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ct

y, the shrinkage approach has increased its popularity in theoretical and applied statistics, especially, wh
timators for high-dimensional quantities have to be constructed. A shrinkage estimator is usually obtained
g the sample estimator towards a deterministic target. This allows to reduce the high volatility that is co
resent in the sample estimator by introducing a bias such that the mean-square error of the shrinkage estima
s smaller than the one of the corresponding sample estimator. The procedure has shown great advantages e
in the high-dimensional problems where, in general case, the sample estimators are not consistent witho

g structural assumptions on model parameters.
his paper, we review the mostly used shrinkage estimators for the mean vector, covariance and precision m
he application in portfolio theory is provided where the weights of optimal portfolios are usually determin

tions of the mean vector and covariance matrix. Furthermore, a test theory on the mean-variance optimality
portfolio based on the shrinkage approach is presented as well.

ds: Covariance matrix, High-dimensional asymptotics, High-dimensional optimal portfolio, Mean vector,
n matrix, Random matrix theory, Shrinkage estimation
SC: Primary 62H12, Secondary 62F12, 62H15, 62P05

oduction

h-dimensional inference procedures play an important role in many fields of science, like in economics,
environmetrics, physics, signal processing, etc., when a statistical model is needed to be fitted to real da
ance, high-dimensional optimal portfolios are well motivated by the rapid development of technology, whi
s investors opportunities to construct a portfolio consisting of a large number of assets traded simultaneous
he world. Moreover, the availability of high-frequent financial data provides a considerable amount of info
which can be used in the construction of optimal portfolios.

remarkable that the application of the traditional sample estimators is not recommendable in the hig
ional setting. Although the sample estimators work well when the process dimension is fixed and is s
ly smaller than the number of observations, it does not longer hold when the two quantities are comparab
mer case is often used in statistics and it is called the standard asymptotic regime (see, [62]). Under th
otic regime the traditional sample estimators, like the maximum likelihood estimator or method of momen
or, are usually consistent under some regularity conditions. However, it does not longer hold true when t
dimension is comparable to or even larger than the sample size. Here, we are in the situation when both t
of assets and the sample size can tend to infinity. This double asymptotic regime has an interpretation wh

o between the process dimension and the sample size, also known as the concentration ratio, tends to a fin
s the sample size tends to infinity. This asymptotic regime is known as a high-dimensional asymptotics
gorov” asymptotics (see, e.g., [32]). Under the high-dimensional asymptotics the sample estimators beha
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predictable and they are far from the optimal ones. In general, the greater the concentration ratio the worse a
ple estimators. This well-known problem in statistics is called ”the curse of dimensionality”.
ently, new estimators came in play which are biased but can significantly reduce the mean square error
ison to the traditional estimators. These estimators are known as shrinkage estimators and were introduc
eminal paper of Stein (see, [80]). A shrinkage estimator is usually defined as a linear combination of t
onding sample estimator and a known target. The corresponding coefficients in the linear combination are oft
hrinkage intensities. It is a very challenging task to find consistent estimators for the shrinkage intensities.
first shrinkage estimator was developed for the mean vector of a multivariate normal distribution with ident

nce matrix ([57, 80]) and was extended to the case of an arbitrary covariance matrix in [5, 7, 8, 40, 46, 49, 6
ese results were obtained in the standard asymptotic regime, while a high-dimensional version of the Jame
pe estimator was proposed by [37]. Recently, an optimal shrinkage estimator obtained by minimizing t
d quadratic loss function was derived in [83], while a shrinkage estimator of the mean vector shrunk towar
rary target vector was introduced in [22].
situation becomes more challenging when the covariance matrix is estimated and, especially, when one nee
its inverse, the precision matrix. There are some significant improvements when the covariance matrix ha
structure, e.g. sparse, low rank etc. (see, [33, 35, 74]). The results for the covariance matrix that possesse
tructure were derived in [41–43]. In these cases the covariance matrix can consistently be estimated even f
mensional data. However, when no information about a specific structure of the covariance matrix is availab
nkage estimator seems to be the most favorable approach in the high-dimensional setting (cf., [20, 64, 6
inkage estimators for the precision matrix were derived in [21, 61, 82], among others.
rder to handle the curse of dimensionality in the case of the high-dimensional asymptotic regime the resu
ndom matrix theory are usually used. Random matrix theory is a very fast growing branch of probabil
ith many applications in statistics and finance. It studies the behavior of the eigenvalues of random matric

