually associated with
the geometric mean of parameters. Finally, we derive the ‘‘best negative binomial bounds’’ for hazard rate function of any
convolution of geometric distributions.

2. Definitions

In this section, we recall some notions of stochastic orders, andmajorization and related orders which are closely related
to the main results to be developed in what follows. Throughout this paper, the term increasing is used for monotone non-
decreasing and decreasing is used formonotone non-increasing.
Discrete stochastic orders

Definition 2.1. For two discrete random variables X and Y with common supports on integers N0 ≡ {0, 1, . . .}, denote
by fX (k) and fY (k) their respective probability mass function (pmf), and FX (k) = P(X ≥ k) and F Y (k) = P(Y ≥ k) the
corresponding survival functions. Then

(i) X is said to be smaller than Y in the likelihood ratio order, denoted by X ≤lr Y , if fY (k)/fX (k) is increasing in k ∈ N0;
(ii) X is said to be smaller than Y in the hazard rate order, denoted by X ≤hr Y , if F Y (k)/FX (k) is increasing in k ∈ N0;
(iii) X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if F Y (k) ≥ FX (k) for all k ∈ N0.

It is well known that there exists the following implication relation:

X ≤lr Y H⇒ X ≤hr Y H⇒ X ≤st Y .

For a comprehensive discussion on various stochastic orders, one may refer to [15,16].
Majorization and related orders
The notion ofmajorization is quite useful in establishing various inequalities. Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be the increasing

arrangement of the components of the vector x = (x1, . . . , xn).

Definition 2.2. The vector x is said to majorize the vector y, written as x
m
� y, if

j∑
i=1

x(i) ≤
j∑
i=1

y(i) for j = 1, . . . , n− 1,

and
∑n
i=1 x(i) =

∑n
i=1 y(i).

In addition, the vector x is said to majorize the vector yweakly, written as x
w
� y, if

j∑
i=1

x(i) ≤
j∑
i=1

y(i) for j = 1, . . . , n.

Clearly,

x
m
� y H⇒ x

w
� y.

Those functions that preserve the majorization ordering are said to be Schur-convex. For extensive and comprehensive
discussion on the theory and applications of the majorization order, one may refer to [17]. Bon and Pǎltǎnea [4] introduced
a pre-order on Rn

+
, called p-larger order, which is defined as follows.

Definition 2.3. The vector x in Rn
+
is said to be p-larger than another vector y, written as x

p
� y, if

j∏
i=1

x(i) ≤
j∏
i=1

y(i) for j = 1, . . . , n.
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Let log(x) be the vector of logarithms of the coordinates of x. It is then easy to verify that

x
p
� y⇐⇒ log(x)

w
� log(y).

Moreover,

x
m
� y H⇒ x

p
� y

for x, y ∈ Rn
+
. The converse is, however, not true. For example, we have (1, 5.5)

p
� (2, 3), but the weak majorization order

clearly does not hold.

3. Equivalent characterization for the two-dimensional case

Let Xp be a geometric random variable with pmf

fp(k) = P(Xp = k) = p(1− p)k, k ∈ N0,

and survival function

F p(k) = P(Xp ≥ k) = (1− p)k, k ∈ N0.

Then the hazard rate function of Xp is given by

hp(k) =
fp(k)

F p(k)
= p, k ∈ N0.

Let Xp1 and Xp2 be independent geometric random variables with respective parameters p1 and p2. If p1 6= p2, then the pmf
of Xp1 + Xp2 can be written as

f(p1,p2)(k) = P(Xp1 + Xp2 = k) =
p1p2[(1− p1)k+1 − (1− p2)k+1]

p2 − p1
(1)

for k ∈ N0; and if p1 = p2 = p, f(p1,p2)(k) turns to be the pmf of a negative binomial distribution given by

f(p,p)(k) = (k+ 1)p2(1− p)k, k ∈ N0. (2)

From Eqs. (1) and (2), the hazard rate function of Xp1 + Xp2 is given by

h(p1,p2)(k) = p1p2
(1− p1)k+1 − (1− p2)k+1

p2(1− p1)k+1 − p1(1− p2)k+1
, p1 6= p2, (3)

and

h(p,p)(k) =
(k+ 1)p2

kp+ 1
, p1 = p2 = p, (4)

where k ∈ N0. Under the geometric framework, this section establishes an equivalent characterization between the p-larger
order of parameter vectors and the hazard rate order (the usual stochastic order) of convolutions for the two-dimensional
case, which are not only helpful for deriving our main results in the next section, but are also of independent interest. The
following lemma, due to [17], will be used to establish Theorem 3.2 below.

