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a b s t r a c t

Let X = (X1, X2, . . . , Xn) be a random vector, and denote by X1:n, X2:n, . . . , Xn:n the cor-
responding order statistics. When X1, X2, . . . , Xn represent the lifetimes of n components
in a system, the order statistic Xn−k+1:n represents the lifetime of a k-out-of-n system (i.e.,
a system which works when at least k components work). In this paper, we obtain some
expressions for the Pearson’s correlation coefficient between Xi:n and Xj:n. We pay special
attention to the case n = 2, that is, to measure the dependence between the first and sec-
ond failure in a two-component parallel system. We also obtain the Spearman’s rho and
Kendall’s tau coefficients when the variables X1, X2, . . . , Xn are independent and identi-
cally distributed or when they jointly have an exchangeable distribution.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

There exist several results on dependence properties between order statistics from samples of independent and
identically distributed (IID) random variables; see, for example, [1–11]. However, little work has been done on the
dependence properties when the sample has some kind of dependency; see [12,13]. This situation is realistic and it arises
naturally in several fields such as reliability theory wherein the order statistics represent the lifetimes of k-out-of-n systems
(see [14,15]) and futuresmarket (see [9]). For example, in the former, if we consider a parallel systemwith two components,
it will be of interest to predict the failure time of the system, from the first failure among the components. This prediction
will naturally be based on the dependence between X1:2 and X2:2.
In this paper, some new dependence properties of order statistics are obtained in the general case when n = 2

and also in the cases of n IID components and n exchangeable components. Specifically, we derive explicit expressions
for Pearson’s correlation coefficient between two order statistics (or two coherent systems). Unfortunately, Pearson’s
correlation coefficient does not satisfy Scarsini’s [16] assumptions since it depends on themarginal distributions. Hence, we
also obtain explicit expressions for other dependencemeasures satisfying these assumptions such as Spearman’s correlation
coefficient and Kendall’s tau. Some numerical approximations are also obtained using aMonte Carlo procedure for Kendall’s
tau in the case of exchangeable dependent components.
The rest of this paper is organized as follows. The dependence between order statistics in the bivariate general case is

discussed in Section 2. Explicit expressions for the correlation coefficient between two order statistics from samples of n IID
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random variables are given in Section 3. Analogous expressions for Spearman’s correlation coefficient and Kendall’s tau are
obtained in Section 4. Finally, in Section 5, we present two methods for computing Kendall’s tau between order statistics
from random vectors with exchangeable joint distributions.
Throughout the paper, when a moment of random variable is considered, we assume that it is finite.

2. Bivariate case under dependence

Let (X1, X2) be a random vector with distribution function F(x, y) = Pr(X ≤ x, Y ≤ y) and reliability (or survival)
function R(x, y) = Pr(X > x, Y > y). Let X1:2 = min(X1, X2) and X2:2 = max(X1, X2) be the corresponding order statistics
(lifetimes of series and parallel systems, respectively, if X1 and X2 represent the lifetimes of two components in a system).
The distribution functions of X1:2 and X2:2 are given by F1:2(t) = 1 − R(t, t) and F2:2(t) = F(t, t), respectively. It is well
known that F1:2 ≥ Fi ≥ F2:2 for i = 1, 2, and F1:2+ F2:2 = F1+ F2, where F1 and F2 are the marginal distribution functions of
X1 and X2, respectively. Therefore, the moments readily satisfy E(Xk1:2)+ E(X

k
2:2) = E(X

k
1)+ E(X

k
2) for k = 1, 2, 3, . . . and,

in particular, the means satisfy µ1:2 + µ2:2 = µ1 + µ2 and µ1:2 ≤ µi ≤ µ2:2 for i = 1, 2.
When X1 and X2 are IID, Bickel [17] and Esary, Proschan and Walkup [18] proved that X1:2 and X2:2 are non-negatively

correlated and Terrell [11] proved that the maximal correlation is 1/2, i.e.,

ρ1,2:2 = Corr (X1:2, X2:2) ≤ 1/2

and that the equality is attained when, and only when, X1 and X2 have uniform distributions in an interval. Also in the
IID case, Papathanasiou [19] proved that Cov (X1:2, X2:2) ≤ σ 2/3. In the ID (i.e., identically distributed and not necessarily
independent) case, Balakrishnan and Balasubramanian [12] proved that

Cov (X1:2, X2:2) ≤ (1+ ρ)σ 2, (2.1)

where ρ = Corr (X1, X2) and σ 2 = Var (Xi) for i = 1, 2. Now, by assuming that (X1, X2) is a general random vector, we
obtain new expressions for the correlation coefficient between X1:2 and X2:2.

Theorem 2.1. If (X1, X2) is a random vector, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ1,2:2 = ρ
σ1σ2

σ1:2σ2:2
+
(µ1 − µ1:2)(µ2 − µ1:2)

σ1:2σ2:2
(2.2)

and

ρ1,2:2 = ρ
σ1σ2

σ1:2σ2:2
+
σ 21 + σ

2
2 − σ

2
1:2 − σ

2
2:2

2σ1:2σ2:2
, (2.3)

where µi = E(Xi), µi:2 = E(Xi:2), σ 2i = Var (Xi) and σ
2
i:2 = Var (Xi:2) > 0, i = 1, 2.

Proof. Since X1:2X2:2 = X1X2, we readily have E(X1:2X2:2) = E(X1X2). Hence,

Cov (X1:2, X2:2) = Cov (X1, X2)+ µ1µ2 − µ1:2µ2:2

and

ρ1,2:2 = ρ
σ1σ2

σ1:2σ2:2
+
µ1µ2 − µ1:2µ2:2

σ1:2σ2:2
.

Using now the fact that µ2:2 = µ1 + µ2 − µ1:2, we have

(µ1 − µ1:2)(µ2 − µ1:2) = µ1µ2 − µ1:2µ2:2

which yields (2.2).
To obtain the second expression, we first note that

σ 21 + σ
2
2 − σ

2
1:2 − σ

2
2:2 = µ

2
1:2 + µ

2
2:2 − µ

2
1 − µ

2
2,

since E(X21:2)+ E(X
2
2:2) = E(X

2
1 )+ E(X

2
2 ). Then, by using the fact that µ1 + µ2 = µ1:2 + µ2:2, we get

σ 21 + σ
2
2 − σ

2
1:2 − σ

2
2:2 = 2µ1µ2 − 2µ1:2µ2:2

and so

(µ1 − µ1:2)(µ2 − µ1:2) =
σ 21 + σ

2
2

2
−
σ 21:2 + σ

2
2:2

2
, (2.4)

which yields (2.3). �
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Since µ1:2 ≤ µi for i = 1, 2, the expression in (2.4) readily implies that

σ 21 + σ
2
2

2
≥
σ 21:2 + σ

2
2:2

2
. (2.5)

It can also be used to obtain the following bound

(µ2:2 − µ1)(µ2:2 − µ2) ≤
σ 21 + σ

2
2

2
,

which extends the well-known bound E(X2:2) ≤ µ+ σ (see [12] and [20, p. 111]) in the ID case. In particular, in the ID case,
we obtain the following corollary.

