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a b s t r a c t

In this paper, we consider the nonparametric estimation of a varying coefficient fixed ef-
fect panel data model. The estimator is based in a within (un-smoothed) transformation
of the regression model and then a local linear regression is applied to estimate the un-
known varying coefficient functions. It turns out that the standard use of this technique
produces a non-negligible asymptotic bias. In order to avoid it, a high dimensional kernel
weight is introduced in the estimation procedure. As a consequence, the asymptotic bias
is removed but the variance is enlarged, and therefore the estimator shows a very slow
rate of convergence. In order to achieve the optimal rate, we propose a one-step backfit-
ting algorithm. The resulting two-step estimator is shown to be asymptotically normal and
its rate of convergence is optimal within its class of smoothness functions. It is also oracle
efficient. Further, this estimator is compared both theoretically and by Monte-Carlo simu-
lation against other estimators that are based in a within (smoothed) transformation of the
regression model. More precisely the profile least-squares estimator proposed in this con-
text in Sun et al. (2009). It turns out that the smoothness in the transformation enlarges the
bias and it makes the estimator more difficult to analyze from the statistical point of view.
However, the first step estimator, as expected, shows a bad performance when compared
against both the two step backfitting algorithm and the profile least-squares estimator.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the nonparametric estimation and inference of panel data varying coefficient models with
fixed effects. In fact, in the random effect setting, direct estimation through the use of standard nonparametric techniques
is straightforward and there is only need to care about efficiency issues (see for example [14] or [6]). However, in the fixed
effect framework, direct estimation of the functions of interest produces asymptotically biased estimators. This is due to the
correlation that exists between the heterogeneity term and the explanatory variables. Traditionally, standard techniques in
fixed effect panel data models consist in removing the heterogeneity term by transforming the statistical model of depar-
ture. Following Su and Ullah [17] there exist, at least, two different alternative transformations. On one side, the so-called
profile least-squares method and, on the other side, the differencing method. Taking first differences, subtracting the equa-
tion from time t from that for time 1 or alternatively subtracting the within-group average are all them examples that can
be considered differencing techniques. In standard parametric fixed effect panel data models (see [19]) the choice among
differencing techniques is related to efficiency issues. For example, if the idiosyncratic errors follow the structure of a ran-
dom walk, first differences are recommended, however in much general situations such as an i.i.d. or a strictly stationary
context the within (fixed effects) estimator is recommended.
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In this paper we present an estimation procedure that uses a (un-smoothed) mean deviation transformation of the vary-
ing coefficient fixed effect panel data model. Since the transformed model appears as an additive function with the same
functional form at different times, the proposals to estimate this type of models are closely related to estimation techniques
originally designed for additive models (see [5,9] or [16]). As an alternative, we propose to apply a local approximation on
the T additive functions that result from the mean deviation transformation where we denote by T the number of time
observations per individual. In this context, the local linear regression estimator exhibits a non-negligible bias in the es-
timation of the additive components. This is because these techniques approximate the unknown function around a fixed
value without considering the sum of the distances between this fixed term and the other values of the sample. This phe-
nomena was already pointed out in [12,8] but unfortunately they did not provide a solution to this problem. In this context,
our proposal is to consider a local approximation around the whole vector of time observations for each individual. Unfor-
tunately, although the introduction of the T -variate kernel solves the bias problem, it enlarges the variance. For large T , this
can create very slow rates of convergence of our estimator. As a solution, we propose to use a one-step backfitting algorithm.
The idea, as already pointed out in [4], is that additional smoothing cannot reduce the bias but it can diminish the variance.
Therefore, the additional smoothing that is introduced by the backfitting enables us to achieve optimal nonparametric rates
of convergence for the estimators of the unknown functions of interest. The same type of results can be found in [13] for the
first differences setting.

The reason to choose thewithin transformation among others is twofold. First, considering efficiency issues, the resulting
estimator will be more efficient than those resulting from other transformations when assuming standard assumptions
such as i.i.d. or stationary idiosyncratic errors. Second, note that this transformation consists in removing the fixed effect
term by deducting a (un-smoothed) cross-time average from each individual unit. On the contrary, in profile least-squares
techniques the heterogeneity term is removed by deducting a smoothed cross-time average. Therefore, since they are rather
similar, it can be also of great interest to compare the statistical properties of both estimators, i.e. the one obtained in this
paper using the within transformation and the profile least-squares estimator proposed in [18]. Hence, the main interest of
the paper is that, to our knowledge, in the framework of fixed effects varying coefficient panel data models this is the first
paper where estimators that result from deducting un-smoothed and smoothed cross-time averages from each individual
units are compared both from theoretical and simulation results. Furthermore, a nonparametric fixed effect estimator of the
varying coefficient model is proposed, its asymptotic properties are obtained and it is also shown that it also exhibits the
oracle efficiency property.

The rest of the paper is organized as follows. In Section 2 we set up the model and the estimation procedure. We also
provide some comparisons with respect to profile least-squares estimators in very simple situations. In Section 3 we study
the main statistical properties of both direct local linear estimator and one-step backfitting estimator for the multivariate
case. We also compare both local linear and backfitting estimators against the one proposed in [18]. Finally, in Section 4 we
compare empirically the performance in small sample sizes of the same estimators through a Monte Carlo simulation. The
proofs of the main results are collected in the Appendix.

2. Statistical model and estimation procedure

We consider the following panel data varying coefficient regression model with fixed effects

Yit = X⊤

it m (Zit) + µi + vit , i = 1, . . . ,N; t = 1, . . . , T , (2.1)

where Xit and Zit are vectors of covariates of dimension d × 1 and q × 1, respectively, m(Z) = (m1(Z), . . . ,md(Z)) is a
d × 1 vector of unknown functions to estimate, vit is the random error term and µi reflects the unknown cross-sectional
heterogeneity. Also, we allow for µi to be correlated with Zit and/or Xit with an unknown correlation structure.

To illustrate the estimation procedure proposed in this paper and to compare it against the profile least-squares estimator
proposed in [18] we first focus on the univariate regression model and later we extend the results to the multivariate case.

Consider the linear panel data model, where the dimensions of X and Z are respectively d = 1 and q = 1,

Yit = Xitm (Zit) + µi + vit , i = 1, . . . ,N; t = 1, . . . , T . (2.2)

Let Y i· = T−1T
s=1 Yis and vi· = T−1T

s=1 vis. The within transformation implies subtracting from time t of (2.2) the
within-group mean, i.e.,

Yit − Y i· = Xitm (Zit) −
1
T

T
s=1

Xism (Zis) + vit − vi·, i = 1, . . . ,N; t = 1, . . . , T . (2.3)

Instead of taking averages over time for each individual, consider the following corresponding local (smoothed) averages,

Yi· (z) =

T
s=1

ϖis (z) Yis, Xi· (z) =

T
s=1

ϖis (z) Xis

vi· (z) =

T
s=1

ϖis (z) vis,
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where

ϖis (z) =
Kg (Zis − z)

T
r=1

Kg (Zir − z)
s = 1, . . . , T , (2.4)

g is a bandwidth and K is a kernel function such as
K(u)du = 1 and Kg(u) =

1
g
K (u/g) .

Since
T

s=1 ϖis (z) µi = µi, for all i, then, applying the same transformation as for the within estimator we obtain,

Yit −Yi· (Zit) =

Xit −Xi· (Zit)


m (Zit) + vit −vi· (Zit) , i = 1, . . . ,N; t = 1, . . . , T . (2.5)

Estimation of the quantities of interest can be implemented in (2.5) by considering, for any z ∈ A, where A is a compact
subset in a non-empty interior of R, the following Taylor expansion

Xit −Xi· (Zit)

m (Zit) ≈


Xit −Xi· (z)


m(z) +


Xit −Xi· (z)


(Zit − z)m′(z)

+
1
2


Xit −Xi· (z)


(Zit − z)2 m′′(z) + · · · +

1
p!


Xit −Xi· (z)


(Zit − z)p m(p)(z)

≡

p
λ=0

αλ


Xit −Xi· (z)


(Zit − z)λ .

This suggests that we estimate m(z), m′(z), . . . ,m(p)(z) by regressing Yit − Yi· (z) on the terms

Xit −Xi· (z)


(Zit − z)λ,

for λ = 1, . . . , p, with kernel weights. Then, the quantities of interest can be estimated using a locally weighted linear
regression,

N
i=1

T
t=1


Yit −Yi· (z) − α0


Xit −Xi· (z)


− α1


Xit −Xi· (z)


(Zit − z)

2
Kg (Zit − z) ; (2.6)

see [3,15] or [21].
Letα0 andα1 be theminimizers of (2.6). The above exposition suggests as estimators form(z) andm′(z), mh(z) =α0 andm′

h(z) = α1, respectively. Furthermore, let us denote by α =

α0 α1

⊤and Ż⊤

it =

Xit −Xi· (z) ,


Xit −Xi· (z)


(Zit − z)


.

Then, the criterion function (2.6) can be rewritten as

N
i=1

T
t=1


Yit −Yi· (z) − Ż⊤

it α
2

Kg (Zit − z) , (2.7)

andα0 andα1 have the following expressionα0α1


=


it

Kg (Zit − z) Żit Ż⊤

it

−1
it

Kg (Zit − z) Żit

Yit −Yi· (z)


. (2.8)

This estimator is the profile least-squares estimator proposed in [18]. In fact, it turns out that the corresponding local
constant regression estimator (consider α1 = 0 in (2.6)) is

mg(z) =


it

Kg (Zit − z)

Xit −Xi·(z)

 
Yit −Yi·(z)



it

Kg (Zit − z)

Xit −Xi· (z)

2 , (2.9)

which corresponds to the estimator proposed in [8].
Following the previous developments, our idea consists in estimating the quantities of interest starting from (2.3) by

considering, for any z ∈ A, where A is a compact subset in a non-empty interior of R, the following Taylor expansion

Xitm (Zit) −
1
T

T
s=1

Xism (Zis) ≈


Xit −

1
T

T
s=1

Xis


m(z) +


Xit (Zit − z) −

1
T

T
s=1

Xis (Zis − z)


m′(z)

+
1
2


Xit (Zit − z)2 −

1
T

T
s=1

Xis (Zis − z)2

m′′(z)
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+ · · · +
1
p!


Xit (Zit − z)p −

1
T

T
s=1

Xis (Zis − z)p

m(p)(z)

≡

p
λ=0

βλ


Xit (Zit − z)λ −

1
T

T
s=1

Xis (Zis − z)λ


. (2.10)

This suggests that we estimatem(z),m′(z), . . . ,m(p)(z) by regressing Ÿit = Yit −Y i· on the terms Xit (Zit − z)λ −
1
T

T
s=1

Xis (Zis − z)λ, forλ = 1, . . . , p, with kernelweights. Then, the quantities of interest can be estimated using a locallyweighted
linear regression,

N
i=1

T
t=1


Ÿit − β0


Xit −

1
T

T
s=1

Xis


− β1


Xit (Zit − z) −

1
T


is

Xis (Zis − z)

2

Kh (Zi1 − z, . . . , ZiT − z) ; (2.11)

where, h is the bandwidth and

Kh (Zi1 − z, . . . , ZiT − z) =

T
ℓ=1

Kh (Ziℓ − z) .

