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1. Introduction

This paper is concerned with the nonparametric estimation and inference of panel data varying coefficient models with
fixed effects. In fact, in the random effect setting, direct estimation through the use of standard nonparametric techniques
is straightforward and there is only need to care about efficiency issues (see for example [14] or [6]). However, in the fixed
effect framework, direct estimation of the functions of interest produces asymptotically biased estimators. This is due to the
correlation that exists between the heterogeneity term and the explanatory variables. Traditionally, standard techniques in
fixed effect panel data models consist in removing the heterogeneity term by transforming the statistical model of depar-
ture. Following Su and Ullah [17] there exist, at least, two different alternative transformations. On one side, the so-called
profile least-squares method and, on the other side, the differencing method. Taking first differences, subtracting the equa-
tion from time t from that for time 1 or alternatively subtracting the within-group average are all them examples that can
be considered differencing techniques. In standard parametric fixed effect panel data models (see [19]) the choice among
differencing techniques is related to efficiency issues. For example, if the idiosyncratic errors follow the structure of a ran-
dom walk, first differences are recommended, however in much general situations such as an i.i.d. or a strictly stationary
context the within (fixed effects) estimator is recommended.
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In this paper we present an estimation procedure that uses a (un-smoothed) mean deviation transformation of the vary-
ing coefficient fixed effect panel data model. Since the transformed model appears as an additive function with the same
functional form at different times, the proposals to estimate this type of models are closely related to estimation techniques
originally designed for additive models (see [5,9] or [16]). As an alternative, we propose to apply a local approximation on
the T additive functions that result from the mean deviation transformation where we denote by T the number of time
observations per individual. In this context, the local linear regression estimator exhibits a non-negligible bias in the es-
timation of the additive components. This is because these techniques approximate the unknown function around a fixed
value without considering the sum of the distances between this fixed term and the other values of the sample. This phe-
nomena was already pointed out in [12,8] but unfortunately they did not provide a solution to this problem. In this context,
our proposal is to consider a local approximation around the whole vector of time observations for each individual. Unfor-
tunately, although the introduction of the T-variate kernel solves the bias problem, it enlarges the variance. For large T, this
can create very slow rates of convergence of our estimator. As a solution, we propose to use a one-step backfitting algorithm.
The idea, as already pointed out in [4], is that additional smoothing cannot reduce the bias but it can diminish the variance.
Therefore, the additional smoothing that is introduced by the backfitting enables us to achieve optimal nonparametric rates
of convergence for the estimators of the unknown functions of interest. The same type of results can be found in [ 13] for the
first differences setting.

The reason to choose the within transformation among others is twofold. First, considering efficiency issues, the resulting
estimator will be more efficient than those resulting from other transformations when assuming standard assumptions
such as i.i.d. or stationary idiosyncratic errors. Second, note that this transformation consists in removing the fixed effect
term by deducting a (un-smoothed) cross-time average from each individual unit. On the contrary, in profile least-squares
techniques the heterogeneity term is removed by deducting a smoothed cross-time average. Therefore, since they are rather
similar, it can be also of great interest to compare the statistical properties of both estimators, i.e. the one obtained in this
paper using the within transformation and the profile least-squares estimator proposed in [18]. Hence, the main interest of
the paper is that, to our knowledge, in the framework of fixed effects varying coefficient panel data models this is the first
paper where estimators that result from deducting un-smoothed and smoothed cross-time averages from each individual
units are compared both from theoretical and simulation results. Furthermore, a nonparametric fixed effect estimator of the
varying coefficient model is proposed, its asymptotic properties are obtained and it is also shown that it also exhibits the
oracle efficiency property.

The rest of the paper is organized as follows. In Section 2 we set up the model and the estimation procedure. We also
provide some comparisons with respect to profile least-squares estimators in very simple situations. In Section 3 we study
the main statistical properties of both direct local linear estimator and one-step backfitting estimator for the multivariate
case. We also compare both local linear and backfitting estimators against the one proposed in [18]. Finally, in Section 4 we
compare empirically the performance in small sample sizes of the same estimators through a Monte Carlo simulation. The
proofs of the main results are collected in the Appendix.

2. Statistical model and estimation procedure

We consider the following panel data varying coefficient regression model with fixed effects

Yie=Xqm@Z) +pi+ve, i=1,...,N;t=1,...,T, (2.1

where X;; and Z; are vectors of covariates of dimension d x 1 and q x 1, respectively, m(Z) = (m(Z), ..., my(Z)) is a
d x 1 vector of unknown functions to estimate, vj; is the random error term and w; reflects the unknown cross-sectional
heterogeneity. Also, we allow for u; to be correlated with Z; and/or X;; with an unknown correlation structure.
To illustrate the estimation procedure proposed in this paper and to compare it against the profile least-squares estimator
proposed in [ 18] we first focus on the univariate regression model and later we extend the results to the multivariate case.
Consider the linear panel data model, where the dimensions of X and Z are respectivelyd = 1and q = 1,

Yie = Xem (Zi) + i+ vie, i=1,....N;t=1,...,T. (2.2)

LetY;, = T7! Zstl Yisand v = T7! ZZ:] vis. The within transformation implies subtracting from time t of (2.2) the
within-group mean, i.e.,

1< .
Vie= Vi = Xem (Ze) = = ) _Xom (Z) +vie =T, i=1,.. N t=1,....T. (23)
s=1
Instead of taking averages over time for each individual, consider the following corresponding local (smoothed) averages,

T T
V@ =) os@Ys. Xi@ =) ou@Xs
s=1

s=1

.
Vi (z) = Z @is (2) Vis,
s=1
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where

K, (Zs — 2
w,-s(z):Tg('# s=1,...,T, (2.4)

Z Kg (Zir - Z)
r=1
g is a bandwidth and K is a kernel function such as
1
/I((u)du =1 and K;(u) = —-K (u/g).
g

Since Zle ;s (z) i = wi, for all i, then, applying the same transformation as for the within estimator we obtain,

Yie — Vi Zie) = (Xie — Xio Zi)) m (Zi) +vie = Vi (Z), i=1,...,N;t=1,...,T. (2.5)

Estimation of the quantities of interest can be implemented in (2.5) by considering, for any z € A, where A is a compact
subset in a non-empty interior of R, the following Taylor expansion

(Xic —Xi. @) m @) = (Xie — X (2)) M2) + (Xie — X 2)) @i —2) M (2)

+ % (Xic — Xi @) @i —2)°m" @) + - - + ;% (Xic — X;. @) @i — 2P mP(2)

a (Xie — X:. @) @ —2)*.

Ml
M'@

r=0
This suggests that we estimate m(z), m'(z), ..., mP (z) by regressing Y;; — 7, (2) on the terms (X,-[ — )N(,: (z)) Ziy — z)k,
for A = 1,...,p, with kernel weights. Then, the quantities of interest can be estimated using a locally weighted linear
regression,
N T N - N ,
DY (Y —Yi @) — a0 (X — Xi @) — e (Xie — X0 () (Zie —2))" Ky (Zie —2); (2.6)

1 1

-
Il

see [3, 15] or [21].

Let &y and &7 be the minimizers of (2.6). The above exposition suggests as estimators for m(z) and m'(2), mh (z) = apand
M}, (z) = &, respectively. Furthermore, let us denote by o = (ao Oll) and 7] = (X —Xi (@), (Xic — X @) Zi — 2)).
Then, the criterion function (2.6) can be rewritten as

T
Z Yi — Vi (@) — Z',-fa)2 Ke (Zie — 2) (2.7)

=1

™M=

1

-

and @ and @ have the following expression

-1
(%’) = (;Kg Zie —z)z}fz,-?> ;Kg Zie —2) Zi (Ye — i @) - (2.8)

This estimator is the profile least-squares estimator proposed in [18]. In fact, it turns out that the corresponding local
constant regression estimator (consider o; = 0in (2.6)) is

YKy (Zi —2) (X — X @) (Yie — Yi2)
i, (2) = it - , (2.9)
¢ YKy Zie — 2) (Xie — X @)’

which corresponds to the estimator proposed in [8].
Following the previous developments, our idea consists in estimating the quantities of interest starting from (2.3) by
considering, for any z € A, where A is a compact subset in a non-empty interior of R, the following Taylor expansion

1 1 ¢ 1¢
Xim (Zie) = = ) Xism (Zi) ~ <xit -7 fos) m(z2) + [xn (Zi—2) = = D X s = z)} m'(z)
s=1 s=1 s=1
1 2 1 : 2 7
o | X G —2)" = = ) X (@ —2)° | m'(@)
s=1
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1 1w
Tt [X.-[ =2 = = DX (Zis = z)f’] m® (2)
' s=1

p T
1
= Zﬂx |:Xit @i —2" — = ins (Zis — Z)A:| . (2.10)
1=0 T =
This suggests that we estimate m(z), m'(z), . . ., m®(z) by regressing Y = Yi; — Y. on the terms X;; (Z; — 2)* — 1 ZST:1
Xis (Zis — 2)*,for A = 1, ..., p, with kernel weights. Then, the quantities of interest can be estimated using a locally weighted

linear regression,

. 1< 1 ’
>3 (Yﬁ — Bo (xit - ins) — B [xn e —2) = = ) X Z —z)D Kn(Zn—2,....Zr —2); (211)
i s=1 is

i=1 t=1

where, h is the bandwidth and

Kn(Zin—2z,...,2r —2) =

T
Kh (Z,‘g — Z) .

=1

Let 30 and E be the minimizers of (2.11). The above exposition suggests as estimators for m(z) and m’(z), my(z) = 30 and
ﬁ;i(z) = El, respectively. Furthermore, let us denote by )'Qt = Xi — X;., B = (Bo ﬂl)T and ZI = (Xn, Xie (Ziy —z) —

7! Z;l Xis (Zis — z)). Then, the criterion function (2.11) can be rewritten as

. ~ 2
(Yie —Z(B) Kn Zn —2,....Z — 2), (2.12)

MZ
-

1 1

-
Il

i

)

and /ﬂ\o and B; have the following expression

o~ -1
(g?) B <2Kh Zn—z,....Zr —2) Zifzfj> D Kn@n =z, 2 = 2) ZiVi (2.13)
it

it
For the sake of comparison, it is also easy to show the form of the local constant estimator as
D K@i —z, ..., Zir —2) Xyt Yie

fin(z) = & — (2.14)
" S Kn (Zir — 2., Zr — 2) X2
it

The local constant estimators of m(z) obtained alternatively in (2.9) and (2.14) exhibit two main differences, first, the
dimension of the kernel weights. In the profile least-squares case, the dimension of the kernel is univariate whereas in the
fixed effects context the dimension is T. This might affect the variance of the fixed effects estimator. Second, the smoothed
weights introduced in the profile least-squares estimator do not appear in the fixed effect estimator. This might affect the
bias of the former estimator.

