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a b s t r a c t

Statistical modeling and inference problems with sample sizes substantially smaller than
the number of available covariates are challenging. This is known as large p small n
problem. Furthermore, the problem ismore complicatedwhenwehavemultiple correlated
responses. We develop multivariate nonlinear regression models in this setup for accurate
prediction. In this paper, we introduce a full Bayesian support vector regression model
with Vapnik’s ϵ-insensitive loss function, based on reproducing kernel Hilbert spaces
(RKHS) under the multivariate correlated response setup. This provides a full probabilistic
description of support vector machine (SVM) rather than an algorithm for fitting purposes.
We have also introduced a multivariate version of the relevance vector machine (RVM).
Instead of the original treatment of the RVM relying on the use of type II maximum
likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters
and use Markov chain Monte Carlo technique for computation. We have also proposed
an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a
prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also
undertaken to check the prediction accuracy of our models.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Regression techniques are amongst some of themostwidely usedmethods in applied statistics. Given a response variable
Y , and a set of covariates X = (X1, X2, . . . , Xp)

T , one is often interested in predicting further responses for new values of the
covariates. The problem becomes complicatedwhen the sample size n is substantially smaller than the number of covariates
p. This is known as the large p small n problem or high dimension low sample size problem. The usual way to handle the
problem is to reduce the number of covariates by using variable selection [5] or projecting them to lower dimension using
principal component or other related methods [27].

Most of the existing methods for variable selection or projections are based on linear relationship between the response
and the covariateswhichmaynot be very realistic. Recent advances in computer power have allowed statisticians to consider
richer classes of nonlinear regression models. Due to the large p small n problem, these methods are usually inapplicable
in these situations. We use instead the reproducing kernel Hilbert space (RKHS) methodology for these problems. We are
particularly interested in the analysis of multivariate data with correlated responses.
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One importantmotivating application arises from the near infrared (NIR) spectroscopy. An experiment involving spectral
measurements typically produces more covariates (wavelengths/channels) than calibration measurements (samples).
Traditional stepwise regression methods fail miserably in these circumstances because of the lack of necessary samples.
Chemometricians often use principal component regression (PCR), partial least squares (PLS) regression, multiple linear
regression, and ridge regression to overcome these limitations. Both principal component regression and partial least
squares regression, produce factor scores as linear combinations of the original predictor variables, so that there is no
correlation between the factor score variables used in the predictive regression model. But they differ in the methods
used in extracting the factor scores. In short, PCR produces the weight matrix reflecting the covariance structure between
the predictor variables, while PLS regression produces the weight matrix reflecting the covariance structure between
the predictor and response variables. We know from chemistry and optics that reflectance or absorbencies are linearly
related to the concentrations, (Beer–Lambert Law). There is deviation from this law for reasons such as optical scattering,
autofluorescence etc. The resultant nonlinearities impair the accuracy of prediction based on linear relationships. The
problem becomes more complicated when there are multiple constituents under investigation as we then need to develop
multivariate nonlinear regression models for prediction.

One of the models which we will consider for this purpose is support vector machine (SVM). The classical support vector
machine (SVM) algorithm, despite its success in regression and classification, suffers from a serious disadvantage: it cannot
provide any probabilistic outputs. Law and Kwok [12] introduced a Bayesian formulation of SVM for regression, but they did
not carry out a full Bayesian analysis and used instead certain approximations for the posterior. A similar remark applies to
Sollich [20] who considered SVM in the classification context. More recently, Mallick et al. [14] considered a Markov chain
Monte Carlo (MCMC) based full Bayesian analysis for classification where the number of covariates was far greater than the
sample size. However, it was designed only for binary classification, and cannot be used for continuous regression problems
with multivariate responses.

As an alternative to SVM, Tipping [21,22] and Bishop and Tipping [4] introduced relevance vector machines (RVM’s).
RVM’s are suitable for both regression and classification, and are amenable to probabilistic interpretation. However,
these authors did not perform a full Bayesian analysis. They obtained type II maximum likelihood [9] estimates of the
prior parameters, which do not provide predictive distribution of the future observations. Also, their procedure cannot
provide measures of precision associated with the estimates. However, none of the above mentioned methods can handle
multivariate correlated responses.

The present article addresses a full Bayesian analysis of regression problems when p, the number of covariates far
outnumber n, the sample size and the response is multivariate. The SVM approach is based on reproducing kernel Hilbert
spaces (RKHS) and a multivariate extension of Vapnik’s [23] ϵ-insensitive loss function. We also consider the multivariate
extension of RVM-based analysis in this context, once again by using RKHS. Ours is a full hierarchical Bayesianmodel. Instead
of relying on the type II maximum likelihood estimates of the prior parameters, we assign distributions to these parameters.
In this way, we can capture the uncertainty in estimating these parameters, and consequently get more reliable measures of
precision associated with the Bayes estimates. A key feature of our method is to treat the kernel parameter in the model as
unknown and infer about it with all other parameters. We obtain a more accurate prediction by the mixing of several RVM
(or SVM) models through the kernel parameter. Due to analytical intractability of posteriors, we use the MCMC numerical
integration technique for implementation of the Bayes procedure.

Both methods are illustrated with a real data set, discussed in [6]. The available measurements are the near infrared
reflectance spectrum of biscuit dough pieces at 700 equally spaced wavelengths. The aim is to predict the composition
i.e., the fat, sugar, flour, and water content of the dough pieces using the spectral variables. We compare our procedure
with some of the classical methods like stepwise multiple linear regression (MLR), PLS, PCR, and classical support vector
regression as well as Bayesian wavelet regression [6] based on mean square errors of prediction (MSEP). It turns out that,
our multivariate Bayesian RVM and SVM performs better than all competing methods, for all the components except fat,
where stepwise MLR has the best performance.

Apart from introducing hierarchical Bayesmultivariate RVMand SVMmodels, we have also suggested an empirical Bayes
analysis for our RVM and SVMmodels in the multivariate set up. In our empirical Bayes approaches we estimate the kernel
parameter from the data by maximizing the marginal posterior. The empirical Bayes results are tabulated in Tables 1–3.

Section 2 of this paper introduces the RKHS-based regressionmethod and some related results. Themultivariate Bayesian
RVM and SVM are introduced in Sections 3 and 4. Section 5 discusses prediction of a future observation. Section 6 contains
the biscuit dough example. In Section 7, we provide a simulation study. In Section 8 we introduce empirical Bayes SVM and
RVM. Finally, some concluding remarks are made in Section 9.

2. Regression method based on RKHS

For a regression problem, we have a training set {yi, xi}, i = 1, . . . , n, where yi is the response variable and xi is the vector
of covariate of size p corresponding to yi. Given the training data our goal is to find an appropriate function f (x) to predict
the responses y in the test set based on the covariates x. This can be viewed as a regularization problem of the form

min
f∈H


n

i=1

L(yi, f (xi))+ λJ(f )


(1)



30 S. Chakraborty et al. / Journal of Multivariate Analysis 108 (2012) 28–40

Table 1
Mean squared errors of prediction on the 39 biscuit dough pieces in the validation set. The number in parenthesis is the
standard deviation of MSEP.