he double asymptotic regime (see, e.g., [2–4, 14, 24, 28, 48, 67, 75, 78]). It is discovered that appropriate
med random matrix at infinity has a nonrandom behavior and showed how to find the limiting density of
lues. In particular, Silverstein and Bai [78] proved under very general conditions that the Stieltjes transfo
ample covariance matrix tends almost surely to a nonrandom function which satisfies some equation. Th
n was first derived by [67] who showed how the real covariance matrix and its sample estimator are connect
ty, while a general form of this equation was given in [75]. Finally, using the results of random matrix theo
al tests on the structure of the covariance matrix were suggested by [15, 36, 45, 51, 85, 87].
roved estimators of the model parameters constructed by employing random matrix theory, especially shrink
stimators, are widely used in many fields of science, like in signal processing and finance (see, [34, 39, 4
84, 86]). For instance, an improved calibration of the high-dimensional precision matrix was suggested

hile the applications of random matrix theory to signal processing and portfolio theory was discussed in [4
more, several authors showed that the shrinkage estimators applied to portfolio weights indeed lead to bet
(see, e.g., [23, 26, 47, 50, 64]. In particular, the shrinkage estimator for the covariance matrix was appli
truct an improved estimator of the weights of the global minimum variance portfolio by [64], while the m

shrinkage estimator obtained by shrinking the portfolio weights directly was suggested in [50]. The sam
s also used by [47] who constructed a feasible shrinkage estimator for the global minimum variance portf

ch dominates the traditional sample estimator. More recently, the shrinkage estimators based on an arbitra
ector of portfolio weights were derived by [26] and [23] in the case of the global minimum variance portfo
an-variance portfolio, respectively. Finally, statistical test theory on the optimality of portfolio weights w
ed in [18, 19] that is based on the shrinkage approach, while sequential procedures derived on the weights
portfolios were established in [9, 10].
rest of the paper is organized as follows. In Section 2 we present the shrinkage estimator for the hig

ional mean vector, covariance matrix and precision matrix. Recent results of the application of the shrinka
h in finance is discussed in Section 3. Discussion of the results is provided in Section 4.

nkage estimation of the mean vector and covariance matrix

Xn = (xi j)i∈{1,...,p}, j∈{1,...,n} with xi j be independent and identically distributed with zero mean and varian
one. Throughout the paper it is assumed that the data matrix Yn = [y1, . . . , yn] follows the stochastic mod
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ed as
Yn = µ1>n + Σ1/2Xn, (

n is the n-dimensional vector of ones and Σ1/2 is a square root of the positive definite matrix Σ. We furth
that E(|xi j|4+ε) < ∞ for any small number ε > 0. No specific distributional assumption is imposed on t

t of Xn.
er model (1) the observation vectors y1, . . . , yn are independent and identically distributed with E(y j) = µ a

j) = Σ. The two parameters µ and Σ are unknown quantities which have to be inferred by using the observati
Yn. The most commonly used estimators of µ and Σ are the sample estimators expressed as

ȳn =
1
n

n∑

i=1

yn =
1
n

Yn1n and Sn =
1

n − 1

n∑

i=1

(yn − ȳn)(yn − ȳn)> =
1

n − 1
Yn

(
In − 1

n
1n1>n

)
Y>n , (

n denotes the identity matrix of size n. Under the additional assumption that yi are multivariate norma
ted, ȳn and (n − 1)Sn/n are also the maximum likelihood estimators for µ and Σ and, consequently, they a
otically efficient when p is finite and n tends to infinity, i.e., in the classical asymptotic regime. Howev
e estimators possess high variability when p becomes comparable to n. As a result, their application to t
mensional problems is not desired and new approaches should be employed instead.
rder to reduce the variability which is present in the traditional sample estimators, for example in ȳn and S
nkage estimators have been developed in statistical literature, which are usually (slightly) biased but, on oth
ey possess considerably smaller variance in comparison to the sample estimators. A shrinkage estimator fo

of interest is not uniquely defined and is obtained by minimizing a risk function, which may depend on t
tion at hand. In Section 2.1 we review the existent shrinkage estimators for the mean vector, while Sectio
2.3 present shrinkage estimators for the covariance matrix and the precision matrix. Later, in Section 3 t

ge approach is a applied to infer the weights of optimal portfolios, which are usually present as functions
n vector and covariance (precision) matrix.

rinkage estimation of the mean vector
rinkage estimator for the mean vector µ is usually derived by minimizing the quadratic loss function express