Corollary 2.2. If (X1, X2) is a random vector with X1 and X2 being ID, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ1,2:2 = ρ
σ 2

σ1:2σ2:2
+
(µ− µ1:2)

2

σ1:2σ2:2
(2.6)

and

ρ1,2:2 = (1+ ρ)
σ 2

σ1:2σ2:2
−
σ 21:2 + σ

2
2:2

2σ1:2σ2:2
, (2.7)

where µ = E(Xi), µi:2 = E(Xi:2), σ 2 = Var (Xi) and σ 2i:2 = Var (Xi:2) > 0, i = 1, 2.

Expression (2.6) is equivalent to the expression (7) in [12]. In the general case, from (2.3), we can obtain a similar
expression given by

ρ1,2:2 = (1+ ρ)
σ1σ2

σ1:2σ2:2
+
(σ1 − σ2)

2
− σ 21:2 − σ

2
2:2

2σ1:2σ2:2
. (2.8)

Now, we use the preceding expressions to derive lower and upper bounds for the correlation between two order statistics.

Proposition 2.3. If (X1, X2) is a random vector, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ
σ1σ2

σ1:2σ2:2
≤ ρ1,2:2 ≤ ρ

σ1σ2

σ1:2σ2:2
+
σ 21 + σ

2
2

2σ1:2σ2:2
≤
(σ1 + σ2)

2

2σ1:2σ2:2
(2.9)

and

(1+ ρ)
σ1σ2

σ1:2σ2:2
−
σ 21:2 + σ

2
2:2

2σ1:2σ2:2
≤ ρ1,2:2 ≤ (1+ ρ)

σ1σ2

σ1:2σ2:2
+
(σ1 − σ2)

2

2σ1:2σ2:2
, (2.10)

where σ 2i = Var (Xi) and σ
2
i:2 = Var (Xi:2) > 0, i = 1, 2. Moreover, if X1 and X2 are positive random variables, the lower bound

in (2.9) is attained if, and only if, X1 ≤ X2 or X1 ≥ X2 a.s. (almost surely).

Proof. The lower bound in (2.9) is obtained from Eq. (2.2) by taking into account that µi − µ1:2 ≥ 0 for i = 1, 2. The upper
bounds in (2.9) are obtained from (2.3) and the fact that ρ ≤ 1.
The bounds in (2.10) are obtained similarly from (2.8).
Moreover, if X1 and X2 are positive random variables, the lower bound in (2.9) is attained if, and only if, µ1:2 = µi for

i = 1 or i = 2. Since the reliability functions satisfy R1:2 ≤ Ri and

µ1:2 =

∫
∞

0
R1:2(x)dx = µi =

∫
∞

0
Ri(x)dx,

then R1:2 = Ri and X1:2 = Xi a.s. Therefore, Pr(X1 ≤ X2) = 1 (whenever i = 1) or Pr(X1 ≥ X2) = 1 (whenever i = 2). �

Note that the upper bound in (2.10) is equal to the first upper bound in (2.9). Also note that, if ρ ≥ 0, then from (2.9), we
have ρ1,2:2 ≥ 0, that is, the order statistics of two non-negatively correlated random variables are non-negatively correlated.
The reverse implication is not necessarily true (see Example 2.9). An open question is whether ρ1,2:2 ≥ ρ. If ρ ≥ 0, from
(2.9), it would hold if σ1σ2 ≥ σ1:2σ2:2. We will see later that this property is true in the ID case. Moreover, if µ1:2 ≥ 0, then
from (2.2), we have

ρ1,2:2 ≤
µ1µ2 + ρσ1σ2

σ1:2σ2:2
.

In particular, in the ID case, we obtain the following corollary.
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Corollary 2.4. If (X1, X2) is a random vector, X1 and X2 are ID, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ
σ 2

σ1:2σ2:2
≤ ρ1,2:2 ≤ (1+ ρ)

σ 2

σ1:2σ2:2
≤

2σ 2

σ1:2σ2:2
(2.11)

and

(1+ ρ)
σ 2

σ1:2σ2:2
−
σ 21:2 + σ

2
2:2

2σ1:2σ2:2
≤ ρ1,2:2 ≤ (1+ ρ)

σ 2

σ1:2σ2:2
, (2.12)

where σ 2 = Var (Xi) and σ 2i:2 = Var (Xi:2) > 0, i = 1, 2.

From (2.5), we see that the lower bound in (2.12) is better (i.e., bigger) than the lower bound in (2.11). Moreover, from
(2.5), we have 2σ 2 ≥ σ 21:2 + σ

2
2:2 and using the fact that σ

2
1:2 + σ

2
2:2 ≥ 2σ1:2σ2:2, we obtain σ

2
≥ σ1:2σ2:2. So, if ρ ≥ 0, then

from (2.11), we obtain ρ1,2:2 ≥ ρ. Analogously, if ρ ≤ 0, then from (2.6), we obtain

ρ1,2:2 ≤ ρ +
(µ− µ1:2)

2

σ1:2σ2:2
.

It should also be noted that in the ID case, we can use the bounds given by Rychlik [21] for σi:2 to obtain bounds based only
on the parent common distribution F (see Example 2.8). Similarly, by adding some conditions on the common distribution
function F of X1 and X2 and then using the bounds of Rychlik [21], we can obtain new bounds for ρ1,2:2. For example, if F is
DFR (decreasing failure rate), then by using Proposition 15 of Rychlik [22, p. 106], we obtain µ− µ1:2 = µ2:2 − µ ≤ σ ln 2
and, so from (2.6), we have

ρ1,2:2 ≤ (ρ + ln2 2)
σ 2

σ1:2σ2:2
.

Similarly, if F is IFR (increasing failure rate), then from Proposition 17 of Rychlik [22, p. 109], we obtain µ2:2 − µ ≤
0.909624645σ and

ρ1,2:2 ≤ (ρ + 0.827416995)
σ 2

σ1:2σ2:2
.

The upper bound in (2.12) is improved in the following corollary.

Corollary 2.5. If (X1, X2) is a random vector, X1 and X2 are ID, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ
σ 21:2 + σ

2
2:2

2σ1:2σ2:2
≤ ρ1,2:2 ≤ (1+ ρ)

σ 2

σ1:2σ2:2
− 1, (2.13)

where σ 2 = Var (Xi) and σ 2i:2 = Var (Xi:2) > 0, i = 1, 2.

Proof. From (2.7) and the fact that

σ 21:2 + σ
2
2:2

2σ1:2σ2:2
≥ 1, (2.14)

we obtain the upper bound in (2.13). Next, from (2.4) and (2.14), we have

2σ 2 ≥ σ 21:2 + σ
2
2:2 ≥ 2σ1:2σ2:2.

Then, using (2.7) and that 1+ ρ ≥ 0, we get the lower bound in (2.13). �

The upper bound in (2.11) is worse than the upper bound in (2.13). If ρ ≥ 0 (resp. ≤), then the lower bound in (2.11)
is better (resp. worse) than the lower bound in (2.13) since 2σ 2 ≥ σ 21:2 + σ

2
2:2. Note that if ρ ≥ 0, then from (2.13), we

have ρ ≤ ρ1,2:2. It would be interesting to obtain more bounds depending only on the distribution of (X1, X2) (moments,
dependence parameters, etc.) but we are not able to do that. However, note that they can be obtained from (2.13) whenever
σ1:2σ2:2 is bounded.
Now, we shall consider some specific kind of dependence between the components to obtain some new properties.