Method Fat Sugar Flour Water

Stepwise MLR 0.044 1.188 0.722 0.221
Decision theory 0.076 0.566 0.265 0.176
PLS 0.155 0.578 0.369 0.107
PCR 0.156 0.605 0.378 0.103
BWR 0.063 0.449 0.348 0.050
CSVM-P 0.067 0.609 0.362 0.105
CSVM-G 0.097 0.715 0.395 0.101

Hyperparameter choice (i)
MBRVM 0.057 (0.003) 0.314 (0.018) 0.252 (0.019) 0.031 (0.005)
MBSVM 0.062 (0.003) 0.339 (0.019) 0.229 (0.019) 0.045 (0.006)

Hyperparameter choice (ii)
MBRVM 0.057 (0.004) 0.320 (0.017) 0.236 (0.018) 0.038 (0.004)
MBSVM 0.065 (0.003) 0.343 (0.019) 0.232 (0.018) 0.050 (0.006)

EMBRVM 0.065 (0.004) 0.439 (0.019) 0.309 (0.020) 0.075 (0.006)
EMBSVM 0.074 (0.004) 0.477 (0.020) 0.341(0.018) 0.056 (0.006)

Table 2
Mean squared errors of prediction on the 39 biscuit dough pieces in the validation set when the sample 23 is included in
the training set. The number in parenthesis is the standard deviation of MSEP.

Method Fat Sugar Flour Water

Hyperparameter choice (i)
MBRVM 0.089 (0.007) 2.761 (0.122) 2.842 (0.151) 0.109 (0.008)
MBSVM 0.089 (0.005) 0.675 (0.020) 0.396 (0.024) 0.101 (0.006)
Hyperparameter choice (ii)
MBRVM 0.097 (0.008) 3.111 (0.150) 2.689 (0.131) 0.122 (0.009)
MBSVM 0.081 (0.005) 0.613 (0.021) 0.412 (0.020) 0.132 (0.005)
EMBRVM 0.161 (0.007) 5.325 (0.144) 3.982 (0.149) 0.176 (0.007)
EMBSVM 0.097 (0.006) 0.742 (0.025) 0.369 (0.023) 0.153 (0.007)

Table 3
Average mean squared errors of prediction in the simulated data set. The number in parenthesis is the standard deviation
of MSEP.

Method Fat Sugar Flour Water

Stepwise MLR 0.107 (0.015) 2.512 (0.231) 1.802 (0.276) 0.953 (0.039)
Decision theory 0.231 (0.013) 0.809 (0.199) 0.665 (0.162) 0.703 (0.042)
PLS 0.295 (0.011) 0.997 (0.064) 0.856 (0.071) 0.715 (0.053)
PCR 0.310 (0.014) 0.971 (0.061) 0.890 (0.069) 0.801 (0.055)
BWR 0.096 (0.016) 0.698 (0.026) 0.481 (0.029) 0.407 (0.105)
CSVM-P 0.617 (0.027) 1.304 (0.201) 0.913 (0.174) 0.835 (0.113)
CSVM-G 0.705 (0.029) 1.518 (0.315) 1.195 (0.169) 0.879 (0.115)
Hyperparameter choice (i)
MBRVM 0.071 (0.018) 0.472 (0.021) 0.283 (0.041) 0.184 (0.019)
MBSVM 0.089 (0.017) 0.599 (0.033) 0.326 (0.049) 0.388 (0.027)
Hyperparameter choice (ii)
MBRVM 0.076 (0.017) 0.480 (0.027) 0.279 (0.047) 0.178 (0.019)
MBSVM 0.093 (0.019) 0.563 (0.030) 0.321 (0.041) 0.385 (0.031)
EMBRVM 0.086 (0.021) 0.512 (0.025) 0.319 (0.053) 0.217 (0.031)
EMBSVM 0.098 (0.017) 0.663 (0.037) 0.473 (0.061) 0.488 (0.040)

where L(y, f (x)) is a loss function, J(f ) is a penalty functional, λ > 0 is the smoothing parameter, and H is a space of
functions on which J(f ) is defined. In this article, we consider H to be a reproducing kernel Hilbert space (RKHS) with
kernel K , and we denote it by HK . A formal definition of RKHS in given in [2,19,24].

For an h ∈ HK , if f (x) = β0 + h(x), we take J(f ) = ∥h∥2
HK

and rewrite (1) as

min
f∈HK


n

i=1

L(yi, f (xi))+ λ∥h∥2
HK


(2)



S. Chakraborty et al. / Journal of Multivariate Analysis 108 (2012) 28–40 31

The estimate of h is obtained as a solution of (2). It can be shown that the solution is finite-dimensional [24] and leads to a
representation of f [11,26] as

fλ(x) = β0 +

n
i=1

βiK(x, xi). (3)

It is also a property of RKHS that

∥h∥2
HK

=

n
i,j=1

βiβjK(xi, xj). (4)

Representation of f in above form is of special interest to us, because cases when the number of covariates p is much larger
than the number of data points, we effectively reduce the dimension of covariates from p to n. To obtain the estimate of fλ
we substitute (3) and (4) in (2) and then minimize it with respect to β = (β0, . . . , βn) and the smoothing parameter λ. The
other parameters inside the kernel K may be chosen by generalized approximate cross validation.

Similarly, for multivariate regression when f (x) = (f1(x), . . . , fq(x)) is a q-tuple function we can have similar results
based on RKHS as the univariate case. Here we consider f (x) ∈

q
j=1({1} + HKj), the product space of q reproducing kernel

Hilbert spaces HKj for j = 1, . . . , q. In other words, each component can be expressed as β0j + hj(x) with hj ∈ HKj . Unless
there is compelling reason to believe that HKj should be different for j = 1, . . . , q, we will assume that they are the same
RKHS denoted by HK . All results stated before also hold in this framework.

Regarding the loss L(y, f (x)) as the negative of the log-likelihood, our problem is equivalent to maximization of the
penalized log-likelihood

−

n
i=1

L(yi, f (xi))− λ∥h∥2
Hk
. (5)

This duality between ‘‘loss’’ and ‘‘likelihood’’, particularly viewing the loss as the negative of the log-likelihood, is referred
in the Bayesian literature as the ‘‘logarithmic scoring rule’’ [3, p. 688].

3. Hierarchical Bayes RVM for multivariate regression

The support vector machine (SVM) is a highly sophisticated technique for regression and classification. It is well known
that SVM can be derived as the minimizer of the function

n
i=1 L(yi, f (xi))+ λ∥h∥2

HK
in RKHS [25]. Despite its widespread

success, the classical SVM suffers from some important limitations, notably the absence of probabilistic output i.e. it makes
point predictions rather than generating predictive distributions. Recently Tipping [21] has formulated the relevance vector
machine (RVM), a probabilistic model whose functional form is equivalent to the SVMwith a least square loss function (also
known as LS-SVM). Law and Kwok [12] considered a Bayesian SVM model with Vapnik’s ϵ-insensitive robust loss function,
a detailed discussion is provided in the next section. The original treatment of RVM relied on the use of type II maximum
likelihood [9] estimates of the hyper-parameters. In this paper we formulate both SVM and RVM in a complete hierarchical
Bayesian paradigm based on the RKHS formulation, as discussed in the previous section.

