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Abstract

Unlike classical principal component analysis (PCA) for multivariate data, one

needs to smooth or regularize when estimating functional principal components.

Silverman’s method for smoothed functional principal components has nice the-

oretical and practical properties. Some theoretical properties of Silverman’s

method were obtained using tools in the L2 and the Sobolev spaces. This paper

proposes an approach, in a general manner, to study the asymptotic properties of

Silverman’s method in an abstract Hilbert space. This is achieved by exploiting

the perturbation results of the eigenvalues and the corresponding eigenvectors

of a covariance operator. Consistency and asymptotic distributions of the es-

timators are derived under mild conditions. First we restrict our attention to

the first smoothed functional principal component and then extend the same

method for the first K smoothed functional principal components.
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1. Introduction

There are many situations in applied sciences where collected data are origi-

nally functions, curves or surfaces rather than vectors. Functional Data Analy-

sis (FDA) is a major branch of research in statistics which deals with data of a

continuous nature. In the recent past, a wide scope of contributions related to5

FDA has been made. The book by Horváth and Kokoszka [18] discusses theoret-

ical and practical aspects related to principal components analysis, time series,

change point detection, and spatial statistics in FDA. The essential mathemat-

ical concepts and results relevant to the theoretical development of FDA are

explored in Hsing and Eubank [19]. The recent reviews by Cuevas [8] and Goia10

and Vieu [15] survey the main ideas and current literature on regression, clas-

sification, bootstrap methods, dimension reduction, semi-parametric modeling,

and nonparametric techniques in FDA.

Since functional data are infinite-dimensional, we need to extract important

information in order to get a thorough understanding of the structure of the15

data. Functional principal component analysis (FPCA) provides a finite basis

system to represent infinite-dimensional functional data with high accuracy.

Many important features and the dominant modes of variations of data are

captured by these functional principal components. Early work on FPCA can

be found in Deville [10], Dauxois et al. [9], Besse and Ramsay [4], Ramsay and20

Dalzell [30], Castro et al. [7], and Rice and Silverman [33].

There is a rich collection of literature related to recent work on FPCA.

Chapter 8 of Ramsay and Silverman [31] gives a comprehensive discussion of

FPCA in the context of the basis representation of the functional data. The

properties of FPCA are explained through stochastic expansion and related25

results in [16]. Kokoszka and Reimherr [24] establish the asymptotic normality

of the sample principal components of functional time series data. There are

different ways of obtaining estimates in FPCA. Using penalized spline regression,

Yao and Lee [36] propose an iterative estimation method for performing FPCA.

Ocaña et al. [27] establish a procedure to formulate an algorithm to compute30
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estimates of FPCA under general settings. An approach for robust estimators

of functional principal components is given in [3].

FPCA has been applied to many theoretical and practical problems. A

direct application of FPCA is functional principal component regression; see,

e.g., Cardot et al. [6]. In the context of longitudinal data analysis, a random35

function usually represents an individual or an item observed at a small number

of random points. Hall et al. [17] discuss the application of FPCA to longitudinal

data. There are many other practical applications of FPCA in a variety of fields

such as the analysis of income density curves [23], spectroscopy data [37], and

financial time series data [22].40

Since non-smooth functional principal components are too rough for accurate

interpretations and advanced analysis, we need to smooth or regularize when

estimating them. Many approaches have been proposed to estimate smoothed

functional principal components. In one approach, data are smoothed first

and FPCA is performed on the smoothed data. Kernel smoothed FPCA is45

based on this approach, and the asymptotic properties of these principal com-

ponents are discussed in [5]. Rice and Silverman [33] propose another approach

to smoothed FPCA where the variance of principal components is penalized

based on a roughness penalty. Rather than penalizing the variance, Silver-

man [35] incorporates the roughness penalty into the orthonormality constraint50

in performing smoothed FPCA. An alternative approach to the estimation of

FPCA using penalized rank 1 approximation to the data matrix is proposed in

[20]. Two different versions of smoothed FPCA based on penalized splines with

B-splines are discussed in [1].

There are many important applications of smoothed FPCA. The penalized-55

components functional version of principal component regression and partial

least squares are introduced in [32] based on smoothed FPCA. Luo et al. [26]

apply smoothed FPCA for testing association of the entire allelic spectrum of

genetic variation. Proximity measures between functional mathematical objects

are crucial in semi-parametric and nonparametric FDA. In some situations,60

semi-metric spaces are better adapted than metric spaces for FDA. As motivated
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in Section 3.4 of Ferraty and Vieu [12], we can use FPCA as a tool to build a

class of semi-metrics. Section 4.3 of [2] exploits semi-functional partial linear

modeling, involving functional principal component semi-metrics, to forecast

electricity consumption data.65

The method for smoothed FPCA in Silverman [35] is an important approach

in many ways; see Qui and Zhao [29] for detailed discussion. This method can

be studied comprehensively using operator theory in Hilbert spaces. Qui and

Zhao [29] discuss some theoretical properties of Silverman’s method using tools

in L2 and Sobolev spaces. However, we can generalize Silverman’s method to70

an abstract Hilbert space and use perturbation theory to study its theoretical

properties in a more general manner.