Letβ0 andβ1 be the minimizers of (2.11). The above exposition suggests as estimators for m(z) and m′(z), mh(z) = β0 andm′

h(z) = β1, respectively. Furthermore, let us denote by Ẍit = Xit − X i·, β = (β0 β1)
⊤ andZ⊤

it =


Ẍit , Xit (Zit − z) −

T−1T
s=1 Xis (Zis − z)


. Then, the criterion function (2.11) can be rewritten as

N
i=1

T
t=1


Ÿit −Z⊤

it β
2

Kh (Zi1 − z, . . . , ZiT − z) , (2.12)

andβ0 andβ1 have the following expressionβ0β1


=


it

Kh (Zi1 − z, . . . , ZiT − z)ZitZ⊤

it

−1
it

Kh (Zi1 − z, . . . , ZiT − z)Zit Ÿit . (2.13)

For the sake of comparison, it is also easy to show the form of the local constant estimator as

mh(z) =


it

Kh (Zi1 − z, . . . , ZiT − z) Ẍit Ÿit
it

Kh (Zi1 − z, . . . , ZiT − z) Ẍ2
it

. (2.14)

The local constant estimators of m(z) obtained alternatively in (2.9) and (2.14) exhibit two main differences, first, the
dimension of the kernel weights. In the profile least-squares case, the dimension of the kernel is univariate whereas in the
fixed effects context the dimension is T . This might affect the variance of the fixed effects estimator. Second, the smoothed
weights introduced in the profile least-squares estimator do not appear in the fixed effect estimator. This might affect the
bias of the former estimator.

Note that in (2.11) or (2.12) it would have been usual to introduce a kernel function around Zit . By doing so, the distance
between z and any of the terms Zi1, . . . , Zi(t−1), Zi(t+1), . . . , ZiT cannot be controlled by a fixed bandwidth and thus the
transformed remainder terms cannot be negligible. The consequence of all that is a non-negligible asymptotic bias. Here,
we propose to introduce a multivariate kernel function around the vector of values Zi1, . . . , ZiT . This modified version of a
local linear regression, as it will be shown later, solves the problem of the bias but it considerably enlarges the variance.
More precisely, under rather standard conditions in the next section we show that, asymptotically, the bias term is of order
O

h2

but the variance is of order O


1/NhT


. As the reader may notice, this bound for the variance is rather large. In order

to reduce the variance term but keeping the bias of the same order we propose to add to both terms in (2.3) the average
term 1

T


s Xism (Zis) and denote

Ÿ ∗

it = Ÿit +
1
T

T
s=1

Xism (Zis) . (2.15)

Therefore, combining (2.3) and (2.15) we obtain

Ÿ ∗

it = Xitm (Zit) + v̈it , i = 1, . . . ,N; t = 1, . . . , T , (2.16)

where v̈it = vit −
1
T


s vis. Note that Eq. (2.16) already shows a low dimensional problem where m (·) could be estimated

by a standard nonparametric regression method. Unfortunately, the functions m (Zi1) , . . . ,m (ZiT ) are not observed and
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the standard locally weighted least-squares procedures would generate unfeasible estimators. To overcome this situation,
we propose to replace in (2.15) the m (Zis) by their corresponding estimators, mh (Zis), in (2.13). Then, let Ÿ b

it = Ÿit +

T−1T
s=1 Xismh (Zis) be the regression problem becomes

Ÿ b
it = Xitm (Zit) + v̈b

it , i = 1, . . . ,N; t = 1, . . . , T , (2.17)

where the composed error term is of the form

v̈b
it =

1
T

T
s=1

Xis (mh (Zis) − m (Zis)) + v̈it .

The quantities of interest can be obtained by minimizing the following criterion function
N
i=1

T
t=1


Ÿ b
it − γ0Xit − γ1Xit (Zit − z)

2
Kh (Zit − z) , (2.18)

whereh is the bandwidth of this stage. We denote by γ0 and γ1 the minimizers of (2.18). As previously, we propose as
estimators form(·) and m′(·), mh(z) = γ0 andm′h(z) = γ1, respectively,γ0γ1


=


it

Kh (Zit − z)Zb
it
Zb⊤
it

−1
it

Kh (Zit − z)Zb
it Ÿ

b
it , (2.19)

whereZb⊤
it = (Xit , Xit (Zit − z)) is a 2 × 1-dimensional vector.

Finally, for the sake of comparison the local constant version of the backfitting estimator will be

mh(z) =


it

Kh (Zit − z) Xit Ÿ b
it

it
Kh (Zi1 − z) X2

it
. (2.20)

Taking into account that Ÿ b
it = Ÿit + T−1T

s=1 Xismh (Zis) (2.20) can be written as

mh(z) =


it

Kh (Zit − z) Xit Ÿit
it

Kh (Zit − z) X2
it

+

T−1
its

Kh (Zit − z) XitXismh (Zis)
it

Kh (Zit − z) X2
it

. (2.21)

3. Asymptotic properties

In this section we extend the above results for the case (d > 1, q > 1). Furthermore, we give the asymptotic expressions
for the bias and the variance and we calculate the asymptotic distribution of the local linear regression estimator. Finally,
we compare theoretically the results obtained in [18] for the profile least-squares estimator against our estimators.

3.1. Local linear estimator

Let us consider (2.12) in its multivariate version,
N
i=1

T
t=1


Ÿit −Z⊤

it β
2 T

ℓ=1

KH (Ziℓ − z) , (3.1)

where in this case β =

β⊤

0 β⊤

1

⊤ is a d (1 + q) × 1 vector and we denote byZ⊤

it a 1× d (1 + q) dimensional vector of the
form

Z⊤

it =


Ẍ⊤

it , X⊤

it ⊗ (Zit − z)⊤ − T−1
T

s=1

X⊤

is ⊗ (Zis − z)⊤


.

Let H be a q × q symmetric positive definite bandwidth matrix, K is the product of q-variate kernels such that for each u it
holds 

K(u)du = 1 and KH(u) =
1

|H|1/2
K

H−1/2u


.

Let us denote byβ the minimizer of (3.1) and assumingZ⊤WZ is nonsingular, the solution can be written asβ0β1


=
Z⊤WZ−1Z⊤WŸ , (3.2)
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where Ÿ = (Ÿ11, . . . , ŸNT ) is a NT × 1 vector while

W = blockdiag


KH(Zi1 − z)

T
ℓ=2

KH(Ziℓ − z), . . . , KH(ZiT − z)
T−1
ℓ=1

KH(Ziℓ − z)


and

Z =


Ẍ⊤

11 X⊤

11 ⊗ (Z11 − z)⊤ − T−1
T

s=1

X⊤

1s ⊗ (Z1s − z)⊤

...
...

Ẍ⊤

NT X⊤

NT ⊗ (ZNT − z)⊤ − T−1
T

s=1

X⊤

Ns ⊗ (ZNs − z)⊤


are NT × NT and NT × d (1 + q) dimensional matrix, respectively.

Then, (3.1) and (3.2) suggest as estimators for m(z) and Dm(z) = ∂m(z)/∂z, m (z;H) = β0 and vec(Dm (z;H)) = β1,
respectively. In particular, the local weighted linear least-squares estimator ofm(z) is defined as

m (z;H) = β0 = eT1
Z⊤WZ−1Z⊤WŸ , (3.3)

where e1 = (Id
...0dq×d) is a d (1 + q) × d selection matrix, Id is a d × d identity matrix and 0dq×d a dq × d matrix of zeros.

Once the estimator in its closed form is defined, let us consider the assumptions required to obtain its asymptotic
properties. Consider the data generating process defined in (2.2). Furthermore, we assume the following.

Assumption 3.1. Let (Yit , Xit , Zit)i=1,...,N; t=1,...,T be a set of independent and identically distributedR1+d+q-randomvariables
in the subscript i for each fixed t and strictly stationary over t for fixed i.

Assumption 3.2. The random errors vit are independent and identically distributed, with zero mean and homoscedastic
variance, σ 2

v < ∞. They are also independent of Xit and Zit for all i and t . In addition, E |vit |
2+δ , for some δ > 0.

Assumption 3.3. The unobserved cross-sectional effect, µi, can be arbitrarily correlated with both Xit and/or Zit with an
unknown correlation structure.

Assumption 3.1 is standard in panel data analysis. We could consider other settings of time-dependence such as strong
mixing conditions, as in [1], or nonstationary time series, as in [2]. However, since in this paperwe investigate the asymptotic
properties of the estimators as N tends to infinity and T is fixed it is enough to assume stationarity. Assumption 3.2 is
also standard for the conventional within transformation; see [19] or [7] for the fully parametric case. It also rules out the
presence of lagged endogenous variables. Independence between the idiosyncratic error term and the covariates Xit and/or
Zit is assumed without loss of generality although it can be relaxed assuming some dependence in higher order moments.
In particular, if heteroskedasticity of unknown form is allowed in our setting, we could transform this estimator to take into
account more complex structures of the random error term contained in the variance–covariance matrix, see [10] or [20]
for more details.

Assumptions 3.1 and 3.2 in some situations, as in [1], are relaxed by considering that (Xit , Zit , vit) are for fixed, i, strictly
stationary processes. Unfortunately, this set of assumptions is not sufficient to bound the asymptotic variance of the estima-
tor and some further mixing conditions are required to achieve convergence. In this case, T must also tend to infinity. Other
cases such as cross sectional dependence also requires both N and T tending to infinity. Finally, Assumption 3.3 imposes the
so-called fixed effects.

Let Z = (Z11, . . . , ZNT ) and X = (X11, . . . , XNT ) be the observed covariate samples, we also need to impose the following
additional assumptions about moments and densities.

Assumption 3.4. Let fZ1t (·) be the probability density function of Z1t , for t = 1, . . . , T . All density functions are continuously
differentiable in all their arguments and they are bounded from above and below in any point of their support.

Assumption 3.5. The function E

Ẍit Ẍ⊤

it |Zi1 = z1, . . . , ZiT = zT

is positive definite for any interior point of (z1, z2, . . . , zT )

in the support of fZi1,...,ZiT (z1, z2, . . . , zT ).

Assumption 3.6. Let ∥A∥ =


tr

A⊤A


, then E


∥XitX⊤

it ∥
2
|Zi1 = z1, . . . , ZiT = zT


is bounded and uniformly continuous in

its support. Furthermore, the matrix functions E

XitX⊤

is |Zi1 = z1, . . . , ZiT = zT

, for t = s and t ≠ s, and E


ẌitX⊤

is |Zi1 =

z1, . . . , ZiT = zT

, for t = s and t ≠ s, are bounded and uniformly continuous in their support.
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Assumption 3.7. Let z be an interior point in the support of fZ1t . All second-order derivatives ofm1(·),m2(·), . . . ,md(·) are
bounded and uniformly continuous.

Assumption 3.8. The q-variate Kernel functions K are compactly supported, bounded kernel such that

uu⊤K(u)du =

µ2(K)I and

K 2(u)du = R(K), where µ2(K) ≠ 0 and R(K) ≠ 0 are scalars and I is the q× q identity matrix. In addition, all

odd-order moments of K vanish, that is

uı1
1 · · · uıq

q K(u)du = 0, for all nonnegative integers ı1, . . . , ıq such that their sum is
odd.

Assumption 3.9. The bandwidthmatrixH is symmetric and strictly positive definite. Furthermore, each entry of thematrix
tends to zero as N → ∞ in such a way that N|H| → ∞.

Assumption 3.10. For some δ > 0, the following functions E

|Xitvit |

2+δ
|Zi1 = z1, . . . , ZiT = zT


and E


|Ẍitvit |

2+δ
|Zi1 = z1,

. . . , ZiT = zT

are bounded and uniformly continuous in any point of their support.

This second set of assumptions is more directly related to nonparametric statistics literature. They are basically smoothness
and boundedness conditions. Assumption 3.4 imposes smoothness conditions in the probability density function of Z1t , for
t = 1, . . . , T . Furthermore, Assumptions 3.5–3.6 are smoothness conditions on moment functionals. Assumptions 3.7–3.9
are standard in the literature of local linear regression where, in particular, Assumption 3.9 contains a standard bandwidth
condition for smoothing techniques. Finally, Assumption 3.10 is required to show that the Lyapunov conditions holds for
the Central Limit Theorem.

Under these assumptions we obtain the following asymptotic expressions for the conditional bias and conditional
variance–covariance matrix of the local weighted linear least-squares estimator.