If we assume that f is generated from RKHSwith the kernel function K(., .), using the representation theorem (3) we can
express f as

f (xi) = β0 +

n
j=1

βjK(xi, xj|θ) (6)

where K is a positive definite function of the covariates x involving some unknown parameter θ . Hence,

yi = f (xi)+ ηi = K T
i β + ηi (7)

where ηi
i.i.d.
∼ N(0, σ 2),β = (β0, . . . , βn)

T, and Ki = (1, K(xi, x1|θ), . . . , K(xi, xn|θ))T, i = 1, . . . , n. However, when the
responses are multivariate or a vector of measurements modeling each element of the response vector separately using (7)
rules out any correlation among them.

Under the multivariate response set up let us define the data set D = ((y1, x1), . . . , (yn, xn)), consisting of multivariate
responses yi = (yi1, . . . , yiq)T (with q components) and explanatory variables xi = (xi1, . . . , xip)T, i = 1, . . . , n. We
introduce n latent variables z1, . . . , zn, where zi = (zi1, . . . , ziq)T and assume that conditional on zi, yi’s are independent.
Also conditional on zi the all components of yi are independent among themselves. Thus we can write

yi = zi + ηi (8)

where ηi = (ηi1, . . . , ηiq)
T is a multivariate normal random variate with mean zero and variance V = diag(σ 2

1 , . . . , σ
2
q ).

Thus the components of yi are kept independent conditional on zi but each component is allowed to have different
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variance. In this way we allow any possible heteroscedasticity in the components of yi. This gives enormous flexibility
in the modeling. In the regular cases we put a variance covariance matrix on the variance of ηi and assign a inverse
Wishart prior on it. But it largely restrains the modeling, as by putting an inverse Wishart distribution we are effectively
giving same degrees of freedom for all the variance components. Also, we establish the dependence between different
components of the response vector yi by introducing the latent variables zi and connect zi with f (xi) = (f1(xi), . . . , fq(xi))T

by zi = f (xi) + δi, δi = (δi1, . . . , δiq)
T being the vector of the residual random effects. Assuming that f is generated from

the product space of q RKHS’s HK with the kernel function K(., .), the representation theorem of Kimeldorf and Wahba (3)
leads to the representation

zi = K 0
i β + δi (9)

where K 0
i = Iq


K T

i ,β = (βT
1, . . . ,β

T
q)

T,βj = (β0j, . . . , βnj)
T, and δi

i.i.d.
∼ Nq(0,6). The δi introduce dependence in the

components of zi, which in turn creates association among the components of yi. In the above model (9) the unknown
parameters are β,3 = diag(31, . . . ,3q),V ,6, and θ . Conditional on these parameters our latent variable zi follow

zi|β,6, θ
ind
∼ Nq(K 0

i β,6), (10)

where i = 1, . . . , n. We assign hierarchical priors to the unknown parameters β,3,V ,6, as follows

βj|3j
ind
∼ Nn+1(0,3−1

j ); 3j = diag(λ0j, . . . , λnj) (11)

6 ∼ IW(ψ,Q ) (12)

σ 2
j

i.i.d.
∼ IG(γ1, γ2) (13)

λij
i.i.d.
∼ Gamma(c, d) (14)

where j = 1, . . . , q.

In the above prior formulation λ0j-s are fixed at a small value to induce a flat prior on the intercept term β0j, but
other λij-s are kept unknown. A Gamma(α, ξ) distribution for a random variable U has density function proportional to
exp(−ξu)uα−1, while the reciprocal of U will then said to have a inverse gamma distribution is denoted by IG(α, ξ). An
inverse Wishart distribution with parameters ψ and Q for a random variable S has distribution function proportional to
f (S) ∝ |S|−

1
2 (ψ+p+1) exp


−

1
2 tr(S

−1Q )

. We refer to it as IW(ψ,Q ).

The matrix with (i, j)th element Kij = K (xi, xj|θ) is known as the kernel matrix. The usual choices are (i) the Gaussian

kernel K (xi, xj|θ) = exp{− ∥xi−xj∥2

2θ } and (ii) the polynomial kernel, K (xi, xj|θ) = (xTi xj + 1)θ . The θ parameter associated
with the kernel function K(., .|θ) controls the shape of the kernel. The choice of the prior distribution for θ depends on
the adopted kernel function K (., .|θ). In this paper we use the polynomial kernel, where θ is the degree of the polynomial.
Therefore here we assign a discrete uniform prior on θ as follow

θ ∼ U{1, . . . , C}. (15)

The joint posterior is thus given by

π(β,3, z,V ,6, θ |y) ∝ exp


−

1
2

n
i=1

(yi − zi)TV−1(yi − zi)


1

|6|n/2
exp


−

1
2

n
i=1

(zi − K 0
i β)T6−1(zi − K 0

i β)



× |6|
−

1
2 (ψ+q+1) exp


−

1
2
tr(6−1Q )


1

|3|−1/2
exp


−

1
2
β′3β



×

q
j=1

exp


−
γ2

σ 2
j


(σ 2

j )
−γ1−1

×

n
i=1

q
j=1

exp(−dλij)λc−1
ji . (16)

3.1. Conditional distributions and posterior sampling of the parameters

The posterior distribution described in (16) is complex, and implementation of the Bayesian procedure requires MCMC
sampling techniques, and in particular, the Gibbs sampling [8] and Metropolis–Hastings (MH) algorithm [16,7]. The Gibbs
sampler generates posterior samples using the conditional densities of the model parameters. We list the conditional
posterior distributions as follows:

(i) β|3, z,V ,6, θ, y ∼ Nq(n+1)(µ
∗

β ,V
∗

β ),

where µ∗

β = V ∗

β

n
i=1 K

0T
i 6−1zi


,V ∗

β =
n

i=1 K
0T
i 6−1K 0

i + 3
−1.
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(ii) 6|β,3, z,V , θ, y ∼ IW(ψ∗,Q ∗),
where ψ∗

= n + ψ,Q ∗
= Q +

n
i=1(zi − K 0

i β)(zi − K 0
i β)T.

(iii) σ 2
j |β,3, z,6, θ, y

ind
∼ IG(γ ∗

1 , γ
∗

2 ), j = 1, . . . , q,

where γ ∗

1 = n/2 + γ1, γ
∗

2 =
n

i=1
(yij−zij)2

2 + γ2.

(iv) λij|β,V , z,6, θ, y
ind
∼ Gamma(c∗, d∗), j = 1, . . . , q; i = 1, . . . , n,

where c∗
= c + 1/2 and d∗

=
β2ij
2 + d.

(v) zi|3,β,V ,6, θ, y
ind
∼ Nq(µ

∗
zi ,6

∗

zi),

where µ∗
zi = 6∗

zi(V
−1yi + 6−1K 0

i β); 6∗

zi =

V−1

+ 6−1
−1.