In this paper, we propose a new approach to study the asymptotic prop-

erties of Silverman’s smoothed functional principal components in an abstract

separable Hilbert space. Our arguments are related to those in Dauxois et75

al. [9] and involve both Cauchy contours and resolvents. We obtain asymptotic

properties using results on the perturbed eigenvalues and eigenvectors of a sam-

ple smoothed covariance operator. Consistency and asymptotic distributions

of the estimators are derived under mild conditions. For the sake of simplicity

of presentation, first we restrict our attention to the first smoothed functional80

principal component and then extend the same method to the first K principal

components.

The paper is set out as follows. In Section 2, we give notations, definitions,

assumptions, and the detailed background. Section 3 is devoted to define Sil-

verman’s method in an abstract separable Hilbert space and to review some85

properties. Our main results concerning the asymptotic properties of smoothed

functional principal components are given in Section 4. Outlines of the proofs

of the lemmas and the theorems in Section 4 are given in Section 5.
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2. Theoretical framework

We present notations, definitions, assumptions, and theoretical background

that are used throughout. Let H stand for an infinite-dimensional separable

Hilbert space over the real numbers with inner product 〈·, ·〉 and norm ‖·‖. The

class of all bounded linear operators mapping H into itself is a Banach space,

denoted by L, with operator norm ‖·‖L. The subspace of L which contains

Hilbert–Schmidt operators is denoted by LHS , with norm ‖·‖HS . A simple

example of an operator in LHS is the operator (a ⊗ b), with a, b ∈ H, defined

by its action:

∀x∈H (a⊗ b)x = 〈x, b〉a.

A family of orthogonal projections {E(t)t∈R} on Hilbert space H is called a90

resolution of identity supported by the compact interval [m,M ] if

1. ImE(s) ⊂ ImE(t) whenever s ≤ t,
2. ImE(s) = ∩{ImE(t) : t > s},
3. E(t) = 0 if t < m,

4. E(t) = I if t > M,95

where ImE(t) represents the image of E(t); see Section V.3 in [14] for details.

Let A ∈ L be a Hermitian operator. For t ∈ R, let E(t) be the orthogonal

projection of H onto the spectral subspace of A associated with (−∞, t]. Then,

according to Theorem 3.2 in [14], {E(t)}t∈R is a resolution of identity supported

by the interval [m(A),M(A)], where

m(A) = inf
‖f‖=1

〈Af, f〉, M(A) = sup
‖f‖=1

〈Af, f〉.

Furthermore, as stated in Theorem 2.1 of [14], σ(A) ⊂ [m(A),M(A)], where

σ(A) is the spectrum of the operator A.

Let U : H→ H be a bounded Hermitian linear operator, and let {E(λ)}λ∈R

be the resolution of identity for U . Then according to the spectral theorem of

Hermitian operators,100

f(U) =
∫

σ(U)

f(λ) dE(λ) (2.1)
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for all continuous functions on σ(U); see Section V.4 of [14] and Theorem 9′ of

Chapter 31 in [25] for details. Take f(λ) = λ for all λ ∈ σ(U); we then have the

following Stieltjes integral representation for U :

U =
∫

σ(U)

λ dE(λ). (2.2)105

Let T be a bounded linear operator in H with its spectrum σ(T ), and let Ω

be a bounded open region in C with smooth boundary Γ = ∂Ω, such that

σ(T ) ⊂ Ω, δΓ = distance(Γ, σ(T )) > 0.

The resolvent of the operator T , viz.

R(z) = (zI − T )−1, z ∈ ρ(T )

is bounded and analytic on the resolvent set ρ(T ) = {σ(T )}c. Let D ⊃ Ω̄ be

an open neighborhood of Ω̄ and ϕ : D → C be an analytic function. Then the

following operator is well defined (see Section 2 in Gilliam et al. [13]):

ϕ(T ) =
1

2πi

∮

Γ

ϕ(z)R(z) dz. (2.3)

The mapping ϕ 7→ ϕ(T ) establishes an algebra homomorphism. In particular,110

it follows that for any ψ which is analytic on D,

ϕ(T )ψ(T ) = (ϕψ)(T ). (2.4)

Furthermore, let (Ω,F ,P) be a probability space and H equipped with the

Borel σ-algebra BH. A random variable in H is a mapping X : Ω → H such

that X is (F ,BH)−measurable. Assuming that E‖X‖2 <∞, we can define the

mean µ ∈ H and the covariance operator Σ : H→ H by the requirements

∀a,b∈H E〈a,X〉 = 〈a, µ〉, E〈a,X − µ〉〈X − µ, b〉 = 〈a,Σb〉,

respectively. Given a random sample X1, . . . , Xn of independent copies of X,

the sample mean and the sample standard deviation are defined by

X̄ =
1
n

n∑

i=1

Xi, Σ̂ =
1
n

n∑

i=1

(Xi − X̄)⊗ (Xi − X̄),
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respectively.