Note that in (2.11) or (2.12) it would have been usual to introduce a kernel function around Z;;. By doing so, the distance
between z and any of the terms Z;, . .., Zjt—1, Zi¢+1) - - - - Zir cannot be controlled by a fixed bandwidth and thus the
transformed remainder terms cannot be negligible. The consequence of all that is a non-negligible asymptotic bias. Here,
we propose to introduce a multivariate kernel function around the vector of values Z;, ..., Zi. This modified version of a
local linear regression, as it will be shown later, solves the problem of the bias but it considerably enlarges the variance.
More precisely, under rather standard conditions in the next section we show that, asymptotically, the bias term is of order
0 (h?) but the variance is of order O (1/Nh"). As the reader may notice, this bound for the variance is rather large. In order
to reduce the variance term but keeping the bias of the same order we propose to add to both terms in (2.3) the average
term 7 >° Xim (Z;) and denote

. . 1<
V=Vt o ;xism (Zs) . (2.15)

Therefore, combining (2.3) and (2.15) we obtain
Vi =Xym (Zy) + ¥y, i=1,...,N;t=1,...,T, (2.16)

where vy = v — % > vis. Note that Eq. (2.16) already shows a low dimensional problem where m (-) could be estimated
by a standard nonparametric regression method. Unfortunately, the functions m (Z;;), ..., m (Zi) are not observed and
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the standard locally weighted least-squares procedures would generate unfeasible estimators. To overcome this situation,
we propose to replace in (2.15) the m (Z;) by their corresponding estimators, my, (Z;), in (2.13). Then, let Y}; = Yy +

T-1 Zf;l XisMp, (Zis) be the regression problem becomes

Y2 = Xym (Zy) + 08, i=1,...,N; t=1,...,T, (2.17)
where the composed error term is of the form

b I, o~ i
B = 5 D X (i (Zs) — m () + i
s=1
The quantities of interest can be obtained by minimizing the following criterion function

N T
. ,
Z Z (Y2 — yoXie — viXee Zie — 2)) K5 (Zie — 2), (2.18)

=1 t=1

where T is the bandwidth of this stage. We denote by %, and ¥; the minimizers of (2.18). As previously, we propose as
estimators for m(-) and m'(-), m;(z) = P and ﬁ%(z) =y, respectively,

~1
<§‘l’) = (ZKz (Z —z)ZﬁZ’F) > Ki @~ Z¥, (219)
it T
where Z'T = (X, Xit (Zx —2)) isa2 x 1-dimensional vector.

Finally, for the sake of comparison the local constant version of the backfitting estimator will be

> Ki (Zie — 2) Xic Y2

it

m;(z) = ,Z e (2.20)
it
Taking into account that Y? = ¥;, + T~ ZZ:] XisMp (Zis) (2.20) can be written as
2K (e~ 2) X Ve 17 2K (e —2) XicXistiin (Zis)
he) = 'ZKg Z—ox . S K; (Zi —2) X2 (221)
it it

3. Asymptotic properties

In this section we extend the above results for the case (d > 1, ¢ > 1). Furthermore, we give the asymptotic expressions
for the bias and the variance and we calculate the asymptotic distribution of the local linear regression estimator. Finally,
we compare theoretically the results obtained in [ 18] for the profile least-squares estimator against our estimators.

3.1. Local linear estimator

Let us consider (2.12) in its multivariate version,
NTo T
YN (Ve —Z{B) [[Kn @ —2), (3.1)
i=1 t=1 =1

where in this case 8 = (B, ﬂlT)T isad (1+ q) x 1vector and we denote by Z] a 1 x d (14 q) dimensional vector of the
form

T
Zl = (x,j, X{ ®Zu—2)" —T7'Y X! ® & — z)T> .
s=1

Let H be a g x g symmetric positive definite bandwidth matrix, K is the product of g-variate kernels such that for each u it
holds

/K(u)du:l and Ky(u) = K (H"?u).

|H|1/2

Let us denote by B the minimizer of (3.1) and assuming ZTWZis nonsingular, the solution can be written as

(g) — ETwE) ZTwi, (32)
1
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where Y = (Yn, A VNT) isa NT x 1 vector while

T T—1
W = blockdiag (KH (Zi —2) ]_[ KyZi —2), ..., Ky(Zy — 2) 1_[ Ky (Zy — z))

=2 =1

and

T
X, Xi®@@u-2"-T"Y X ®@s—2)"
s=1

N2
|

T
X Xr® e —2)" =T "Xy ® (Zns —2) |

s=1

are NT x NT and NT x d (1 + q) dimensional matrix, respectively. . . .
Then, (3.1) and (3.2) suggest as estimators for m(z) and D,;(z) = dm(z)/dz, m (z; H) = By and vec(Dy, (z; H)) = B,
respectively. In particular, the local weighted linear least-squares estimator of m(z) is defined as

fi(z; H) = o = ) (ZTWZ) ™' ZTW¥, (3.3)

where e; = (Idfodqxd) isad (14 q) x dselection matrix, Is is a d x d identity matrix and Ogqx4 a dq x d matrix of zeros.
Once the estimator in its closed form is defined, let us consider the assumptions required to obtain its asymptotic
properties. Consider the data generating process defined in (2.2). Furthermore, we assume the following.

Assumption 3.1. Let (Y, Xi¢, Zit)i=1,__n: (=1, beaset ofindependent and identically distributed R'+4+49_random variables
in the subscript i for each fixed t and strictly stationary over ¢ for fixed i.

Assumption 3.2. The random errors v;; are independent and identically distributed, with zero mean and homoscedastic
variance, avz < 00. They are also independent of X;; and Z;; for all i and t. In addition, E |v; |>¥9, for some & > 0.

Assumption 3.3. The unobserved cross-sectional effect, u;, can be arbitrarily correlated with both X;; and/or Z; with an
unknown correlation structure.

Assumption 3.1 is standard in panel data analysis. We could consider other settings of time-dependence such as strong
mixing conditions, as in [1], or nonstationary time series, as in [2]. However, since in this paper we investigate the asymptotic
properties of the estimators as N tends to infinity and T is fixed it is enough to assume stationarity. Assumption 3.2 is
also standard for the conventional within transformation; see [19] or [7] for the fully parametric case. It also rules out the
presence of lagged endogenous variables. Independence between the idiosyncratic error term and the covariates X;; and/or
Z; is assumed without loss of generality although it can be relaxed assuming some dependence in higher order moments.
In particular, if heteroskedasticity of unknown form is allowed in our setting, we could transform this estimator to take into
account more complex structures of the random error term contained in the variance-covariance matrix, see [10] or [20]
for more details.

Assumptions 3.1 and 3.2 in some situations, as in [1], are relaxed by considering that (X;, Zi, vi;) are for fixed, i, strictly
stationary processes. Unfortunately, this set of assumptions is not sufficient to bound the asymptotic variance of the estima-
tor and some further mixing conditions are required to achieve convergence. In this case, T must also tend to infinity. Other
cases such as cross sectional dependence also requires both N and T tending to infinity. Finally, Assumption 3.3 imposes the
so-called fixed effects.

LetZ = (Z11, ..., Zyt) and X = (Xi1, ..., Xn7) be the observed covariate samples, we also need to impose the following
additional assumptions about moments and densities.

Assumption 3.4. Letf;, (-) be the probability density function of Z;;,fort = 1, ..., T. All density functions are continuously
differentiable in all their arguments and they are bounded from above and below in any point of their support.

Assumption 3.5. The function E [XiX;] |Z4 = z1, ..., Zy = zr] is positive definite for any interior point of (z;, z, ..., zr)
in the support of fz,, .z, (21, 22, ..., Z7).

Assumption 3.6. Let [|A| = ,/tr (ATA), then E [||Xi:X;{ II>|Zi = z1, ..., Z = 2] is bounded and uniformly continuous in
its support. Furthermore, the matrix functions E [Xi X |Z1 = z1,...,Zr = z;], for t = sand t # s, and E[Xi X} |Z1 =

Z1, ... it = ZT], fort = sand t # s, are bounded and uniformly continuous in their support.
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Assumption 3.7. Let z be an interior point in the support of f,, . All second-order derivatives of m;(-), my(-), ..., mg(-) are
bounded and uniformly continuous.

Assumption 3.8. The g-variate Kernel functions K are compactly supported, bounded kernel such that f uu"K(u)du =
M2 (K)I and f K?(u)du = R(K), where 11, (K) # 0 and R(K) # 0 are scalars and I is the q x q identity matrix. In addition, all

odd-order moments of K vanish, that is f ulf e u;"K(u)du = 0, for all nonnegative integers i, .. ., 15 such that their sum is
odd.

Assumption 3.9. The bandwidth matrix H is symmetric and strictly positive definite. Furthermore, each entry of the matrix
tends to zero as N — oo in such a way that N|H| — oo.

Assumption 3.10. For some § > 0, the following functions E [|Xivie|**® |Ziy = z1, ..., Zir = zr] and E[|Xievie| 121 = 21,
o Zir = zT] are bounded and uniformly continuous in any point of their support.

This second set of assumptions is more directly related to nonparametric statistics literature. They are basically smoothness
and boundedness conditions. Assumption 3.4 imposes smoothness conditions in the probability density function of Zy;, for
t = 1,..., T.Furthermore, Assumptions 3.5-3.6 are smoothness conditions on moment functionals. Assumptions 3.7-3.9
are standard in the literature of local linear regression where, in particular, Assumption 3.9 contains a standard bandwidth
condition for smoothing techniques. Finally, Assumption 3.10 is required to show that the Lyapunov conditions holds for
the Central Limit Theorem.

Under these assumptions we obtain the following asymptotic expressions for the conditional bias and conditional
variance-covariance matrix of the local weighted linear least-squares estimator.

Theorem 3.1. Assume conditions 3.1-3.3 and 3.4-3.9 hold, then as N — oo and T is fixed we obtain

_ 1 1 ¢
E[m(z; H)|X,Z] —m(z) = 53);[;{ z,...,2) (Mz(lgr)ge}-@(r ... =2 > a2 (Kuy) Byx, @, .- z))

s=1
S diagd(tr(ﬂmr (Z)H))ld + Op (tI‘(H))

and

T
‘7:;2 [IR (Kuz)
=1 -1

Var (m (Z; H) |X, Z) = Wﬂgxtxt

@, ....2) (1+0,(D)),
where t is any index between 1 and T,

diag,(tr(Hm, (z)H)) stands for a diagonal matrix of elements tr(#,, (2)H), forr = 1, ..., d, where #n, (z) is the Hessian matrix
of the rth component of m(-). Finally, we denote by 14 is a d x 1 unit vector.