Theorem 3.1. Assume conditions 3.1–3.3 and 3.4–3.9 hold, then as N → ∞ and T is fixed we obtain

E [m (z;H) |X, Z] − m(z) =
1
2

B−1
Ẍt Ẍt

(z, . . . , z)


µ2(Kuτ )BẌtXt (z, . . . , z) −

1
T

T
s=1

µ2

Kus


BẌtXs (z, . . . , z)


× diagd(tr(Hmr (z)H))ıd + op (tr(H))

and

Var (m (z;H) |X, Z) =

σ 2
v

T
ℓ=1

R

Kuℓ


N|H|T/2

B−1
Ẍt Ẍt

(z, . . . , z)

1 + op(1)


,

where τ is any index between 1 and T ,

BẌtXt (z, . . . , z) = E

ẌitX⊤

it |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) ,

BẌtXs (z, . . . , z) = E

ẌitX⊤

is |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) ,

BẌt Ẍt (z, . . . , z) = E

Ẍit Ẍ⊤

it |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) ,

diagd(tr(Hmr (z)H)) stands for a diagonal matrix of elements tr(Hmr (z)H), for r = 1, . . . , d, whereHmr (z) is the Hessianmatrix
of the rth component of m(·). Finally, we denote by ıd is a d × 1 unit vector.

The proof of this result is done in the Appendix.
This theorem shows thatm (z;H) is, conditionally on the sample, a consistent estimator ofm(z). Furthermore, as it was

already remarked in the previous section, although the bias shows the standard order ofmagnitude for this type of problems,
the variance shows an asymptotic expression that is larger than the expected in this type of problems. In order to achieve
an optimal rate of convergence, the variance term must be of order 1/N|H|

1/2 whereas our result shows a bound of order
1/N|H|

T/2. Just to clarify the asymptotic behavior of the estimator we show its properties for the univariate case, d = q = 1
and H = h2I .

Corollary 3.1. Assume conditions 3.1–3.9 hold, then if h → 0 in such a way that Nh2
→ ∞ as N tends to infinity and T is fixed

we get

E [m (z;H) |X, Z] − m(z) =
1
2
c (z, z)m′′(z)h2

+ op

h2 ,

where

c (z, z) =

µ2

Kuτ


E

ẌitXit |Zi1 = z, . . . , ZiT = z


− T−1

T
s=1

µ2

Kus


E

ẌitXis|Zi1 = z, . . . , ZiT = z


E

Ẍ2
it |Zi1 = z, . . . , ZiT = z

 .
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Furthermore, if µ2

Ku1


= · · · = µ2


KuT


= µ2


Kuτ


= µ2 (K) then the bias term has the following expression

E [m (z;H) |X, Z] − m(z) =
1
2
µ2(K)m′′(z)h2

+ op

h2 ,

whereas if R

Ku1


= · · · = R


KuT


= R (K) the variance–covariance matrix is

Var (m (z;H) |X) =
σ 2

v R (K)T

Nh2fZi1,...,ZiT (z, . . . , z) E

Ẍ2
it |Zi1 = z, . . . , ZiT = z

 1 + op(1)

.

As a tool to construct asymptotic confidence bands we give also a result that provides the asymptotic distribution of the
estimator.

Theorem 3.2. Assume conditions 3.1–3.3 and 3.4–3.10 hold, then as N → ∞ and T is fixed we obtain
N|H|T/2 (m (z;H) − m (z))

d
−−→ N (b(z), υ(z)) ,

where

b(z) =
1
2
µ2(Ku)diagd


tr

Hmr (z)H


N|H|T/2


ıd,

v(z) = σ 2
v R (K)T B−1

Ẍt Ẍt
(z, . . . , z).

The proof of this result is shown in the Appendix.
We can compare the results obtained here with those in [13] for the first differences case. As expected, the bias term

presents for both estimators the same linear dependence in the trace of the bandwidthmatrixH . However, the variance term
differs from one to the other estimator. In the first differences case, see Theorem 3.1 in [13], up to a constant, the variance
term exhibits a dependence from the bandwidth matrix H of order 1/N|H| whereas in our case it is of order 1/N|H|

T/2. That
is, the ratio between the first differences and the deviances from the mean estimators is of order |H|

(T−2)/2. For T = 2, the
estimators show the same rate of convergence. This is clearly expected. For T > 2, the first differences estimator under the
conditions established above shows a faster rate of convergence for the variance terms as far as the diagonal elements of the
bandwidth matrix H tend to zero. This was also expected because the dimensionality of the kernel used in the local linear
regression procedure is different in both cases. Of course, efficiency issues are not considered here and they will clearly
depend on the stochastic structure of the idiosyncratic errors.

3.2. The backfitting estimator

As we stated previously the function of interest can be consistently estimated by using a local linear regression approach
with a high dimensional kernel weight, but at the price of achieving a slow rate of convergence. However, as it is noted in
Section 2, we can solve this problem turning to an alternative procedure that enables us to cancel asymptotically all additive
terms expected in the model the function of interest.

Let us consider the multivariate version of (2.17) and define

Ÿ b
it = X⊤

it m (Zit) + v̈b
it , i = 1, . . . ,N; t = 1, . . . , T , (3.4)

where

v̈b
it =

1
T

T
s=1

X⊤

is (m (Zis;H) − m (Zis)) + v̈it .

The quantities of interest in (3.4) can be estimated by minimizing the following locally weighted linear regression
N
i=1

T
t=1


Ÿit −Zb⊤

it γ
2

KH (Zit − z) , (3.5)

where H is a q × q symmetric positive definite bandwidth matrix, γ =

γ ⊤

0 γ ⊤

1

⊤is a d (1 + q) × 1 vector andZb⊤
it =

X⊤

it X⊤

it ⊗ (Zit − z)⊤

is a 1 × (1 + q) vector.

Furthermore, let the vectorγ =
γ ⊤

0 γ ⊤

1

⊤ be the minimizer of (3.5). As estimators of m(z) and Dm(z) = ∂m(z)/∂z, we
suggestm(z,H) = γ0 and vec(Dm(z;H)) = γ1, respectively, i.e.,m(z;H) = γ0 = e⊤

1

Zb⊤W bZb−1Zb⊤W bŸ b, (3.6)

where Ÿ b
= (Ÿ b

11, . . . , Ÿ
b
NT ) is a NT -vector andW b andZb are NT ×NT and NT × d (1 + q) dimensional matrix, respectively,

of the form
W b

= diag

KH (Z11 − z) , . . . , KH (ZNT − z)


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and

Zb
=

X⊤

11 X⊤

11 ⊗ (Z11 − z)⊤
...

...

X⊤

NT X⊤

NT ⊗ (ZNT − z)⊤

 .

We now study the asymptotic behavior of the so called backfitting estimator. At this stage we need the results shown in
Theorem 3.1 to hold uniformly in z. In order to do so, we can rely on the well-known results in [11]. In fact, some of the
conditions already enounced in Section 3.1 are sufficient to show the uniform rates for m(z;H). However, we need some
additional assumptions that relate the bandwidths of bothm (z;H) andm(z;H).

Assumption 3.11. The bandwidthmatrixH is symmetric and strictly positive definite. Furthermore, each entry of thematrix
tends to zero as N tends to infinity in such a way that N|H| → ∞.

Assumption 3.12. The bandwidth matrices H andH must fulfill that N |H| |H|/ log(N) → ∞, and tr (H) /tr(H) → 0 as N
tends to infinity.

These assumptions are needed in order to ensure that both bias and variance terms of the backfitting estimator achieve
optimal rates of convergence and they are oracle efficient.

Then, under these assumptions we get the following asymptotic expressions for the conditional bias and conditional
variance–covariance matrix ofm(z;H).

Theorem 3.3. Assume conditions 3.1–3.8 and 3.11–3.12 hold, then as N → ∞ and T is fixed we obtain

E[m(z;H)|X, Z] − m(z) =
1
2
µ2 (Ku) diagd(tr(Hmr (z)H))ıd + op(tr(H))

and

Var(m(z;H)|X, Z) =
σ 2

v R(K)

NT |H|1/2
B−1

XtXt (z)BẌt Ẍt (z)BXtXt (z)
−1 1 + op(1)


,

where diagd(tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr (z)H), for r = 1, . . . , d and ıd is a d × 1 unit vector.

The proof of this result is done in the Appendix.
On one hand, we realize that the bias term is influenced by the amount of smoothing, H , as well as the curvature ofm(z)

at z in a particular direction measured through each entry of Hm(z). In this way, we can guess that this estimator exhibits a
higher conditional bias when there is a higher curvature andmore smoothing. On the other hand, from the standpoint of the
conditional variance we can see that it is a bit different from the corresponding for the standard case. In particular, it will
be increased when the smoothing is lower and sparse data near z but now also depends on the time-demeaned covariates
BẌt Ẍt (z). Regardless, it is proved that the estimation procedure developed in this paper provides a nonparametric estimator
in which the variance–covariance matrix of all its components is asymptotically the same as if we would known the rest of
components of the mean deviation transformed expression, the so-called oracle efficiency property.

3.3. Comparison of the estimators

As we have already remarked in Section 2, the main difference among the estimators (for their local constant version)
consists in the types of averages that are used in order to remove fixed effects. In one case, the one step backfitting algorithm
considers un-smoothed averageswhereas in the profile least-squares case smoothedweighted averages are preferred. There
exists also a difference between the dimension of the kernel weights. All these differences should have an impact in both
bias and variances of the estimators and therefore it would be of interest to analyze them, both theoretically and empirically.
This subsectionwill be devoted to analyze the estimators theoreticallywhereas in Section 4wewill do it empirically through
Monte Carlo simulations.

The reader might have noticed that the conditions required to obtain the asymptotic properties of the first step fixed
effects estimator and the backfitting estimator (see Theorems 3.1 and 3.2) are rather different from the conditions assumed
in [18] to obtain the properties of their estimator. For the sake of comparison, in this section we introduce additional as-
sumptions that will be used to obtain asymptotic terms that can be comparable among the three estimators. In all calculus
we will assume that N tends to infinity keeping T fixed. Furthermore, we will remove the strict stationarity assumption
established in the previous sections and wewill not be willing to impose that


i µi = 0. Finally it is important to note that,

in the profile least-squares estimator, for fixed T , it is not possible to obtain explicitly the asymptotic bias and variance of
the estimator since ϖit is random.

In order to compare the main statistical properties of these estimators, we extend the above results assuming the
following.
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Assumption 3.13. Let (Yit , Xit , Zit)i=1,...,N;t=1,...,T be a set of independent and identically distributed random variables in
the subscript i. Furthermore, let ft(·) the p.d.f. of Zit and ft(·, . . . , ·) be the p.d.f. of (Zi1, . . . , ZiT ), for each z ∈ Rq, f (z) =T

t=1 ft(z) > 0 and f (z, . . . , z) =
T

t=1 ft(z, . . . , z) > 0.

Assumption 3.14. Let ft(z) be the p.d.f. of Zit and ft,s(z1, z2) be the joint p.d.f. of (Zit , Zjs) for t ≠ s and any i, j. We can assume
that ft(z)E(XitX⊤

it |Zit = z) and ft,s(z)E(XitX⊤

js |Zit = z1, Zis = z2) are uniformly bounded in the domain of Z and are all twice
continuously differentiable at z ∈ Rq for all t ≠ s and i and j.

Assumption 3.15. Let g be a bandwidth, the bandwidth matrix G is symmetric and strictly positive definite. Furthermore,
each entry of the matrix tends to zero as N → ∞ in such a way that N|G| → ∞.

Note that Assumption 3.13 is a standard data generating condition in this context but stationarity is not allowed. 3.14 is
a smoothness assumption and 3.15 is the standard bandwidth condition. For the sake of comparison, we give the results for
the univariate case (d = q = 1), where now H = h2I andH =h2I , and obtain the following results.