Lemma 3.1 ([17, p. 57]). Let I ⊂ R be an open interval and let φ : In → R be continuously differentiable. Thenφ is Schur-convex
on In if and only if φ is symmetric on In and for all i 6= j,

(zi − zj)
[
∂

∂zi
φ(z)−

∂

∂zj
φ(z)

]
≥ 0 for all z ∈ In,

where ∂
∂zi
φ(z) denotes the partial derivative with respect to its ith argument.

Assume Xλ1 , Xλ2 and Xλ∗1 , Xλ∗2 to be two pairs of independent exponential random variables with hazard rates λ1, λ2 and
λ∗1, λ

∗

2 , respectively. Bon and Pǎltǎnea [4] then proved the following equivalence:

Xλ1 + Xλ2 ≥hr[≥st] Xλ∗1 + Xλ∗2 ⇐⇒ (λ1, λ2)
p
� (λ∗1, λ

∗

2). (5)

The result established below presents an equivalent characterization similar to (5) under the geometric setup.
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Theorem 3.2. Let (Xp1 , Xp2) be a vector of independent geometric random variables with respective parameters p1, p2, and
(Xp∗1 , Xp∗2 ) be another vector of independent geometric random variables with respective parameters p

∗

1, p
∗

2 . Then the following
three statements are equivalent:

(i) (p1, p2)
p
� (p∗1, p

∗

2);
(ii) Xp1 + Xp2 ≥hr Xp∗1 + Xp∗2 ;
(iii) Xp1 + Xp2 ≥st Xp∗1 + Xp∗2 .

Proof. It is well known that the hazard rate order implies the usual stochastic order and, hence, we only need to show
(i)⇒ (ii) and (iii)⇒ (i). Without loss of generality, assume that p1 ≤ p2 and p∗1 ≤ p

∗

2 .
(i)⇒ (ii)Note that, if p1p2 < p∗1p

∗

2 , then there exists some p
′

2 such that p2 < p
′

2 and p1p
′

2 = p
∗

1p
∗

2 . From Lemma 1.B.3 of [15],
it follows immediately that Xp1 + Xp2 ≥hr Xp1 + Xp′2 . As a result, we find that it is enough to establish the necessity under the
following condition:

p1 ≤ p∗1 and p1p2 = p∗1p
∗

2.

Moreover, if p1 = p∗1 , then p2 = p
∗

2 and this becomes a trivial case. Now we proceed to establish the required result
under the condition p1 < p∗1 ≤ p

∗

2 < p2 and p1p2 = p
∗

1p
∗

2 . In fact, it can be checked that the hazard rate functions in (3) and
(4) have a unitary formula as follows:

h(p1,p2)(k) = p1p2

k∑
i=0
(1− p1)i(1− p2)k−i

(1− p1)k+1 + p1
k∑
i=0
(1− p1)i(1− p2)k−i

(6)

for all p1, p2 ∈ (0, 1) and k ∈ N0. We need to show that

h(p1,p2)(k) ≤ h(p∗1,p∗2)(k), k ∈ N0. (7)

Clearly,

h(p1,p2)(0) = p1p2 = p
∗

1p
∗

2 = h(p∗1,p∗2)(0).

Suppose k ≥ 1. Denote x = log p1, y = log p2, x∗ = log p∗1 and y
∗
= log p∗2 . Since p1, p2, p

∗

1, p
∗
∈ (0, 1), we have

x, y, x∗, y∗ < 0. Also, the following relation holds:

(x, y)
m
� (x∗, y∗).

We then observe that it suffices to show that the symmetrical conditional differentiable function Hk : (−∞, 0)2 → (0,∞),
defined by

Hk(x, y) = ex +
(1− ex)k+1

k∑
i=0
(1− ey)i(1− ex)k−i

= ey +
(1− ey)k+1

k∑
i=0
(1− ex)i(1− ey)k−i

, ∀x, y < 0,

is Schur-convex. Note that

∂

∂x
Hk(x, y)−

∂

∂y
Hk(x, y) =

k∑
i=1
i(1− ex)i−1(1− ey)i−1[ex(1− ey)2(k+1−i) − ey(1− ex)2(k+1−i)][

k∑
i=0
(1− ex)i(1− ey)k−i

]2 .