(vi) p(θ |3,β,V ,6, z, y) ∝ exp

−

1
2

n
i=1(zi − K 0

i β)T6−1(zi − K 0
i β)


.

The conditional distributions given in (i)–(v) are standard and it is easy to generate samples from them. The conditional
distribution in (vi) is not standard and we need to employ the MH algorithm. We use the above listed conditional
distributions for constructing a Gibbs sampler through these following steps:

• Step 1. Update β by sampling from the conditional distribution (i).
• Step 2. Update 6 by sampling from the conditional distribution (ii).
• Step 3. Update σ 2

j , j = 1, . . . , q, by sampling from the conditional distribution (iii).
• Step 4. Update λij, j = 1, . . . , q, i = 1, . . . , n, by sampling from the conditional distribution (iv). j = 1, . . . , q; i =

1, . . . , n
• Step 5. Update zi, i = 1, . . . , n, by sampling from the conditional distribution (v).
• Step 6. Update of K 0 is equivalent to the update of θ and we need a Metropolis–Hastings algorithm to sample from the

conditional distribution of θ given in (vi). If θ is the current value, draw a candidate value θ∗ from the discrete
uniform distribution U{1, . . . , C}. Accept the θ∗ as a new value of θ with acceptance probability

α = min

1,

p(θ∗
|3,β,V ,6, z, y)

p(θ |3,β,V ,6, z, y)


. (17)

In themultivariate relevance vectormachine discussed above, we effectively try tominimize the squared error loss function
and use separate smoothing parameters λij for different βij. The smoothing parameters determine the tradeoff between
training accuracy andmodel complexity. Themultiple smoothing parameter is also used by Tipping [21]. By havingmultiple
smoothing parameters over a single one we are effectively control each of the regression coefficients separately, thereby
introducing sparseness in the model. Moreover, the smoothing is controlled separately for each component of the response
vector adding more flexibility in our model. The model discussed in this section will be referred to as the multivariate
Bayesian relevance vector machine orMBRVM.

4. Hierarchical Bayes SVM for multivariate regression

In this section, we develop our multivariate SVM based on RKHS under complete Bayesian framework using a modified
Vapnik’s ϵ-insensitive loss function for the multivariate response cases. Law and Kwok [12] proposed a Bayesian SVM,
however their model was based on univariate framework and cannot handle correlated multivariate responses. Moreover,
they did not carry out a full hierarchical Bayesian analysis and used instead type II maximum likelihood to estimate the prior
parameters.

For regression problems with univariate response Vapnik [23] introduced the ϵ-insensitive loss function as follows

L(y, f (x)) = |y − f (x)|ϵ =


0 if |y − f (x)| ≤ ϵ
|y − f (x)| − ϵ otherwise. (18)

This loss function (Fig. 1) ignores errors of size less than ϵ but penalizes in a linear fashion when the function deviates more
than ϵ amount. This makes the fitting less sensitive to the outliers. It is interesting to note that like other loss functions or
error measures in robust regression [10], Vapnik’s ϵ-insensitive loss function also has linear tails beyond ϵ. But in addition
it flattens the contributions of those cases with small residuals.

To construct a hierarchical model for regression using the Vapnik’s univariate loss function (18) we can introduce n

latent variables zi
i.i.d.
∼ N(f (xi), σ 2), i = 1, . . . , n. Such that yi’s are conditionally independent given zi. Introduction of the

latent variables makes the calculations particularly simple. The likelihood of yi conditional on zi, corresponding to Vapnik’s
univariate loss (18) as suggested by Law and Kwok [12], is given by

p(yi|zi) ∝ exp{−ρ|yi − zi|ϵ}, i = 1, . . . , n. (19)
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Fig. 1. The figure in the left hand side represents Vapnik’s ϵ-insensitive (ϵ = 1) loss function. The figure in the right hand side represents the corresponding
likelihood.

Fig. 2. Our ϵ-insensitive loss function when q = 2 and ρ1 = ρ2 = 1 (ϵ = 1).

It can be shown that this pdf (Fig. 1) can bewritten as amixture of a truncated Laplace distribution and a uniformdistribution
as follows

p(yi|zi) =
ρ

2(1 + ϵρ)
exp{−ρ|yi − zi|ϵ}

=
ρ

2(1 + ϵρ)
[I(|yi − zi| > ϵ) exp{−ρ(|yi − zi| − ϵ)} + I(|yi − zi| ≤ ϵ)]

= p1(Truncated Laplace(zi, ρ))+ p2(Uniform(zi − ϵ, zi + ϵ)) where p1 =
1

1 + ϵρ
, p2 =

ϵρ

1 + ϵρ
. (20)

A Laplace(θ, ρ) distribution for a random variable U has pdf proportional to exp(−ρ|u − θ |).
When the response is multivariate we generalize Vapnik’s ϵ-insensitive loss to (Fig. 2)

L(yi, f (xi)) = ∥yi − f (xi)∥ϵ =

q
j=1

ρj|yij − fj(xi)|ϵ, (21)

where f (xi) = (f1(xi), . . . , fq(xi))T and yi = (yi1, . . . , yiq)T (with q components). Similar to the univariate ϵ-insensitive loss

(18) and (19), in the multivariate case for (21) we can introduce latent vectors zi
i.i.d.
∼ Nq(f (xi), σ 2Iq), i = 1, . . . , n. The

likelihood of yi conditional on zi corresponding to the loss (21) is given by
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p(yi|zi) ∝ exp {−∥yi − zi∥ϵ} . (22)

From (22) notice that, conditional on zi each component of yi vector follows the mixture distribution given in (20). As in
Section 3 (for MBRVM) here also we assume that the underlying function f is generated from the product space of q RKHS’s
and use the representation theorem (3) to connect the latent variables z with f . Therefore, zi = f (xi) + δi, where δi is the
vector of the residual random effects that account for any unexplained source of variation not included in the model. As the
f is generated from RKHS, following the representation (6) the zi are modeled as zi = K 0

i β + δi.
We specify hierarchical priors on β,6,3, and θ as in (11), (12), (14) and (15). In addition to that we assign flat priors for

the scale parameter ρj as

ρj
i.i.d.
∼ U(rL, rU) j = 1, . . . , q. (23)

Asymptotically if the ϵ goes to infinity in (20), we get the uniform likelihood, but if it goes to 0 we get the usual Laplace
likelihood when ρ is fixed. So instead of keeping ϵ fixed, as in a classical SVMwe assigned prior to ϵ. However, we observed
that the performance of SVM decayed rapidly for priors spreading outside the range (0, 1). More detailed justifications are
provided in [12]. Hence we have considered

ϵ ∼ Beta(k1, k2). (24)

Our multivariate Bayesian SVM model bears some analogy to the classical SVM as the exponent of the Gaussian prior for
β is equivalent to the quadratic penalty function, but with multiple smoothing parameters. The posterior is similar to the
posterior for the MBRVM model (16), except now the Gaussian likelihood in MBRVM is changed to Vapnik’s ϵ-insensitive
loss based likelihood (22). The joint posterior is given by