Corollary 3.2. Assume conditions 3.2–3.9 and 3.13 holds, as N → ∞ and T is fixed, then we obtain

E [mh (z) |X, Z] − m(z) =
1
2

ΛL(z)
ΨL(z)

+ op(h2)

Var (mh (z) |X, Z) =
σ 2

v

NhT

ΓL(z)
ΨL(z)2

+ op


1

NhT


,

where, for any ξit between Zit and z, r(ξit , z) = (Zit − z)2 ∂2m(ξit )
∂z2

and

ΨL(z) =
1

ThT

T
t=1

E[Ẍ2
itλi],

ΓL(z) =
1

ThT

T
t=1

E[Ẍ2
itλ

2
i ],

ΛL(z) =
1

ThT

T
t=1

E


Ẍit


Xit r(ξit , z) −

1
T

T
s=1

Xisr(ξis, z)


λi


= Op(h2),

where λi = K


Zi1−z
h


× · · · × K


ZiT−z

h


.

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends to infinity we obtain,

ΨL(z) = T−1
T

t=1

BẌt Ẍt (z, . . . , z) + op(h2),

ΛL(z) =
h2

T
µ2(K)

T
t=1

BẌt Ẍt (z, . . . , z)m
′′(z) + op(h2),

ΓL(z) =
σ 2

v

T

T
t=1

BẌt Ẍt (z, . . . , z) + op(h2).

Corollary 3.3. Assume conditions 3.2–3.8, 3.11–3.12 and 3.13, holds, as N → ∞ and T is fixed we obtain

E
mh(z)|X, Z


− m(z) =

1
2

Λb(z)
Ψb(z)

+ op(h2)

Var
mh(z)|X, Z


=

σ 2
v

Nh Γb(z)
Ψb(z)2

+ op


1

Nh


,

where, letλit = K


Zit−zh

,

Ψb(z) =
1

Th
T

t=1

E[Ẍ2
it
λit ],
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Γb(z) =
1

Th
T

t=1

E[X2
it
λ2

it ],

Λb(z) =
1

Th
T

t=1

E[X2
it r(ξit , z)λit ] = Op(h2).

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends to infinity we obtain,

Ψb(z) = T−1
T

t=1

BXtXt (z) + op(h2),

Λb(z) =

h2

T
µ2(K)

T
t=1

BXtXt (z)m
′′(z) + op(h2),

Γb(z) =
σ 2

v

T

T
t=1

BẌt Ẍt (z) + op(h2).

The proof of these corollaries is done in the Appendix.
Under this setting, Theorem 3.1 of Sun et al. [18] can be rewritten for a univariate problem as follows.

Corollary 3.4. Assume conditions 3.2–3.3, 3.7–3.8 and 3.13–3.15 hold, as N → ∞ and T is fixed we obtain

E[mg(z)|X, Z] − m(z) =
1
2

Λp(z)
Ψp(z)

+ Op


g ln(lnN)

√
N


+ op(g2)

Var(mg(z)|X, Z) =
σ 2

v

Ng
Γp(z)
Ψp(z)2

+ op


1
Ng


,

where λit = K


Zit−z
h


and

Ψp(z) =
1
Tg

T
t=1

E[(1 − ϖit)X2
itλit ],

Γp(z) =
1
Tg

T
t=1

E[(1 − ϖit)
2X2

itλ
2
it ],

Λp(z) =
1
Tg

T
t=1

E[(1 − ϖit)X2
it r(ξit , z)λit ] = Op(g2).

Note that in [18] it is shown

Ψp(z) = T−1
T

t=1

BXtXt (z) + op(g2),

Λp(z) =
g2

T
µ2(K)

T
t=1

BXtXt (z)m
′′(z) + op(g2),

Γp(z) =
σ 2

v

T

T
t=1

BẌt Ẍt (z) + op(g2).

Under the set of alternative assumptions considered in this section we obtain the results shown in Corollaries 3.2–3.4.
Clearly, they coincide with the results shown in Section 3.1. Corollary 3.2 points out the variance is of order 1/NhT whereas
the bias shows a term that is of order O(h2). Furthermore, the backfitting estimator that is studied in Corollary 3.3 presents
the correction in the variance of order 1/Nh. Furthermore, Assumption 3.12, h = o(h), is crucial to guarantee that the
additional bias term vanishes asymptotically. Finally, Corollary 3.4 shows both bias and variance of the profile least-squares
estimator in the univariate case. As it can be observed from the expressions the bias shows an additional term of order
O

g ln (ln (N)) /

√
N

. This term does not appear in the bias expression of the other estimator. However, the variance shows

the standard rate and no further procedure is needed to achieve the optimal rate as it is necessary in our case.
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Corollary 3.5. As N → ∞ and h → 0 and g → 0 we obtain the following bias and variance rates given a finite integer T > 0,

Bias[mg(z)|X, Z]

Bias[mh(z)|X, Z]
=

Λp(z)ΨL(z)
Ψp(z)ΛL(z)

+ Op


g ln(lnN)

√
N


+ op(g2),

Var(mg(z)|X, Z)

Var(mh(z)|X, Z)
=

h⊤

g
Γp(z)ΨL(z)2

Ψp(z)2ΓL(z)
+ op(1).

Corollary 3.6. As N → ∞ andh → 0 and g → 0 we obtain the following bias and variance rate for m(z; h) given a finite
integer T > 0,

Bias[mg(z)|X, Z]

Bias[mh(z)|X, Z]
=

Λp(z)Ψb(z)
Ψp(z)Λb(z)

+ Op


g ln(lnN)

√
N


+ op(g2)

Var(mg(z)|X, Z)

Var(mh(z)|X, Z)
=

h
g

Ψb(z)2Γp(z)
Ψp(z)2Γb(z)

+ op (1) .

Corollaries 3.5 and 3.6 show respectively relative bias and variances of the profile least-squares estimator against the local
linear fixed effect estimator and the one step backfitting estimator. The ratioΛp(z)ΨL(z)/Ψp(z)ΛL(z) in Corollary 3.5 is easily
shown to be greater than 1. Therefore, under the conditions established in the corollary, the bias of the profile least-squares
estimator is larger than the fixed effect estimator. This difference is increased if we consider the termO


g ln (ln (N)) /

√
N

.

However, as N tends to infinity the difference between the bias of both estimators diminishes. The relative variance exhibits
a term Γp(z)ΨL(z)2/Ψp(z)2ΓL(z) that is constant but the relative size of the variances of both estimators is determined by
the ratio of bandwidths, i.e. hT/g . For example, if the bandwidths converge to zero at the same rate the variance term of
the profile estimator is going to be smaller than the variance term of the local linear regression of the within estimator.
Corollary 3.6 shows theoretically the correction introduced by the backfitting algorithm in the variance of the estimators.

4. Monte Carlo simulations

In this section,Monte Carlo simulations are carried out in order to verify the theoretical results of the estimators proposed
in this paper under the statistical setting analyzed in the previous sections. Later, we make an empirical comparison about
the performance in small samples of the different estimators considered in this paper.

As it is well known, the Mean Squared Error (MSE) is a suitable measure of the estimation accuracy of the proposed
estimators. Thus, let us denote ϕ as the ϕth replication and Q as the number of replications, for r = 1, . . . , d

MSE (mr (z;H)) =
1
Q

Q
ϕ=1

E
mϕr (z;H) − mϕr(z)

2
which can be approximated by the Averaged Mean Squared Error (ASME) such as

AMSE (mr (z;H)) =
1
Q

Q
ϕ=1

1
NT

N
i=1

T
t=1

mϕr (z;H) − mϕr(z)
2

.

Observations are generated from the following varying coefficient panel data model of unknown form
Yit = X⊤

ditm

Zqit

+ µi + vit , i = 1, . . . ,N; t = 1, . . . , T ; d, q = 1, 2,

where Xdit and Zqit are random variables generated such that Xdit = 0.5Xdi(t−1) + ξit and Zqit = wqit + wqi(t−1), where wqit
is generated as an independent and identically distributed uniform random variable in [0, π/2] and ξit is generated as an
independent and identically distributed Gaussian, zero mean, variance one, random variable (NID(0, 1)). Furthermore, vit is
an NID(0, 1) random variable andm(·) is a pre-specified function to be estimated.

With the aim of verifying the theoretical results in the Section 3we consider four different data generating process (DGP)
(1) Yit = X1itm1(Z1it) + µ1i + vit ,

(2) Yit = X1itm1(Z1it , Z2it) + µ2i + vit ,

(3) Yit = X1itm1(Z1it) + X2itm2(Z2it) + µ1i + vit ,

(4) Yit = X1itm1(Z1it , Z2it) + X2itm2(Z1it , Z2it) + µ2i + vit ,

where the chosen functional forms are m1 (Z1it) = sin (Z1itπ) , m1 (Z1it , Z2it) = sin ((Z1it + Z2it) π) , m2 (Z2it) = exp
−Z2

2it


and m2(Z1it , Z2it) = exp(−(Z1it + Z2it)2).

In addition, we experiment with two specifications for the individual heterogeneity
a. µ1i depends on Z1it , where the dependence is imposed by generating µ1i = c0Z1i. + ui for i = 2, . . . ,N and Z1i. = T−1T

t=1 Z1it
b. µ2i depends on Z1it , Z2it through µ2i = c0Z i. + ui for i = 2, . . . ,N and Z i. =

1
2


Z1i. + Z2i.


,
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Table 1
AMSE for d = 1 and q = 1.

AMSEm1(·) Relative AMSEm1(·)

LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB

T = 10
N = 50 0.277 0.236 0.288 0.852 1.040 1.220
N = 100 0.245 0.183 0.243 0.747 0.992 1.328
N = 150 0.230 0.156 0.225 0.678 0.978 1.442

Table 2
AMSE for d = 1 and q = 2.

AMSEm1(·) Relative AMSEm1(·)

LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB

T = 10
N = 50 1.236 0.515 0.533 0.417 0.431 1.035
N = 100 0.793 0.415 0.450 0.523 0.567 1.084
N = 150 0.634 0.382 0.418 0.603 0.659 1.094

Table 3
AMSE for d = 2 and q = 1.

LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB

AMSEm1(·) Relative AMSEm1(·)

T = 10
N = 50 0.253 0.284 0.293 1.123 1.158 1.032
N = 100 0.190 0.249 0.249 1.311 1.311 1.000
N = 150 0.162 0.231 0.230 1.426 1.420 0.996

AMSEm2(·) Relative AMSEm2(·)

T = 10
N = 50 0.098 0.048 0.086 0.490 0.878 1.792
N = 100 0.053 0.025 0.042 0.472 0.792 1.672
N = 150 0.038 0.018 0.029 0.474 0.763 1.611

Table 4
AMSE for d = 2 and q = 2.

LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB

AMSEm1(·) Relative AMSEm1(·)

T = 10
N = 50 1.272 0.548 0.555 0.431 0.436 1.023
N = 100 0.797 0.428 0.461 0.535 0.576 1.077
N = 150 0.637 0.390 0.428 0.612 0.672 1.097

AMSEm2(·) Relative AMSEm2(·)

T = 10
N = 50 0.823 0.189 0.158 0.230 0.192 0.836
N = 100 0.466 0.088 0.078 0.188 0.167 0.886
N = 150 0.355 0.060 0.053 0.169 0.149 0.883

where in both cases ui is an NID (0, 1) random variable and c0 = 0.5 controls the correlation between the fixed effects and
some of the regressors of the model.

In the experiment we use 1000 Monte Carlo replications. The number of time observations T is set up to ten, while the
number of cross-sections N is either 50, 100 or 150. The Gaussian kernel has been used and the bandwidth is chosen asH =hI = σz(NT )−1/3, whereσz is the sample standard deviation of


Zqit
N,T
i=1,t=1, andg =

h = σz(NT )−1/5.
The results from the simulation are presented in Tables 1–4. For the sake of comparisonwe present the empirical AMSE of

the three estimators that we compare in this paper: the local linear least-squares estimator (LLLS), the one-step backfitting
estimator (OSB), and the profile least-squares estimator (PLS) proposed in [18].

Table 1 shows the results for DGP(1). This is the simplest case without curse of dimensionality. As expected from our
theoretical findings the local linear estimator presents its best result. The profile least-squares estimator, as N grows, seems
to perform better than our backfitting estimator. This might be because the second term of the bias, that is related to the
fixed effects, diminishes its negative impact on the bias.