We make the following main assumptions throughout the paper:

Assumption 1. We assume that the covariance operator Σ is strictly positive115

with simple eigenvalues λk > 0, k = 1, 2, . . .

Remark 1. Since the covariance operator Σ is Hermitian and compact, we can

arrange the eigenvalues of Σ as a decreasing sequence, λ1 > λ2 > · · ·, which

converges to zero. The spectrum of Σ is σ(Σ) = {0, λ1, . . .}, which is a compact

subset in R. If {e1, e2, . . .} is a complete orthonormal basis of eigenvectors

corresponding to eigenvalues {λ1, λ2, . . .}, then the operator Σ can be written as

Σ =
∞∑

k=1

λkEk,

where Ek = ek ⊗ ek is the orthogonal projection onto the one-dimensional

subspace spanned by ek.

Assumption 2. We assume that any random element X ∈ H is mean centered

and

E ‖X‖2 < M <∞, E ‖X‖4 <∞.

3. Silverman’s method in an abstract Hilbert space

According to Silverman’s method in [35], the first smoothed functional prin-

cipal component is the maximizer of

var〈f,X〉
〈f, f〉+ α〈D1/2f,D1/2f〉

with respect to f which is an element in a sufficiently smoothed function space,120

and D is a linear differential operator. The roughness of the function f is

measured by 〈D1/2f,D1/2f〉, and the tuning parameter α > 0 controls it. It

is known from operator theory that the inverse of a linear differential operator

is an integral operator; see for instance Chapter 10 in [21]. By combining this

property of linear differential operators with the idea in Silverman’s method, we125

can define smoothed functional principal components in a more general manner.
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Here, we define smoothed functional principal components in an abstract

Hilbert space. The operators involved are also abstract, but with properties

that are similar to those in Silverman [35]. Let S ∈ L be a strictly positive

Hermitian operator. It is known that the range D of S is dense in H. The

Hermitian operator S ∈ L has a compact spectrum σ(S) contained in an interval

[0, σ], 0 < σ < ∞, with the resolution of identity {E(λ), 0 < λ ≤ σ}. Then,

according to (2.2), the operator S can be represented as

S =
∫

σ(S)

λ dE(λ).

Since S is strictly positive, the inverse of this operator R : D → H exists, and

(2.1) yields

R = S−1 =
∫

σ(S)

1
λ
dE(λ). (3.1)

Furthermore, let us consider a Hermitian operator (I + αR)1/2, where α ≥ 0.130

Since eigenvalues are strictly positive, the operator (I + αR)1/2 is one-to-one

and its inverse

Tα = (I + αR)−1/2 =
∫

σ(S)

(
λ

λ+ α

)1/2

dE(λ) (3.2)

is bounded and Hermitian on H. It is clear from (3.2) that ‖Tα‖L ≤ 1. Using

the operator Tα, let us define an inner product as follows, for all f, g ∈ D:135

〈f, g〉α = 〈f, g〉+ α〈R1/2f,R1/2g〉

= 〈f, g〉+ α〈f,Rg〉

= 〈(I + αR)1/2f, (I + αR)1/2g〉

= 〈T−1
α f, T−1

α g〉.

This is akin to weighted Sobolev inner product and norms if D is an appropriate140

function space; see Zhikov [38].

With the above settings, now we can define Silverman’s smoothed functional

principal components, in a more general manner, in the following way:

γα,1 = arg max
f∈D, f 6=0

〈f,Σf〉
‖f‖2α

= arg max
f∈D, f 6=0

〈f, T 2
αΣf〉α
‖f‖2α

,
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and if i > 1, then

γα,i = arg max
f∈D, f 6=0

〈f,Σf〉
‖f‖2α

= arg max
f∈D, f 6=0

〈f, T 2
αΣf〉α
‖f‖2α

(3.3)

such that 〈γα,i, γα,j〉α = 0 for all j < i.

In this definition, the orthonormal constraints are imposed by the inner product145

〈·, ·〉α. Hence, these smoothed principal components are orthonormal with re-

spect to 〈·, ·〉α but not 〈·, ·〉. Further, Silverman’s smoothed functional principal

components can be considered as the eigenvectors of the operator T 2
αΣ.

Since the range of the operator (I + αR)1/2 is H, we can find g ∈ H such

that (I + αR)1/2f = g. Then it follows from definition (3.3) that150

λα,1 = max
f∈D, f 6=0

〈f,Σf〉
‖f‖2α

= max
f∈D, f 6=0

〈f,Σf〉∥∥(I + αR)1/2f
∥∥2

= max
g∈H, g 6=0

〈g, (I + αR)−1/2 Σ (I + αR)−1/2
g〉

‖g‖2

= max
g∈H, g 6=0

〈g, TαΣTαg〉
‖g‖2

. (3.4)

Note that TαΣTα is the covariance operator of the random variable TαX. Let

eα,1 be an eigenvector corresponding to the largest eigenvalue λα,1 of TαΣTα.