Specifically, we shall use the following well known notion of quadrant (orthant) dependence.

Definition 2.6 (Lehmann [23]). A random vector (X1, X2) is positive (negative) quadrant dependent PQD (NQD) iff

R(x1, x2) ≥ (≤) R1(x1)R2(x2) for all x1, x2, (2.15)

where R(x1, x2) = Pr(X1 > x1, X2 > x2) and Ri(xi) = Pr(Xi > xi), i = 1, 2.
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It is well known that (2.15) is equivalent to

F(x1, x2) ≥ (≤) F1(x1)F2(x2) for all x1, x2,

and is also equivalent to

E(φ1(X1)φ2(X2)) ≥ (≤) E(φ1(X1))E(φ2(X2))

for every pair of non-negative both increasing or both decreasing functions whose expected values exist. Hence, if (X1, X2)
is PQD (NQD), then ρ ≥ (≤) 0.

Theorem 2.7. If (X1, X2) is a non-negative PQD (NQD) random vector, ρ = Corr (X1, X2) and ρ1,2:2 = Corr (X1:2, X2:2), then

ρ1,2:2 ≤ (≥) ρ
σ1σ2

σ1:2σ2:2
+
(µ1 − µ

I
1:2)(µ2 − µ

I
1:2)

σ1:2σ2:2
, (2.16)

where µI1:2 =
∫
∞

0 R
2
1(t)dt denotes the expected lifetime of the series system obtained from independent components with the

same marginal distributions as X1 and X2. Moreover, if X1 and X2 have exponential distributions, then

ρ1,2:2 ≤ (≥) ρ
µ1µ2

σ1:2σ2:2
+

µ21µ
2
2

(µ1 + µ2)2σ1:2σ2:2
. (2.17)

Proof. Navarro and Lai [13, Proposition 2.1] proved that, if (X1, X2) is a non-negative PQD (NQD) random vector, thenµ1:2 ≥
(≤) µI1:2. Therefore, from (2.2), we obtain (2.16). Moreover, in the particular case of exponential marginal distributions with
means µ1 and µ2, the variances satisfy σ 2i = µ

2
i for i = 1, 2, and since

µI1:2 =
µ1µ2

µ1 + µ2
,

(2.17) holds. �

In particular, in the ID case, if (X1, X2) is PQD (NQD), we have

ρ1,2:2 ≤ (≥) ρ
σ 2

σ1:2σ2:2
+
(µ− µI1:2)

2

σ1:2σ2:2
,

and if X1 and X2 have a common exponential distribution, then

ρ1,2:2 ≤ (≥)
µ2(ρ + 1/4)
σ1:2σ2:2

.

The following example shows that bounds for ρ1,2:2 = Corr (X1:2, X2:2) can be obtained by using the preceding results
and the bounds for the variance of Rychlik [21].

Example 2.8. If (X1, X2) has an exchangeable distributionwith uniformmarginal distributions in (0, 2µ), then from Rychlik
[21, Example 3], we have Var (Xi:2) ≥ µ2/12. Thus, from (2.6), if ρ ≥ 0, we have

ρ1,2:2 ≤ 4ρ + 12
(µ− µ1:2)

2

µ2
.

In this case, the expression in (2.13) gives

ρ1,2:2 ≤ (1+ ρ)
σ 2

σ1:2σ2:2
− 1 ≤ 4(1+ ρ)

µ2

µ2
− 1 = 3+ 4ρ.

Note that the upper bound 3 + 4ρ is not a useful bound when ρ ≥ −1/2. This bound can also be obtained from the first
expression by using the fact that µi:2 ≥ µ/2 for i = 1, 2 (see Rychlik [21, Example 1]). C

In the following examples, the preceding results are used to obtain the exact value of ρ1,2:2 = Corr (X1:2, X2:2) for some
specific models. First, we discuss the case of an exchangeable bivariate normal distribution.

Example 2.9. If (X1, X2) has an exchangeable normal distribution, then it is easy to obtain from [24] that

µ1:2 = µ− σ

√
1− ρ
π

and

σ1:2 = σ2:2 = σ

√
1−

1− ρ
π

.
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Fig. 1. ρ1,2:2 = Corr (X1:2, X2:2) as a function of ρ = Corr (X1, X2) in the bivariate exchangeable normal distribution. Note that ρ1,2:2 ≥ ρ and that ρ1,2:2
can be positive when ρ is negative (e.g., when ρ = −0.2).

So, from (2.6), we obtain

ρ1,2:2 =
1+ (π − 1)ρ
π − 1+ ρ

,

i.e., ρ1,2:2 is an increasing function of ρ from−1 (when ρ = −1) to 1 (when ρ = 1). A plot of ρ1,2:2 is presented in Fig. 1. In
this case, ρ1,2:2 does not depend either on µ or on σ . C

A similar result is obtained in the following example for the bivariate Pareto distribution used by Lindley and
Singpurwalla [25] to model the behavior of two units in a system sharing a common environment.

Example 2.10. If (X1, X2) has an exchangeable Pareto distribution with reliability function

R(x, y) = (1+ λx+ λy)−θ

for x, y ≥ 0, where λ > 0 and θ > 2, then µ = 1/(λθ − λ) and 0 < ρ = 1/θ < 1/2. Hence, the model can be
reparameterized in terms of µ and ρ with σ 2 = µ2/(1 − 2ρ). Moreover, from Navarro, Ruiz and Sandoval [26], we have
µ1:2 = µ/2,

σ 21:2 =
µ2

4(1− 2ρ)

and

σ 22:2 =
µ2(6+ 3ρ)
4(1− 2ρ)

.

From (2.6), we then obtain

ρ1,2:2 =
1+ 2ρ
√
6+ 3ρ

which is an increasing and positive function for ρ ∈ (0, 1/2). It is of interest to observe that ρ1,2:2 ≥ ρ. C

Finally, we consider Freund’s bivariate exponential model. Note that the order statistics from this model can be seen as
generalized order statistics or sequential k-out-of-n systems (see [3,27]).

Example 2.11. Freund’s bivariate exponential distribution (FBVE)was introduced tomodel the lifetimes of two components
in a parallel system wherein the failure of one either adversely affects the other or enhances its performance. A random
vector (X1, X2) has an exchangeable FBVE if its density function is given by

f (x, y) =
{
γ1γ2 exp(−γ2(y− x)− 2γ1x) for 0 < x < y
γ1γ2 exp(−γ2(x− y)− 2γ1y) for 0 < y < x

where γ1 > 0 and γ2 > 0; see [28] for more details. For this model, Nagaraja and Baggs [14] proved that the regression
function of X2:2, given X1:2 = t , is linear. They specifically showed that

E(X2:2 | X1:2 = t) = t + 1/γ2.
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So, it is of interest in this case to know the correlation coefficient to measure the linear dependency between X2:2 and X1:2.
From the results of Nagaraja and Baggs [14] and Hutchinson and Lai [29, p. 143] and from the expression in (2.6), it is easy
to show that µ− µ1:2 = 1/(2γ2),

σ 21:2 =
1
4γ 21

,

σ 22:2 =
4γ 21 + γ

2
2

4γ 21 γ
2
2
,

and

ρ1,2:2 =
γ2√

4γ 21 + γ
2
2

.