Table 2 starts reflecting the problem of the curse of dimensionality. Of course, since the variance of the local linear
estimator is of order 1/NThTq, it is expected that the behavior of this estimator with respect to the others, in terms of AMSE,
will be worse. This is indeed what we observe in the results. Furthermore, as N grows, the backfitting estimator performs
slightly better than the profile least-squares estimator.

Table 3 can be compared against Table 1. In fact, the functionm1(·), which is the same under other DGP’s, presents similar
results in terms of AMSE. That is, the estimator that presents the better performance is the local linear. On the contrary, the
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function m2(·) is better estimated using either the one-step backfitting or the profile least-squares estimators. This can be
related with the oracle efficiency property of these estimators.

Table 4 can be compared against Table 2. In fact, we obtain similar conclusions as in the comparison between DGP’s 1
and 3. That is, the function m1(·) is estimated as the same level of accuracy as if m2(·) were known. Both the profile least-
squares and the one-step backfitting estimators perform much better than the local linear estimator. This is the curse of
dimensionality. We can say the same for m2(·) but in this case the profile least-squares estimator performs slightly better
then the backfitting estimator.
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Appendix

Proof of Theorem 3.1. We first focus on the analysis of the conditional bias of the local weighted linear least-squares es-
timator, m (z;H), and later on the behavior of its conditional variance–covariance matrix. We follow the standard proofs
scheme as in [13].

Let X = (X11, . . . , XNT ) and Z = (Z11, . . . , ZNT ) be the observed covariate vectors. By Assumption 3.2 we know that
E (vit |X, Z) = 0, so the conditional expectation on (3.3) provides

E [m (z;H) |X, Z] = e⊤

1

Z⊤WZ−1Z⊤WM, (A.1)

where

M =


X⊤

11m (Z11) − T−1
T

s=1

X⊤

1sm (Z1s) , . . . , X⊤

NTm (ZNT ) − T−1
T

s=1

X⊤

Nsm (ZNs)

T

.

ApproximatingM using the multivariate Taylor theorem we obtain

M =Z  m(z)
vec(Dm(z))


+

1
2
Qm(z) + R(z), (A.2)

where

Qm(z) = Sm(z) − Sm(z), (A.3)
Sm(z) =


S⊤

m11
(z), . . . , S⊤

mNT
(z)
⊤

,

Sm(z) =


S

⊤

m11
(z), . . . , S

⊤

mNT
(z)
⊤

.

The corresponding entries of these vectors are

Smit (z) =

(Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z)


,

Smit (z) =


1
T

T
s=1

(Xis ⊗ (Zis − z))⊤ Hm(z) (Zis − z)


,

where we denote by

Hm(z) =


Hm1(z)
Hm2(z)

...
Hmd(z)


a dq × d matrix such that Hmd(z) is the Hessian matrix of the dth component ofm(·).

On the other hand, the remainder term of the Taylor approximation can be written as

R(z) = Rm(z) − Rm(z), (A.4)
Rm(z) =


R⊤

m11
(z), . . . , R⊤

mNT
(z)
⊤

,

Rm(z) =


R

⊤

m11
(z), . . . , R

⊤

mNT
(z)
⊤

,
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where the corresponding entry of each vector are

Rmit (z) =

(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z)


,

Rmit (z) =


1
T

T
s=1

(Xis ⊗ (Zis − z))⊤ R (Zis; z) (Zis − z)


.

We denote by

R(Zit; z) =


R1(Zit; z)
R2(Zit; z)

...
Rd(Zit; z)

 , R(Zis; z) =


R1(Zis; z)
R2(Zis; z)

...
Rd(Zis; z)

 ,

and

Rd (Zit; z) =

 1

0


∂2md

∂z∂z⊤
(z + ω (Zit − z)) −

∂2md

∂z∂z⊤
(z)


(1 − ω) dω, (A.5)

Rd (Zis; z) =

 1

0


∂2md

∂z∂z⊤
(z + ω (Zis − z)) −

∂2md

∂z∂z⊤
(z)


(1 − ω) dω, (A.6)

where ω is a weight function.
If we replace (A.2) in (A.1) we obtain the conditional bias expression consisting in the following two additive terms

E [m (z;H) |X, Z] − m(z) =
1
2
e⊤

1

Z⊤WZ−1Z⊤WQm(z) + e⊤

1

Z⊤WZ−1Z⊤WR(z), (A.7)

where we can appreciate that the vec(Dm(z)) term of (A.2) vanishes by the effect of e1.
As this bias expression has two additive terms, to obtain the conditional bias of this estimator we must analyze both

terms of (A.7) separately. Focus first on the analysis of e⊤

1

Z⊤WZ−1Z⊤WQm(z), we show that is the leading term of the ex-

pression of bias and which actually sets the order of this estimator. Later, we study the behavior of e⊤

1

Z⊤WZ−1Z⊤WR(z)
and explain why this term is asymptotically negligible.

For the sake of simplicity let us denote

λi = K

Zi1 − z
H1/2


× · · · × K


ZiT − z
H1/2


.

The inverse term of (A.7) can be rewritten as the following symmetric block matrix

(NT )−1Z⊤WZ =


A11

NT A12
NT

A21
NT A22

NT


(A.8)

where,

A11
NT = (NT |H|

T/2)−1

it

Ẍit Ẍ⊤

it λi

A12
NT = (NT |H|

T/2)−1

it

Ẍit


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)

⊤

λi,

A21
NT = (NT |H|

T/2)−1

it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


Ẍ⊤

it λi,

A22
NT = (NT |H|

T/2)−1

it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)

⊤

λi.

Analyzing each of these terms, we first show that as N tends to infinity

A11
NT = BẌt Ẍt (z, . . . , z) + op(1), (A.9)

where

BẌt Ẍt (z, . . . , z) = E

Ẍit Ẍ⊤

it |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) .
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With the aim of showing this result, under the stationarity assumption and the law of iterated expectations we get

E

A11

NT


=


E

Ẍit Ẍ⊤

it |Zi1 = z + H1/2u1, . . . , ZiT = z + H1/2uT


× fZi1,...,ZiT

Zi1 = z + H1/2u1, . . . , ZiT = z + H1/2uT

 T
ℓ=1

K (uℓ) duℓ

and by the Taylor expansion of the unknown functions and Assumptions 3.1 and 3.4 the expression (A.9) holds. However,
note that to conclude this proof is necessary to turn to a law of large numbers. Therefore, we have to show that Var


A11

NT


→ 0, as N tends to infinity. Under Assumption 3.1,

Var

A11

NT


=

1
NT

Var


1
|H|T/2

Ẍit Ẍ⊤

it λi


+

1
NT 2

T
t=3

(T − t) Cov


1
|H|T/2

Ẍi2Ẍ⊤

i2 λi,
1

|H|T/2
Ẍit Ẍ⊤

it λi


.

Then, under Assumptions 3.4 and 3.6 we can show that the first element is

Var


1
|H|T/2

Ẍit Ẍ⊤

it λi


≤

C
NT |H|T/2

while the second one is

Cov


1
|H|T/2

Ẍi2Ẍ⊤

i2 λi,
1

|H|T/2
Ẍit Ẍ⊤

it λi


≤

C ′

N|H|T/2
.

Then, if both NT |H| and N|H| tend to infinity the variance term tends to zero and (A.9) follows.
Following a similar procedure we get

A12
NT = DB ẌtXt (z, . . . , z)


Id ⊗ µ2(Kuτ )H


−

1
T

T
s=1

DB ẌtXs (z, . . . , z)

Id ⊗ µ2(Kus)H


+ op(H). (A.10)

This is because using the same reasoning,

E

A12

NT


=


E

ẌitX⊤

it |Zi1 = z + H1/2u1, . . . , ZiT = z + H1/2uT


fZi1,...,ZiT (z, . . . , z) ⊗

H1/2uτ

⊤ T
ℓ=1

K (uℓ) duℓ

−
1
T

T
t=1

T
s=1


E

ẌitX⊤

is

 Zi1 = z + H1/2u1, . . . , ZiT = z + H1/2uT


× fZi1,...,ZiT (z, . . . , z) ⊗

H1/2us

⊤ T
ℓ=1

K (uℓ) duℓ

and as N tends to infinity, Var

A12

NT


→ 0. Then, (A.6) is shown.

Note thatDB ẌtXt (Z1, . . . , ZT ), for s = 1, . . . , T , is defined in a similar way as in [13]. Thus,DB ẌtXt (Z1, . . . , ZT ) is a d×dq
gradient matrix of the form

DB ẌtXt (Z1, . . . , ZT ) =



∂bẌtXt11 (Z1, . . . , ZT )
∂Z⊤

1
· · ·

∂bẌtXt1d (Z1, . . . , ZT )
∂Z⊤

1
...

. . .
...

∂bẌtXtd1 (Z1, . . . , ZT )
∂Z⊤

1
· · ·

∂bẌtXtdd′ (Z1, . . . , ZT )

∂Z⊤

1


,

and

bẌtXtdd′ (Z1, . . . , ZT ) = E

ẌditXd′it

 Zi1 = Z1, . . . , ZiT = ZT

fZi1,...,ZiT (Z1, . . . , ZT ) .

Finally, we obtain that as N tends to infinity

A22
NT =


1 −

1
T


BXtXt (z, . . . , z) ⊗ µu(Kuτ )H + op (H) , (A.11)

where

BXtXt (z, . . . , z) = E

XitX⊤

it

 Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) .
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Then, using the results of (A.9)–(A.11) in (A.8) we obtain

NT
Z⊤WZ−1

=


C11 C12
C21 C22


, (A.12)

where

C11 = B−1
Ẍt Ẍt

(z, . . . , z) + op(1),

C12 = −B−1
Ẍt Ẍt

(z, . . . , z)


DB ẌtXt (z, . . . , z)


Id ⊗ µ2


Kuτ


H

−

1
T

T
s=1

DB ẌtXs (z, . . . , z)

Id ⊗ µ2


Kus


H


×


1 −

1
T


BXtXt (z, . . . , z) ⊗ Hµ2(Kuτ )

−1

+ op(1),

C21 = −


1 −

1
T


BXtXt (z, . . . , z) ⊗ Hµ2(Kuτ )

−1

×


DB ẌtXt (z, . . . , z)


Id ⊗ µ2


Kuτ


H

−

1
T

T
s=1

DB ẌtXs (z, . . . , z)

Id ⊗ µ2


Kus


H
⊤

× B−1
Ẍt Ẍt

(z, . . . , z) + op(1),

C22 =


1 −

1
T


BXtXt (z, . . . , z) ⊗ Hµ2(Kuτ )

−1

+ op

H−1 .