Then, as described in Proposition 5.4 of Ocaña et al. [28], Silverman’s smoothed

first functional principal component is

γα,1 = Tαeα,1,

which is an eigenvector corresponding to the largest eigenvalue λα,1 of T 2
αΣ.

Similarly, we can find higher order principal components.155

The population covariance operator Σ is usually unknown to us. Hence,

we have to use the eigenvectors of a sample covariance operator Σ̂ to esti-

mate smoothed functional principal components. Using Σ̂ we estimate λα,1 and

eα,1 by

λ̂α,1 = largest eigenvalue of TαΣ̂Tα

and

êα,1 = arg max
g∈H, g 6=0

〈g, TαΣ̂Tαg〉
‖g‖2

,
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respectively. Hence, Silverman’s smoothed first sample principal component is

γ̂α,1 = Tαêα,1, (3.5)

which is an eigenvector of T 2
αΣ̂ corresponding to the eigenvalue λ̂α,1.

4. Asymptotic theory

In this section, we discuss some asymptotic properties of Silverman’s smoothed

functional principal component and the corresponding eigenvalues. With a view

towards (3.4), let us write

Σα = TαΣTα, Πα = Σα − Σ.

The perturbation Πα of Σ is Hermitian and bounded. In order to study the160

asymptotic behavior of Πα, we consider the following inequality:

‖Σα − Σ‖L = ‖TαΣTα − Σ‖L
≤ ‖TαΣTα − ΣTα‖L + ‖ΣTα − Σ‖L . (4.1)

The first part of this decomposition is treated as

‖TαΣTα − ΣTα‖L = ‖E (TαX ⊗ TαX)− E (X ⊗ TαX)‖L165

≤ E ‖(TαX −X)⊗ TαX‖L
≤ E {‖(Tα − I)X‖ ‖X‖} , (4.2)

and the second part is treated as

‖ΣTα − Σ‖L = ‖E(X ⊗ TαX)− E(X ⊗X)‖L
≤ E ‖X ⊗ (TαX −X)‖L170

≤ E {‖(Tα − I)X‖ ‖X‖} . (4.3)

Hence, combining (4.1), (4.2), and (4.3), we obtain

‖Σα − Σ‖L ≤ 2E {‖(Tα − I)X‖ ‖X‖} .

The following lemma reveals the asymptotic behavior of E ‖(Tα − I)X‖2.
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Lemma 1. Under Assumption 2 and Definition (3.2), we have

E ‖(I − Tα)X‖2 = O(α2) as α→ 0.

Since E ‖X‖2 < ∞, Lemma 1 and the Cauchy–Schwarz inequality yield the

following result:

‖Σα − Σ‖L = O(α) as α→ 0. (4.4)175

Similarly, let us write

Σ̂α = TαΣ̂Tα, Π̂α = Σ̂α − Σ,

where Σ̂α the sample analogue to Σα, and Π̂α is random. Under the condition

E ‖X‖4 < ∞, Dauxois et al. [9] showed that there exists a Gaussian random

element G with zero mean in LHS (and hence in L by the Continuous Mapping

Theorem), such that, as n→∞,

√
n (Σ̂− Σ) G, (4.5)180

where  denotes convergence in distribution. Using (4.4) and (4.5), we see

that, as α→ 0 and n→∞,

‖Σ̂α − Σ‖L = ‖Σα − Σ + Σ̂α − Σα‖L

≤ ‖Σ− Σα‖L + ‖Tα‖L ‖Σ̂− Σ‖L ‖Tα‖L
= O(α) +Op

(
1/
√
n
)
. (4.6)185

This means that the random perturbation Π̂α of Σ is small for a large sample

size n and a small value of smoothing parameter α.

For the asymptotic expansion of eigenvalues and its corresponding eigenvec-

tors of Σ̂α, we need to consider the convergence rate of Π̂α. Therefore, let us

take190

α = α(n) = o(n−1) (4.7)

and then (4.6) yields

‖Π̂α(n)‖L = Op
(

1√
n

)
. (4.8)

Moreover, we have the following lemma, which is useful in discussing the asymp-

totic distributions of the smoothed functional principal components.195
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Lemma 2. Under Condition (4.7),

‖√n(Σ̂α(n) − Σ̂)‖L = op(1).