The proof of this result is done in the Appendix.

This theorem shows that m (z; H) is, conditionally on the sample, a consistent estimator of m(z). Furthermore, as it was
already remarked in the previous section, although the bias shows the standard order of magnitude for this type of problems,
the variance shows an asymptotic expression that is larger than the expected in this type of problems. In order to achieve
an optimal rate of convergence, the variance term must be of order 1/N|H|'/?> whereas our result shows a bound of order
1/N[H|"/ 2.2]ust to clarify the asymptotic behavior of the estimator we show its properties for the univariate case,d = q =1
and H = h°l.

Corollary 3.1. Assume conditions 3.1-3.9 hold, then if h — 0in such a way that Nk — oo as N tends to infinity and T is fixed
we get

E[m(z; H) X, Z] — m(z) = %c (z,2ym" (@I + o, (%),
where

.o T .
pa (Kuo ) E [XieXilZn = 2. Zn = 2] = T7 3 pa (Ku,) E [XiXslZn = 2, ... Zir = 2]
c(z,2) = =1

E[X2|Zn =2,....27 = 7]
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Furthermore, if p (Ku,) = -+ = 2 (Kuy) = 2 (Ku,) = o (K) then the bias term has the following expression
—~ 1
E[M @z H) X, Z] = m(2) = S pa(K)m" @ + 0, (1),

whereas if R (Ky,) = - - - = R(Ky;) = R (K) the variance-covariance matrix is

2R (K)T

Var (m (z; H) |X) = -
NWfp 70 @, ..., DE[X}Zh =2,..., 25 = 2]

(14 0,(D).

As a tool to construct asymptotic confidence bands we give also a result that provides the asymptotic distribution of the
estimator.

Theorem 3.2. Assume conditions 3.1-3.3 and 3.4-3.10 hold, then as N — oo and T is fixed we obtain

VNIHITZ (@ (z; H) — m (2)) —> & (b(z), v(2)),

where

b(z) = %uz(Ku)diagd (tr (Jem, (z)H\/N|H|T/2>) y

@) =0 RO By} (2.....2).

The proof of this result is shown in the Appendix.

We can compare the results obtained here with those in [13] for the first differences case. As expected, the bias term
presents for both estimators the same linear dependence in the trace of the bandwidth matrix H. However, the variance term
differs from one to the other estimator. In the first differences case, see Theorem 3.1 in [13], up to a constant, the variance
term exhibits a dependence from the bandwidth matrix H of order 1/N|H| whereas in our case it is of order 1/N|H|"/2. That
is, the ratio between the first differences and the deviances from the mean estimators is of order |[H|"=2/2, For T = 2, the
estimators show the same rate of convergence. This is clearly expected. For T > 2, the first differences estimator under the
conditions established above shows a faster rate of convergence for the variance terms as far as the diagonal elements of the
bandwidth matrix H tend to zero. This was also expected because the dimensionality of the kernel used in the local linear
regression procedure is different in both cases. Of course, efficiency issues are not considered here and they will clearly
depend on the stochastic structure of the idiosyncratic errors.

3.2. The backfitting estimator

As we stated previously the function of interest can be consistently estimated by using a local linear regression approach
with a high dimensional kernel weight, but at the price of achieving a slow rate of convergence. However, as it is noted in
Section 2, we can solve this problem turning to an alternative procedure that enables us to cancel asymptotically all additive
terms expected in the model the function of interest.

Let us consider the multivariate version of (2.17) and define

Yo =X/m@) +ib, i=1,...,N;t=1,...,T, (3.4)

it
where

1< ~ .
= 7 2 X (M (s H) —m (Zi)) + T

The quantities of interest in (3.4) can be estimated by minimizing the following locally weighted linear regression

T
Z Z"y) K @ —2), (3.5)

1 t=1

WMZ

Z

where H is a ¢ x ¢ symmetric positive definite bandwidth matrix, y = (y, le)Tis ad(1+q) x 1vectorand Z!T =
(X4 X ® (Ze —2)")isa 1 x (1+ q) vector.

Furthermore, let the vector ¥ = (%, ')7]T)T be the minimizer of (3.5). As estimators of m(z) and D, (z) = dm(z)/dz, we
suggest m(z, H) = Yo and vec(Dm(z; H)) = 1, respectively, i.e.,

f(z; H) = 5o = ef (ZTWPZ) 7 2P TwoYY, (3.6)
where ¥? = (Y?,, ..., ¥2) is a NT-vector and W” and Z® are NT x NT and NT x d (1 + q) dimensional matrix, respectively,
of the form

W’ = diag (K (Z11 — 2), ... K Znr — 2))
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and

XlTl X{l; ® (Z11 —Z)T
A :

Xy X @ Znr —2) 7

We now study the asymptotic behavior of the so called backfitting estimator. At this stage we need the results shown in
Theorem 3.1 to hold uniformly in z. In order to do so, we can rely on the well-known results in [11]. In fact, some of the
conditions already enounced in Section 3.1 are sufficient to show the uniform rates for m(z; H). However, we need some
additional assumptions that relate the bandwidths of both m (z; H) and m(z; H).

Assumption 3.11. The bandwidth matrix His symmetric and strictly positive definite. Furthermore, each entry of the matrix
tends to zero as N tends to infinity in such a way that N|H| — oo.

Assumption 3.12. The bandwidth matrices H and H must fulfill that N |H| |ﬁ|/ log(N) — o0, and tr (H) /tr(ﬁ) — 0asN
tends to infinity.

These assumptions are needed in order to ensure that both bias and variance terms of the backfitting estimator achieve
optimal rates of convergence and they are oracle efficient.

Then, under these assumptions we get the following asymptotic expressions for the conditional bias and conditional
variance-covariance matrix of m(z; H).

Theorem 3.3. Assume conditions 3.1-3.8 and 3.11-3.12 hold, then as N — oo and T is fixed we obtain

~, o~ 1 ~ ~
Elm(z; H)IX, Z] — m(z) = S (Ky) diagy (tr(Hm, (2)H))1a + 0p (tr(H))

and
0~ oRK) .
Var(fii(z; H)[X, Z) = Wﬁxfxf (2) By, 5, (2) Bx,x, (2) ™" (14 0p(1)),
where diag, (tr(Hm: (z)FI)) stands for a diagonal matrix of elements tr(Hpm, (z)ﬁ),for r=1,...,dandzis ad x 1 unit vector.

The proof of this result is done in the Appendix.

On one hand, we realize that the bias term is influenced by the amount of smoothing, H, as well as the curvature of m(z)
at z in a particular direction measured through each entry of #,,(z). In this way, we can guess that this estimator exhibits a
higher conditional bias when there is a higher curvature and more smoothing. On the other hand, from the standpoint of the
conditional variance we can see that it is a bit different from the corresponding for the standard case. In particular, it will
be increased when the smoothing is lower and sparse data near z but now also depends on the time-demeaned covariates
By, i, (2). Regardless, it is proved that the estimation procedure developed in this paper provides a nonparametric estimator
in which the variance-covariance matrix of all its components is asymptotically the same as if we would known the rest of
components of the mean deviation transformed expression, the so-called oracle efficiency property.

3.3. Comparison of the estimators

As we have already remarked in Section 2, the main difference among the estimators (for their local constant version)
consists in the types of averages that are used in order to remove fixed effects. In one case, the one step backfitting algorithm
considers un-smoothed averages whereas in the profile least-squares case smoothed weighted averages are preferred. There
exists also a difference between the dimension of the kernel weights. All these differences should have an impact in both
bias and variances of the estimators and therefore it would be of interest to analyze them, both theoretically and empirically.
This subsection will be devoted to analyze the estimators theoretically whereas in Section 4 we will do it empirically through
Monte Carlo simulations.

The reader might have noticed that the conditions required to obtain the asymptotic properties of the first step fixed
effects estimator and the backfitting estimator (see Theorems 3.1 and 3.2) are rather different from the conditions assumed
in [18] to obtain the properties of their estimator. For the sake of comparison, in this section we introduce additional as-
sumptions that will be used to obtain asymptotic terms that can be comparable among the three estimators. In all calculus
we will assume that N tends to infinity keeping T fixed. Furthermore, we will remove the strict stationarity assumption
established in the previous sections and we will not be willing to impose that ), u; = 0. Finally it is important to note that,
in the profile least-squares estimator, for fixed T, it is not possible to obtain explicitly the asymptotic bias and variance of
the estimator since @y is random.

In order to compare the main statistical properties of these estimators, we extend the above results assuming the
following.
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Assumption 3.13. Let (Y, Xit, Zit)i=1....N:t=1,...7 e a set of independent and identically distributed random variables in

the subscript i. Furthermore, let f;(-) the p.d.f. of Z; and f; (-, ..., -) be the p.d.f. of (Z;1, ..., Zy), foreachz € RY, f(z) =
S fi@) > 0andf(z,...,2) =1, fiz, ..., 2) > 0.

.....

Assumption 3.14. Letf;(z) be the p.d.f. of Z; and f; 5(z1, z,) be the joint p.d.f. of (Z;, Z;;) for t # sand any i, j. We can assume
thatﬁ(z)E(XitXi[T|Z,<[ =2) andﬁ,s(z)E(X,-[stT |Zit = z1, Zis = z,) are uniformly bounded in the domain of Z and are all twice
continuously differentiable at z € RY for all t = s and i and j.

Assumption 3.15. Let g be a bandwidth, the bandwidth matrix G is symmetric and strictly positive definite. Furthermore,
each entry of the matrix tends to zero as N — oo in such a way that N|G| — oo.

Note that Assumption 3.13 is a standard data generating condition in this context but stationarity is not allowed. 3.14 is
a smoothness assumption and 3.15 is the standard bandwidth condition. For the sake of comparison, we give the results for
the univariate case (d = ¢ = 1), where now H = h?I and H = h?I, and obtain the following results.