Note that ρ1,2:2 > 0; however, ρ = (γ 22 − γ
2
1 )/(γ

2
2 + 3γ

2
1 ) is restricted to the range−1/3 to 1; see [29, p. 143]. C

3. Correlation between two order statistics

In this section, we suppose that X1, X2, . . . , Xn are IID positive random variables with the common continuous
distribution function F and reliability function R = 1 − F . It is well-known that the order statistics are particular cases of
coherent system lifetimes. Actually, Xn−k+1:n represents the lifetime of the k-out-of-n:F system (i.e., a system which works
when at least k of its n components work). As the results obtained in this section also hold for coherent systems, we shall
present the results for coherent systems in general, and then we give the results for order statistics as particular cases.
Samaniego [30] proved that the reliability function of a coherent system can be written as a mixture of the reliability

functions of order statistics associated with the component lifetimes as follows

RT (t) =
n∑
i=1

siRi:n(t).

The vector s = (s1, s2, . . . , sn)with the coefficients in that representation was called the signature of the system. Recently,
Navarro, Ruiz and Sandoval [15] proved that the reliability function RT of a coherent system with lifetime T and IID
component lifetimes can be written as

RT (t) =
n∑
i=1

aiR1:i(t) =
n∑
i=1

biRi:i(t), (3.1)

where R1:i(t) = Ri(t) and Ri:i(t) = 1− F i(t) are the reliability functions of series X1:i and parallel Xi:i systems, respectively.
The vectors of coefficients a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) were called minimal and maximal signatures,
respectively. These coefficients satisfy

∑n
i=1 ai =

∑n
i=1 bi = 1, but some of them can be negative. Theminimal andmaximal

signatures can be obtained from Samaniego’s signature and vice versa. The representations in (3.1) continue to hold in the
exchangeable case aswell (see [15,31]) but, in this case, R1:i(t) (resp. Ri:i(t)) is not necessarily equal to Ri(t) (resp. 1−F i(t)). In
particular, theminimal andmaximal signatures for the order statistics can be obtained from the expressions (see [20, p. 46])

Rr:n(t) =
n∑

i=n−r+1

(−1)i+r−n−1
(
i− 1
n− r

)(n
i

)
R1:i(t) (3.2)

and

Rr:n(t) =
n∑
i=r

(−1)i−r
(
i− 1
r − 1

)(n
i

)
Ri:i(t). (3.3)

The following lemma gives a similar representation for the joint reliability function of two coherent systems.

Lemma 3.1. If T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having common reliability function R, then

Pr(T > x, T ∗ > y) =
n∑
i=0

n−i∑
j=1

ai,jRi(x)Rj(y) (3.4)

for all x ≤ y, and

Pr(T > x, T ∗ > y) =
n∑
j=0

n−j∑
i=1

a∗i,jR
i(x)Rj(y) (3.5)

for all x > y, where ai,j and a∗i,j, for i, j = 1, 2, . . . , n, are some coefficients not depending on R.
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Proof. It is well known (see [32, p. 12]) that the lifetime of a system can be written as T = maxi=1,2,...,s XPi , where
XPi = minj∈Pi Xj and the sets P1, P2, . . . , Ps are called minimal path sets. Thus, if T

∗ has minimal path sets P∗1 , P
∗

2 , . . . , P
∗

s∗ ,
then T ∗ = maxi=1,2,...,s∗ XP∗i and

Pr(T > x, T ∗ > y) = Pr
(
∪
s
i=1{XPi > x},∪

s∗
i∗=1{XP∗i∗ > y}

)
= Pr

(
∪
s
i=1 ∪

s∗
i∗=1{XPi > x, XP∗i∗ > y}

)
=

s∑
i=1

s∗∑
i∗=1

Pr
(
XPi > x, XP∗i∗ > y

)
−

∑
i<j

∑
i∗<j∗

Pr
(
XPi∪Pj > x, XP∗i∗∪P∗j∗ > y

)
+ · · · ± Pr (X1:n > x, X1:n > y)

=

s∑
i=1

s∗∑
i∗=1

Pr
(
XPi−P∗i∗ > x

)
Pr
(
XP∗i∗ > y

)
−

∑
i<j

∑
i∗<j∗

Pr
(
XPi∪Pj−(P∗i∗∪P∗j∗ ) > x

)
Pr
(
XP∗i∗∪P∗j∗ > y

)
+ · · · ± Pr (X1:n > y)

=

s∑
i=1

s∗∑
i∗=1

R|Pi−P
∗

i∗ |(x)R|P
∗

i∗ |(y)−
∑
i<j

∑
i∗<j∗

R|Pi∪Pj−(P
∗

i∗∪P
∗

j∗ )|(x)R|P
∗

i∗∪P
∗

j∗ |(y)+ · · · ± Rn(y)

for x ≤ y, where |P| denotes the cardinality of the set P . Therefore, we obtain the stated result for x ≤ y taking into account
that |P − Q | + |Q | ≤ n for all P,Q ⊆ {1, 2, . . . , n}. The proof for x > y follows on similar lines. �

Note that the proof gives a constructive method to obtain the coefficients in these representations. An analogous
expression can be obtained in term of the values F(x) and F(y) of the component distribution function. In particular, for
the order statistics, we obtain the expression in (2.2.4) of David and Nagaraja [20, p. 12] in terms of F(x) and F(y). By using
a similar method, we can also obtain the following expression in terms of R(x) and R(y):

Pr(Xr:n > x, Xs:n > y) =
r−1∑
j=0

s−j−1∑
i=0

i∑
t=0

j∑
`=0

(−1)j+i−`−tn!
(n− j− i)!(j− `)!(i− t)!`!t!

Rt+j−`(x)Rn−j−t(y) (3.6)

for x ≤ y and Pr(Xr:n > x, Xs:n > y) = Pr(Xr:n > x) for x > y whenever r < s. Hence, the coefficients ai,j and a∗i,j for
(Xr:n, Xs:n) in (3.4) and (3.5) can be obtained from (3.6) and (3.2), respectively. Expression (3.6) can also be rewritten as

Pr(Xr:n > x, Xs:n > y) =
r−1∑
`=0

r−1∑
j=`

s−1∑
i=j

(−1)s+j+i−`−1n!
(n− i)(n− s)!(s− i− 1)!(j− `)!(i− j)!`!

Ri−`(x)Rn−i(y) (3.7)

for x ≤ y and r < s.
The representations in terms of the reliability functions of series systems given in Lemma 3.1 can be used effectively to

compute the correlation coefficient between two coherent systems and, in particular, two order statistics. For this purpose,
we need the expressions presented in the following lemma for positive random variables with finite moments. These
expressions were given by Jones and Balakrishnan [33] and Navarro, Ruiz and del Aguila [34].