L(µ̂n,µ) = (µ̂n − µ)>Σ−1(µ̂n − µ) (

xpected value, for an arbitrary estimator µ̂n,

R(µ) = E
(
(µ̂n − µ)>Σ−1(µ̂n − µ)

)
. (

ending on the imposed condition on Σ, n, and p several shrinkage estimators exist in the literature which w
below.
James-Stein shrinkage estimator for the mean vector was derived under the assumption that the covarian
Σ is the identity matrix and that n > p > 2. It is given by

µ̂n,JS =

(
1 − p − 2

nȳ>n ȳn

)
ȳn. (

he concentration ratio c < 1 with c defined by p/n → c as n → ∞, a modified version of the James-Ste
or for n > p ≥ 3 and an arbitrary covariance matrix is expressed as

µ̂n,mJS =

(
1 − p − 2

n − p + 2
1

ȳ>n S−1
n ȳn

)
ȳn, (

n is the sample estimator of Σ given in (2).
p > n ≥ 3 and an arbitrary covariance matrix Σ, a Baranchik type shrinkage estimator for the mean vector w

ed in [37] and it is given by

µ̂n,B =

{
Ip − rSnS+

n

ȳ>n S+
n ȳn

}
ȳn,

3
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{n − 1, p} ≥ 3. The symbol S+
n denotes the Moore-Penrose inverse of Sn. It was proved in [37], that µ̂

tes the sample estimator ȳn under the quadratic less when

0 ≤ r ≤ 2(min{n − 1, p} − 2)
n + p − 2 min{n − 1, p} + 2

.

t and Wells [37] considered a further generalization of the James-Stein estimator in the case of p > n express

µ̂n,CW = (Ip − SnS+
n )ȳn +

{
1 − a

ȳ>n S+
n ȳn

}

+

SnS+
n ȳn,

+ = max(b, 0). They argued that µ̂n,CW dominates the James-Stein shrinkage estimator when

a =
n − 3

p − n + 4
.

rther shrinkage estimator for the mean vector was derived in [83] who suggested to shrink the sample estima
e unity target vector. The corresponding shrinkage coefficients are found by minimizing the expected quadra
. This leads to the following shrinkage estimator (see, [83]):

µ̂n,W =
Z1,n − Z4,n

Z1,n + Z2,nZ4,n
ȳn +

Z2,nZ3,n

Z1,n + Z2,nZ4,n
1n, (

Z1,n =
1

p(n − 1)

∑

i, j

y>n,iS
+
n yn, j, Z2,n =

1
np


n∑

k=1

y>n,kS+
n yn,k − 1

n − 1

∑

i, j

y>n,iS
+
n yn, j

 ,

Z3,n =
1

n1>n S+
n 1n

n∑

k=1

1>n S+
n yn,k, Z4,n =

1
p(n − 1)1>n S+

n 1n

∑

i, j

1>n S+
n yn,iy>n, jS

+
n 1n,

n. The shrinkage estimator (7) is computationally complicated due to the presence of the double sum over
its definition. In order to simplify its computation in practice, the application of its asymptotic counterp

gested in [83].
he case of an arbitrary shrinkage target vector µ0, a linear shrinkage estimator that minimizes the quadra
ction (3) was developed by [22]. For c < 1, it is given by

µ̂n,BOP = α̂meanȳn + β̂meanµ0 , (

α̂mean =

(
ȳ>n S−1

n ȳn − p/n
1−p/n

)
µ>0 S−1

n µ0 − (ȳ>n S−1
n µ0)2

ȳ>n S−1
n ȳnµ>0 S−1

n µ0 − (ȳ>n S−1
n µ0)2 (

β̂mean = (1 − α̂)
ȳ>n S−1

n µ0

µ>0 S−1
n µ0

. (1

rinkage estimation of the covariance matrix

he derivation of the shrinkage estimation of the covariance matrix several loss functions are considered in t
re. Below, we review the approaches which are obtained by minimizing the quadratic loss function which
by the Frobenius norm in the matrix case expressed as

L(Σ̂n,Σ) = ||Σ̂n − Σ||2F (1

ven estimator Σ̂n of Σ with ||A||2F = tr(AA>) for a square matrix A.