π(β,3, z,6, θ, ρ, ϵ|y) ∝ exp


−

n
i=1

∥yi − zi∥ϵ


1

|6|n/2
exp


−

1
2

n
i=1

(zi − K 0
i β)T6−1(zi − K 0

i β)



× |6|
−

1
2 (ψ+q+1) exp


−

1
2
tr(6−1Q )


1

|3|−1/2
exp


−

1
2
β′3β


×

n
i=1

q
j=1

exp(−dλij)λc−1
ij × ϵk1−1(1 − ϵ)k2−1. (25)

The posterior distribution is very complex and implementation of Bayesian methods is done once again using MCMC. The
conditional distributions are derived as before to use the Gibbs sampling technique. Conditional posterior distribution of
β,6,3, θ are the same as (i), (ii), (iv), and (vi) of Section 3. Change in the loss function (from quadratic loss to ϵ-insensitive
loss) results in a change in the conditional distribution of zi. In the multivariate SVM model we have the scale parameter
ρ = (ρ1, . . . , ρq)

T instead of σj as in case of MBRVM. The conditional posteriors for ρj and zi replaces (iii) and (v) in the
previous section as:

(iii) p

ρj|β,3, z,6, θ, ϵ, y


∝

ρnj
(1+ϵρj)n

exp

−ρj

n
i=1 |yij − zij|ϵ


, j = 1, . . . , q.

(iv) The conditional posterior distribution of zij (the j-th component of the latent vector zi) is a finite mixture of two
continuous distributions given as

p(zij|zi(−j), . . .) ∝ p1jTL(yij, ρj|Ac
ij)N(mzij , vzij)+ p2j(U(Aij))N(mzij , vzij)

(using the scale mixture representation of Andrews and Mallows [1])

∝ p1jI(Ac
ij)


∞

0
N(yij, s)Gamma(1, ρ2

j /2)dsN(mzij , vzij)+ p2jTN(mzij , vzij |Aij)

∝ p1j


∞

0
TN(m0

zij , v
0
zij |A

c
ij)Gamma(1, ρ2

j /2)ds


+ p2jTN(mzij , vzij |Aij) (26)

where, Aij = (yij − ϵ, yij + ϵ) the set where the density is defined; TN and TL stands for truncated normal and truncated
Laplace distribution respectively; p1j =

1
1+ϵρj

and p2j = 1 − p1j; mzij = K T
i βj + Σ(−j)6

−1
(−jj)(zi(−j) − K T

i β(−j)), vzij =

σ 2
j + Σ(−j)6

−1
(−jj)Σ

T
(−j); 6(−jj) is the matrix without the j-th row and column of 6,Σ(−j) is the j-th row of 6 without the

diagonal element, andK T
i β(−j) is obtained by dropping the j-th element fromK 0

i β;m0
zij =

yij/s+mzij /vzij
1/s+1/vzij

, v0zij = (1/s+1/vzij)
−1.

(vi) The conditional posterior for ϵ is given by

p (ϵ|β,3, z,6, θ, ρ, y) ∝
1

q
j=1
(1 + ϵρj)n

exp


−ϵ

n
i=1

q
j=1

ρjI(|yij − zij| > ϵ)


× ϵk1−1(1 − ϵ)k2−1.

Using the above conditionals, we construct a Gibbs sampler by following these steps:
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• Step 1. and Step 2. Same as in MBRVM in Section 3.1.
• Step 3. Same as the Step 6 in MBRVM in Section 3.1.

The distributions of some of the conditionals are changed as we replace y by the latent variable z . Three extra steps
needed to generate the latent variables z, ρ and ϵ are added as follows:

• Step 4. (Data Augmentation) To sample zij from (26), draw from a Bernoulli(p1j). If it is 0, sample the zij from
TN(mzij , vzij |Aij). If it is 1 sample from TN(m0

zij , v
0
zij |A

c
ij) and Gamma(1, ρ2

j /2).
• Step 5. Update ρj using a Metropolis step involving p


ρj| . . .


as in (iii). We use an exponential distribution with

the rate parameter
n

i=1 |yij − zij|ϵ as our proposal distribution. This choice of proposal distribution simplifies our
calculation of the acceptance probability. Sample ρ∗

j from the proposal distribution and accept with probability ωj =

min

1,

ρ∗
j
ρj

n  1+ϵρj
1+ϵρ∗

j

n
. We repeat this step foll all ρj.

• Step 6. Update ϵ using a Metropolis step involving p (ϵ| . . .) as in (vi). Use the prior distribution (24) of ϵ as
the proposal distribution, then generate a new value ϵ∗ from it. Accept the ϵ∗ with acceptance probability δ =

min

1,

q
j=1(1+ϵρj)

nq
j=1(1+ϵ

∗ρj)n
exp(−∥yi−zi∥ϵ∗)
exp(−∥yi−zi∥ϵ )


.

The multivariate Bayesian SVM developed in this section will be referred asMBSVM.

5. Prediction

As mentioned in the introduction, our main goal is to predict a new ynew when we have the corresponding covariates
xnew. For the prediction purpose we make use of the posterior predictive probability distribution of ynew given by

p(ynew|xnew,D) =


Θ

p(ynew|xnew,Θ,D)π(Θ|D)dΘ (27)

whereΘ is the set of all model parameters. The new observation ynew is predicted by ŷnew = E [ynew|xnew,D]. This integral
is analytically intractable; so we use MCMC technique to evaluate it as follows

Step 1. GenerateM samples of the model parameterΘ from the posterior π(Θ|D).
Step 2. Generate M samples of y from the distribution p(ynew|xnew,Θi,D), where Θi is the ith sample of the model

parameter and ygen
i is the corresponding sample generated.

Step 3. Then ŷnew =
M

i=1 y
gen
i /M .

6. Application to NIR spectroscopy of biscuit doughs

The example studied here, arises from an experiment done to test the feasibility of near-infrared (NIR) spectroscopy
to measure the composition of biscuit dough pieces formed from unbaked biscuits. The NIR spectrum of a sample is a
continuous curvemeasured bymodern scanning instruments. The information contained in this curve can be used to predict
the chemical composition of the sample. A detailed description of the experiment can be obtained from [18]. The four
constituents under investigation are: fat, sugar, flour and water. So our response is the calculated percentage of these four
ingredients, q = 4.Wemade up two sets, one for training and a separate one for validation. The training set contains n = 39
samples, with sample 23 excluded from the original 40 as an outlier. A simple boxplot of the residuals from a PLS, PCR or
MLR models confirm this fact. Further the prediction set contains m = 39. Brown et al. [6] analyzed this data using the
Bayesian wavelet regression.