Lemma 3.2. If (X, Y ) is a positive random vector, then
(i) E(X) =

∫
∞

0 R1(x)dx,
(ii) E(X2) =

∫
∞

0 2xR1(x)dx and
(iii) E(XY ) =

∫
∞

0

∫
∞

0 R(x, y)dxdy,
where R(x, y) = Pr(X > x, Y > y) and R1(x) = Pr(X > x).

The proof is straightforward. Now, we present the main result of this section which gives the expressions needed for
computing the correlation coefficient between two coherent systems and, in particular, the correlation coefficient between
two order statistics.

Theorem 3.3. If T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having the common continuous reliability function R, then

E(T ) =
n∑
i=1

ai

∫
∞

0
Ri(x)dx, (3.8)

E(T 2) =
n∑
i=1

ai

∫
∞

0
2xRi(x)dx (3.9)
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and

E(TT ∗) =
n∑
i=0

n−i∑
j=1

(ai,j + a∗j,i)
∫
∞

0
Ri(x)

∫
∞

x
Rj(y)dydx, (3.10)

where (a1, a2, . . . , an) is the minimal signature of T and ai,j and a∗i,j are the coefficients in (3.4) and (3.5).

Proof. Expressions in (3.8) and (3.9) are obtained from (3.1) and Lemma 3.2. To obtain (3.10), note that, from Lemma 3.2,
we have

E(TT ∗) =
∫
∞

0

∫
∞

x
RT ,T∗(x, y)dydx+

∫
∞

0

∫
∞

y
RT ,T∗(x, y)dxdy.

Then, upon using (3.4) and (3.5), we get

E(TT ∗) =
n∑
i=0

n−i∑
j=1

ai,j

∫
∞

0
Ri(x)

∫
∞

x
Rj(y)dydx+

n∑
j=0

n−j∑
i=1

a∗i,j

∫
∞

0
Rj(y)

∫
∞

y
Ri(x)dxdy,

from which (3.10) follows. �

Note that Var (T ), Cov (T , T ∗) and Corr (T , T ∗) can all be computed from (3.8)–(3.10). Also, note that E(TT ∗) can be
rewritten as

E(TT ∗) =
n∑
i=0

n−i∑
j=1

(ai,j + a∗j,i)
∫
∞

0
Ri+j(x)m1:j(x)dx,

where

m1:j(x) = E(X1:j − x|X1:j > x) =
1
Rj(x)

∫
∞

x
Rj(y)dy

is the mean residual life function of the series system X1:j.
In particular, if the component lifetimes X1, X2, . . . , Xn have exponential distributions with common mean µ, then

m1:j(x) = E(X1:j) = µ/j for j = 1, 2, . . . , n, and so

E(T ) = µ
n∑
i=1

ai/i, (3.11)

E(T 2) = 2µ2
n∑
i=1

ai/i2, (3.12)

and

E(TT ∗) =
n∑
i=0

n−i∑
j=1

(ai,j + a∗j,i)
µ2

j(i+ j)
. (3.13)

Example 3.4. Let us consider the order statistics X1:3 and X2:3 in the case when Xi’s all have an exponential distribution
with mean µ (i = 1, 2, 3). Then, it is easy to obtain from (3.2) that the minimal signatures of X1:3 and X2:3 are (0, 0, 1) and
(0, 3,−2), respectively. From (3.6), we similarly have

Pr(X1:3 > x, X2:3 > y) = 3R(x)R2(y)− 2R3(y)

for x < y, and

Pr(X1:3 > x, X2:3 > y) = R3(x)

for x ≥ y. Thus, the non-zero coefficients are a1,2 = 3, a0,3 = −2 and a∗3,0 = 1. Therefore, from (3.11)–(3.13),
we obtain E(X1:3) = µ/3, E(X2:3) = 5µ/6, E(X21:3) = 2µ2/9, E(X22:3) = 19µ2/18,Var (X1:3) = µ2/9,Var (X2:3) =
13µ2/36, E(X1:3X2:3) = 7µ2/18, Cov (X1:3, X2:3) = µ2/9, and Corr (X1:3, X2:3) = 2/

√
13. C

Example 3.5. If we consider the system T = min(X1,max(X2, X3)) and its dual system TD = max(X1,min(X2, X3)) with
minimal signatures (0, 2,−1) and (1, 1,−1), respectively, then

Pr(T > x, TD > y) = 2R(x)R(y)+ R(x)R2(y)− R3(y)− R2(x)R(y)
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for x < y, and

Pr(T > x, TD > y) = Pr(T > x) = 2R2(x)− R3(x)

for x ≥ y. Thus, the non-zero coefficients are a0,3 = −1, a1,1 = 2, a1,2 = 1, a2,1 = −1, a∗2,0 = 2 and a
∗

3,0 = −1.
Therefore, if we suppose that Xi’s have an exponential distribution with mean µ (i = 1, 2, 3), then E(T ) = 2µ/3, E(TD) =
7µ/6, E(T 2) = 7µ2/9, E(T 2D) = 41µ

2/18,Var (T ) = µ2/3,Var (TD) = 11µ2/12, E(TTD) = 10µ2/9, Cov (T , TD) = µ2/3,
and Corr (T , TD) = 2/

√
11. C

In particular, if we apply (3.11)–(3.13) to order statistics from IID exponential random variables, we can compute the
means, variances and correlation coefficients of order statistics. The correlations values are presented in Table 1 for sample
sizes 2–6. Alternatively, we can use the following well known (see [35]) expressions

E(Xr:n) =
n∑

j=n−r+1

1
j
,

Var (Xr:n) =
n∑

j=n−r+1

1
j2

for r = 1, 2, . . . , n,

Cov (Xr:n, Xs:n) = Var (Xr:n) =
n∑

j=n−r+1

1
j2

and

Corr (Xr:n, Xs:n) =

√
Var (Xr:n)
Var (Xs:n)

=

√√√√√√√√
n∑

j=n−r+1

1
j2

n∑
j=n−s+1

1
j2

for 1 ≤ r < s ≤ n.
Similar results can also be obtained for other distributions. For example, if the component lifetimes X1, X2, . . . , Xn have

uniform distributions in the interval (0, 1), then from Theorem 3.3, we obtain

E(T ) =
n∑
i=1

ai/(i+ 1),

E(T 2) = 2
n∑
i=1

ai/(i+ 1)(i+ 2)

and

E(TT ∗) =
n∑
i=0

n−i∑
j=1

(ai,j + a∗j,i)
µ2

(j+ 1)(i+ j+ 2)
.

Finally, we note that, from [31], the results in this section can also be applied to systems with different sizes and, in
particular, to the order statistics Xi:n and Xj:m with n 6= m.