Now observe that

‖T 2
αΣ̂− Σ‖HS = ‖T 2

αΣ− Σ + T 2
αΣ̂− T 2

αΣ‖HS

≤ ‖T 2
αΣ− Σ‖HS + ‖T 2

α‖L‖Σ̂− Σ‖HS .200

Using Lemma 1, we can show that ‖T 2
αΣ−Σ‖HS = O(α) as α→ 0. Dauxois et

al. [9] showed, by exploiting the Strong Law of Large Numbers in Hilbert spaces,

that ‖Σ̂ − Σ‖HS coverages a.s. to 0 as n → ∞. Hence, under Condition (4.7),

T 2
α(n)Σ̂ coverages a.s. to Σ in LHS as n→∞; let Ω1 be the convergence set.

We know that Silverman’s sample smoothed functional principal components205

are the eigenvectors of the compact operator T 2
αΣ̂. For i ∈ I, where I is either a

beginning section of N or N itself, let γ̂α,i be the normalized eigenvector corre-

sponding to the eigenvalue λ̂α,i of the operator T 2
αΣ̂. Then, under Assumptions

1–2 and Condition (4.7), we can deduce that γ̂α(n),i converges to ei on Ω1 as

n → ∞, and λ̂α(n),i converges λi on Ω1 as n → ∞; see p. 1091 in [11] and the210

proofs of Propositions 3 and 4 in [9] for details.

4.1. The spectrum of a sample smoothed covariance operator

As shown in (3.5), estimators of Silverman’s smoothed functional principal

components are closely related to the eigenvectors of Σ̂α(n). Thus, it is necessary

to study the spectral properties of a sample smoothed covariance operator Σ̂α(n)215

in order to get the asymptotic properties of estimators of Silverman’s smoothed

functional principal components.

We can use the resolvent R(z), the spectrum of the covariance operator

Σ, and the random perturbation Π̂α(n) to obtain the spectrum of Σ̂α(n). The

operator R(z) = (zI −Σ)−1 is the resolvent of the covariance operator Σ and it220

is well defined and bounded for all z ∈ ρ(Σ) = {σ (Σ)}c = {0, λ1, . . .}c. For all

z ∈ ρ(Σ), it is known that

‖R(z)‖L =
1
δ(z)

, (4.9)
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Γ1

Figure 1: Contours which separate largest eigenvalue λ1 of the covariance operator Σ from

the other eigenvalues.

where δ(z) = distance(z, σ(Σ)).

Now we select two contours Γ1 and Γ2, as described below, such that the225

largest eigenvalue λ1 of Σ is in Γ1 and the other eigenvalues are in Γ2. Let ∆1 ∈ C

be an open disc centered at eigenvalue λ1 with radius 0 < τ < (λ1 − λ2)/2,

and Γ1 denote its smooth boundary. Also consider the smooth contour Γ2 at

distance τ from [0, λ2] and denote its interior by ∆2; see Figure 1. Let us write

Γ = Γ1 ∪ Γ2 and ∆ = ∆1 ∪∆2 such that σ (Σ) ⊂ ∆.230

The asymptotic expansion for the perturbed eigenvalues and eigenvectors

are only valid for sufficiently small perturbations. Therefore, let us introduce a

subset

Ωn = {ω ∈ Ω : ‖Π̂α(n)(ω)‖L ≤ n−1/3}, (4.10)

of the sample space Ω, and let Pr(Ωn) be the probability of the subset Ωn. Then235

we have

Pr(Ωn)→ 1 as n→∞, (4.11)

under the condition ‖Π̂α(n)‖L = Op (1/
√
n) .

With the above contours fixed, it is clear from (4.9) and (4.10) that there

exists n0 ∈ N such that240

∀n≥n0 ∀ω∈Ωn sup
z∈Γ
‖Π̂α(n)(ω)R(z)‖L <

1
2
. (4.12)

Henceforth we will tacitly assume that n is at least n0. Let R̂α(n)(z) be the

13



resolvent of Σ̂α(n), whenever defined. Then for all ω ∈ Ωn the expansion

R̂α(n)(z) = (zI − Σ̂α(n))−1 = {zI − (Π̂α(n) + Σ)}−1

= (R−1(z)− Π̂α(n))−1 = R(z){I − Π̂α(n)R(z)}−1 (4.13)245

is well defined for all z /∈ ∆. In particular, the above expansion is defined for

z ∈ Γ = Γ1 ∪ Γ2, and hence the spectrum of Σ̂α(n) satisfies

σ(Σ̂α(n)) ⊂ ∆1 ∪∆2 = ∆.

Therefore, all the eigenvalues of Σ̂α(n) are in ∆ for a sufficiently large n.

From (2.3), it is well known that

1∆̄1
(Σ) =

1
2πi

∮

Γ

1∆̄1
(z)R(z) dz = E1 = e1 ⊗ e1,

where E1 is the eigenprojection corresponding to the eigenvalue λ1 of covariance

operator Σ. Similarly, let us define

Êα(n),1 = 1∆̄1
(Σ̂α(n)) =

1
2πi

∮

Γ

1∆̄1
(z)R̂α(n)(z) dz.