4
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rst, Ledoit and Wolf ([64]) proposed a linear shrinkage estimator of the covariance matrix Σ which shrin
ple covariance matrix Sn to the identity matrix and studied its behaviour in the high-dimensional setting. Th
or shrinks the eigenvalues of the sample covariance matrix linearly and is obtained by minimizing the expect
ic loss function expressed as

R(Σ) = E
(
||Σ̂n − Σ||2F

)
. (1

eneralization of the linear shrinkage estimator of [64] was suggested in [20] where the shrinkage target w
to be an arbitrary nonrandom matrix Σ0. In contrast to the Ledoit and Wolf linear shrinkage estimator of t
nce matrix, the new shrinkage estimator was derived by minimizing the loss function (11) directly. It is giv

Σ̂n;BGP = α̂covSn + β̂covΣ0, (1

α̂cov = 1 −
1
n
||Sn||2tr ||Σ0||2F

||Sn||2F ||Σ0||2F −
(
tr(SnΣ0)

)2 (1

β̂cov =
tr(SnΣ0)
||Σ0||2F

(1 − α̂cov) , (1

|A||tr = tr
[(

AA>
)1/2

]
denotes for the trace norm and Σ0 is assumed to possess the bounded trace norm. T

ge estimator (13) was derived under the assumption E(|xi j|4+ε) < ∞, while the shrinkage estimator in [6
s the existent of 8th moments.

linear shrinkage estimator of [64] also differs from (13) in its structure. First, it is derived for the speci

atrix Σ0 = 1/pI. Second, the expression of α̂cov is different in two approaches. Namely, instead of
1
n
||Sn||2tr t

and Wolf shrinkage estimator uses
1
n2

n∑
i=1
||yiy>i − Sn||2F where yi are the i-th columns of the observation mat

defined by

α̂cov;LW = 1 − min{b̂2
cov, d̂

2
cov}

d̂2
cov

, (1

d̂2
cov =

1
p
||Sn||2F −

(
1/ptr(Sn)

)2
, b̂2

cov =
1
p

1
n2

n∑

i=1

||yiy>i − Sn||2F .

inkage estimator (13) is unconstrained, while the Ledoit and Wolf estimator is constrained. If b̂2
cov > d̂

then α̂cov;LW = 0, i.e., the Ledoit and Wolf shrinkage estimator coincides with tr(Sn)
1
p

I, independently ho

is with respect to n. In contrast, we always have that 0 < α̂cov ≤ 1 for (13) with α̂cov = 1 only if c = 0, i.
ple covariance matrix possesses the smallest Frobenius loss only if p is much smaller than n. For c > 0, t
covariance matrix is not an optimal estimator for the covariance matrix in terms of minimizing the quadra
ction (11). Finally, we note that the Ledoit and Wolf estimator is more computationally intensive than ((1
= 1

p I, since the quantity b̂2
cov has to be calculated by a loop.

ther improved estimators of the covariance matrix were suggested in [38, 52, 53, 76] among others. The
ors were derived by minimizing the Stein loss given by (see, [38])

LS (Σ̂n,Σ) = tr
(
Σ̂nΣ

−1
)
− log

(
det

(
Σ̂nΣ

−1
))
− p (1

orresponding risk function RS (Σ) = E
(
LS (Σ̂n,Σ)

)
, and are defined as orthogonal invariant estimators. T

rotation-equivariant estimators of the covariance matrix coincides with the class of estimators which posse
e eigenvectors as the sample covariance matrix (c.f., [73, Section 5.4]). That is, they are determined as

Σ̂n,OI = HΦ(D)H>, (1

5
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n = HDH> is the eigenvalue decomposition of the sample covariance matrix Sn with D = diag(d1, . . . , d
≥ . . . ≥ dp and Φ(D) = diag(φ1(d1), . . . , φp(dp)) for continuously differentiable function φi, i ∈ {1, . . . ,

d Srinivasan ([38]) derived the set of functions φi(.), i ∈ {1, . . . , p} for which the orthogonal invariant estima
minates the sample estimator Sn.

orthogonal invariant estimator Σ̂n,OI was generalized to the non-linear shrinkage estimator by [65] in t
mensional setting, which, for i ∈ {1, . . . , p}, is given by

Sn,LWnonlin = Hdiag(dor
1 , ..., d

or
p )H>, dor

i =


di

|1−c−cdim̆F (di)|2 , if di > 0,
1

(c−1)m̆F (0) , if di = 0, (1

F(z) denotes the limiting Stieltjes transform of the sample covariance matrix defined for a distribution functi
R as

mG(z) =

+∞∫

−∞

1
λ − z

dG(λ); z ∈ C+ ≡ {z ∈ C : =z > 0} .