An NIR reflectance spectrum consists of 700 points measured from 1100 to 2498 nm (nanometers) in steps of 2 nm is
available for each dough piece. Brown et al. [6], reduced the number of spectral points by removing first 140 and last 49
wavelengths which are thought to contain little information. The selected wavelengths range from 1380 to 2400 nm, over
which they took every other point, thus increasing the gap to 4 nm. So the number of spectral points are finally reduced to
p = 256. In their case [6], this is done solely to save computational time, whereas in our MBSVM and MBRVM, the size of p
does not really matter as by the representation theorem, we reduce the dimension from p to n. However, to compare with
their outcomes we chose to use the same 256 spectral points.

Our aim is to predict the response values (composition of biscuit dough) from the spectral data for future samples where
the responses are unknown; but the spectral data can be easily obtained. Several models are considered and compared in
this context: (i) Stepwise multiple linear regression (MLR) [18]. (ii) Bayesian decision theory approach of Brown et al. [5].
(iii) Partial least squares regression (PLS) (iv) Principal component regression (PCR). (v) Bayesian wavelet regression (BWR)
of Brown et al. [6]. (vi) Classical SVM (CSVM). Methods (i)–(v) are discussed in details in [6]. As the response is multivariate
(q = 4), so we apply our (vii) multivariate Bayesian RVM (MBRVM) of Section 3 and (viii) multivariate Bayesian SVM
(MBSVM) of Section 4 to analyze this data.

We have used the svm() function in the R routine to fit the CSVM models. For the CSVM models we used both the
polynomial kernel (CSVM-P) and the radial basis function or Gaussian kernel (CSVM-G). For computing the PLS and PCR
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models we have used the mvr() function in R. The tuning parameters for CSVM, PLS, and PCR models are all selected by five
fold cross-validation procedure.

We fit our MBRVM and MBSVM models with the polynomial kernel and multiple smoothing parameters. It is seen that
in this case the polynomial kernel gives a better prediction, i.e. lower mean squared errors of prediction than the Gaussian
kernel. To make our models less sensitive to the choice of hyperparameters of the priors, we have chosen near diffuse but
proper priors. Near diffuse priors are proper priors but with large variance. Thus we can guarantee the propriety of the
posterior and at the same time near diffuseness introduces some objectivity in our analysis objective. We have assigned
a vague but proper prior to σ 2

j . For 3 we select the values of the hyperparameters so that the mean is kept very small
around 0.001, but the variance is large. This choice of hyperparameter produces a near diffuse proper prior for β also. In all
the examples in this papers we have used the polynomial kernel. For kernel parameter θ we give a discrete uniform prior
U{1, 2, . . . , C}. In order to examine sensitivity in the choice of priors, we have considered several different combinations of
near-diffuse but proper priors. The prediction error remains almost same with all such choices. Here we report the results
for two such choices (i) γ1 = 1, γ2 = 10, c = 10−8, d = 10−5, C = 5 and (ii) γ1 = 0.5, γ2 = 1, c = 10−9, d =

10−6, C = 10. Along with that for the parameter 6 which establishes the dependency among the components we assign:
(i)ψ = 5, and Q = 10I4, and (ii)ψ = 10, and Q = I4. In ourMBSVMadditional parameters ϵ andρj are drawn froma large
support uniformprior. Forρj two choices of its hyperparameters are considered (i) rL = 0, rU = 100, and (ii) rL = 0, rU = 50.
Choice of prior for ϵ is made such that the fitting is less sensitive to outliers. The ϵ parameter controls the width of the
ϵ-insensitive zone, used to fit the training data. The value of ϵ can affect the number of support vectors used to construct
the regression function. The bigger the ϵ, the fewer support vectors are selected. On the other hand, bigger ϵ-values results
in more ‘‘flat’’ estimates. We have done a simple cross-validation for finding out the range of ϵ where the SVM regression
gives best results, and found out empirically that it works best in the range (0, 0.5). Hence we have assigned a Beta(k1, k2)
distribution to ϵ. We have tried several combinations of (k1, k2) and the results are fairly similar. Here we report our results
using (i) k1 = k2 = 1, i.e. we put a uniform U(0, 1) prior on ϵ, and (ii) k1 = 1, k2 = 5. Law and Kwok [12] proposed a data
dependent prior on ϵ, but sampling from the posterior under their prior becomes much more complicated. It may be noted
that a better prediction accuracy can be attained by choosing a tight prior properly centered. However if this does not hold,
the prediction will be highly inaccurate. The near-diffuse priors offers protection against this, and introduces objectivity in
our procedure.

In all models we generate MCMC sample of 100,000 with a burn-in of first 50,000. Every 5th sample is retained in the
next 50,000 samples to reduce the auto-correlation. To avoid any potential problem due to multimodality of the posterior
we use 4 different starting points. Final predicted value is obtained after pulling samples from all 4 chains.

Table 1 gives a comparative performance of variousmethods alongwith our twomethods proposed earlier for prediction
of the composition of biscuit dough from the spectral data on the basis of MSEP. From Table 1, we see that our MBRVM
and MBSVM reduce the mean squared errors of prediction (MSEP) considerably, compared to other standard methods. Our
Bayesian RVM and SVM also outperforms classical SVM by a considerable margin in predicting most of the components. For
components like sugar, flour, andwater, it predicts better than BWRwhich is based on treating the response asmultivariate.
Introduction of multiple smoothing parameters also introduces sparsity in our models, as the βi’s are then controlled
individually. A number of thesewill thenbe shrunk to zero introducing the sparsity.Mallick et al. [14] has also provided anice
comparison of benefits ofmultiple smoothing parameter over a single smoothing parameter in a Bayesian SVM classification
model. Introducing sparsity in this way also draws similarity to the Automatic Relevance Determination (ARD) models of
Neal [17] and MacKay [13]. Finally MBRVM comes out as the best of all the models discussed, in predicting the composition
of the biscuit dough pieces in the validation set. This is true for both the choices of hyperparameters. We can see that even
by changing the prior parameters, the prediction error remains almost the same which validates our claim that due to our
choice of near-diffuse priors, our models are not very sensitive. Indeed, our methods are not tuned just to these particular
data sets and can be successfully applied to other data sets with the same ‘‘large p small n’’ structure.

The sample 23 is excluded from the training set in the original analysis by Osborne et al. [18] and also by Brown et al. [6]
as an outlier. As our main objective was to compare our models with theirs, we too decided to exclude sample 23. However
when sample 23 is included the result we obtain is listed in Table 2. It is clear from Table 2 that by adding the outlier sample
23 our prediction accuracy gets diminished by a large margin specially in the sugar and flour component. However we
may note that our MBSVMmodel which is based on robust ϵ-insensitive loss remains much less affected, in contrast to the
MBRVM which is based on squared error loss function. This indeed supports our claim that Vapnik’s loss makes the fitting
less sensitive to the outliers.

7. A simulation study

Using the biscuit dough data set as the prototype and hyperparameter choice (i) we simulate a realistic data set. Posterior
means of allmodel parameters of ourmultiple shrinkageMBRVM is used as the values of allmodel parameters for generating
data.We perform simulations to generate themultivariate response Y , using theMBRVMmodel. Thuswe get a data set with
78 samples, which we randomly split half for creating training and test sets. We repeat this process for 20 times.