4. Spearman’s correlation and Kendall’s tau between two order statistics

Some other useful measures of dependence are Spearman’s ρ and Kendall’s τ . The main advantage of these measures
is that they are invariant under monotone transformations. Hence, when we apply them to coherent systems or to order
statistics, they are distribution-free as they do not depend on the common distribution function F . These two measures are
closely related; see Fredericks and Nelsen [36] and the references therein. Spearman’s ρS(X, Y ) of two random variables X
and Y is simply the Pearson’s correlation coefficient between FX (X) and FY (Y ) which have uniform distributions in (0, 1),
where FX and FY are the corresponding distribution functions. It is well-known that

ρS(X, Y ) = −3+ 12
∫
∞

−∞

∫
∞

−∞

FX (x)FY (y)dF(x, y),

where F is the joint distribution of (X1, X2); see [37, p. 32]. It can also be rewritten as

ρS(X, Y ) = 3− 12
∫
∞

−∞

∫
∞

−∞

RX (x)FY (y)dR(x, y), (4.1)

where RX = 1− FX and R is the joint reliability function of (X1, X2).
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Spearman’s ρ of extreme order statistics (i.e., X1:n and Xn:n) were studied in [1,4,8,10]. Chen [4], in particular, proved that
ρS(X1:n, Xn:n) = 3(1− 4p1,n), where

p1,n = n(n− 1)
∫ 1

0

∫ t

0
(1− s)ntn(t − s)n−2dsdt = E((1− X1:n)nXnn:n).

In the following theorem, which is the main result of this section, we extend these results for any pair of order statistics,
and in fact, it is stated in a more general way for any pair of coherent systems.

Theorem 4.1. If T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having a common uniform distribution in the interval (0, 1) and Pr(T = T ∗) = 0, then

ρS(T , T ∗) = 3(1− 4p),

where

p =
n∑
i=1

n∑
j=1

aib∗j

∫ 1

0

∫ 1

0
(1− x)iyjfT ,T∗(x, y)dxdy, (4.2)

(a1, a2, . . . , an) is the minimal signature of T , (b∗1, b
∗

2, . . . , b
∗
n) is the maximal signature of T

∗, and fT ,T∗ is the joint density of
(T , T ∗).

Proof. If Pr(T = T ∗) = 0, then (T , T ∗) has an absolutely continuous joint distribution and hence, from (4.1), we have

p =
∫ 1

0

∫ 1

0
RT (x)FT∗(y)fT ,T∗(x, y)dxdy,

where fT ,T∗ is the joint probability density function. Then, upon using the facts that R1:i(x) = (1− x)i and Fi:i(x) = xi, from
(3.1), we obtain (4.2). �

Note that if T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having a common absolutely continuous distribution, then the random vector (T , T ∗) has an absolutely continuous
distribution if and only if Pr(T = T ∗) = 0 holds. Also note that

p =
n∑
i=1

n∑
j=1

aib∗j E((1− T )
i(T ∗)j)

and that fT ,T∗ in (4.2) can be replaced by the expressions obtained from (3.4) and (3.5). Also, from (iii) of Lemma 3.2,
E((1− T )i(T ∗)j) can be expressed as

E((1− T )i(T ∗)j) =
∫ 1

0

∫ 1

0
Pr(T < 1− x1/i, T ∗ > y1/j)dxdy.

Wecan obtain representations for Pr(T < s, T ∗ > t) similar to those for RT ,T∗ in (3.4) and (3.5).We can also obtain analogous
expressions using only minimal (or maximal) signatures. For example, (4.1) can be written as

ρS(X, Y ) = −3+ 12
∫
∞

−∞

∫
∞

−∞

RX (x)RY (y)dR(x, y),

and hence

ρS(T , T ∗) = −3+ 12
n∑
i=1

n∑
j=1

aia∗j

∫ 1

0

∫ 1

0
(1− x)i(1− y)jfT ,T∗(x, y)dxdy. (4.3)

Then, using the representations in Lemma 3.1, we obtain the following result.

Theorem 4.2. If T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having a common uniform distribution in the interval (0, 1) and Pr(T = T ∗) = 0, then

ρS(T , T ∗) = −3+ 12
n∑
i=1

n∑
j=1

n∑
r=1

n−r∑
s=1

(aia∗j ar,s + aja
∗

i a
∗

s,r)
rs

(j+ s)(i+ j+ r + s)
, (4.4)

where (a1, a2, . . . , an) and (a∗1, a
∗

2, . . . , a
∗
n) are the minimal signatures of T and T

∗, respectively, and ar,s and a∗s,r are the
coefficients in (3.4) and (3.5) for (T , T ∗).



J. Navarro, N. Balakrishnan / Journal of Multivariate Analysis 101 (2010) 52–67 63

Proof. From (3.4), (3.5) and (4.3), we have

ρS(T , T ∗) = −3+ 12
n∑
i=1

n∑
j=1

n∑
r=1

n−r∑
s=1

rs(aia∗j ar,s + aja
∗

i a
∗

s,r)

∫ 1

0

∫ 1

x
(1− x)i+r−1(1− y)j+s−1dydx.

Then, the expression in (4.4) is obtained by carrying out the required integrations. �

In particular, we obtain the following expressions for order statistics.

Theorem 4.3. If Xr:n and Xs:n (r < s) are two order statistics from an IID sample, then ρS(Xr:n, Xs:n) = 3(1− 4pr,s), where

pr,s =
n∑

i=n−r+1

n∑
j=s

(−1)i+j+r−s−n−1
(
i− 1
n− r

)(n
i

)( j− 1
s− 1

)(
n
j

)
n!

(r − 1)!(s− r − 1)!(n− s)!

×

∫ 1

0

∫ y

0
(1− x)iyjxr−1(y− x)s−r−1(1− y)n−sdxdy (4.5)

=

n∑
i=n−r+1

n∑
j=s

i∑
k=0

(−1)i+j+r+k−s−n−1
r
(
i−1
n−r

) ( n
i

) ( j−1
s−1

) (
n
j

) (
i
k

) ( n
s

) ( s
r

)
(k+ s+ j)

(
k+s−1
s−r

) (
n+k+j
n−s

) . (4.6)

Proof. From Eqs. (3.2) and (3.3) and the expression for the joint density of two order statistics, the general formula in (4.2)
reduces to the one in (4.5). To obtain (4.6) from (4.5), we replace (1−x)i by

∑i
k=0(−1)

k
(
i
k

)
xk, andmake the change z = x/y

in the integral, obtaining two beta-type integrals, leading to the expression in (4.6). �

In particular, when r = 1 and s = n in (4.5) and (4.6), we obtain formulas 1 and 2 in Theorem 1 of Chen [4], respectively.
An alternative expression is presented in the following theorem.

Theorem 4.4. If Xr:n and Xs:n (r < s) are two order statistics from an IID sample, then ρS(Xr:n, Xs:n) = −3+ 12qr,s, where

qr,s =
n∑

i=n−r+1

n∑
j=n−s+1

r−1∑
`=0

r−1∑
k=`

s−1∑
t=k

(−1)r+i+j+k+t−`−1
(
i− 1
n− r

)(n
i

)( j− 1
n− s

)(
n
j

)
×

(t − `)n!
(j+ n− t)(i+ j+ n− `)(n− s)!(s− t − 1)!(k− `)!(t − k)!`!

.