reover, for any x ∈ R the quantities m̆F(x) = lim
z→x

mF(z) and m̆F(x) = lim
z→x

mF(z) = lim
z→x

c−1
z + cmF(z) exist a

te for c < 1 and c > 1, respectively. The existence of those limits was proven in [63, 77]. Albeit the orac
ge intensities dor

i depend on the unknown limiting Stieltjes transform, thanks to the recent paper of Ledoit a
5], they can be fast and efficiently estimated using a simple nonparametric procedure.

rinkage estimation of precision matrix
near shrinkage estimator for the precision matrix Σ−1 was developed in [21] and it is derived by minimizi
dratic loss expressed as

L(Π̂n,Σ
−1) = ||Π̂n − Σ−1||2F (2

stimator Π̂n of Σ−1. The linear shrinkage estimator for the precision matrix for c < 1 is given by

Π̂n,BGP = α̂precS−1
n + β̂precΠ0, (2

α̂prec = 1 − p/n −
1
n
||S−1

n ||2tr ||Π0||2F
||S−1

n ||2F ||Π0||2F −
(
tr(S−1

n Π0)
)2 (2

β̂prec =
tr(S−1

n Π0)
||Π0||2F

(
1 − p/n − α̂prec

)
, (2

/pΠ0 is assumed to have the bounded trace norm.
ther shrinkage estimator of the precision matrix is the scaled standard estimator (SSE) discussed in [61, 7
s given by

Π̂S S E =
n − p − 2

n − 1
S−1

n δ(p<n) +
p

n − 1
S+

n δ(p≥n), (2

+
n is the Moore-Penrose inverse of Sn and δ(·) is a Dirac delta function.
other two shrinkage estimators for the precision were proposed by [40] and by [61] and they are expressed

Π̂EM =
n − p − 2

n − 1
S−1

n +
p2 + p − 2

(n − 1)tr(Sn)
I (2

Π̂KS = p ((n − 1)Sn + tr(Sn)I)−1 , (2

ively.

6
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lication in portfolio theory

is section we discuss how the theory of shrinkage estimation can be used in portfolio theory where the weigh
rent optimal portfolio can often be expressed as functions of the mean vector and covariance matrix (see, e.
]). The practical computation of the considered shrinkage estimators of optimal portfolio weights as w
e shrinkage estimators for the mean vector and for the covariance matrix presented in the previous secti
performed in the R-packages, like HDShOP (High-Dimensional Shrinkage Optimal Portfolio, see [17]) a
rtfolio (Dynamic Optimal Shrinkage Portfolio).
owing the Markowitz theory ([68]), mean-variance optimal portfolios are obtained my minimizing the po
riance for a given level of the expected return. The solutions of the Markowitz problem lie on a parabola
n-variance space, known as the efficient frontier (see, e.g., [6, 11, 30, 59, 70]). Let w = (w1, . . . ,wp)> be t

nsional vector of portfolio weights. Then the expected return of the portfolio with weights w is w>µ, wh
nce is w>Σw. Markowitz optimal portfolios can also be deduced as solutions of other optimization problem
5]), like by maximizing the expected utility function (see, [56]) expressed as

w>µ − γ
2

w>Σw→ max subject to w>1p = 1, (2

> 0 is the coefficient of risk aversion that measures the investor’s attitude towards risk. The solution of (2
n as the mean-variance (MV) optimal portfolio and it is given by

wMV =
Σ−11p

1>pΣ−11p
+ γ−1Qµ, (2

Q = Σ−1 − Σ
−11p1>pΣ−1

1>pΣ−11p
.

he case of the fully risk-averse investor, i.e., γ = ∞, the optimal portfolio is found by minimizing the portfo
e, i.e.,

w>Σw→ min subject to w>1p = 1, (2

weights are given by

wGMV =
Σ−11p

1>pΣ−11p
. (3

imal portfolio with the weights wGMV is known in financial literature as the global minimum variance (GM
o. This portfolio lies on the vertex of the efficient frontier, whose equation is given by

(R − RGMV )2 = s(V − VGMV ),

RGMV =
µ>Σ−11p

1>pΣ−11p
, RGMV =

1
1>pΣ−11p

, s = µ>Qµ (3

expected return of the GMV portfolio, the variance of the GMV portfolio, and the slope parameter of t
t frontier, respectively.

aditional sample estimators of portfolio weights

imal portfolios cannot be constructed by using (27) and (29), since both formulas depend on the true value
n vector and the covariance matrix. Markowitz ([69]) suggested to use historical data of asset returns y1, . . . ,
truct the sample estimators ȳn and Sn of µ and Σ. This leads to the following traditional sample estimators
portfolio weights