Corollary 3.2. Assume conditions 3.2-3.9 and 3.13 holds, as N — oo and T is fixed, then we obtain

- _14@ )
E[my(2) IX,Z] — m(z) = 0 + 0p(h*)
Var (i () %, 2) = 22 L0 (57)

@D = g T\ )

where, for any &; between Z;; and z, r (&, z) = (Zi — 2)? % and
1 <~ .
V(@) = o DX,
t=1
1 o .
Ii@) = =7 Y EXGHI,
t=1

1 ) 10
A(z) = T ;E |:Xit (Xitr(%‘iul) -7 Z]Xisr(ginz)) )»i:| = 0, (),

where A; = K (a‘%) X x K (“%)

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends to infinity we obtain,

.
V() =T ") Bz, 2, ....2) +0p(h),
t=1
h? L
A2) = T 2(K) Y By, 2, ., m' (@) + 0p(h),
t=1

O‘2 T
Ii(z) = T Z By, (2. ..., 2) + 0p(h?).
t=1

Corollary 3.3. Assume conditions 3.2-3.8, 3.11-3.12 and 3.13, holds, as N — oo and T is fixed we obtain

1 44(2)
2 ¥,(2)

E [M;@)|X, Z] — m@z) = +0,(h?)

~ 2 TIy(2) 1
Var (;(2)[X, Z) = :TH l,l/bb(z)z + 0, <1\Tﬁ> ;

where, let i = K (5”71;2)

1 Jdn m
‘I/b(Z) = = ZE[X;)\H]:
Th =
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1 & ~
Iy(z) = == Y EIX233),
Th =
1 & ~ ~
Ap(2) = Th ZE[X,%T(&'U 2)Aie] = 0p(h?).
t=1

In the Appendix, it is shown that under the same conditions established in the corollary, as N tends to infinity we obtain,

T
V(@) =T ) By @) +0p(1),
t=1

h? u o~
@) = T2 Y Bx, @m' @) + 0p (%),

t=1
2 T
(e ~,
@) =4 ) Bys, (@) +0p(h).
t=1

The proof of these corollaries is done in the Appendix.
Under this setting, Theorem 3.1 of Sun et al. [ 18] can be rewritten for a univariate problem as follows.

Corollary 3.4. Assume conditions 3.2-3.3, 3.7-3.8 and 3.13-3.15 hold, as N — oo and T is fixed we obtain

R 1A In(InN
E[m,(2)IX,Z] —m(z) = 5 l[/pg; + 0p (%) + Op(gz)
p

2
Var(my (2)|X, Z) = ;—; :p((zz))z + 0, (Nig) ,
)

where Ay = K (Z" Z) and
1 T
W(@) = — Y E[(1 — @)X ki,
Tg =
1 T
Iy(z) = — > E[(1 — i)’ X A7),
Tg =
T
1
M@ = D EI(1 = @i)Xgr (G, 2)hie] = 0p(g°).
t=1

Note that in [18] it is shown

T
W (@) =T By, (2) + 0p(8°),

t=1

P T
4@ = 120 Y Brx, @m' (@) + 0,(8%).
t=1

2 T
o8
I(z) = 7” Z By x, (2) + 0y(87).
t=1

Under the set of alternative assumptions considered in this section we obtain the results shown in Corollaries 3.2-3.4.
Clearly, they coincide with the results shown in Section 3.1. Corollary 3.2 points out the variance is of order 1/Nh” whereas
the bias shows a term that is of order O(h?). Furthermore, the backfitting estimator that is studied in Corollary 3.3 presents
the correction in the variance of order 1 /Nh Furthermore, Assumption 3.12, h = o(h) is crucial to guarantee that the
additional bias term vanishes asymptotically. Finally, Corollary 3.4 shows both bias and variance of the profile least-squares
estimator in the univariate case. As it can be observed from the expressions the bias shows an additional term of order

O(gIn(In(N)) /«/ﬁ .This term does not appear in the bias expression of the other estimator. However, the variance shows
the standard rate and no further procedure is needed to achieve the optimal rate as it is necessary in our case.
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Corollary 3.5. AsN — ocoand h — 0and g — 0 we obtain the following bias and variance rates given a finite integer T > 0,
Bias[ﬁg(z)|X, Z) _ Ap(2)W¥i(2) gIln(InN)
Bias[my(2)|X, Z] ~ ¥,(2) AL(2) "( N
Var(imy (2)|X, Z) _ h' I, 2)¥i(2)? +o,(1).
Var(y ()X, Z) g %(2)?Tiz)

) + 0p(g%),

Corollary 3.6. AsN — oo and h — 0and g — 0 we obtain the following bias and variance rate for m(z; h) given a finite
integer T > 0,

Bias[mg (2)|X, Z]  A,(2)W(2) (gln(lnN)
Bias[;(2)[X, Z] ~ %(2)Ap(2) T\ N
Var(ig (2)|X, Z)  h W(2)2T,(2)

= =- +0,(1).
Var(m;(2)[X, 2) g ¥p(2)*1h(2)

) + 0,(g%)

Corollaries 3.5 and 3.6 show respectively relative bias and variances of the profile least-squares estimator against the local
linear fixed effect estimator and the one step backfitting estimator. The ratio A, (z)¥;(z) /¥, (z) AL(z) in Corollary 3.5 is easily
shown to be greater than 1. Therefore, under the conditions established in the corollary, the bias of the profile least-squares
estimator is larger than the fixed effect estimator. This difference is increased if we consider the term O ( g In (In (N)) / VN )
However, as N tends to infinity the difference between the bias of both estimators diminishes. The relative variance exhibits
aterm I, @)W (2)?/ lI/p(z)ZFL(z) that is constant but the relative size of the variances of both estimators is determined by
the ratio of bandwidths, i.e. h” /g. For example, if the bandwidths converge to zero at the same rate the variance term of

the profile estimator is going to be smaller than the variance term of the local linear regression of the within estimator.
Corollary 3.6 shows theoretically the correction introduced by the backfitting algorithm in the variance of the estimators.

4. Monte Carlo simulations

In this section, Monte Carlo simulations are carried out in order to verify the theoretical results of the estimators proposed
in this paper under the statistical setting analyzed in the previous sections. Later, we make an empirical comparison about
the performance in small samples of the different estimators considered in this paper.

As it is well known, the Mean Squared Error (MSE) is a suitable measure of the estimation accuracy of the proposed
estimators. Thus, let us denote ¢ as the gth replication and Q as the number of replications, forr =1, ...,d

Q

~ 1 ~
MSE (i (5 H)) = o D E [ (e (25 H) = mer )]
=1

which can be approximated by the Averaged Mean Squared Error (ASME) such as
N T

~ 11 ~
AMSSE (i, (z: H) = =3~ 3 3 (e (22 H) = myr @)
Q= 1

i=1 t=
Observations are generated from the following varying coefficient panel data model of unknown form

Yie = Xgem (Zgie) + wi+vie, i=1,...,N;t=1,...,T; d,q= 1,2,
where X;;; and Zy;; are random variables generated such that Xgi; = 0.5Xgic—1) + &ir and Zgir = wgir + Wgic—1), Where wg;
is generated as an independent and identically distributed uniform random variable in [0, 7 /2] and &; is generated as an
independent and identically distributed Gaussian, zero mean, variance one, random variable (NID(0, 1)). Furthermore, v; is

an NID(0, 1) random variable and m(-) is a pre-specified function to be estimated.
With the aim of verifying the theoretical results in the Section 3 we consider four different data generating process (DGP)

(1) Yie = Xpiemy (Zaie) + i1i + vie,
(2) Yie = Xpiemy (Zaie, Zaie) + pai + vie,
(3) Yie = Xaiemy (Zaie) + Xoiema (Zaie) + p1i + Vit
4) Yie = Xpiemy (Zaie, Zaie) + Xaiema (Zaie, Zaie) + M2i + Vi,
where the chosen functional forms are my (Zy;;) = sin (Zyew), my (Ziie, Zoie) = Sin ((Zyie + Zoie) ), My (Zair) = exp

(=23,) and my(Zyie, Zoie) = exp(—(Zuie + Zoi)?).
In addition, we experiment with two specifications for the individual heterogeneity

a. j44; depends on Zy;;, where the dependence is imposed by generating j1; = coZq; + u;fori=2,...,NandZ;; = T~!

ZtT:1 Ziit

b. oi depends on Zy, Zyi through py; = ¢oZ; + uifori =2, ..., Nand Z; = 3 (Zy;, + Z2u.),
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Table 1
AMSE ford = 1andq = 1.
AMSE m(-) Relative AMSE m; ()
LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB
N =50 0277 0236 0.288  0.852 1.040 1.220
T=10 N=100 0245 0.183 0.243 0.747 0.992 1.328
N = 150 0.230 0.156 0.225 0.678 0.978 1.442
Table 2
AMSE ford = 1and q = 2.
AMSE m(-) Relative AMSE my (-)
LLLS 0SB PLS OSB/LLLS  PLS/LLLS  PLS/OSB
N =50 1236 0515 0533 0417 0.431 1.035
T=10 N=100 0793 0415 0450 0.523 0.567 1.084
N=150 0634 0382 0418 0.603 0.659 1.094
Table 3

AMSE ford =2andq = 1.
LLLS OSB PLS OSB/LLLS PLS/LLLS PLS/OSB

AMSE m(-) Relative AMSE m (-)
N =50 0253 0284 0293 1.123 1.158 1.032
T=10 N=100 0.190 0249 0249 1311 1.311 1.000
N=150 0162 0231 0230 1426 1.420 0.996

AMSE m5 () Relative AMSE m; (-)
N =50 0.098 0.048 0.086 0.490 0.878 1.792
T=10 N =100 0053 0025 0.042 0472 0.792 1.672
N=150 0038 0018 0.029 0474 0.763 1.611

Table 4
AMSE ford = 2 and q = 2.

LLLS 0SB PLS OSB/LLLS ~ PLS/LLLS  PLS/OSB

AMSE m(-) Relative AMSE m(-)
N =50 1272 0548 0.555 0431 0.436 1.023
T=10 N=100 0797 0428 0461 0.535 0.576 1.077
N=150 0637 0390 0428 0.612 0.672 1.097

AMSE m5 (-) Relative AMSE m;(-)
N =50 0.823 0.189 0.158 0.230 0.192 0.836
T=10 N =100 0466 0.088 0.078 0.188 0.167 0.886
N=150 0355 0.060 0.053 0.169 0.149 0.883

where in both cases u; is an NID (0, 1) random variable and cy = 0.5 controls the correlation between the fixed effects and
some of the regressors of the model.

In the experiment we use 1000 Monte Carlo replications. The number of time observations T is set up to ten, while the
number of cross-sections N is either 50, 100 or 150. The Gaussian kernel has been used and the bandwidth is chosen as

H = hl = 5,(NT)~"/3, where &, is the sample standard deviation of {Zqit}:\g _pandg = h = 6,(NT)"1/5.