Proof. From (3.2) and (4.4), we obtain

qr,s =
n∑

i=n−r+1

n∑
j=n−s+1

n∑
α=1

n−α∑
β=1

(−1)r+s+i+j
(
i− 1
n− r

)(n
i

)( j− 1
n− s

)(
n
j

)
αβaα,β

(j+ β)(i+ j+ α + β)

since the coefficients a∗i,j in (3.5) for (Xr:n, Xs:n) are zero for j = 1, 2, . . . , n. Then, by using (3.7), we obtain the required
result. �

The values for Spearman’s ρ between order statistics from samples of sizes 2–6 are presented in Table 1. Similar
developments can be made for Kendall’s tau using the expression

τ(X, Y ) = −1+ 4
∫
∞

−∞

∫
∞

−∞

R(x, y)dR(x, y), (4.7)

where R is the joint reliability function of (X, Y ) and X and Y have uniform distributions in (0, 1). For example, the general
result obtained from the representations in Lemma 3.1 can be stated as follows.

Theorem 4.5. If T and T ∗ are the lifetimes of two coherent systems based on the same IID component lifetimes X1, X2, . . . , Xn
having a common uniform distribution in the interval (0, 1) and Pr(T = T ∗) = 0, then

τ(T , T ∗) = −1+ 4
n∑
i=1

n−i∑
j=1

n∑
r=1

n−r∑
s=1

(ai,jar,s + a∗j,ia
∗

s,r)
rs

(j+ s)(i+ j+ r + s)
,

where ar,s and a∗s,r are the coefficients in (3.4) and (3.5) for (T , T
∗).
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In particular, for the order statistics from (3.7), we obtain

τ(Xr:n, Xs:n) = −1+ 4
r−1∑
a=0

r−1∑
b=a

s−1∑
c=b

r−1∑
i=0

r−1∑
j=i

s−1∑
k=j

(−1)s+j+k−i−1n!
(n− k)(n− s)!(s− k− 1)!(j− i)!(k− j)!i!

×
(−1)s+b+c−a−1n!

(n− c)(n− s)!(s− c − 1)!(b− a)!(c − b)!a!
·

(n− k)(k− i)
(n− c + n− k)(n+ n− a− i)

for 1 ≤ r < s ≤ n. Alternative (more simple) expressions were obtained by Schmitz [10] (between X1:n and Xn:n) and
Avérous, Genest and Kochar [1]. The values for Kendall’s tau between order statistics from samples of sizes 2–6 are presented
in Table 1. Note that Kendall’s tau is symmetric, that is, τ(Xr:n, Xs:n) = τ(Xn−r+1:n, Xn−s+1:n). Also note that τ(Xr:n, Xs:n) de-
creases as s−r increases. In the next section, we show howKendall’s tau can be computed in the case of dependent samples.
Finally, it needs to be mentioned that expressions similar to those given in the preceding result can be obtained for Xr:n

and Xs:m when n 6= m by using the representations in [31].

5. Dependence measures for order statistics from dependent samples

In this section, we suppose that X = (X1, X2, . . . , Xn) is a random vector of (possibly dependent) identically distributed
randomvariableswith common continuous distribution function F . Then, it iswell known that fromSklar’s theorem (see [38,
p. 18]), the joint distribution function can be written as

FX (x1, x2, . . . , xn) = C(F(x1), F(x2), . . . , F(xn)),

where the copula C is the joint distribution function of U = (U1,U2, . . . ,Un) and where Ui = F(Xi) has a uniform
distribution in (0, 1) for i = 1, 2, . . . , n.
If (X1:n, X2:n, . . . , Xn:n) is the random vector of order statistics obtained from X and (U1:n,U2:n, . . . ,Un:n) is the random

vector of order statistics obtained from U , then Ui:n = F(Xi:n). Moreover, if Gi is the distribution function of Ui:n and C∗ is the
copula of (U1:n,U2:n, . . . ,Un:n), then

Pr(X1:n ≤ x1, . . . , Xn:n ≤ xn) = Pr(U1:n ≤ F(x1), . . . ,Un:n ≤ F(xn))
= Pr(G1(U1:n) ≤ G1(F(x1)), . . . ,Gn(Un:n) ≤ Gn(F(xn)))
= C∗(G1(F(x1)), . . . ,Gn(F(xn))),

that is, (X1:n, X2:n, . . . , Xn:n) and (U1:n,U2:n, . . . ,Un:n) share the same copula (C∗) and Gi ◦ F is the distribution function of
Xi:n, for i = 1, 2, . . . , n.
Therefore, (Xi:n, Xj:n) and (Ui:n,Uj:n) also share the same copula and d(Xi:n, Xj:n) = d(Ui:n,Uj:n), where d(Y , Z) stands for

any measure of concordance of real-valued random variables Y and Z in the sense of Scarsini [16] including Spearman’s
rho, Kendall’s tau and Gini’s coefficient of association. Further, from Capéraà and Genest [39] (see also [40, p. 300]), we
have Spearman’s correlation coefficient to be greater (smaller) than Kendall’s tau for positively (negatively) dependent
random variables. Hence, we can compute Kendall’s tau which will then provide a bound for Spearman’s rho under some
dependence properties.Moreover, Nelsen [38, p. 153] proved that three times Kendall’s tau is an upper bound for Spearman’s
correlation coefficient (see [40, p. 300]) for positively quadrant dependent (PQD) random variables. Other relationships
between Spearman’s rho and Kendall’s tau have been given by Fredricks and Nelsen [36]. These results lead to the following
lemma.

Lemma 5.1. If ρS(Y , Z) and τ(Y , Z) are Spearman’s rho and Kendall’s tau, respectively, then

3τ(Y , Z) ≥ ρS(Y , Z) ≥ τ(Y , Z) ≥ 0

whenever one of Y or Z is simultaneously left-tail decreasing (LTD) and right-tail increasing (RTI) in the other variable. Moreover,
the inequalities can be reversed whenever one of Y or Z is simultaneously left-tail increasing (LTI) and right-tail decreasing (RTD)
in the other variable.

The proof is immediate since LTD (LTI) implies PQD (NQD); see [2]. It is well-known that (see [2]) two random variables
are LTD and RTI when they are TP2 (i.e., when their joint density is totally positive of order 2). It is also easy to show,
using the properties of multivariate likelihood ratio order (see [41]), that if a random vector is MTP2 (multivariate totally
positive of order 2 or positively likelihood ratio dependent), then any pair of its random variables is TP2. Therefore, if
(U1:n,U2:n, . . . ,Un:n) isMTP2, then

ρS(Xi:n, Xj:n) ≥ τ(Ui:n,Uj:n) ≥ 0,

i.e., Kendall’s tau is a lower bound for Spearman’s correlation of two order statistics, which does not depend on the parent
distribution function.
Note that Kendall’s tau can be computed through a standard Monte Carlo procedure (see Example 5.3) by using the

expression

τ(X, Y ) = 2 Pr((X1 − X2)(Y1 − Y2) > 0)− 1
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Table 1
Pearson’s correlation coefficient ρ = Corr (Xr:n, Xs:n), Spearman’s correlation coefficient ρS = ρS(Xr:n, Xs:n) and Kendall’s tau τ = τ(Xr:n, Xs:n) of order
statistics from IID exponential samples of sizes 2 to 6.

n r s ρ ρS τ

2 1 2 0.447214 0.466667 0.333333

3 1 2 0.554700 0.550000 0.400000
3 1 3 0.285714 0.292857 0.200000
3 2 3 0.515079 0.550000 0.400000