ŵMV;S =
S−1

n 1p

1>p S−1
n 1p

+ γ−1Q̂nȳn (3
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Q̂n = S−1
n −

S−1
n 1p1>p S−1

n

1>p S−1
n 1p

,

he GMV portfolio weights given by

ŵGMV;S =
S−1

n 1p

1>p S−1
n 1p

, (3

ively. The distributional properties of the estimators (32) and (33) were studied by [16, 58, 72], among othe

ive shrinkage approach

rnatively, one can replace the unknown µ and Σ (or Σ−1) in (28) and (30) by any improved estimator
red in Section 2 as in the case of the GMV portfolio discussed in [60, 64], among others. This leads to

ŵMV;nS h =
Σ̂−1

n 1p

1>p Σ̂−1
n 1p

+ γ−1Q̂n;nS hµ̂n, (3

Q̂n;nS h = Σ̂−1
n −

Σ̂−1
n 1p1>p Σ̂−1

n

1>p Σ̂−1
n 1p

ŵGMV;nS h =
Σ̂−1

n 1p

1>p Σ̂−1
n 1p

, (3

ˆ n and Σ̂n denote improved estimators of the mean vector and of the covariance matrix, respectively. In t
ng, we refer to the optimal portfolios constructed by using (34) and (35) as the naive shrinkage estimator
portfolio weights and of the GMV portfolio weights.

timal shrinkage approach

ough the estimators ŵMV;nS h are ŵGMV;nS h are constructed by using less volatile estimators of the mean vec
he covariance matrix, they are not optimal in the sense that they maximize some loss functions. Moreover
uestionable, why one has to estimate p(p + 1)/2-dimensional and p-dimensional objects, while estimators f

-dimensional vector of optimal portfolio weights are needed. We deal with this question in the present secti
enting shrinkage estimators for wMV and wGMV , which are directly derived for the portfolio weights.
ase of the MV optimal portfolio, the loss function is determined following the optimization problem used
ation. Namely, the out-of-sample expected utility function is considered which is given by

ŵ>n µ −
γ

2
ŵ>n Σŵn, (3

ˆ n denotes a shrinkage estimator of the MV portfolio weights obtained by a linear combination of its samp
or ŵMV;S and the target vector of portfolio weights b such that b>1p = 1.
maximization of (36) leads to the formula of the optimal shrinkage estimator of the MV portfolio express
)

ŵMV;oS h = α̂n;MVŵMV;S + (1 − α̂n;MV )b (3

α̂n;MV =

γ−1
(
(R̂GMV;S − R̂b;S )

(
1 + 1

1−c

)
+ γ(V̂b;S − V̂GMV;c) +

γ−1

1−c ŝc

)

V̂GMV;c

1−c − 2
(
V̂GMV;c +

γ−1

1−c (R̂b;S − R̂GMV;S )
)

+ γ−2
(

ŝc+c
(1−c)3

)
+ V̂b;S

, (3

8

Jo
ur

na
l P

re
-p

ro
of



where R ier
given in al
to

with

The ee,
e.g., [26

9)

where w its
sample

The

0)

with

1)

Ano

2)

with

3)

3.4. Te
In t lio

weights al
portfoli nd
the test nd
then sh

Tes re
suggest al
asympt in
a single ts.
In orde or
the MV

For

4)

i.e., tha
It w

5)

Journal Pre-proof
ˆGMV;S , V̂GMV;c, ŝc, R̂b;S , and V̂b;S are consistent estimators of the three parameters of the efficient front
(31), and of the expected return Rb = µ>b and the variance Vb = b>Σb of the target portfolio. They are equ

R̂GMV;S =
ȳ>n S−1

n 1p

1>p S−1
n 1p

, V̂GMV;c =
1

1 − c
V̂GMV;S , ŝc = (1 − c)ŝ − c, R̂b;S = µ̂>b, V̂b;S = b>Snb

V̂GMV;S =
1

1>p S−1
n 1p

, ŝ = ȳ>n Q̂nȳn.

out-of-sample variance is considered as a loss function when the investor is fully risk averse, i.e., γ = ∞, (s
, 47]), that is in the case of the GMV portfolio. It is given by

ŵ>n Σŵn, (3

ˆ n denotes a shrinkage estimator of the GMV portfolio weights defined obtained by a linear combination of
estimator ŵGMV;S and the target vector of portfolio weights b such that b>1p = 1.
solution of (39) is given by (see, [26])