On the other hand, following the same technique we can show that

(NT )−1Z⊤WSm(z)

=



NT |H|

T/2−1
it

Ẍit (Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z) λi


NT |H|

T/2−1
it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


(Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z) λi


are asymptotically equal to

NT |H|
T/2−1

it

Ẍit (Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z) λi

= µ2

Kuτ


BẌtXt (z, . . . , z) × diagd(tr(Hmr (z)H))ıd + op (tr(H)) , (A.13)

where

BẌtXt (z, . . . , z) = E

ẌitX⊤

it |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) ,

diagd(tr(Hmr (z)H)) stands for a diagonal matrix of elements tr(Hmr (z)H), for r = 1, . . . , d, and ıd is a d × 1 unit vector. In
addition,

NT |H|
T/2−1

it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


(Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z) λi

=


BXtXt (z, . . . , z) ⊗ (H1/2uτ )(H1/2uτ )

⊤Hm(z)(H1/2uτ )

T
ℓ=1

K (uℓ) duℓ

−
1
T

T
s=1


BXsXt (z, . . . , z) ⊗ (H1/2us)(H1/2uτ )

⊤Hm(z)(H1/2uτ )

T
ℓ=1

K (uℓ) duℓ

= Op(H3/2). (A.14)

Furthermore, the terms of

(NT )−1Z⊤WSm(z)

=



NT 2

|H|
T/2−1

its

Ẍit (Xis ⊗ (Zis − z))⊤ Hm(z) (Zis − z) λi


NT 2

|H|
T/2−1

its


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


(Xis ⊗ (Zis − z))⊤ Hm(z) (Zis − z) λi


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are of order
NT 2

|H|
T/2−1

its

Ẍit (Xis ⊗ (Zis − z))⊤ Hm(z) (Zis − z) λi

=
1
T

T
s=1

µ2

Kus


BẌtXs (z, . . . , z) × diagd(tr(Hmr (z)H))ıd + op (tr(H)) , (A.15)

where

BẌtXs (z, . . . , z) = E

ẌitX⊤

is |Zi1 = z, . . . , ZiT = z

fZi1,...,ZiT (z, . . . , z) ,

and under the stationarity assumption, when N → ∞ and T remains to be fixed we get
NT 2

|H|
T/2−1

its


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


(Xis ⊗ (Zis − z))⊤ Hm(z) (Zis − z) λi

=


BXtXs (z, . . . , z) ⊗ (H1/2uτ )(H1/2us)

⊤Hm(z)(H1/2us)

T
ℓ=1

K(uℓ)duℓ

−
1
T

T
t=1

T
s=1

BXsXs (z, . . . , z) ⊗ (H1/2us)(H1/2us)
⊤Hm(z)(H1/2us)

T
ℓ=1

K(uℓ)duℓ

= Op(H3/2). (A.16)

Then, replacing (A.13)–(A.16) into (A.3), we can conclude

(NT )−1Z⊤WQm

=

µ2(K)


BẌtXt (z, . . . , z) −

1
T

T
s=1

BẌtXs (z, . . . , z)


× diagd(tr(Hmr (z)H))ıd + op (tr(H))

Op

H3/2

 . (A.17)

Focus now on the residual term of (A.7), we use the notation of the beginning of the Appendix in order to write

(NT )−1Z⊤WR(z) =


ε1(z)
ε2(z)


, (A.18)

where

ε1(z) =

NT |H|

T/2−1
it

Ẍit

×


(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z) −

1
T

T
s=1

(Xis ⊗ (Zis − z))⊤ R (Zis; z) (Zis − z)


λi (A.19)

and

ε2(z) =

NT |H|

T/2−1
it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)



×


(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z) − T−1

T
s=1

(Xis ⊗ (Zis − z))⊤ R (Zis; z) (Zis − z)


λi. (A.20)

Note that ε1(z) can be decomposed into the following two terms

ε1(z) =

NT |H|

T/2−1
it

Ẍit


(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z)

− T−1
T

s=1

(Xis ⊗ (Zis − z))⊤ R (Zit; z) (Zis − z)


λi

+

NT 2

|H|
T/2−1

its

Ẍit (Xis ⊗ (Zis − z))⊤ (R (Zit; z) − R (Zis; z)) (Zis − z) λi

= ε11(z) + ε12(z). (A.21)
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We want to show that as N → ∞,

E(ε1(z)) = op (tr(H)) (A.22)

so, in order to do it, we have to analyze each term of ε1(z) separately. Starting from ε11(z) and by the strict stationarity we
have

E(ε11(z)) = BẌtXt (z + H1/2u1, . . . , z + H1/2uT ) ⊗ (H1/2uτ )
⊤R(z + H1/2uτ ; z)(H1/2uτ )

T
ℓ=1

K (uℓ) duℓ

−
1
T

T
t=1

T
s=1

BẌtXs(z + H1/2u1, . . . , z + H1/2uT ) ⊗ (H1/2us)
⊤R(z + H1/2uτ ; z)(H1/2us)

T
ℓ=1

K (uℓ) duℓ.

By definition (A.5) and Assumption 3.7,Rd(z + H1/2uτ ; z)
 ≤

 1

0
ς(ω∥H1/2uτ∥) (1 − ω) dω, ∀d,

where ς (η) is the modulus of continuity of ∂2mr
∂zi∂zj

(z). Hence, by boundedness of f and BẌtXt , and Assumption 3.4, for all t we
get

E |ε11(z)| ≤ C1

 1

0
|(H1/2uτ )

⊤
| |ς(ω∥H1/2uτ∥)| |H1/2uτ |dω


ℓ

K(uℓ)duℓ

+
C2

T


s

 1

0
|(H1/2us)

⊤
| |ς(ω∥H1/2uτ∥)| |H1/2us|dω


ℓ

K (uℓ) duℓ

and E(ε11(z)) = op (tr(H)) follows by dominated convergence.
Similarly, analyzing the second term of (A.21) and by strict stationarity we have

E(ε12(z)) =
1
T

T
s=1

 
BẌtXs(z + H1/2u1, . . . , z + H1/2uT ) ⊗ (H1/2us)

⊤


×

R(z + H1/2uτ ; z) − R(z + H1/2us; z)


(H1/2us)

T
ℓ=1

K (uℓ) duℓ,

where, as previously, we can show

|E(ε12(z))| ≤
C3

T


s

 1

0
|(H1/2us)

⊤
| |ς(ω∥H1/2uτ∥ − ω∥H1/2us∥)| |H1/2us|


ℓ

K (uℓ) duℓ.

Then, proceeding as previously we have that by dominated convergence E(ε12(z)) = op (tr(H)).
Once this result (A.22) has been verified, our interest focuses on the second term of (A.21), ε2(z), with the aim of showing

that as N → ∞,

E(ε2(z)) = Op(H3/2). (A.23)

In order to prove this result, we follow the same lines as the proof of (A.22) and ε2(z) can be decomposed in two terms

ε2(z) = ε21(z) + ε22(z), (A.24)

where

ε21(z) =

NT |H|

T/2−1
it


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)



×


(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z) − T−1

T
s=1

(Xis ⊗ (Zis − z))⊤ R (Zis; z) (Zis − z)


λi (A.25)

and

ε22(z) =

NT 2

|H|
T/2−1

its


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


× (Xis ⊗ (Zis − z))⊤ (R (Zit; z) − R (Zis; z)) (Zis − z) λi. (A.26)
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Applying the same arguments as for the proof of (A.22), it is straightforward to show that

E(ε2(z)) = op(H3/2). (A.27)

Then, replacing (A.22) and (A.23) in (A.18) we get

(NT )−1Z⊤WR(z) =


op (tr(H))

Op(H3/2)


(A.28)

and substituting (A.12), (A.17) and (A.28) in (A.7), the asymptotic bias can be written as

E [m (z;H) |X, Z] − m(z) =
1
2
eT1
Z⊤WZ−1Z⊤W (Sm(z) − Sm(z))

=
1
2

B−1
Ẍt Ẍt

(z, . . . , z)


µ2(Kuτ )BẌtXt (z, . . . , z) −

1
T

T
s=1

µ2

Kus


BẌtXs (z, . . . , z)


× diagd(tr(Hmr (z)H))ıd

+ op (tr(H)) .

For the asymptotic expression of the variance term let us define the NT vector v = (v1, . . . , vN)⊤, where vi = (vi1, . . . ,
viT )

⊤. Furthermore, let E

vv⊤

|X, Z


= V be a NT ×NT matrix that contains the Vij’s matrices. By Assumption 3.2 we obtain

Vij = E(viv
⊤

j |X, Z) = σ 2
v IT . (A.29)

Denote as QT = IT − ıT

ı⊤T ıT

−1 ı⊤T a T × T symmetric and idempotent matrix with rank T − 1, where IT is a T × T identity
matrix and ıT a T × 1 unitary vector. Furthermore, let Q = IN ⊗QT an NT ×NT matrix. It is clear that,Z = QZb and v̈ = Qv.

Then, substituting the previous equalities into

m (z;H) − E [m (z;H) |X, Z] = e⊤

1

Z⊤WZ−1Z⊤W v̈, (A.30)

we obtain

m (z;H) − E [m (z;H) |X, Z] = e⊤

1

Z⊤WZ−1
Zb⊤Q⊤WQv. (A.31)

Since Q is an idempotent matrix, the variance term ofm (z;H) can be written as

Var (m (z;H) |X, Z) = e⊤

1

Z⊤WZ−1Z⊤WVWZ Z⊤WZ−1
e1. (A.32)

As by Assumption 3.2 the vit ’s are i.i.d. in the subscript i, the upper left entry of (NT )−1Z⊤WVWZ is

σ 2
v

NT |H|T

N
i=1

T
t=1

Ẍit Ẍ⊤

it λ2
i =

σ 2
v

T
ℓ=1

R

Kuℓ


|H|T/2

BẌt Ẍt (z, . . . , z)

1 + op(1)


. (A.33)

The upper right block is

σ 2
v

NT |H|T

N
i=1

T
t=1

Ẍit


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)

⊤

λ2
i

=
σ 2

v

|H|T/2

 
BẌtXt (z + H1/2u1, . . . , z + H1/2uT ) ⊗ (H1/2uτ )

⊤

−
1
T

T
s=1

BẌtXs(z + H1/2u1, . . . , z + H1/2uT ) ⊗ (H1/2us)
⊤


T

ℓ=1

K 2 (uℓ) duℓ


1 + op(1)


= Op(|H|

−T/2). (A.34)

Finally, the lower-right block is

σ 2
v

NT |H|T

N
i=1

T
t=1


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)

⊤ 
Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)

⊤

λ2
i

=


1 −

1
T

 σ 2
v µ2(K 2

uτ
)

T
ℓ≠τ

R(Kuℓ
)

|H|T/2
BXtXt (z, . . . , z) ⊗ H + Op(|H|

−T/2H). (A.35)
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Then, substituting (A.12), (A.33)–(A.35) into (A.32) we get the following conditional covariance matrix result,

Var (m (z;H) |X, Z) =

σ 2
v

T
ℓ=1

R

Kuℓ


NT |H|T/2

B−1
Ẍt Ẍt

(z, . . . , z) (1 + op(1)). �

Proof of Theorem 3.2. With the aim of obtaining the asymptotic distribution of the local weighted linear least-squares
estimatorm (z;H) we follow a similar proof scheme as in [13]. For this, let us denotem (z;H) − m(z) = (m (z;H) − E [m (z;H) |X, Z]) + (E [m (z;H) |X, Z] − m(z)) ≡ I1 + I2,

so in order to obtain the asymptotic distribution of this estimator we must show that as N → ∞ it holds


NT |H|T/2I1 → N


0, σ 2

v

T
ℓ=1

R

Kuℓ


B−1

Ẍt Ẍt
(z, . . . , z)


(A.36)

and

E [m (z;H) |X, Z] − m(z) =
1
2
µ2

Kuτ


diagd


tr(Hmr (z)H)


ıd + Op(H3/2) + op(tr(H)). (A.37)

By Assumption 3.1we state the variables are i.i.d. in the subscript i but not in T , so the Lindeberg condition cannot be verified
directly. Thus, in order to show (A.36) it suffices to check the Lyapunov condition. We have shown that

m (z;H) − E [m (z;H) |X, Z] = e⊤

1

Z⊤WZ−1Z⊤Wv. (A.38)

The behavior of the inverse term has been analyzed previously, with the aim of proving the result (A.38) we must focus on
the asymptotic normality of

1
√
NT
Z⊤Wv. (A.39)

As (A.39) is a multivariate vector, with the sake of simplicity we can define a unit vector d ∈ Rd(1+q) in such a way that

1
√
NT

dTZ⊤Wv =
1

√
NT


i


t

φit , (A.40)

where

φit = |H|
T/4d⊤ZitWitvit , i = 1, . . . ,N; t = 1, . . . , T .