It is easy to verify that

(x− y)
[
ex(1− ey)2(k+1−i) − ey(1− ex)2(k+1−i)

]
≥ 0

for all x, y < 0 and i = 1, 2, . . . , k, which implies that

(x− y)
(
∂

∂x
Hk(x, y)−

∂

∂y
Hk(x, y)

)
≥ 0

for all x, y < 0. Upon using Lemma 3.1, it follows thatHk is Schur-convex on (−∞, 0)2 for k = 1, 2, . . . .We therefore prove
the inequality in (7).
(iii)⇒ (i) Suppose Xp1 + Xp2 ≥st Xp∗1 + Xp∗2 , i.e., F (p1,p2)(k) ≥ F (p∗1,p∗2)(k) for all k ∈ N0, which implies

F (p1,p2)(1)− F (p∗1,p∗2)(1) = (1− p1p2)− (1− p
∗

1p
∗

2) ≥ 0,
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and hence it holds that p1p2 ≤ p∗1p
∗

2 . Next we will show p1 ≤ p
∗

1 . Assume that p1 6= p2 and p
∗

1 6= p
∗

2 . It can then be verified
that

lim
k→∞

F (p1,p2)(k)

F (p∗1,p∗2)(k)
= lim
k→∞

p1p2(p∗2 − p
∗

1)

(p2 − p1)p∗1p
∗

2
·

1
p1
−

1
p2

[
1−p2
1−p1

]k+1
1
p∗1
−

1
p∗2

[
1−p∗2
1−p∗1

]k+1 · [1− p11− p∗1

]k+1
.

This means that limk→∞ F (p1,p2)(k)/F (p∗1,p∗2)(k) = 0 if p1 > p
∗

1 , in contradiction with the fact that F (p1,p2)(k)/F (p∗1,p∗2)(k) ≥ 1
for all k ∈ N0. We therefore obtain that p1 ≤ p∗1 . For the case either p1 = p2 or p

∗

1 = p
∗

2 , the same conclusion can be deduced
by using a limiting argument. This completes the proof of the theorem. �

Remark 3.3. Boland et al. [3] gave two sufficient conditions on the parameters of underlying distributions under which two
convolutions of independent geometric random variables can be orderedwith respect to the likelihood ratio order. It should
be pointed out that they used a different parametrization of the geometric distribution from ours. More precisely, under the
setup of Theorem 3.2, Boland et al. [3] proved that if

(p1, p2)
m
� (p∗1, p

∗

2) (8)

or if

(log(1− p1), log(1− p2))
m
�
(
log(1− p∗1), log(1− p

∗

2)
)
, (9)

then

Xp1 + Xp2 ≥lr Xp∗1 + Xp∗2 .

Obviously, condition (8) implies that (p1, p2)
w
� (p∗1, p

∗

2). By Theorems 5.A.1 and 5.A.2 of [17], it is seen that condition (9) also

implies (p1, p2)
w
� (p∗1, p

∗

2), which in turn implies (p1, p2)
p
� (p∗1, p

∗

2). The latter is exactly the equivalent characterization for

the hazard rate ordering of convolutions. However, (p1, p2)
p
� (p∗1, p

∗

2) does not imply condition (8) or (9). So Theorem 3.2
cannot be derived from the main results in [3].

4. HR ordering between convolutions of geometric distributions

The following result presents a natural extension of Theorem 3.2 from the two-dimensional case to the general case and
it should be mentioned here that we prove it by using the same technique as in [4].

Theorem 4.1. Let Xp1 , . . . , Xpn and Xp∗1 , . . . , Xp∗n be two sequences of independent geometric random variables with parameters
p1, . . . , pn and p∗1, . . . , p

∗
n , respectively.

(1) If (p1, . . . , pn)
p
� (p∗1, . . . , p

∗
n), then

n∑
i=1

Xpi ≥hr
n∑
i=1

Xp∗i .

(2) Conversely, if
∑n
i=1 Xpi ≥st

∑n
i=1 Xp∗i , then

min{p1, . . . , pn} ≤ min{p∗1, . . . , p
∗

n} and
n∏
i=1

pi ≤
n∏
i=1

p∗i .