4 1 2 0.600000 0.584416 0.428571
4 1 3 0.384111 0.372468 0.257143
4 1 4 0.209529 0.211775 0.142857
4 2 3 0.640184 0.650909 0.485714
4 2 4 0.349215 0.372468 0.257143
4 3 4 0.545491 0.584416 0.428571

5 1 2 0.624695 0.603175 0.444444
5 1 3 0.432731 0.411303 0.285714
5 1 4 0.293733 0.280481 0.190476
5 1 5 0.165317 0.165517 0.111111
5 2 3 0.692708 0.693164 0.523810
5 2 4 0.470203 0.474811 0.333333
5 2 5 0.264636 0.280481 0.190476
5 3 4 0.678789 0.693164 0.523810
5 3 5 0.382031 0.411303 0.285714
5 4 5 0.562813 0.603175 0.444444

6 1 2 0.640184 0.614973 0.454545
6 1 3 0.461757 0.434492 0.303030
6 1 4 0.339227 0.317354 0.216450
6 1 5 0.237759 0.224699 0.151515
6 1 6 0.136475 0.135746 0.090909
6 2 3 0.721288 0.716387 0.545455
6 2 4 0.529889 0.525079 0.372294
6 2 5 0.371391 0.372018 0.255411
6 2 6 0.213181 0.224699 0.151515
6 3 4 0.734643 0.739056 0.567100
6 3 5 0.514900 0.525079 0.372294
6 3 6 0.295556 0.317354 0.216450
6 4 5 0.700884 0.716387 0.545455
6 4 6 0.402312 0.434492 0.303030
6 5 6 0.574007 0.614973 0.454545

(see [38, p. 159]), where (X1, Y1) and (X2, Y2) are independent random vectors with the same distribution as (X, Y ).
Moreover, if (X1, X2, . . . , Xn) is exchangeable, then (U1,U2, . . . ,Un) is also exchangeable and hence, (U1:n,U2:n, . . . ,Un:n) is
MTP2 if, and only if (U1,U2, . . . ,Un) isMTP2. Thus, we obtain the following theorem.

Theorem 5.2. If (X1, X2, . . . , Xn) is exchangeable and MTP2, then

ρS(Xi:n, Xj:n) ≥ τ(Ui:n,Uj:n) ≥ 0,

where Ui:n = F(Xi:n) for i = 1, 2, . . . , n and F is the common marginal distribution.

A similar argument can be used in the case of negative dependence by using the results of Nelsen [38, p. 182].

Example 5.3. Let (X1, X2, . . . , Xn) have a Farlie–Gumbel–Morgenstern exchangeable distribution with marginal distribu-
tion F , with the joint distribution function as

F(x1, x2, . . . , xn) = F(x1) · · · F(xn)

(
1+ α

n∏
i=1

(1− F(xi))

)
,

where |α| ≤ 1. It is not hard to verify that the corresponding copula

C(u1, . . . , un) = u1 · · · un

(
1+ α

n∏
i=1

(1− ui)

)
is absolutely continuous with density function

c(u1, . . . , un) = 1+ α
n∏
i=1

(1− 2ui);
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Table 2
Numerical approximations (using Monte Carlo simulations) of Kendall’s tau values for order statistics obtained from a sample with FGM joint distribution
(see Example 5.3).

α τ(X1:2, X2:2) τ (X1:3, X2:3) τ (X2:3, X3:3) τ (X1:3, X3:3)

−1.0 0.160080 0.461528 0.338744 0.198360
−0.9 0.178040 0.454704 0.344976 0.198056
−0.8 0.196536 0.448600 0.351048 0.198288
−0.7 0.214064 0.442704 0.357544 0.198000
−0.6 0.231968 0.436296 0.363536 0.197864
−0.5 0.248896 0.429608 0.369256 0.197768
−0.4 0.266560 0.423512 0.375632 0.197360
−0.3 0.284264 0.417040 0.381536 0.197440
−0.2 0.302256 0.410840 0.387800 0.197280
−0.1 0.321160 0.404464 0.393992 0.197264
0.0 0.330448 0.397560 0.398960 0.197488
0.1 0.356504 0.391544 0.406136 0.197240
0.2 0.374624 0.385456 0.412464 0.197088
0.3 0.392376 0.379432 0.418888 0.197296
0.4 0.409976 0.373008 0.425016 0.196880
0.5 0.427424 0.367048 0.431048 0.197272
0.6 0.444416 0.361296 0.437032 0.197400
0.7 0.462624 0.355432 0.443544 0.197616
0.8 0.480096 0.348872 0.449736 0.197608
0.9 0.497576 0.342512 0.455656 0.197848
1.0 0.515680 0.336472 0.461840 0.198256

see, for example, [38, p. 87]. Therefore, we can compute approximations of Kendall’s tau for the order statistics based on
samples from the above FGM distribution by using a standard Monte Carlo method (see Table 2). If α ≥ 0, then it is not
hard to verify that F is TP2 in pairs and hence MTP2. Thus, Kendall’s tau values are lower bounds for Spearman’s rho when
α ≥ 0. Numerically, we observe that τ(X1:2, X2:2) seems to be a linear function of α. The same holds for τ(X1:3, X2:3) and
τ(X2:3, X3:3). Moreover, it seems that τ(X1:3, X3:3) does not depend on α. In the case of independence (α = 0), the exact
values of Kendall’s tau are τ(X1:2, X2:2) = 1/3, τ(X1:3, X2:3) = τ(X2:3, X3:3) = 2/5, and τ(X1:3, X3:3) = 1/5. C

Finally, in the following example, we show that the exact values for Kendall’s tau between order statistics from an
exchangeable random vector can also be computed by using (4.7) and a procedure similar to that used in Lemma 3.1 and in
Theorem 4.5. As a matter of fact, this procedure can also be used in the general (not necessarily exchangeable) case.

Example 5.4. Let us consider X1:2 and X2:2; then, for x ≤ y,

Pr(X1:2 > x, X2:2 > y) = Pr(X1:2 > x, {X1 > y} ∪ {X2 > y})
= Pr(X1:2 > x, X1 > y)+ Pr(X1:2 > x, X2 > y)− Pr(X1:2 > x, X1:2 > y)
= R(y, x)+ R(x, y)− R(y, y),

where R is the joint reliability function of (X1, X2). Now if R is exchangeable, then

Pr(X1:2 > x, X2:2 > y) = 2R(x, y)− R(y, y)

and the joint density of X1:2 and X2:2 is (of course) equal to 2f (x, y) for x ≤ y, and zero otherwise. Then, Kendall’s tau can be
computed from (4.7) as

τ(X1:2, X2:2) = −1+ 4
∫ 1

0

∫ 1

x
(2R(x, y)− R(y, y))f (x, y)dydx.

For example, if (X1, X2) has the Farlie–Gumbel–Morgenstern exchangeable distribution presented in the preceding example,
a direct calculation then yields

τ(X1:2, X2:2) =
8
45
α +

1
3
,

which coincides with the Monte Carlo approximation obtained in Table 2. Proceeding similarly, we obtain τ(X1:3, X2:3) =
2
5 −

13
210α, τ(X2:3, X3:3) =

2
5 +

13
210α, and τ(X1:3, X3:3) =

1
5 . C
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Appendix. Tables

See Tables 1 and 2.
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