ŵGMV;oS h = α̂n;GMVŵGMV;S + (1 − α̂n;GMV )b (4

α̂n;GMV =
V̂b;S − V̂GMV;c

V̂GMV;c

1−c − 2V̂GMV;c + V̂b;S

. (4

ther shrinkage estimator of the GMV portfolio weights was developed by [47] and it is given by

ŵGMV;FM = α̂n;FMŵGMV;S + (1 − α̂n;FM)b (4

α̂n;FM =
p − 3

n − p + 2
V̂GMV;S

b>Snb − V̂GMV;S
. (4

sts on mean-variance optimality of portfolios based on the shrinkage approach
he previous subsection the point shrinkage estimators for the MV portfolio weights and for the GMV portfo

are established. In order to complete this discussion, the interval estimators of the weights of these optim
os are discussed in this subsection. Using the one-to-one correspondence between the interval estimation a
theory (see [1]), we present first high-dimensional asymptotic tests on the weights of optimal portfolios, a

ow how these findings can be used to construct confidence regions for optimal portfolio weights.
ts for general linear hypotheses imposed on the weights of the MV portfolio and of the GMV portfolio we
ed under the traditional asymptotic setting in [29] and [31], while they were extended to the high-dimension
otic setting by [16]. Unfortunately, these approaches cannot be used to test the whole structure of a portfolio
step and allow to make inference only on a finite number of the components of the vector of portfolio weigh

r to deal with the problem, shrinkage-type tests were developed in [19] for the GMV portfolio and in [18] f
portfolio under the high-dimensional asymptotic regime.
the MV portfolio, the goal is to test the hypotheses

H0 : wMV = w0 against H1 : wMV , w0, (4

t the portfolio with weights w0 is mean-variance efficient under H0.
as shown in [23] that α̂n;MV

a.s.→ αMV (b) for p/n→ c ∈ [0, 1) as n→ ∞ where

αMV (b) =

γ−1
(
(RGMV − Rb)

(
1 + 1

1−c

)
+ γ(Vb − VGMV ) +

γ−1

1−c s
)

VGMV
1−c − 2

(
VGMV +

γ−1

1−c (Rb − RGMV )
)

+ γ−2
(

s+c
(1−c)3

)
+ Vb

. (4
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er, if w0 is mean-variance efficient for the considered risk aversion coefficient γ, then αMV (w0) = 0, i.e., t
ge intensity computed for the target portfolio w0 tends almost surely to zero in the high-dimensional asympto
This observation motivates the consideration of the following hypotheses

H0 : αMV (w0) = 0 against H1 : αMV (w0) , 0. (4

more, it was proved in [18] that the null hypothesis in (44) implies (46), i.e., the rejection of (46) will ensu
portfolio is not mean-variance efficient.
testing (46) the following test statistic was suggested in [18], expressed as

TMV (w0) =
√

n
α̂n;MV (w0)B̂n(w0)

√
d′0Ω̂(w0)d0

, (4

ˆ n;MV (w0) is the optimal shrinkage intensity as defined in (45) with b = w0,

B̂n(w0) =
V̂GMV;c

1 − c
− 2

(
V̂GMV;c +

γ−1

1 − c
(R̂w0;S − R̂GMV;S )

)
+ γ−2

(
ŝc + c

(1 − c)3

)
+ V̂w0;S ,

d0 =



γ−1 +
γ−1

1−c−1
γ−2

1−c

−γ−1 − γ−1

1−c
1



,

=



V̂GMV;c(ŝc+1)
1−c 0 0 V̂GMV;c −2V̂GMV;c(R̂w0;S − R̂GMV;S )

0 2
V̂2

GMV;c
1−c 0 0 2V̂2

GMV;c

0 0 2 ((ŝc+1)2+c−1)
1−c 2(R̂w0;S − R̂GMV;S ) −2(R̂w0;S − R̂GMV;S )2

V̂GMV;c 0 2(R̂w0;S − R̂GMV;S ) V̂w0;S 0
−2V̂GMV;c(R̂w0;S − R̂GMV;S ) 2V̂2

GMV;c −2(R̂w0;S − R̂GMV;S )2 0 2V̂2
w0;S



. (4

er the null hypothesis in (46) it holds that for p/n→ c ∈ [0, 1) as n→ ∞

TMV (w0)
d→ N(0, 1)

nce, the hypothesis that w0 are the weights of the MV optimal portfolio is rejected as soon as |TMV (w0)|
here z1−δ/2 is the (1 − δ/2) quantile of the standard normal distribution.

ally, using the correspondence between a statistical test and a confidence region (see, [1]), (1 − δ) confiden
or mean-variance optimal portfolios corresponding to risk aversion coefficient γ is given by