The results from the simulation are presented in Tables 1-4. For the sake of comparison we present the empirical AMSE of
the three estimators that we compare in this paper: the local linear least-squares estimator (LLLS), the one-step backfitting
estimator (OSB), and the profile least-squares estimator (PLS) proposed in [18].

Table 1 shows the results for DGP(1). This is the simplest case without curse of dimensionality. As expected from our
theoretical findings the local linear estimator presents its best result. The profile least-squares estimator, as N grows, seems
to perform better than our backfitting estimator. This might be because the second term of the bias, that is related to the
fixed effects, diminishes its negative impact on the bias.

Table 2 starts reflecting the problem of the curse of dimensionality. Of course, since the variance of the local linear
estimator is of order 1/NTh™, it is expected that the behavior of this estimator with respect to the others, in terms of AMSE,
will be worse. This is indeed what we observe in the results. Furthermore, as N grows, the backfitting estimator performs
slightly better than the profile least-squares estimator.

Table 3 can be compared against Table 1. In fact, the function m; (-), which is the same under other DGP’s, presents similar
results in terms of AMSE. That is, the estimator that presents the better performance is the local linear. On the contrary, the
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function m,(-) is better estimated using either the one-step backfitting or the profile least-squares estimators. This can be
related with the oracle efficiency property of these estimators.

Table 4 can be compared against Table 2. In fact, we obtain similar conclusions as in the comparison between DGP’s 1
and 3. That is, the function m;(-) is estimated as the same level of accuracy as if m,(-) were known. Both the profile least-
squares and the one-step backfitting estimators perform much better than the local linear estimator. This is the curse of
dimensionality. We can say the same for m,(-) but in this case the profile least-squares estimator performs slightly better
then the backfitting estimator.
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Appendix

Proof of Theorem 3.1. We first focus on the analysis of the conditional bias of the local weighted linear least-squares es-
timator, m (z; H), and later on the behavior of its conditional variance-covariance matrix. We follow the standard proofs

scheme as in [13].
Let X = (Xq1,...,Xyy) and Z = (Zi1, ..., Znr) be the observed covariate vectors. By Assumption 3.2 we know that
E (vi|X, Z) = 0, so the conditional expectation on (3.3) provides

E[fi(z H) X, Z] = e] ZTWZ)™'ZTwM, (A1)

where
T T T
M= |:X1T1m(211) —TY Xim(Z), e, Xgm @) =Ty Xgm (ZNS):| .
s=1 s=1
Approximating M using the multivariate Taylor theorem we obtain
o m(z) 1

M=z [vec(Dm(z»] W@ R, (A2)
where

Qn(2) = Su(2) — Sm(2). (A3)

-
Sm@) = [S3,,@.....S; @] .
— —T —T T
50 @ = [Spy, @150y @]
The corresponding entries of these vectors are
Smie (@) = [Xie ® (Zie —2)T Hn(2) (Zie — 2)],

_ 1
Smit (2) = f Z (Xis ® (Zis — Z))T Hin(2) (Zis — Z)i| ,
L~ s=1

where we denote by

mel (Z)

Hn2(2)
%m(z) = .

Homa (2)

a dq x d matrix such that #,,4(z) is the Hessian matrix of the dth component of m(-).
On the other hand, the remainder term of the Taylor approximation can be written as

R(z) = Rn(2) — Rm(2), (A4)
Rn@ = R, @), ....RL @],

_ - _ T
Rn@ = Ry, @ R @]
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where the corresponding entry of each vector are

Ry (2) = [(Xie ® Zie —2))" R (Zir; 2) (Ze — 2)]

T
ﬁmi[ (Z) = |:;, Z (Xis 2 (Zis - Z))T R (Zis; Z) (Zis - Z):| .
s=1

We denote by
R1(Zit; 2) R1(Zs; 2)
R2(Zit; 2) R2(Zs; 2)
R(Zi; 2) = : , R(Zis; 2) = . ,
Ra(Zi; 2) RaZis; 2)
and
T 8%m 9%m T
Ra Zic; 2) :/o [azasz (Z+w(@Zi—2)— azasz (Z)_ (1 - w)do, (A5)
R (Zs: 2) /] M 02— ) | (1 - w) (A6)
. Z) = —C (z s —2)) — z — w)dw, .
4o o | 9zdzT @ azdzT | @

where w is a weight function.
If we replace (A.2) in (A.1) we obtain the conditional bias expression consisting in the following two additive terms

E[f (z; H) X, Z] — m(z) = %e} ZTWZ) ' ZTWQn(2) + €] ZTWZ) T ZTWR@), (A7)

where we can appreciate that the vec(Dy,(z)) term of (A.2) vanishes by the effect of e;.
As this bias expression has two additive terms, to obtain the conditional bias of this estimator we must analyze both

terms of (A.7) separately. Focus first on the analysis of elT (7 T W§)71 zZT WQ,,(z), we show that is the leading term of the ex-

pression of bias and which actually sets the order of this estimator. Later, we study the behavior of e]T (Z T W§)71 zZT WR(z)
and explain why this term is asymptotically negligible.
For the sake of simplicity let us denote

Zn—z Zir —z
=K (T ) <k (Tha )

The inverse term of (A.7) can be rewritten as the following symmetric block matrix

i~ - AL 412
(NT)'ZTWZ = ( ) (A8)
‘A’NT ‘A’NT
where,

Any = (NTIHT?) 7Y " XXl o

it

it s=1

.
.
Ay = (NTIH[") 7Y " X (x,-r ®Zi—2)—T 'Y Xs® (Zs — z)) M.

it

;
Agp = (NT[H|T/?)™! Z (Xit ® (Zig —2) =T ins ® (Zis — Z)) Xif M,
s=1

.
T T

A = (NTIHI"H) (x,»f ®Zi—2)—T 'Y Xs® (Zs— z)) (xft ®Zi—2)—T ') Xs® (Zs — z)) M.
s=1 s=1

it
Analyzing each of these terms, we first show that as N tends to infinity
Ay = Byx. (2, ..., 2) +0p(1), (A.9)

where
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With the aim of showing this result, under the stationarity assumption and the law of iterated expectations we get

E (Ayr) = /E[ WXy 1Zn =z +H"uy, ..., Zy = 2 + H'up ]

T
X fayzy (Zn =z +H"Puy, ... Zy = 2+ H?ur) [ [ K (o) du
=1

and by the Taylor expansion of the unknown functions and Assumptions 3.1 and 3.4 the expression (A.9) holds. However,
note that to conclude this proof is necessary to turn to a law of large numbers. Therefore, we have to show that Var (A}\})
— 0, as N tends to infinity. Under Assumption 3.1,

1 1 1 & 1 .. 1 ..
1Y) _ 5T _ XTIy, X T,
Var (Ayr) = —NTVar<|H|T e X, x) + N7 [23 (T — t) Cov (|H|T 75 X Xip A, i 5 XieXig ,\,) )
Then, under Assumptions 3.4 and 3.6 we can show that the first element is

V. ! — X XA PR
ar |H|T/2 itNje /M _NT|H|T/2

while the second one is

1 o1 '
cOv<|H|T/2x,2x,2A,, |H|T/2x,tx A) < SR

Then, if both NT|H| and N|H| tend to infinity the variance term tends to zero and (A.9) follows.
Following a similar procedure we get

Ay = DBy, (2, ..., 2) (Ia ® pa(Ky,)H) — Z DBy, (2, ....2) (Is ® 2Ky H) + 0, (H). (A.10)
This is because using the same reasoning,

E(Av) = /E (XX 1Zn =z +H"uy, ..., Zgp = z + Huy)
P @5 2) @ (H Py ]—[K (ue) dug
1 T T .
=3 / E(XieXy |Zn =z +H"us, ..., Zr =z + H"?up)
X fr.zw @, 2) © (HYus HK (ue) dug

and as N tends to infinity, Var (A)2) — 0. Then, (A.6) is shown.
Note that DBy, (Z1, ..., Zr),fors = 1, ..., T,is defined in a similar way as in [13]. Thus, DBy, x, (Z1, . . ., Zr) isad x dq
gradient matrix of the form

oz] oz]
DBy, Z1, ... Zr) = ’
M e M
o] az]

and
;(fft @1y .. Zr) = E[XaeXaw| Zn = 2, ... Zn = Zr | foy.o20 Zrs o Z0)
Finally, we obtain that as N tends to infinity

1
AﬁZT = (1 — ?> Bxx, 2z, ...,2) @ wu(Ky, )H + 0, (H) , (A.11)

where
Bxx, (z,...,2) =E [Xi[Xiﬂ Zin=2,....2r = Z]fzn,...,zir (z,...,2).
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Then, using the results of (A.9)-(A.11) in (A.8) we obtain

NT (ZTwZ) ' = <g; g;z) (A.12)
where
Cn =8, (2.....2) +0p(D),
1 T
Cp = _‘5355;&[ (z,...,2) (!DJB;([X[ @ ....2) (la ® pa (Ky, ) H) — T Z DBjx, 2, ....2) (la ® pa (Kyy) H))

-1
S ((1_;.> £X[X[(Z7"'7Z)®HM2(I<M’[)> +Op(1)7
1 -1
Gy = — <(1 — ¥) £X[Xt(z, R ,Z) ®HMZ(KUT))

.
X (i):t?xtxf @, ....2) (la ® 2 (K, )H) — = Z DBy, @, -, 2) (la ® 2 (Kuy) H))

1
X Q‘BX[X[ (Z, e ,Z) + op(1)7

-1
@22 = ((1 - %) c(BXth(Z’ se . vZ) ®H:u2(1<ur)) + Op (H71) :

On the other hand, following the same technique we can show that
(NT) " 'ZT WS, (2)
(NTIHT2) ™S R X ® @ —2)7 H(@) i — 2) M
it
T
-1 _
(NTIH™?) 7> (xn ®Zi—2)—T 'Y Xs® (Zs— z)) Kie ® (Zie = 2)) T Hn(2) Zic —2) b
it s=1
are asymptotically equal to
(NTIHT2) ™S R X ® @ — 2)7 H(@) @i — 2) A

it

= p2 (Ku,) Bix, @, ..., 2) x diagy(tr(Hm, (2)H))1g + 0, (tr(H)) (A.13)
where
By, (2,...,2) = E[ WX 1Zn =2, ..., Zr = Z]fzll ..... zr (Z,...,2),
diag,(tr(#m, (z)H)) stands for a diagonal matrix of elements tr(#y,, (z)H),forr =1, ...,d,and 14 isad x 1 unit vector. In
addition,