We apply all our multivariate models discussed in the previous sections to this simulated data sets. In Table 3 we report
our findings. Since MBRVM is used to generate the data set, ideally we should get the lowest prediction error when we use
MBRVM. Our findings in Table 3, also indicates that we get the lowest MSEP when we use the MBRVM. Also we notice
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that in spite of the fact hyperparameter choice (i) is used for simulation, when we do our prediction we use both the
choices of hyperparameters. In both the choices we get similar prediction accuracy which tells us that misspecification
of priors does not affect our prediction accuracy much, as long as we remain in the class of near-diffuse priors. When we
use MBSVM, although the results are not very impressive compared to MBRVM yet it is also not very far off. It signifies the
robustness property of theMBSVM inherent from Vapnik’s ϵ-insensitive loss function. Additionally, the results from Table 3
also validates the superiority of our methods.

8. Empirical Bayes SVM and RVM

In the previous sections, we have introduced hierarchical Bayesian SVM and RVM under multivariate setup for ‘‘large
p small n’’ type regression. Hyperparameters for θ,3, ρ must be specified to carry out the analysis. Utmost care should
be taken for the choice of these prior parameters as they make our model very sensitive, and hence objectivity of their
application becomes widely debated. We tried to contain the issue of choice prior parameters by choosing near-diffuse
proper priors. In this section, we will provide an alternative empirical Bayes analysis for our MBSVM and MBRVM models,
which is considered to be an approximation of a full Bayes approach.

The empirical Bayes analysis for themultivariate RVM (EMBRVM) is highly complicated and computation intensive. In the
empirical Bayes MBRVM (EMBRVM), we do not assume any prior distribution on the kernel parameter θ and the shrinkage
parameter 3. Rather we estimate θ and 3 by maximizing the joint marginal posterior, which is given by

π(θ,3|y) ∝


z


β


Σ


V
π(β,3,Σ,V , z, θ |y)dVdΣdβdz

∝
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
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where Aj =
Γ (n/2+γ1)

γ2+
n

i=1(yij−zij)2/2
, and B = Q +

n
i=1(zi − K 0

i β)(zi − K 0
i β)T .

Simulated maximum likelihood [15] method is used to maximize the above posterior as follows

Step 1. Start with an initial value of 3, and θ .
Step 2. Generate (β, z), i = 1, . . . ,m. from β ∼ Nq(n+1)(0,3) and zi|β ∼ Nq(K 0

i ,6), i = 1, . . . , n.

Step 3. Maximize∆(3, θ) =
m

i=1 g(3, θ |z,β) to get 3∗, θ∗, where g(3, θ |z,β) =
|3|

1/2

|B|(n+ψ)/2
.

Step 4. 3 = 3∗, θ = θ∗, goto Step 1.

Increasem as we move along.
Similarly in the case of multivariate SVM, the empirical Bayes analysis (EMBSVM) is carried out by estimating 3, ρ, and

θ by maximizing the marginal posterior

π(θ,3, ρ|y) ∝
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To maximize (29) the simulated maximum likelihood method is used in a similar manner as in the EMBRVM case. After
computing the estimated values of θ, ρ, and 3, they are plugged in the posterior predictive distributions to find the final
predicted value. The empirical Bayes method helps us to avoid the problem of specifying priors on θ, ρ, and 3, but they are
highly computation intensive and slow.

The mean squared errors of prediction on the biscuit dough data set and the simulated data set in the empirical Bayes
setup are provided in Tables 1–3. Comparing the results from these tables, we see that there is not much difference between
the prediction accuracy of the empirical Bayesmodels, and our originally proposed full Bayesianmodels. However empirical
Bayes method definitely has one advantage over the full Bayesian method, in that case we can avoid specifying priors
for many of the parameters, hence it is more adaptive to the needs of a particular data set. Yet the main problem that
arises is from the maximization of the marginal likelihood as it is very common that we might be stuck to a local maxima.
Multiple starting points must be used to overcome this fact. Although in all the data sets our empirical Bayes models gave
inferior result than the hierarchical Bayes models, but they did better than the classical methods like PLS, PCR, MLR, and
CSVM.
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Fig. 3. Biscuit dough composition data set. The 4 components are fat, sugar, flour and water. (a) Distribution of MSEP for the 4 components of biscuit
dough underMBRVMmodel. (b) Distribution ofMSEP underMBSVMmodel. (c) Posterior distribution of the kernel parameter θ underMBRVM andMBSVM
models. (d) Posterior distribution of the correlations under MBRVMmodels.

9. Concluding remarks

The RKHS based SVM and RVM methodology turns out to be a strong contender for prediction. Specially, in the cases
where we have a very large number of covariates but very small amount of data, its performance does not deteriorate with
high input dimensionality. Unlike other machine learning methods, our models do not require an additional projection
into sample space. Indeed, the dimension reduction is built automatically in the SVM and RVM methodology, as by
Wahba’s representation we are reducing the dimension from p to n. Mallick et al. [14] introduced Bayesian SVM for binary
classification with the hinge loss function. SVM for classification is well studied due to its immediate applicability in
disease/tumor classification based onmicroarrays. However, SVM for regression under Bayesian framework is not very well
studied. In this paper we developed a mixture distribution representation for the Vapnik’s ϵ-insensitive loss for regression
problems and extended it to the multivariate set up. When the response is multivariate the prediction or modeling the
dependency is challenging. In this paper we have proposed to model the underlying dependency of the correlated response
through latent variables. Our models can predict the whole response vector together. Additionally, we have also introduced
an empirical Bayes formulation of our multivariate Bayesian SVM and RVMs. The empirical Bayes formulation was not
considered in [14].

The results from the life example and the simulated data set give strong credence to the view that our RKHS based
Bayesian SVM and RVM help to build a much stronger learning algorithm than other straightforward methods like partial
least square, principal component regression and stepwise multiple linear regression. It also performs much better than
some very sophisticatedmethods like Bayesianwavelet regression of Brown et al. [6] and Bayesian decision theory approach
of Brown et al. [5]. Our MBSVM also has its virtues over the classical support vector machine by producing a richer class of
models which give better prediction along with the unique ability to quantify the prediction error, i.e., nowwe can have the
entire posterior distribution of MSEP and can obtain a confidence interval (Fig. 3). Rather than having just a point predictor
nowwe can have the full posterior predictive probability distribution of a future observation. The results from Tables 1 and
2 indicates the success of our MBSVMmethod in handling outliers in the data set. The MSEP, specially in the sugar and flour
component remains not very affected in the robust loss function based MBSVM model as compared to the MBRVM model
which is based on the squared error loss function. This is good in terms of the robustness point of view.