This operator is Hermitian and (2.4) yields

Êα(n),1Êα(n),1 = 1∆̄1
(Σ̂α(n))1∆̄1

(Σ̂α(n)) = 1∆̄1
.1∆̄1

(Σ̂α(n))250

=
1

2πi

∮

Γ

1∆̄1
(z)1∆̄1

(z)R̂α(n)(z) dz = Êα(n),1.

The operator Êα(n),1 is Hermitian and idempotent, and hence it is an orthogonal

projection operator.

In addition, it can be shown that ‖E1 − Êα(n),1‖L < 1 for sufficiently

small Π̂α(n); see, e.g., pp. 372–373 in [34]. Thus the operator Êα(n),1 is one-

dimensional, and we can find an element êα(n),1 ∈ H with ‖êα(n),1‖ = 1 such

that

Êα(n),1 = êα(n),1 ⊗ êα(n),1.

Using Corollary 3.2 in Gilliam et al. [13], it can be shown that

Σ̂α(n)êα(n),1 = 〈Σ̂α(n)êα(n),1, êα(n),1〉êα(n),1 = λ̂α(n),1êα(n),1.
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Thus, êα(n),1 is an eigenvector, and Êα(n),1 is the one-dimensional eigenpro-

jection corresponding to the largest eigenvalue λ̂α(n),1 of Σ̂α(n). Hence, for a255

sufficiently small perturbation Π̂α(n), the only point of σ(Σ̂α(n)) inside the con-

tour Γ1 is λ̂α(n),1.

4.2. Asymptotic results for the smoothed first functional principal component

The perturbation Π̂α(n) satisfies (4.12) on Ωn, and hence it follows from

Corollary 3.3 in Gilliam et al. [13] that, on Ωn,260

êα(n),1 = e1 +Q1Π̂α(n)e1 +O(‖Π̂α(n)‖2L), (4.14)

where

Q1 =
∞∑

j=2

1
λ1 − λj

Ej .

Furthermore, Corollary 3.4 in Gilliam et al. [13] yields, on Ωn,

λ̂α(n),1 = λ1 + 〈Π̂α(n)e1, e1〉+O(‖Π̂α(n)‖2L). (4.15)

Now we have the following main result.

Theorem 1. Under Assumptions 1–2 and Condition (4.7),
√
n
(
êα(n),1 − e1

)
 265

Q1Ge1 in H and
√
n (λ̂α(n),1 − λ1) 〈Ge1, e1〉 in R, where  denotes conver-

gence in distribution.

The following corollary gives the asymptotic distribution of Silverman’s

smoothed first sample principal component γ̂α(n),1.

Corollary 1. Under Assumptions 1–2 and Condition (4.7),
√
n (γ̂α(n),1−e1) 270

Q1Ge1 in H.

So far we have focused on the first smoothed functional principal component

and the corresponding eigenvalue. However, under some mild conditions, we

can easily derive multivariate asymptotic distributions for the first K smoothed

principal components and the corresponding eigenvalues.275

15



4.3. Joint asymptotic distributions

For fixed positive integer K, let λ1 > · · · > λK > 0 be the first K eigen-

values of Σ. Then, we can find ε > 0 such that K + 1 intervals [λ1 − ε, λ1 +

ε], . . . , [0, λK+1 + ε] are disjoint. For each k ∈ {1, . . . ,K}, let Γk be the smooth

boundary of the circle Ck with center λk and radius ε and ∆k be the interior280

of the circle Ck. Also consider the smooth contour ΓK+1 at distance 0 < τ < ε

from [0, λK+1] and denote its interior by ∆K+1. We take Γ =
⋃K+1
k=1 Γk and

∆ =
⋃K+1
k=1 ∆k such that σ (Σ) ⊂ ∆. It is clear that the only point of the

spectrum of the covariance operator Σ in ∆k is λk for each k ∈ {1, . . . ,K}.
As shown in (4.13), the resolvent operator R̂α(n)(z) is well defined for all

ω ∈ Ωn and z /∈ ∆ =
⋃K+1
k=1 ∆k. In particular, R̂α(n)(z) is well defined for all

z ∈ Γ =
⋃K+1
k=1 Γk. Thus, for a sufficiently small perturbation Π̂α(n),

σ(Σ̂α(n)) ⊂
K+1⋃

k=1

∆k = ∆.

Then, similarly to (4.14) and (4.15), we can obtain the asymptotic expansions285

of the eigenvalue λ̂α(n),k and the corresponding eigenvector êα(n),k of the sample

smooth covariance operator Σ̂α(n), viz.

λ̂α(n),k = λk + 〈Π̂α(n)ek, ek〉+O(‖Π̂α(n)‖2L) on Ωn, 1 ≤ k ≤ K (4.16)

and

êα(n),k = ek +QkΠ̂α(n)ek +O(‖Π̂α(n)‖2L) on Ωn, 1 ≤ k ≤ K, (4.17)290

where

Qk =
∞∑

j 6=k

1
λk − λj

Ej . (4.18)

Then, by exploiting (4.16) and (4.17), we obtain the following result.