Proof. Without loss of generality, let us assume that p1 ≤ · · · ≤ pn and p∗1 ≤ · · · ≤ p
∗
n .

(1) Suppose that (p1, . . . , pn)
p
� (p∗1, . . . , p

∗
n), that is,

∏j
i=1 pi ≤

∏j
i=1 p

∗

i for j = 1, . . . , n. The proof follows by induction
on n. The result is trivially true for n = 1. For n = 2, it follows from Theorem 3.2. We assume the result to hold for n − 1
(n ≥ 3) and proceed to establish it for n. To conclude, let us distinguish two cases.
Case (i): p∗1 < pn
In this case, we have p1 ≤ p∗1 < pn and, hence, there must exist exactly some integer k (1 ≤ k ≤ n − 1) such that

pk ≤ p∗1 < pk+1. Since

(pk, pk+1)
p
�

(
p∗1,
pkpk+1
p∗1

)
,



P. Zhao, T. Hu / Journal of Multivariate Analysis 101 (2010) 44–51 49

it follows from Theorem 3.2 that

Xpk + Xpk+1 ≥hr Xp∗1 + X pkpk+1p∗1

, (10)

where X pkpk+1
p∗1

denotes a geometric random variable with parameter pkpk+1p∗1
, independent of all Xpi and Xp∗i . Also, it can be

readily observed that(
p1, . . . , pk−1,

pkpk+1
p∗1

, pk+2, . . . , pn

)
p
� (p∗2, . . . , p

∗

k , p
∗

k+1, . . . , p
∗

n).

Applying the induction assumption yields the following ordering inequality:

Xp1 + · · · + Xpk−1 + X pkpk+1
p∗1

+ Xpk+2 + · · · + Xpn ≥hr Xp∗2 + · · · + Xp∗k + Xp∗k+1 + · · · + Xp∗n . (11)

Notice that a convolution of independent geometric random variables possesses IFR property. Upon using the discrete
version of Theorem 1.B.4 of [15] and the inequalities (10) and (11), we conclude

n∑
i=1

Xpi ≥hr
k−1∑
i=1

Xpi + Xp∗1 + X pkpk+1p∗1

+

n∑
i=k+2

Xpi ≥hr
n∑
i=1

Xp∗i .

Case (ii): p∗1 ≥ pn
Since pi ≤ p∗i for all 1 ≤ i ≤ n in this case, the result is then a direct application of Theorem 1.B.4 of [15].
(2) First assume that pi 6= pj and p∗i 6= p

∗

j for all i 6= j. Then the pmf of the convolution Tn =
∑n
i=1 Xpi is given by (see [14]),

fTn(k) =
n∑
i=1

pi(1− pi)n+k−1
n∏

j=1,j6=i

(
pj

pj − pi

)
, k ∈ N0, (12)

and the corresponding survival function can be written as

F Tn(k) =
n∑
i=1

(1− pi)n+k−1
n∏

j=1,j6=i

(
pj

pj − pi

)
, k ∈ N0.

Denote T ∗n =
∑n
i=1 Xp∗i . Then we have

F Tn(k)

F T∗n (k)
=

n∑
i=1
(1− pi)n+k−1

n∏
j=1,j6=i

(
pj
pj−pi

)
n∑
i=1
(1− p∗i )n+k−1

n∏
j=1,j6=i

( p∗j
p∗j −p

∗
i

)

=

[
1− p1
1− p∗1

]n+k+1
·

n∏
j=2

(
pj

pj−p1

)
+

n∑
i=2

[
1−pi
1−p1

]n+k−1 n∏
j=1,j6=i

(
pj
pj−pi

)
n∏
j=2

( p∗j
p∗j −p

∗
1

)
+

n∑
i=2

[
1−p∗i
1−p∗1

]n+k−1 n∏
j=1,j6=i

( p∗j
p∗j −p

∗
i

) .
Note that, if p1 > p∗1 then limk→∞ F Tn(k)/F T∗n (k) = 0, contradicting the fact that F Tn(k) ≥ F T∗n (k) for all k ∈ N0. We thus
have p1 ≤ p∗1 . For the case that either pi or p

∗

i are not pairwise unequal, the desired result can also be obtained by using a
limiting argument.
On the other hand, observe that

F Tn(1) = 1− P(Tn = 0) = 1−
n∏
i=1

pi.