T
(NTIH[2) 7Y (xn ®Zi—2)—T 'Y Xs® (Zs— z)) Xie ® (Zit —2))" Hn(2) (Zie —2) M

it s=1

T
= / By, (2., 2) @ (H'Pur)(H'"?ur) " 3 (2) (H?ur) [ K (ue) du,
=1

T
- Z f Byyx, (2, -, 2) @ (H'u) (H"?ur) T 9 (2) (H'?ur) [ [ K (ue) dug
=1
= 0,(H*?). (A.14)
Furthermore, the terms of
(NT) 'ZTWSp(2)
(NT2HT2) 73" K (X ® (@5 — 2)T H(2) (@5 — 2) A

its

T
(NT2HT2)TH S (x,-[ ®Zi—2)—T 'Y Xs® (Zs— z)) Xis ® (Zis —2)) | Hu(2) (Zis — 2) X

its s=1
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are of order
(NT2H|T2) ™37 K (s ® (@5 — 20)T Hu@) @5 — 2)

its

1 T
= T Z U2 (Kus) By x, 2, -..,2) x diagy(tr(Hy, (2)H))1a + 0p (tr(H)) ,

s=1
where
Bix, @ D) =E[XX{|Zn =2,....Zr = 2] fy,..20 (2, ... 2),
and under the stationarity assumption, when N — oo and T remains to be fixed we get

its s=1

T
(NT2HI™2) 7Y (xn ®Zi—2)—T ') Xs® (Zs — z)) Xis ® (Zis = 2))" Hn(2) (Zis — 2)

T
= / By, (2, ..., 2) @ (H'Pur)(H"u5) T 3 (2) (H' ) | [ K (ue)dlug
=1

1 T T ) T
Z /2 172, \T 1/2
T;;o@xsxs @ ..., 2) ® (H?ug)(Hus) T H (2) (H Us)gK(w)duz
= 0,(H*?).
Then, replacing (A.13)-(A.16) into (A.3), we can conclude
(NT)"'ZTWQ,,

10
_ a2 (K) (Btht (z,...,z2) — T Z By, @, ..., Z)) x diagy (tr(Hy, (2)H))1g + 0, (tr(H))
- s=1

0, (H3/2)
Focus now on the residual term of (A.7), we use the notation of the beginning of the Appendix in order to write
NT)TZTWRG) = (1@,
(NT) @ (82(2)
where
e1(z) = (NT|H|"?)” an

|:(X1t ® (Zzt - Z)) R (tha Z) (th Z) — Z (Xls X (er - Z)) R (ZISa Z) (le - Z)i|

s=1
and

T
£2(2) = (NTIH|"?) 'Y (x,-t ®Z—2)—T ") Xs® (Zs — z))

it s=1

T
x [(X.-t ®Zi—2) RZi;2) Zi—2) =T ) X ® (Zs —2))| R (Zis3 2) (Zis — z)] Ai.

s=1

Note that &1 (z) can be decomposed into the following two terms

it

£1(2) = (NTIH|"?)" an[(xm(z”—z)) R Zie; 2) (Zie — 2)

s=1

;
T X ® (Zis —2) | R (Zis 2) (Zis — Z):| Ai

+ (NT2HT2) TS Ry (X5 ® (2 — 2) T (R (i 2) — R (21 2)) (Zis — 2) M

its

= £11(2) +£12(2).

(A.15)

(A.16)

(A17)

(A.18)

(A.19)

(A.20)

(A21)
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We want to show thatas N — oo,
E(e1(2)) = op (tr(H)) (A22)

so, in order to do it, we have to analyze each term of ¢,(z) separately. Starting from &£1;(z) and by the strict stationarity we
have

T
E(en(2) = By @ +Hur, ...,z +Hur) @ (Hu0) Rz + H?ue; 2)(H?u) [ [ K (ue) duy
=1
1 T T T
S Z Z Byx, @ +Huy, ...,z +Hup) @ (H?ug) " R(z + H?uy; 2)(H?uy) l_[K (ug) dug.

T t=1 s=1 =1

By definition (A.5) and Assumption 3.7,

1
|=Rd(z+H”2uf;z>|s/ c@IHu, ) (1 - w) do, Vd,
0

32my
0z;0z;

where ¢ (1) is the modulus of continuity of
get

(2). Hence, by boundedness of f and By, y,, and Assumption 3.4, for all t we

1
Elen(@) = G0 [ 100 ) s I a2 ldoo | | e
0 [/

G 1
+?Z//0 I(H”zus)TlIg(wIIH”zuzll)lIH”Zusldw]:[K(uz)duz
S

and E(e11(z)) = o, (tr(H)) follows by dominated convergence.
Similarly, analyzing the second term of (A.21) and by strict stationarity we have

1d
E(e12(2)) = T Z/ (Bix,z+H"uy, ...,z +H"up) ® (H?uy) ")

T
x (R(@z+H"uz;2) — Rz + H'ug; 2)) (H'?uy) nK (up) dug,
=1

where, as previously, we can show
G 1
Eeu@| = 23 [ [ 16200 g @IH ] = ol upl 12l [TK @0 due
s 0 l

Then, proceeding as previously we have that by dominated convergence E(g12(z)) = o, (tr(H)).
Once this result (A.22) has been verified, our interest focuses on the second term of (A.21), &5 (z), with the aim of showing
thatas N — oo,

E(e2(2)) = Op(H*?). (A23)
In order to prove this result, we follow the same lines as the proof of (A.22) and &;(z) can be decomposed in two terms

£2(2) = €21(2) + e22(2), (A24)
where

T
en(2) = (NTIH[T?) 'Y (xu ®Zu—2)—T 'Y Xg® (Zs — z))
s=1

it
T
x [(xn ® @ —2) REUD T —2)—T ') K ® @ —2) R (Zs:2) & — z)} hi (A25)
s=1
and
T
en(z) = (NT2|H|T/2)_l Z (Xit ® Zy—2)—T" ins ® (Zis — Z))

its s=1

X (Xis ® (Zis —2)) | (R (Zit; 2) — R (Zis; 2)) (Zis — 2) Ai. (A.26)
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Applying the same arguments as for the proof of (A.22), it is straightforward to show that
E(e2(2)) = 0p(H?).
Then, replacing (A.22) and (A.23) in (A.18) we get

op (tr(H))
OP(H3/2)

and substituting (A.12), (A.17) and (A.28) in (A.7), the asymptotic bias can be written as

(NT) 'ZTWR(z) = (

E[M (z; H)|X, Z] — m(z) = %ei ZTWZ) ' ZTW(Sn(@) — Sn(@)

1 __ .
=585 @02 (MZ(Kur)D(B)'th @ ....2)— = Z 1tz (Kuy) By x, @ - )) x diagy(tr(Hn, (2) H))ig
s=1
+ o0, (tr(H)) .
For the asymptotic expression of the variance term let us define the NT vector v = (vq, ..., vy) ',

(A27)

(A.28)

where v; = (v, ...,

vir) " Furthermore, let E (vv " |X, Z) = 'V be a NT x NT matrix that contains the Vy’s matrices. By Assumption 3.2 we obtain

Vi = E(viva|X, 7)) = O'UZIT.

(A.29)

Denote as Qy = Iy — 1 (er)_1 II aT x T symmetric and idempotent matrix with rank T — 1, where I7 isa T x T identity
matrixand iy a T x 1 unitary vector. Furthermore, let Q = Iy ® Qr an NT x NT matrix. It is clear that,Z = QZ® and ¥ = Qu.

Then, substituting the previous equalities into
i (z; H) — E [ (z; H) |X, Z) = e] (ZTWZ)' ZTwr,
we obtain
M (z; H) — E |7 (z; H) X, Z]) = e (ZTWZ) ™' 2TQ " WQu.
Since Q is an idempotent matrix, the variance term of m (z; H) can be written as
Var (i (z; H) X, 2) = e] (ZTWZ)™ ZTwywZ ZTwWZ) e,

As by Assumption 3.2 the v;’s are i.i.d. in the subscript i, the upper left entry of (NT)‘lfTW”VWE is

T
o2 TR (k)
XXin2 = ———— 8By (z,...,2) (1+0,(1)).
NT|H|T;; " i Bk @ 2) (14 0p(D)
The upper right block is
2 T T T
NT UH T Z int (Xit ® Zi—2)—T' ins ® (Zis — Z)) A7
| | i=1 t=1 s=1
o) 1/2 12 172, \T
- |H|’}/2/(£5€[xf(z+H Pui, .. z+H"ur) @ (Huy)
1 T T
- > By @+ HPur, 2+ HPur) @ (H'2u) " ) [ TK? (ue) dug (14 0p(1))
s=1 =1
= 0,(IH|"/?).

Finally, the lower-right block is

i=1 t=1

T
o2ua(K2) T] R(Ky,)

1 l#T —12
= (1 — f) |H|T/2 £tht(l, e ,Z) ®H + Op(|H| H)

N T T T ;
NT|H|T Z Z (Xn ®Zi—2)—T! Zst ® (Zis — z)) (X,»t ® (Zig —2)—T" Zx,»s ® (Zis — z))
s=1 —1

(A.30)

(A31)

(A32)

(A.33)

(A.34)

(A.35)
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Then, substituting (A.12), (A.33)-(A.35) into (A.32) we get the following conditional covariance matrix result,

T
oy TR (Ku,)

=1 -1

Var (m (z; H) |X,Z) = Wﬁiﬁiﬂ

z,...,2)(1+0p(1)). m

Proof of Theorem 3.2. With the aim of obtaining the asymptotic distribution of the local weighted linear least-squares
estimator m (z; H) we follow a similar proof scheme as in [13]. For this, let us denote

m(z; H) —m(z) = (M (z: H) — E[Mm (z: H) X, Z]) + (E[M (z; H) |X, Z] = m(2)) =1; + I,

so in order to obtain the asymptotic distribution of this estimator we must show that as N — oo it holds

T
JNTH[T2I; = N (o, o2 HR (Ku) 355}@ z, ..., z)) (A.36)
=1

and
E[m (z; H) X, Z] — m(z) = %Mz (Ku, ) diagy (tr(Hm, (2)H)) 1 + 0p(H*?) + 0, (tr(H)). (A37)

By Assumption 3.1 we state the variables are i.i.d. in the subscript i but notin T, so the Lindeberg condition cannot be verified
directly. Thus, in order to show (A.36) it suffices to check the Lyapunov condition. We have shown that

M (z; H) — E [ (z; H) X, Z) = e] (ZTWZ)"'Z Wo. (A38)

The behavior of the inverse term has been analyzed previously, with the aim of proving the result (A.38) we must focus on
the asymptotic normality of

T =1
—Z Wo. (A.39)
~/NT
As (A.39) is a multivariate vector, with the sake of simplicity we can define a unit vector d € R*1*9 in such a way that
1 ~ 1
—d'Z" Wy = — bit, (A.40)
N PR

where

o = |HI"4d ZeWivy, i=1,...,N; t=1,...,T.