Following Assumption 3.8, we have that R (K) =

K 2 (u) du =


2π1/2

−1 and R

Ku1


= · · · = R


KuT


, so

T
ℓ=1 R


Kuℓ


=

R (K)T holds. Combining these conditions with the results of Theorem 3.1 we can write

Var (φit) = σ 2
v d

⊤

R (K)T BẌt Ẍt (z, . . . , z) 0

0

1 −

1
T


σ 2

v µ2(K 2
uτ

)

T
ℓ≠τ

R(Kuℓ
)BXtXt (z, . . . , z) ⊗ H


× d


1 + op(1)


, (A.41)

whereas

T
t=1

|Cov (φi1, φit)| = op(1). (A.42)

In order to check the Lyapunov condition let us denote φ∗

n,i = T−1/2T
t=1 φit as independent random variables for T fixed

and n = NT . Then, by the Minkowski inequality and the matrix structure ofZit we get

E
φ∗

n,i

2+δ
≤ CT

(2+δ)
2 E |φit |

2+δ
= CT

(2+δ)
2 E |φ1it + φ2it |

2+δ .

Analyzing each term separately we obtain

E |φ1it |
2+δ

≤ E
 |H|

−T/4d⊤Ẍitvitλi
2+δ

= |H|
−T (2+δ)/4 E


E

|d⊤Ẍitvit |

2+δ
|X, Z


λ2+δ
i


=

1
|H|

Tδ/4


E

|d⊤Ẍitvit |

2+δ
|Zi1 = z + H1/2u1, . . . , ZiT = z + H1/2uT


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× fZi1,...,ZiT (z + H1/2u1, . . . , z + H1/2uT )

T
ℓ=1

K 2+δ (uℓ) duℓ

= |H|
−Tδ/4 E


|d⊤Ẍvit |

2+δ
|Zi1 = z, . . . , ZiT = z


fZi1,...,ZiT (z, . . . , z)

T
ℓ=1


K 2+δ (uℓ) duℓ + op(|H|

−Tδ/4).

E|λ2it |
2+δ

≤ E

 |H|
−T/4 d⊤


Xit ⊗ (Zit − z) − T−1

T
s=1

Xis ⊗ (Zis − z)


vitλi


2+δ

≤ |H|
−T (2+δ)/4E


E

|d⊤Ẍitvit |Zi1, . . . , ZiT


⊗ |Zit − z|2+δ λ2+δ

i


+ |H|

−T (2+δ)/4 1
T

T
s=1

E

E

|d⊤Xisvit |Zi1, . . . , ZiT


⊗ |Zis − z|2+δλ2+δ

i


= |H|

−Tδ/4E

|d⊤Ẍitvit |

2+δ
|Zi1 = z, . . . , ZiT = z


fZi1,...,ZiT (z, . . . , z) ⊗


|H1/2u |

2+δ
T

ℓ=1

K 2+δ (uℓ) duℓ

+ |H |
−Tδ/4 1

T

T
s=1

E

|d⊤Ẍisvit |

2+δ
|Zi1 = z, . . . , ZiT = z


fZi1,...,ZiT (z, . . . , z)

⊗


|H1/2us|

2+δ
T

ℓ=1

K 2+δ (uℓ) duℓ + op(|H|
1−(T−2)δ/4).

In this way, we can write

(NT )−
2+δ
2

N
i=1

E
φ∗

n,i

2+δ
≤ C(N|H|

T/2)−δ/2, (A.43)

and given that when N|H| → ∞ this term tends to zero it is proved that the Lyapunov condition holds. Then, using (A.12),
(A.33)–(A.35) and the Cramer–Wold device, the proof of the result (A.36) is done.

On the other hand, focus on the proof of (A.37) we know that by the law of iterated expectations

E [m (z;H)] =


E [m (z;H) |X, Z] dF (X, Z) .

Then, we can turn to the bias expression of the estimator collected in Theorem 3.1 and the proof is closed. �

Proof of Theorem 3.3. The proof of this theorem follows the pattern set by the Theorem 3.1. The estimator to analyze is

m(z;H) = e⊤

1

Zb⊤W bZb−1Zb⊤W bŸ b, (A.44)

we can write

E[m(z;H)|X, Z] = e⊤

1

Zb⊤W bZb−1Zb⊤W b M(1)
+ E


M(2)

|X, Z


, (A.45)

where

M(1)
=


X⊤

11m (Z11)
⊤

, . . . ,

X⊤

NTm (ZNT )
⊤⊤

,

M(2)
=

T−1
T

s=1

X⊤

1s (m(Z1s;H) − m(Z1s))

⊤

, . . . ,


T−1

T
s=1

X⊤

Ns (m(ZNs;H) − m(ZNs))

⊤
⊤

⊗ ı⊤T .

The Taylor theorem implies that we can approximateM(1) as

M(1)
=Zb


m (z)

vec(Dm (z))


+

1
2
Q b
m(z) + Rb(z). (A.46)

Following a similar nomenclature as in Theorem 3.1,

Q b
m(z) =


Sb⊤m11

, . . . , Sb⊤mNT

⊤
,

Rb(z) =

Rb
m11

(z), . . . , Rb
mNT

(z)
⊤

,
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where Rb(z) is the remainder term of this approximation. Then, the corresponding entries of these vectors are

Sbmit
=

(Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z)


Rb
it(z) =


(Xit ⊗ (Zit − z))⊤ R (Zit; z) (Zit − z)


,

where R (Zit; z) has already been defined in (A.5).
If we replace (A.46) in (A.45) the bias expression is then

E[m(z;H)|X, Z] − m(z) =
1
2
e⊤

1

Zb⊤W bZb−1Zb⊤W bQ b
m(z)

+ e⊤

1

Zb⊤W bZb−1Zb⊤W bE

M(2)

|X, Z

+ op(tr(H)), (A.47)

given that following [15] and Assumption 3.1,

e⊤

1

Zb⊤W bZ−1Zb⊤W bRb(z) = Op(tr(H)).

As you can see in (A.47), this bias expression is formed by two additive terms. The first one refers to the approximation error
of the estimates, whereas the second one reflects the potential estimation error dragged from the first stage. Within this
context, our aim is to show that this second term converges in probability to zero, so it is the first element which provides
the asymptotic distribution of the backfitting estimator. For the sake of simplicity let us denoteλit = K

H−1/2 (Zit − z)

.

Focus first on the behavior of the inverse term of (A.47) we analyze

(NT )−1Zb⊤W bZb

=



NT |H|

1/2−1
it

XitXT
it
λit


NT |H|

1/2−1
it

Xit (Xit ⊗ (Zit − z))⊤λit
NT |H|

1/2−1
it

(Xit ⊗ (Zit − z)) X⊤

it
λit


NT |H|

1/2−1
it

(Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))⊤λit


and as it is proved in [13], using standard properties of kernel density estimators, conditions 3.1–3.3 and 3.4–3.10, asN → ∞

we get

NT
Zb⊤W bZb−1

=


B−1

XtXt (z) + op(1) −B−1
XtXt (z)


DBXtXt (z)

 
B−1

XtXt (z) ⊗ Iq

+ op(1)

−

B−1

XtXt (z) ⊗ Iq
⊤ 

DBXtXt (z)
⊤

B−1
XtXt (z) + op(1)


BXtXt (z) ⊗ µ2(K)H−1

+ op(H−1)


,

(A.48)

where BXtXt (z) and DBXtXt (z) has been already defined in the proof of Theorem 3.1 conditioning only to Zit = z.
Furthermore,

(NT )−1Zb⊤W bQ b
m(z) =



NT |H|

1/2−1
it

Xit (Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z)λit
NT |H|

1/2−1
it

(Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))⊤ Hm(z) (Zit − z)λit

 (A.49)

are of order

µ2 (Ku) BXtXt (z) × diagd(tr(Hmr (z)H))ıd + op(tr(H))

and Op(H3/2), respectively. Substituting these latter results and (A.48) in the first term of (A.47) we obtain

1
2
e⊤

1

Zb⊤W bZb−1Zb⊤W bQ b
m(z) =

1
2
µ2 (K) B−1

XtXt (z) BXtXt (z) × diagd

tr(Hmr (z)H)


ıd + op(tr(H)). (A.50)

Focus now on the behavior of the second term of (A.47),
NT |H|

1/2−1Zb⊤W bE

M(2)

|X, Z


=



NT 2

|H|
1/2−1

its

XitX⊤

is (E [m (Zis;H)| X, Z] − m (Zis))λit
NT 2

|H|
1/2−1

its

(Xit ⊗ (Zit − z)) X⊤

is (E [m (Zis;H)| X, Z] − m (Zis))λit

 (A.51)
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and analyzing both terms separately we can show that as N tends to infinity
NT 2

|H|
1/2−1

its

XitX⊤

is (E [m (Zis;H)| X, Z] − m (Zis))λit = op(tr(H))

and 
NT 2

|H|
1/2−1

its

(Xit ⊗ (Zit − z)) X⊤

is (E (m (Zis;H)| X, Z) − m (Zis))λit = op(tr(H)tr(H)).

Under Assumptions 3.1–3.3, 3.10 and 3.12, this latter expression is op (tr(H)) and the rate is uniform in z; see [11] for more
details.

Replacing these results in the second term of (A.47),

e⊤

1

Zb⊤W bZb−1Zb⊤W bM(2)
= op(tr(H)). (A.52)

Finally, substituting (A.50) and (A.52) in (A.47) the proof of the conditional bias is done. Also, it is proved that the asymptotic
bias ofm(z;H) is the sameorder asm(z;H), given that tr(H) → 0, tr(H) → 0 in such away thatN|H| → ∞ andN|H| → ∞.

From the standpoint of the variance, let us denotev = (v1, . . . ,vN)⊤ as a NT -dimensional vector such that

vi =


T−1

T
s=1


X⊤

is (m (Zis;H) − E [m (Zis;H)| X, Z])
⊤

, . . . , T−1
T

s=1


X⊤

is (m (Zis;H) − E [m (Zis;H)| X, Z])
⊤⊤

.

As we know, the conditional variance–covariance matrix of the estimator has the following form

Var(m(z;H)|X, Z) = E
m(z;H|X, Z) − E[m(z;H)|X, Z]

 m(z;H) − E[m(z;H)|X, Z]
⊤X, Z


wherem(z;H) − E[m(z;H)|X, Z] = eT1

Zb⊤W bZb−1Zb⊤W bv̈ + eT1
Zb⊤W bZb−1Zb⊤W bv.

Remember that v̈i = QTvi and it is straightforward to show that QTZb
i =Zi. Thus, the previous equation can be rewritten as

m(z;H) − E[m(z;H)|X, Z] = eT1
Zb⊤W bZb−1Z⊤W bv + eT1

Zb⊤W bZb−1Zb⊤W bv.