Proposition 1. Under Assumptions 1–2 and Condition (4.7)

{√n(êα(n),k − ek), 1 ≤ k ≤ K} (Q1Ge1, . . . , QKGeK) in HK ,

{√n
(
λα(n),k − λk

)
, 1 ≤ k ≤ K} (〈Ge1, e1〉, . . . , 〈GeK , eK〉) in RK ,

where  denotes convergence in distribution.
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Similarly, we have the following result for Silverman’s smoothed functional prin-295

cipal components.

Corollary 2. Under Assumptions 1–2 and Condition (4.7),

{√n(γ̂α(n),k − ek), 1 ≤ k ≤ K} (Q1Ge1, . . . , QKGeK) in HK .

5. Proofs

In this section, we provide outlines of the proofs of the lemmas and the

theorems stated in Section 4.

Proof of Lemma 1. Exploiting (3.1) and (3.2), we obtain

(I − Tα) = I − (I + αR)−1/2 =
∫ σ

0

{
1−

(
λ

λ+ α

)1/2
}
dE(λ).

Let Y be a random variable in D ⊂ H. It follows from (3.1) that300

‖(I − Tα)Y ‖2 =
∫ σ

0

{
1−

(
λ

λ+ α

)1/2
}2

d ‖E(λ)Y ‖2

≤
∫ σ

0

(
α

λ+ α

)2

d ‖E(λ)Y ‖2

≤ α2 ‖RY ‖2 . (5.1)

Let X be a random variable in H. Since D is dense in H, for all ε > 0, there

exists a random element Yε ∈ D such that305

‖X − Yε‖ ≤
ε√
8
. (5.2)

Then, observe that

‖(I − Tα)X‖2 = ‖(I − Tα) (X − Yε) + (I − Tα)Yε‖2

≤ 2 ‖(I − Tα) (X − Yε)‖2 + 2 ‖(I − Tα)Yε‖2

≤ 2 ‖I − Tα‖2L ‖X − Yε‖
2 + 2 ‖(I − Tα)Yε‖2 .310

Since ‖Tα‖ ≤ 1, (5.1) and (5.2) yield E ‖(I − Tα)X‖2 ≤ ε2 + 2α2E ‖RYε‖2.

The random variable RYε is in H, and hence it follows from Assumption 2

that E ‖RYε‖ < M < ∞. Since ε > 0 is an arbitrary value, we conclude that

E ‖(I − Tα)X‖2 = O(α2) as α→ 0. �
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Proof of Lemma 2. Suppose X1, . . . , Xn are independent copies of a random315

element X ∈ H. Let us take ‖√n(Σ̂α− Σ̂)‖L = ‖√nẐα‖L. Then using Markov’s

inequality and the triangle inequality, we find that, for all ε > 0,

Pr
(∥∥√nZα

∥∥
L > ε

)
= Pr

(∥∥∥∥∥
1√
n

n∑

i=1

(TαXi ⊗ TαXi −Xi ⊗Xi)

∥∥∥∥∥
L
> ε

)

≤ 1√
nε

n∑

i=1

E ‖(TαXi ⊗ TαXi −Xi ⊗Xi)‖L .

Since X1, . . . , Xn are independent and ‖Tα‖L ≤ 1,320

Pr
(
‖√nZα‖L > ε

)
≤
√
n

ε
E ‖(TαX ⊗ TαX −X ⊗X)‖L

=
√
n

ε
E ‖TαX ⊗ (TαX −X) + (TαX −X)⊗X‖L

≤
√
n

ε
E (‖TαX‖ ‖TαX −X‖+ ‖TαX −X‖ ‖X‖)

≤ 2
√
n

ε
E {‖X‖ ‖(Tα − I)X‖} .

Since E ‖X‖2 <∞, it follows from Lemma 1 and the Cauchy–Schwarz inequality325

that

Pr
(
‖√nZα‖L > ε

)
≤ 2
√
nO(α)
ε

.

Since we take α = α(n) = o(n−1) as n→∞,

Pr(‖√n(Σ̂α(n) − Σ̂)‖L > ε) = Pr
(
‖√nZα(n)‖L > ε

)
= o

(
1/
√
n
)
.

This yields330

‖√n(Σ̂α(n) − Σ̂)‖L = op(1) as n→∞.