In the studied biscuit dough data the improvement of our MBRVM and MBSVM over competing models is more
pronounced, where the MSEP reduction ranges between 8% and 31%. Empirical Bayes RVM and SVM has their own
advantages and disadvantages. In terms of prediction accuracy it comes close but inferior to the hierarchical Bayes models.
But adopting an empirical Bayes approach, one can avoid some prior elicitation problems. Choice of multiple smoothing
parameters has a distinct advantage over the single smoothing parameter. Apart from the fact multiple smoothing
parameters provide independent shrinkage for the components of regression coefficients and result in sparsity, it gives better
prediction. Thus, overall our recommendation is to use either hierarchical Bayes multivariate RVM (MBRVM) or hierarchical
Bayes multivariate SVM (MBSVM) with multiple smoothing parameters for ‘‘large p small n’’ regression problems.
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Table 4
Average mean squared errors of prediction from 20 randomly split biscuit data sets. The number in parenthesis is the
standard deviation of MSEP.

Method Fat Sugar Flour Water

Stepwise MLR 0.412 (0.037) 2.831 (0.409) 2.910 (0.416) 1.002 (0.130)
Decision theory 0.281 (0.023) 1.059 (0.171) 0.899 (0.065) 0.606 (0.031)
PLS 0.416 (0.032) 1.209 (0.161) 1.352 (0.175) 0.811 (0.043)
PCR 0.432 (0.041) 1.176 (0.182) 1.461 (0.172) 0.921 (0.065)
BWR 0.203 (0.019) 0.714 (0.027) 0.913 (0.033) 0.629 (0.017)
CSVM-P 0.403 (0.031) 1.132 (0.140) 1.222 (0.164) 0.632 (0.033)
CSVM-G 0.511 (0.057) 1.528 (0.165) 1.399 (0.189) 0.819 (0.060)
Hyperparameter choice (i)
MBRVM 0.131 (0.020) 0.715 (0.039) 0.791 (0.062) 0.514 (0.023)
MBSVM 0.142 (0.023) 0.819 (0.036) 0.854 (0.059) 0.511 (0.047)
Hyperparameter choice (ii)
MBRVM 0.133 (0.022) 0.723 (0.041) 0.789 (0.057) 0.519 (0.025)
MBSVM 0.139 (0.023) 0.811 (0.030) 0.862 (0.061) 0.515 (0.040)
EMBRVM 0.168 (0.032) 0.884 (0.052) 0.809 (0.063) 0.510 (0.037)
EMBSVM 0.189 (0.037) 0.861 (0.072) 0.803 (0.065) 0.496 (0.048)
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Appendix

In this section we provide some additional data analysis. We merge the original training and test set of the biscuit data
and then randomly split into training and test (39 in training and 39 in test) for 20 times and calculate the MSEP and
their standard deviations over those 20 random splits. The results corresponding to these 20 random splits are reported in
Table 4.

References

[1] D.F. Andrews, C.L. Mallows, Scale mixtures of normal distributions, Journal of the Royal Statistical Society, Series B 36 (1974) 99–102.
[2] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society 68 (1950) 337–404.
[3] J.M. Bernardo, A.F.M. Smith, Bayesian Theory, Wiley, London, 1994.
[4] C. Bishop, M. Tipping, Variational relevance vector machines, in: C. Boutilier, M. Goldszmidt (Eds.), Proceedings of the 16th Conference in Uncertainty

and Artificial Intelligence, Morgan Kauffman, 2000, pp. 46–53.
[5] P.J. Brown, T. Fearn, M. Vannucci, The choice of variables in multivariate regression: a Bayesian non-conjugate decision theory approach, Biometrika

86 (1999) 635–648.
[6] P.J. Brown, T. Fearn, M. Vannucci, Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, Journal of the

American Statistical Association 96 (2001) 398–408.
[7] S. Chib, E. Greenberg, Understanding the Metropolis–Hastings algorithm, The American Statistician 49 (1995) 327–335.
[8] A. Gelfand, A.F.M. Smith, Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association 85 (1990)

398–409.
[9] I.J. Good, The Estimation of Probabilities. An Essay on Modern Bayesian Methods, MIT Press, MA, 1965.

[10] P. Huber, Robust estimation of a location parameter, Annals of Mathematical Statistics 53 (1964) 73–101.
[11] G. Kimeldorf, G. Wahba, Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and Applications 33 (1971) 82–95.
[12] M.H. Law, J.T. Kwok, Bayesian support vector regression, in: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics,

AISTATS, Key West, Florida, USA, 2001, pp. 239–244.
[13] D.J.C. MacKay, Bayesian non-linear modelling for the prediction competition, ASHRAE Trans. 100 (21) (1994) 1053–1062.
[14] B.K. Mallick, D. Ghosh, M. Ghosh, Bayesian classification of tumors using gene expression data, Journal of the Royal Statistical Society, Series B 67

(2005) 219–232.
[15] C.E. McCulloch, Maximum likelihood algorithms for generalized linear mixed models, Journal of the American Statistical Association 92 (1997)

162–170.
[16] N.Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computingmachines, Journal of Chemical

Physics 21 (1953) 1087–1092.
[17] R.M. Neal, Bayesian Learning for Neural Networks, Springer-Verlag, New York, 1996.
[18] B.G. Osborne, T. Fearn, A.R. Miller, S. Douglas, Application of near–infrared reflectance spectroscopy to compositional analysis of biscuits and biscuit

doughs, Journal of the Science of Food and Agriculture 35 (1984) 99–105.
[19] E. Parzen, Statistical inferences on time series by RKHS methods, in: Proceedings of the 12th Biennial Seminar, Canadian Mathematical Congress,

Montreal, Canada, 1970, pp. 1–37.
[20] P. Sollich, Bayesian methods for support vector machines: evidence and predictive class probabilities, Machine Learning 46 (2001) 21–52.
[21] M. Tipping, The relevance vector machine, in: S. Solla, T. Leen, K. Muller (Eds.), Neural Information Processing Systems—NIPS, vol. 12, MIT Press,

Cambridge, MA, 2000, pp. 652–658.
[22] M. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research 1 (2001) 211–244.
[23] V.N. Vapnik, The Nature of Statistical Learning Theory, second ed., Springer, New York, 1995.
[24] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990.
[25] G.Wahba, Support vectormachines, reproducing kernel Hilbert spaces and the randomizedGACV, in: B. Schölkopf, C. Burges, A. Smola (Eds.), Advances

in Kernel Methods, MIT Press, Cambridge, MA, 1999, pp. 69–88.
[26] G. Wahba, Y. Lin, Y. Lee, H. Zhang, Optimal properties and adaptive tuning of standard and nonstandard support vector machines, in: D. Denison,

M. Hansen, C. Holmes, B. Mallick, B. Yu (Eds.), Nonlinear Estimation and Classification, Springer, New York, 2002, pp. 125–143.
[27] M. West, Bayesian factor regression models in the ‘‘large p, small n paradigm’’, Technical Report, Duke University, 2003.


	Bayesian nonlinear regression for large  p  small  n  problems
	Introduction
	Regression method based on RKHS
	Hierarchical Bayes RVM for multivariate regression
	Conditional distributions and posterior sampling of the parameters

	Hierarchical Bayes SVM for multivariate regression
	Prediction
	Application to NIR spectroscopy of biscuit doughs
	A simulation study
	Empirical Bayes SVM and RVM
	Concluding remarks
	Acknowledgments
	Appendix
	References