Similarly, F T∗n (1) = 1−
∏n
i=1 p

∗

i . The usual stochastic order assumption implies that

F Tn(1) = 1−
n∏
i=1

pi ≥ 1−
n∏
i=1

p∗i = F T∗n (1),

which is equivalent to
∏n
i=1 pi ≤

∏n
i=1 p

∗

i . This thus completes the proof. �
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Remark 4.2. Under the setup of Theorem 4.1, Boland et al. [3] actually proved that if

(p1, . . . , pn)
m
� (p∗1, . . . , p

∗

n) (13)

or if

(log(1− p1), . . . , log(1− pn))
m
�
(
log(1− p∗1), . . . , log(1− p

∗

n)
)
, (14)

then
n∑
i=1

Xpi ≥lr
n∑
i=1

Xp∗i .

Again, by Theorems 5.A.1 and 5.A.2 of [17], it is seen that either one of conditions (13) and (14) is stronger than the one in
the first part of Theorem 4.1.

In what follows, we turn to discussing the special case wherein one convolution involves i.i.d. geometric random
variables. As a direct application of Theorem 4.1, we can readily obtain the following corollary, which reveals the connection
between the hazard rate ordering of the convolutions and the geometric mean of their parameters. Moreover, the
equivalences in Corollary 4.3 in fact correspond to those of Corollary and Theorem 2 in [4] for the exponential case.

Corollary 4.3. Let Xp1 , . . . , Xpn be independent geometric random variables with respective parameters p1, . . . , pn, and
Y1, . . . , Yn be an i.i.d. geometric sequence with a common parameter p. Denote

Tn(p1, . . . , pn) =
n∑
i=1

Xpi and Tn(p, . . . , p) =
n∑
i=1

Yi.

Then

Tn(p1, . . . , pn)≥hr[≥st] Tn(p, . . . , p)⇐⇒ p ≥ n
√
p1 · · · pn

and

Tn(p1, . . . , pn)≤hr[≤st] Tn(p, . . . , p)⇐⇒ p ≤ min{p1, . . . , pn}.

Actually, Tn(p, . . . , p) is a negative binomial random variable with parameters (n, p) and its pmf is given by

f(n,p)(k) =
(
k+ n− 1
n− 1

)
pn(1− p)k, k ∈ N0.

Let h(n,p)(k) be the hazard rate function of the negative binomial random variable Tn(p, . . . , p), and let h(p1,...,pn)(k) be the
hazard rate function of the convolution Tn(p1, . . . , pn). We then obtain from Corollary 4.3 that the best negative binomial
bounds for h(p1,...,pn)(k) as follows:

h(n, min
1≤i≤n

pi)(k) ≤ h(p1,...,pn)(k) ≤ h(n, n√p1···pn)(k) (15)

for all k ∈ N0.
We next present a numerical example for illustrating the best negative binomial bounds established above. For the case

n = 3, we have

h(p1,p2,p3)(k) =

∑
(i,j,k)∈P3

pi(1− pi)k+2 ·
pjpk

(pj−pi)(pk−pi)∑
(i,j,k)∈P3

(1− pi)k+2 ·
pjpk

(pj−pi)(pk−pi)

and

h(3,p)(k) =
(k+ 2)(k+ 1)p3

(k+ 2)(k+ 1)p2 + 2(k+ 2)p(1− p)+ 2(1− p)2

for k ∈ N0, where P3 is the permutation group of the vector (1, 2, 3). Upon choosing (p1, p2, p3) = (1/8, 1/4, 1/2),
the arithmetic mean and geometric mean are given by (p1 + p2 + p3)/3 = 7/24, 3

√
p1p2p3 = 1/4, respectively, and

min{p1, p2, p3} = 1/8. As shown in Fig. 1, four plots of the functions

h(3,1/8)(k), h(1/8,1/4,1/2)(k), h(3,1/4)(k), and h(3,7/24)(k)

are successively ordered from the bottom to the top, which is exactly in accordance with (15). It can be readily seen that, for
the hazard rate function h(1/8,1/4,1/2)(k), the negative binomial upper bound h(3,1/4)(k) is the best approximation near the
origin, while the negative binomial lower bound h(3,1/8)(k) is the best approximation in the tail.
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Fig. 1. Plot of the hazard rate functions of the convolution with parameters (1/8, 1/4, 1/2) and of negative binomial distributions with parameters as
arithmetic mean, geometric mean and 1/8, respectively.
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