Taking into account that let E

vv⊤

|X, Z


= V be a NT ×NT matrix whose ijth have the form of (A.29), the variance term ofm(z;H) has the form

Var(m(z;H)|X, Z) = e⊤

1

Zb⊤W bZb−1Z⊤W bVW bZ Zb⊤W bZb−1
e1

+ e⊤

1

Zb⊤W bZb−1Zb⊤W bE
vv⊤

|X, Z

W bZb Zb⊤W bZb−1

e1

+ 2e⊤

1

Zb⊤W bZb−1Zb⊤W bE
vυ⊤

|X, Z

W bZb Zb⊤W bZb−1

e1

= I1 + I2 + I3. (A.53)

Then, with the aim of obtaining the asymptotic order of the variance of m(z;H) we have to analyze each of these terms
separately. Following the same procedure as in (A.32) to analyze the behavior ofZ⊤W bVW bZ . Under Assumptions 3.1–3.7
and 3.11–3.12, using the result (A.48) and the Cramer–Wold device it is straightforward to show that as N → ∞

I1 =
σ 2

v R (K)

NT |H|1/2
BXtXt (z)

−1BẌt Ẍt (z) BXtXt (z)
−1(1 + op(1)), (A.54)

while

I2 = op


lnNT

NT |H|
T/2

|H|1/2


. (A.55)

In order to prove this latter result we have to analyze the behavior of the following expression

(NT )−1Zb⊤W bE
vv⊤

|X, Z

W bZb. (A.56)

Thus, denote byr(Zis;H) = m(Zis;H) − E [m(Zis;H)|X, Z], then the upper left entry is

(NT 3
|H|)−1


i


tt ′


ss′

XitX⊤

is E
r(Zis;H)r(Zis′;H)⊤|X, Z


Xis′X⊤

it ′
λitλit ′ (A.57)
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and by the Cauchy–Schwarz inequality for variance–covariance matrices (A.57) is bounded by

(NT 3
|H|)−1


i


tt ′


ss′

XitX⊤

is vec
1/2 diag E r(Zis;H)r(Zis′;H)⊤|X, Z


× vec1/2


diag


E
r(Zis;H)r(Zis;H)⊤|X, Z

λitλit ′

= Op


lnNT

NT |H|T/2|H|1/2


, (A.58)

given that under the conditions of Theorem 3.1 and following [11],

vec

diag


E
r (z;H)r (z;H)⊤ |X, Z


= Op


lnNT

NT |H|T/2


,

uniformly in z.
Following the same lines, the upper right entry of (A.56) is

(NT 2
|H|)−1


i


tt ′


ss′

XitX⊤

is E
r (Zis;H)r (Zis′;H)⊤ |X, Z


(Xit ′ ⊗ (Zit ′ − z))⊤λitλit ′ = op


lnNT

NT |H|T/2|H|1/2


(A.59)

and the lower right entry of (A.56) is

(NT 2
|H|)−1


i


tt ′


ss′

(Xit ⊗ (Zit − z)) X⊤

is E
r (Zis;H)r (Zis′;H)⊤ |X, Z


(Xit ′ ⊗ (Zit ′ − z))⊤λitλit ′

= op


lnNT

NT |H|T/2|H|1/2


. (A.60)

Then, combining the results (A.58)–(A.60) with (A.48) and by the Cramer–Wold device the proof of (A.55) is done. Finally,
focus on I3 the Cauchy–Schwarz inequality is enough to show that

I3 = op


lnNT

NT |H|T/2|H|1/2


(A.61)

and the proof is done. �

Proof of Corollary 3.2. The proof of this corollary relies on the proof of Theorem 3.1.
Taking the expression (3.3) for the univariate case, the conditional bias and variance ofmh(z) for the casewhen d = q = 1

and H = h2I are given as follows

E[mh(z)|X, Z] − m(z) =
1
2
e⊤

1

Z⊤WZ−1Z⊤W

Π(z) − Π(z)


, (A.62)

Var(mh(z)|X, Z) = e⊤

1

Z⊤WZ−1Z⊤WVWZ Z⊤WZ−1
e1, (A.63)

where, for any ξit between Zit and z and ξis between Zis and z, the corresponding entries of the vectors Π(z) and Π(z) are

Πit(z) = Xit r(ξit; z) and Π it(z) = T−1
T

s=1

Xisr(ξis; z),

where r(ξit; z) = (Zit − z)2 ∂2m(ξit )
∂z2

and r(ξis; z) is defined in a similar way.
Starting from the conditional bias standpoint, as N tends to infinity the elements of the matrix (A.8) are

A11
NT = (ThT )−1

T
t=1

E

Ẍ2
itλi


=
1
T

T
t=1

BẌt Ẍt (z, . . . , z) + op(1), (A.64)

A12
NT = (ThT )−1

T
t=1

E


Ẍit


Xit(Zit − z) − T−1

T
s=1

Xis(Zis − z)


λi



=
h2

T

T
t=1


DB ẌtXt (z, . . . , z)µ2(Kuτ ) −

1
T

T
s=1

DB ẌtXs(z, . . . , z)µ2(Kus)


+ op(h2) (A.65)
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A22
NT = (ThT )−1

T
t=1

E

Xit(Zit − z) − T−1
T

s=1

Xis(Zis − z)

2

λi


=


1 −

1
T


1
T

T
t=1

BXtXt (z, . . . , z)µ2(Kuτ ) (A.66)

so the inverse term of (A.62) can be written as

(NT )
Z⊤WZ−1

=


C11

NT C12
NT

C21
NT C22

NT


, (A.67)

where now

C11
NT =


(ThT )−1

T
t=1

E

Ẍ2
itλi
−1

+ op

hT  ,

C12
NT = −


T−1

T
t=1

E

Ẍ2
itλi
−1

T−1
T

t=1

E


Ẍit


Xit(Zit − z) − T−1

T
s=1

Xis(Zis − z)


λi



×

(ThT )−1
T

t=1

E

Xit(Zit − z) − T−1
T

s=1

Xis(Zis − z)

2

λi

−1

+ op

hT  ,

C22
NT =

(ThT )−1
T

t=1

E

Xit(Zit − z) − T−1
T

s=1

Xis(Zis − z)

2

λi

−1

+ op

hT  .

Focus now on the numerator of (A.62), as N → ∞ it can be written such as

(NT )−1Z⊤W

Π(z) − Π(z)



=


(ThT )−1

T
t=1

E


Ẍit


Xit rh(ξit; z) − T−1

T
s=1

Xisrh(ξis; z)


λi



(ThT )−1
T

t=1

E


Xit(Zit − z) − T−1

T
s=1

Xis(Zis − z)


Xit rh(ξit; z) − T−1

T
s=1

Xisrh(ξis; z)


λi


 , (A.68)

where we can show

1
ThT

T
t=1

E

ẌitXit rh(ξit; z)λi


−

1
T 2hT

T
t=1

T
s=1

E

ẌitXisrh(ξis; z)λi


=

h2

T

T
t=1


BẌtXt (z, . . . , z)µ2(Kut ) −

1
T

T
s=1

BẌtXs(z, . . . , z)µ2(Kus)


+ op(h2) (A.69)

and

1
ThT

T
t=1

E


Xit(Zit − z) − T−1

T
s=1

Xis(Zis − z)


Xit rh(ξit; z)λi



−
1

T 2hT

T
t=1

T
s=1

E


Xit(Zit − z) − T−1

T
s=1

Xis(Zis − z)


Xisrh(ξis; z)λi



=
h3

T

T
t=1


BXtXt (z, . . . , z)u

3
t −

2
T

T
s=1

BXtXs(z, . . . , z)usu2
t +

1
T 2

T
s=1

T
s′=1

BXsXs′ (z, . . . , z)us′u2
s


T

ℓ=1

Kuℓ
duℓ

= Op(h3). (A.70)

Therefore, substituting (A.67) and (A.68) in (A.62), the conditional bias is

E[mh(z)|X, Z] − m(z) =


1

ThT

T
t=1

E[Ẍ2
itλi]

−1
1

2ThT

×

T
t=1

E


Ẍit


Xit rh(ξit; z) −

1
T

T
s=1

Xisrh(ξis; z)


λi


+ op(h2). (A.71)
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From the point of view of the variance we focus on the behavior of the middle term of (A.63). Following the same procedure
as in (A.32) but assuming strict stationarity is not allowed, under conditions 3.2, 3.4 and 3.13 we can show that as N → ∞,

Var(mh(z)|X, Z) =
σ 2

v

NThT

1
ThT

T
t=1

E[Ẍ2
itλ

2
i ]


1

ThT

T
t=1

E[Ẍ2
itλi]

−2

+ op


1

NThT


. � (A.72)

Proof of Corollary 3.3. The proof of this corollary relies on the proof of Theorem 3.2.
If we start from (A.45) and take a standard Taylor expansion aroundm(·) we obtain

E
mh(z)|X, Z


− m(z) =

1
2
e⊤

1

Zb⊤W bZb−1Zb⊤W bΠ(z) + e⊤

1

Zb⊤W bZb−1Zb⊤W bE

M(2)

|X, Z

+ op(h2) (A.73)

where

M(2)
=


T−1

T
s=1

X1s (mh(Z1s) − m(Z1s))


, . . . ,


T−1

T
s=1

XNs (mh(ZNs) − m(ZNs))

⊤

⊗ ı⊤T

and each entry of Π(z) is Xit r(ξit , z).
Following a similar proof scheme as previously, if we analyze each of these terms separately we obtain that (A.73) can

be written as

(NT )−1Zb⊤W bZb
=


(Th)−1

T
t=1

E

X2
it
λit


(Th)−1
T

t=1

E

X2
it(Zit − z)λit


(Th)−1

T
t=1

E

X2
it(Zit − z)λit


(Th)−1

T
t=1

E

X2
it(Zit − z)2λit




so the inverse term is

(NT )
Zb⊤W bZb−1

=


Cb11

NT Cb12
NT

Cb21
NT Cb22

NT


, (A.74)

where

Cb11
NT =


(Th)−1

T
t=1

E

X2
it
λit
−1

+ op(h),
Cb12

NT =


(Th)−1

T
t=1

E

X2
it
λit
−1

(Th)−1
T

t=1

E

X2
it(Zit − z)λit

 
(Th)−1

T
t=1

E

X2
it
λit
−1

+ op(h),
Cb22

NT =


(Th)−1

T
t=1

E

X2
it(Zit − z)2λit

−1

+ op(h).
Let us now analyze the numerator of (A.73), as N → ∞ we get

(NT )−1Zb⊤W b Π(z) + E

M(2)

|X, Z


=


(Th)−1

T
t=1

E

X2
it r(ξit , z)λit


+ (T 2h)−1

T
t=1

T
s=1

E

XitXis (E(mh(Zis) − m(Zis)))λit


(Th)−1

T
t=1

E

X2
it(Zit − z)r(ξit , z)λit


+ (T 2h)−1

T
t=1

T
s=1

E

Xit(Zit − z)Xis (E(mh(Zis) − m(Zis)))λit


 . (A.75)

Using standard properties of the kernel density estimators and assuming strict stationarity is not allowed, we can show

(Th)−1
T

t=1

E

X2
it r(ξit , z)λit


=

h2

T

T
t=1

BXtXt (z)m
′′(z)µ2(Kuτ ) + op(h),

(Th)−1
T

t=1

E

X2
it(Zit − z)r(ξit , z)λit


= Op(h3)
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whereas following what it is established in (A.51) we can prove

(T 2h)−1
T

t=1

T
s=1

E

XitXis (E(mh(Zis) − m(Zis)))λit


= op(h2),

(T 2h)−1
T

t=1

T
s=1

E

Xit(Zit − z)Xis (E(mh(Zis) − m(Zis)))λit


= op(h2h2).

Therefore, replacing the results of (A.74) and (A.76) in (A.73) the conditional bias expression of the one-step backfitting
estimator is

E
mh(z)|X, Z


− m(z) =

1

2Th
T

t=1

E

X2
it r(ξit , z)λit

  1

Th
T

t=1

E

X2
it
λit
−1

+ op(h2). (A.76)

Finally, as in the multivariate case the variance term of the one-step backfitting estimator has the form

Var
mh(z)|X, Z


= e⊤

1

Zb⊤W bZb−1Zb⊤W bVW bZb Zb⊤W bZb−1
e1

+ e⊤

1

Zb⊤W bZb−1Zb⊤W bE(vv⊤
|X, Z)W bZb Zb⊤W bZb−1

e1

+ e⊤

1

Zb⊤W bZb−1Zb⊤W bE(vυ⊤
|X, Z)W bZb Zb⊤W bZb−1

e1

= I1 + I2 + I3, (A.77)

where V is a NT × NT matrix of E(vv⊤
|X, Z) whose ijth have the form of (A.29), v̈i = QTvi and

vi =


T−1

T
s=1

(Xis (mh(Zis) − E[mh(Zis)|X, Z])) , . . . , T−1
T

s=1

(Xis (mh(Zis) − E[mh(Zis)|X, Z]))

⊤

.

Analyzing each of these terms separately, under conditions 3.2–3.9 and 3.11–3.13 and using the Cramer–Wold device
and the result in (A.74) we can show that as N → ∞

I1 =
σ 2

v

NTh


1

Th
T

t=1

E

Ẍ2
it
λ2

it

 1

Th
T

t=1

E

X2
it
λit
−2

, (A.78)

I2 = op


lnNT

NThTh


(A.79)

whereas I3 = op


lnNT
NThTh


. Note that for the result (A.79) we follow the proof proposed for (A.55) and for I3 we follow

(A.61). Then, the proof is done. �
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