�

Proof of Theorem 1. The combination of (4.8), (4.14), and (4.11) yields

√
n
(
êα(n),1 − e1

)
=
√
n
{

(êα(n),1 − e1)1Ωn + (êα(n),1 − e1)1Ωc
n

}

=
√
n {Q1Π̂α(n)e1 +O(‖Π̂α(n)‖2)}1Ωn

+335

√
n (êα(n),1 − e1)1Ωc

n

=
√
nQ1Π̂α(n)e1 + op(1) as n→∞.
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Now observe that

√
n (Π̂α(n)) =

√
n (Σ̂α(n) − Σ) =

√
n (Σ̂− Σ) +

√
n (Σ̂α(n) − Σ̂). (5.3)

Thus, (4.5) and Lemma 2 give the first result.340

Similarly, we can obtain that

√
n (λ̂α(n) − λ) =

√
n 〈Π̂α(n)e1, e1〉+ op(1) as n→∞,

by exploiting (4.8), (4.14), and Lemma 2. Hence, the second result follows from

(4.5), and (5.3). �

Proof of Corollary 1. Silverman’s smoothed first sample principal compo-

nent γ̂α(n),1 is the eigenvector corresponding to the largest eigenvalue λ̂α(n),1

of T 2
αΣ̂. Now let us take345

Σ̂α = T 2
αΣ, Π̂α = Σ̂α − Σ.

Under the condition α = α(n) = o(n−1), it follows from Lemma 1 that

‖Π̂α(n)‖L = ‖T 2
α(n)Σ̂− Σ‖L = Op

(
1/
√
n
)

as n→∞. (5.4)

We select a subset Ωn of the sample space Ω, such that

Ωn = {ω : ‖Π̂α(n)(ω)‖L = ‖T 2
α(n)Σ̂− Σ‖L ≤ n−1/3},

and it follows from (5.4) and (4.11) that Pr(Ωn) → 1, as n → ∞. On this

subset Ωn, the perturbation Π̂α(n) = (T 2
α(n)Σ̂− Σ) satisfies (4.12). Thus, using350

Corollary 3.3 and Remark 3.6 in Gilliam et al. [13], we obtain that

γ̂α(n),1 = e1 +Q1Π̂α(n)e1 +O(‖Π̂α(n)‖2L) on Ωn. (5.5)

Similar to Lemma 2, it can be shown that

‖√n (Σ̂α(n) − Σ̂)‖L = ‖√n (T 2
α(n)Σ̂− Σ̂)‖L = op(1) as n→∞. (5.6)

By exploiting (5.4), (5.5), and (5.6), we complete this proof similarly to the355

proof of the first result of Theorem 1 . �
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Proof of Proposition 1. By exploiting (4.16), (4.17), and Condition (4.7),

we can obtain the following results similarly to the proof of Theorem 1. For all

k ∈ {1, . . . ,K}, and as n→∞,

√
n (λ̂α(n),k − λk) =

√
n 〈Π̂α(n)ek, ek〉+ op(1) (5.7)360

and
√
n
(
êα(n),k − ek

)
=
√
nQkΠ̂α(n)ek + op(1). (5.8)

Now define linear maps φk : L → H such that for any T ∈ L and all k ∈
{1, . . . ,K},

φkT = QkTek, (5.9)365

where L is the Banach space of all bounded operators which map H into itself.

It is clear that the φk’s are bounded, and hence they are continuous. Then,

define a linear map ΦK : L → HK such that ΦK = (φ1, . . . , φK), where HK is

the product space of K copies of H. Since the φk’s are continuous, ΦK is also

a continuous map. We know from (5.3), (4.5), and Lemma 2 that
√
n (Π̂α(n))370

converges in distribution to a Gaussian random element G with mean zero.

Hence, according to the Continuous Mapping Theorem,

ΦK(
√
n Π̂α(n)) ΦKG = (Q1Ge1, . . . , QKGeK). (5.10)

By (5.8) and (5.10),

{√n (êα(n),k − ek) : 1 ≤ k ≤ K} (Q1Ge1, . . . , QKGeK) in HK .

Now consider linear maps ψk : L → R, 1 ≤ k ≤ K such that for any T ∈ L,

ψkT = 〈Tek, ek〉. Then define ΨK = (ψ1, . . . , ψK) which is a linear map from375

L to RK . Since the ψk’s are continuous maps, Ψk is also continuous. Thus, the

following result follows from the Continuous Mapping Theorem:

ΨK(
√
nΠα(n)) ΨKG = (〈Ge1, e1〉, . . . , 〈GeK , eK〉) . (5.11)

Then, it follows from (5.7) and (5.11) that

{√n
(
λα(n),k − λk

)
: 1 ≤ k ≤ K} (〈Ge1, e1〉, . . . , 〈GeK , eK〉) in RK .

�
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Proof of Corollary 2. We can get the following result similarly to (5.5): for

all k ∈ {1, . . . ,K},

γ̂α(n),k = ek +QkΠ̂α(n)ek +O(‖Π̂α(n)‖2L) on Ωn.

Then (5.4) and (4.11) yield that, for all k ∈ {1, . . . ,K}, and as n→∞,380

√
n
(
γ̂α(n),k − ek

)
=
√
nQkΠ̂α(n)ek + op(1). (5.12)

By exploiting (5.9), (5.10), and (5.12), we complete this proof similarly to

the proof of the first result of Proposition 1. �
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