Following Assumption 3.8, we have that R (K) = [ K? (u) du = (2711/2)71 and R (Ky;) = -+ = R(Ky; ), 50 [ [1—; R (Ky,) =
R (K)T holds. Combining these conditions with the results of Theorem 3.1 we can write
R(K)' By (z,....2) 0
Var (¢y) = o2d" 1 r
v 0 (1 - ¥> o a2 [ [ R(Ku) B, (2, ... 2) @ H
l#T
xd (14 0p(1), (A41)
whereas
T
> " ICov (i1, pi)| = 0,(1). (A42)

t=1

In order to check the Lyapunov condition let us denote qb:’i =T"1/2 Zle ¢ as independent random variables for T fixed
and n = NT. Then, by the Minkowski inequality and the matrix structure of Z;; we get

E ¢y
Analyzing each term separately we obtain

248 @2+8) 248 2+8) 248
|7 < T2 Elgwl*™ =CT 2 Elhric + boiel™ .

_ o 248 _ .
Elpuicl*™ < E|IH|I""*d Kviehs| " = [HITTHEE (1dT Xievie 71X, Z) A7)

IA

1 ..
= W /E (|dTXitUit 2z =z +Huy, ... Zy =z + Hl/zuT)
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T
X .z @ 4+ HPuy, oz 4+ HPup) [ TR (ue) dug
=1

T
= HIE (1d Xvi 1z =2, ... Zr = 2) g2y @ D[ ] / K> (ug) dug + 0, (IH] "),

248
246
E[A2i*™ <E

;
IHI7T/*d" (x,-t ®Zi—2)—T ') Xs® (Zs— z)) viehi

s=1
< |H|TTCHRE[E (ldTXitvit|Zﬂs o Zr) ® |Zi — 2P AT

+ |H|_T(2+8)/4 ZE |d Xisvit |Z,1, e ZiT) ® |Zis - z|2+8)‘,‘2+5]

s=1

= [H|""ME (ld Ko P 1Zn = 2. ... Zr = 2) fzy..2y @0 ... D) ® / |H'u |2+81_[K2+8(Uz)duz

I ..
FH TS S E (1 R P12y =2 2 = 2) fyy @ 2)

s=1

T
®/ |H]/2us|2+5 1_[I<2+5 (Ul) du[ 4 Op(|H|1*(T72)5/4).
=1

In this way, we can write
—2d 2 5
(NT) ZE|¢H, < C(NIH|T?) 772, (A.43)
i=1

and given that when N|H| — oo this term tends to zero it is proved that the Lyapunov condition holds. Then, using (A.12),
(A.33)-(A.35) and the Cramer-Wold device, the proof of the result (A.36) is done.
On the other hand, focus on the proof of (A.37) we know that by the law of iterated expectations

E[m(z; H)]:/E[ﬁ(z; H)|X,Z]dF (X, Z).
Then, we can turn to the bias expression of the estimator collected in Theorem 3.1 and the proofis closed. ®
Proof of Theorem 3.3. The proof of this theorem follows the pattern set by the Theorem 3.1. The estimator to analyze is
fi(z; H) = e] (ZTWZ%) 7 ZPTwhy?, (A44)
we can write
E[fi(z; H)IX, Z] = e] (Z"TW"Z%) "' ZTw? [MD + E (MP X, Z)], (A45)
where

T
M(l) = [(Xr]m (Z]]))-r yee ey (Xl;r-rm (ZNT))T:I s
T

T T T T
M@ = (T”ZX]TS (ﬁ(Z“;H)—m(le))) (T*ZX,J; (ﬁ(ZNs;H)—m(ZNs))> ®1r.

s=1 s=1

The Taylor theorem implies that we can approximate M as

M= [Vecr(nD(Z)(z))] Qm(l) +R@). (A-46)

Following a similar nomenclature as in Theorem 3.1,
b bT bT 1T
Q@ =[Sh.. ..., Smm :
R'(@) =[R) (@.....R) (z)]
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where R’ (z) is the remainder term of this approximation. Then, the corresponding entries of these vectors are
Spe = [Kie ® @it —2)) " Hn(2) it — 2)]
Ri (@) = [Xie ® (Ze —2)" R (Zi:2) e — 2],
where R (Z;;; z) has already been defined in (A.5).
If we replace (A.46) in (A.45) the bias expression is then
Elfi(z; H)|X, Z] — m(z) = %e? WPz T 2Tl (2)

+el (ZTWPZY) T ZTWE (MP X, Z) + o, (tr(H)), (A47)
given that following [15] and Assumption 3.1,
el (Z"W'Z) 7' ZTWPOR (2) = 0, (tr(H)).

As you can see in (A.47), this bias expression is formed by two additive terms. The first one refers to the approximation error
of the estimates, whereas the second one reflects the potential estimation error dragged from the first stage. Within this
context, our aim is to show that this second term converges in probability to zero, so it is the first element which provides
the asymptotic distribution of the backfitting estimator. For the sake of simplicity let us denote

hie =K (HV2(Z - 2)).
Focus first on the behavior of the inverse term of (A.47) we analyze
(NT)~' Z6TwhZb
(NT|H|?)™ Zx,txw,\,t (NTIH|'?)™ Zx,[ Xie ® Zie —2)) " ke

(NTIH|'?)™ Z(xn@(z,t 2) X ae  (NTIH|V?)” Z(xm(zn—z))(x,t®<zn—z)) it

and asitis proved in [13], using standard properties of kernel density estimators, conditions 3.1-3.3 and 3.4-3.10,asN — oo
we get

NT (ZbTWbe)_l
By, (@) +0p(1) B @) [DBrx ] (B, @) @ 1) + 0p(1)
B (— (874 @ 1) [DBxx, @] Bk @) +0,(1) (Bxx @ ® w2 (OH) " + 0p(H™) ) ’
(A.48)
where By,x, (z) and D By, x, (z) has been already defined in the proof of Theorem 3.1 conditioning only to Z; = z.

Furthermore,

(NTIH|'2) Zx,t Xie ® (2 —2))" Hn(2) (Zie — 2) b

(NT)"'ZPTWPQt (2) = (A.49)

(NTIH|'?)™ Z(xm(zn 2)) Xie ® (Zie —2)| Hn(@) @i — 2) Mt

it

are of order
1ty (Ky) Bxx, (2) x diagy(tr(Hm, (2)H))1a + 0, (tr(H))

and O, (ﬁ 3/2), respectively. Substituting these latter results and (A.48) in the first term of (A.47) we obtain

1+ ~ ~ 1 1

> el ZTWOZ) T 2T Wl ) = SH2 (K) By x, (2) Bx,x, (2) x diagy (tr(Hp, (z)H)) 1g + 0, (tr(H)). (A.50)
Focus now on the behavior of the second term of (A.47),

(NTIH|'?) 7' ZTWPE (MP[X, Z)

(NT2HY2) 3" XX (B [ (Ziss H)| X, Z] — m (Z)) he

= its ~ AS51
(NT2HY2) ™S (e ® @i — 2) X (E[M (Zis: H)| X, Z] — m (Zi)) R (3D

its
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and analyzing both terms separately we can show that as N tends to infinity
(NT2H2) 7S XX E [ (Ziss ) X, 2] — m (Zi) A = 0 (tr(H))
its
and
(NTHIYA) TS X ® (2 — 2) X (E (W @i H) X, 2) — m (Zi) A = 0p(tr(H)tr(H)).
its

Under Assumptions 3.1-3.3, 3.10 and 3.12, this latter expression is 0, (tr(H)) and the rate is uniform in z; see [11] for more
details.
Replacing these results in the second term of (A.47),

el (Z"WPZ) T ZTWIM® = o, (tr(H)). (A52)

Finally, substituting (A.50) and (A.52) in (A.47) the proof of the conditional bias is done. Also, it is proved that the asymptotic
bias of m(z; H) is the same order as m(z; H), given that tr(H) — 0, tr(H) — OinsuchawaythatN|H| — ococandN|H| — ooc.

From the standpoint of the variance, let us denote o = (1, ..., Dy) ' as a NT-dimensional vector such that
T T . T
B = (le(xisT (7 (Zis: H) — E [ Zs: D) X, 2D) .. T (X (@ (2t H) — E [ (Zis H)| X, Z0)) ) :
_ s=1

As we know, the conditional variance-covariance matrix of the estimator has the following form
Var(fi(z; H)[X, Z) = E [(r?:(z; HIX, Z) — Elf(z: F)|X, Z1) (fiz: H) — Elf(z; B)|X, Z])T‘ X, z]
where
f(z; H) — Elfiz; B)IX, 2] = ef (Z°TW?Z) ™' ZTwPs + el (ZTw'Z?) ' 2T whs.
Remember that ¥; = Qrv; and it is straightforward to show that QrZ; Zb Z, Thus, the previous equation can be rewritten as
fi(z; H) — Elfiz; B)IX, 2] = ef (ZTW*Z?) ™' ZTwho + ] (22T wbZb) ' ZPTwPs.
Taking into account that let E (v vT|X, Z) = V be a NT x NT matrix whose ijth have the form of (A.29), the variance term of
m(z; H) has the form
Var(fi(z; H)[X, Z) = e] (ZTWZY) 7' ZTwhvwhZ (2 TwPZ?) e
+el (ZTWPZP) T ZPTWPE (337X, Z) WhZP (ZPTWhZP) e
+2e] (ZTWPZ) T ZPTWPE (o IX, Z) WPZP (ZPTWPZ) e
=L +L+1L. (A53)

Then, with the aim of obtaining the asymptotic order of the variance of m(z; H) we have to analyze each of these terms
separately. Following the same procedure as in (A.32) to analyze the behavior of ZTWbYWbZ. Under Assumptions 3.1-3.7
and 3.11-3.12, using the result (A.48) and the Cramer-Wold device it is straightforward to show thatas N — oo

= IR @ By, () B ) (14 (D) (A54)
NT|H|1/2 (9,63 tAt P
while
L=o, (%) . (A55)
NT |H|"/? |H|1/?

In order to prove this latter result we have to analyze the behavior of the following expression
(ND)T'ZTWPE (707 |X, Z) WZP. (A.56)
Thus, denote by 7(Z;s; H) = m(Zi; H) — E [m(Zis; H)|X, Z], then the upper left entry is

(NT?[H])~ 1ZZanxT (F(Zis: HYT(Zig's H) I, Z) Xig Xif A i (A57)

it ss
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and by the Cauchy-Schwarz inequality for variance-covariance matrices (A.57) is bounded by

(NTPIHD™ Y D ™ " XX vec!/? (diag (E (F(Zis: HIT(Ziws H) T IX. Z)))

it ss
x vec'/? (diag (E (F(Zis; HF (Zis; H) T IX, Z))) Rickie
In NT
NT|H|T/2|H|'

given that under the conditions of Theorem 3.1 and following [11],

R InNT
vec (diag (E(F @z )T (z: H)' X, 2))) = 0, (I\H"r|ll-I|T/2) )

uniformly in z.
Following the same lines, the upper right entry of (A.56) is

_ ~ ~ InNT
21571 5T V(7 T » NN g [ Y
(NT2|H[) §i §n/jéjxﬁxislfG(z,s,H)r(zzs,H> X, Z) K ® Zir — 2)" Kicki op<NT|H|T/2|ﬁ|1/2) (A59)
and the lower right entry of (A.56) is

(NTPHDT Y D 0 K ® @ — 2) XJE (7 (Ziss H)T (Ziws H) T [X, Z2) K ® (Zir — 2)) " Rickie

it ss

InNT
=0 ———=—). (A.60)
NT|H|T/2|H|1/2

Then, combining the results (A.58)-(A.60) with (A.48) and by the Cramer-Wold device the proof of (A.55) is done. Finally,
focus on I3 the Cauchy-Schwarz inequality is enough to show that

I InNT (A61)
= o - .~ .
PP\ NTIHT2 |2

and the proofis done. H
Proof of Corollary 3.2. The proof of this corollary relies on the proof of Theorem 3.1.

Taking the expression (3.3) for the univariate case, the conditional bias and variance of my, (z) for the case whend = q = 1
and H = h?[ are given as follows

~ 1 ¢~ o~ 1 —
E[fin(2)|X, Z] — m(z) = 5elT Z™wZ)'ZTW (1) - TT2), (A62)
Var(@in(2)[X, 2) = e] ZTWZ) " ZTwvwZ (ZTWZ) ey, (A63)
where, for any &; between Z; and z and &;, between Z;; and z, the corresponding entries of the vectors I7(z) and I1(z) are
- T
Mi(2) = Xar(€;2) and TTi(@) =T~ ) Xigr (&s; 2),
s=1

where 1 (&;; z) = (Ziy — 2)2% and r(&;; z) is defined in a similar way.
Starting from the conditional bias standpoint, as N tends to infinity the elements of the matrix (A.8) are

T T
. 1
AL =TS EXn]== 8. .., 1), A.64
= (Th") ; [X21] T; i (2o -0 2) +0p(1) (A64)

T . T
A = (T Y E [xn (x,-[(zit —2) =T Xi(Zs —z)) Al}

t=1 s=1

h2

T 1 T
> <5D°'kaxt @ D) = o Y DBy (... z)uz(Kus)) + 0, (h?) (A65)
s=1

T t=1
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T T 2
<ThT)‘1ZE (Xit(zu—z)—T—lzx,-s<z,-s—z)) A
= s=1
( ) Zo@x,xt(z - Do (K )
t=

22
‘A’NT

(A.66)
so the inverse term of (A.62) can be written as
e e 11 12
WNT) ZTWZ) " = (ey{ @12V§> , (A67)
NT @NT
where now

T -1
el = ((ThT)1 > E [X,%Ai]) +o0, (0",
-1 T T
el = ( - ZE [X22] ) T'YE [}'&,»t (x,-[(zi[ —2) =T Xs(Zs — z)) A,}
t=1 s=1

-1

T T 2
x [y E (ximz,-f—z)—T1ins<zis—z>) A +op (')
t=1 s=1

2
T T
e =a"H Y E (x,-t(zn —2) =T Xis(Zis — z)) py +op (h').
t=1 s=1
Focus now on the numerator of (A.62),as N — oo it can be written such as
(ND)T'Z™W (M (z) — T (2))

T T
(Th")~! ZE |:Xit (Xitrh(giﬁ z)—T"! insrh(gi5§ Z)) )w‘:|
_ t=1

-1

s=1

, (A.68)
T T T
(Th)' Y E [(xfxzn —2) =T Xs(Zis — z)) (xnrh(su; 2) =T X z)) Al}
t=1 s=1

s=1
where we can show

T T
ThT Z E ltXl[rh (Elta z))L ] Tth Z Z E I[Xlsrh (Slsv z))L ]

t=1 s=1

T
1
E (i)’x[xt (z,....20)u2(Ky,) — T E By x, (2, - - .,z),uz(KuS)) + op(hz)
t=1 s=1

(A.69)
and
T
o ZE {(x,xz,-f —2) =Ty Xi(Zis — z)) Xiern(Eic; z)xl}
s=1
T T T
T2 T Z X{‘ E [(xn(zn —z)—T"" lexis(zis - z)) XisTn(Eis; z)kz}
t=1 s= s=
h3 T 2 T T
= A Bx.x, (z, .. .,z)uf -7 Z:thxs(z, z)usu + — ZZ£X5X’(Z z)us/u? UKuzd”i
t=1 s=1 s=1 ¢'=1 =1
= 0,(h%). (A.70)
Therefore, substituting (A.67) and (A.68) in (A.62), the conditional bias is
1 O -
E[M,(2)|X,Z] —m@) = | — Y E[X?A
[ (2)|X, Z] — m(z) (W ; Xz ,]) T
.. 1 5
x D JE | Ko | Xirn(Eis 2) = o 3 Xiarn € 2) | i | + 0p (). (A71)
t=1 s=1
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From the point of view of the variance we focus on the behavior of the middle term of (A.63). Following the same procedure
as in (A.32) but assuming strict stationarity is not allowed, under conditions 3.2, 3.4 and 3.13 we can show thatas N — oo,

—2
o2 1 o . 1
\Y X, Z D2A2 | == Y E[X2A; n A72
ar(mn(2)|X, Z) = NTIT ThT il (ThT ;:1 Xkl | +op | Spr (A72)

Proof of Corollary 3.3. The proof of this corollary relies on the proof of Theorem 3.2.
If we start from (A.45) and take a standard Taylor expansion around m(-) we obtain

- 1 i T p 1 -
E [ 1%, Z] = m(@) = ge] (2TW'Z") "ZTWPIT(2) + o] (ZPTWPZY) T ZTWPE (MP)|X, Z) + 0,(R?)  (A73)

where

T T T
M@ = [(T—1 > Xus (n(Z1s) — m(zls») e (T—‘ D Xns (Mn(Zns) — m(st»ﬂ ®1
s=1 s=1

and each entry of IT(z) is X1 (&, 2).
Following a similar proof scheme as previously, if we analyze each of these terms separately we obtain that (A.73) can
be written as

T
(Th)™! ZE [x2hi] (Th) ™Y E[X (@ — )]
(NT)—lngwbzb _ =1
= ) g )
(Th)™! Z E[X} @k —2h] (T E[X2(Zi — 2)*ht]
t=1 t=1
so the inverse term is
b11 b12
SbTya/b5b\ 1 Cnr Car
(NT) (2"'WPz%) " = (e‘m @b22> . (A74)
NT NT

where

-1
ehlt = ((Th)— ZE ,r> + 0p(h),
-1 T -1
e = ((Th)— ZE n> (Th) ™" Y E[X2(Z — )k ((Th)— ZE .t) + 0p(h),
t=1

T -1
e = ((ﬁ{)—l > E[X2@: - z)%]) + 0p(h).
t=1

Let us now analyze the numerator of (A.73),as N — oo we get
(NT)T'ZPTWP (@) + E (M?)|X, Z))
T T
(Th)™ Y E[XZr(u. k] + (T*h)~" Z E [XieXis (E(Min(Zis) — m(Zis))) 2|
= . =1 ! . (A75)
T E[X2(Ze — DG D] + T YD E [Xie (Zie — 2)Xis (E(n(Zis) — M(Zis))) hie]

=1 s

Mﬂ WMq

-

1

Using standard properties of the kernel density estimators and assuming strict stationarity is not allowed, we can show
~ < e
(TR Y E[Xir G k] = = 3 B @m'" @pa(Kur) + 0p(h).

t=1

T
(T ™' E[X3 (Zi — 2)r i, 2)ie] = 0p(R)
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whereas following what it is established in (A.51) we can prove

T T

(TR Y E [XuXis (E(Mn(Zi) — m(Zis))) hie] = 0, (1),

t=1 s=1

~
-

(MR Y E [Xu (@i — 2)Xis (E(@n(Zis) — m(Zi))) hie] = op(H*1?).

t=1 s=1

Therefore, replacing the results of (A.74) and (A.76) in (A.73) the conditional bias expression of the one-step backfitting
estimator is

T T -1
E[M;(2)IX, 2] — m@z) = ﬁ > E[Xir(, )it l;; > E| [X2%] ]+ o0p(h?). (A76)
t=1

t=1
Finally, as in the multivariate case the variance term of the one-step backfitting estimator has the form
Var (5 2)IX, Z) = e] (Z°TWPZ2) "' ZPTwhywbZb (ZPTwhZb) e
Lol @TWE) T 2TWEDYT X, H)WZ (BT WZ) e,
LT @TWZ) T W EGYT X, WP (T W) e,
=L+hL+1, (A77)

where V is a NT x NT matrix of E(vv" |X, Z) whose ijth have the form of (A.29), #; = Qrv; and
-

o~

T T
=T K (n(Zis) — E[n(Z)IX, ZD) , ..., T (Xis (Mn(Zis) — E[Mn(Zi) X, Z1))
s=1 s=1

Analyzing each of these terms separately, under conditions 3.2-3.9 and 3.11-3.13 and using the Cramer-Wold device
and the result in (A.74) we can show thatas N — oo

-2
T T
~. 1 ~
I xzx? — Y E[X?x , A78
'S N ThX; il Th; [Xich] (A.78)
InNT
L =o, <7~> (A.79)
NTHTh

whereas I; = o, ( /% ). Note that for the result (A.79) we follow the proof proposed for (A.55) and for I5 we follow
(A.61). Then, the proof is done. W
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