ΩMV;1−δ(w) =
{
w ∈ Rp : w>1p = 1 and |TMV (w)| ≤ z1−δ/2

}
. (4

ilarly, a test on the weights of the GMV portfolio is constructed. For testing the hypothesis that a portfo
ights w0 coincides with the GMV portfolio, i.e.,

H0 : wGMV = w0 against H1 : wGMV , w0, (5

that α̂n;GMV
a.s.→ αGMV (b) for p/n→ c ∈ [0, 1) as n→ ∞ with (see, [26])

αGMV (b) =
Vb − VGMV

c
1−c VGMV + (Vb − VGMV )

, (5
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nsequently, αGMV (w0) = 0 as soon as w0 is the GMV portfolio. Hence, the hypotheses in (50) can be rewritt

H0 : αGMV (w0) = 0 against H1 : αGMV (w0) , 0. (5

testing (52), the following test statistic was suggested [19]:

TGMV (w0) =
√

n
(1 − c) L̂w0

c + (1 − c) L̂w0

, (5

L̂w0 = (1 − c) w>0 Snw01>p S−1
n 1p − 1.

er the null hypothesis in (52) it holds that for p/n→ c ∈ [0, 1) as n→ ∞

TGMV (w0)
d→ N

(
0, 2

1 − c
c

)
.

he null hypothesis that w0 is the GMV optimal portfolio, is rejected as soon as |TGMV (w0)| >
√

2 1−c
c z1−δ/2.

ally, (1 − δ) confidence region for mean-variance optimal portfolios corresponding to risk aversion coefficie
en by

ΩGMV;1−δ(w) =

w ∈ Rp : w>1p = 1 and |TGMV (w0)| >
√

2
1 − c

c
z1−δ/2

 . (5

namic shrinkage approach

ently, two dynamic shrinkage estimators for the weights of the GMV portfolio were developed in [27]. T
amic shrinkage estimation strategy corresponds to the case where non-overlapping samples are present, wh
nd strategy allows overlapping samples. Next, we describe both the approaches.
consider an investor, who constructs a GMV portfolio at time t1 by using the shrinkage estimator (40) with t
ortfolio b. The attention of the investor is to continue investing into the GMV portfolio over next T tradi
. Namely, the holding portfolio can be reconstructed at time points ti for i ∈ {2, . . . ,T } as new informati
on the capital market. This information is presented in this section by the sample of asset returns between t
hich is collected into the data matrix Yni . At each time point ti the investor aims to continue investing in t
ortfolio and uses the most recent information to update the holding portfolio. Since the transaction costs mig
large, the investor decides to shrink the traditional estimator of the GMV portfolio constructed by using da

yni−1+1, yni−1+2, . . . , yni ] with n0 = 0 (non-overlapping case) and YNi = [Yn1 ,Yn2 , . . . ,Yni ] with Ni = n1 + . . .+
ping case) to the weights of the holding portfolio constructed at time ti−1.
owing model (1), it is assumed that

Yni = µ1>ni
+ Σ1/2Xni , (5

ni is a p × ni matrix which consists of independent and identically distributed random variables with ze
nit variance, and finite 4+ε, ε > 0, moments. No specific distributional assumption is imposed on the eleme

i ∈ {1, . . . ,T }. Furthermore, Yni , i ∈ {1, . . . ,T }, are assumed to independent random matrices.
he non-overlapping case, the sample of asset returns Yni is used to construct the traditional sample estima
MV portfolio at each time ti given by

ŵdS ;ni =
S−1

ni
1p

1>p S−1
ni

1p
, Sni =

1
ni − 1

Yni

(
Ini −

1
ni

1ni 1
>
ni

)
Y>ni

. (5

n, the shrinkage estimator of the weights of the GMV portfolio at time ti is obtained by minimizing the o
le variance, namely,

ŵ>ni
Σŵni , (5
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ˆ ni is expressed as linear combination of ŵS ;ni and the holding portfolio determined at time ti−1, that is ŵdS h;n
1, . . . ,T } with ŵdS h;n0 = b. The solution to the sequence of optimization problems (57) is given by (see, [27

ŵdS h;ni = ψ̂dS h;iŵS ;ni + (1 − ψ̂dS h;i)ŵdS h;ni−1 (5

ψ̂dS h;i =
(ni − p)r̂i−1

(ni − p)r̂i−1 + p
, (5

i is computed recursively by
r̂i = ψ̂2

dS h;i
p

ni − p
+ (1 − ψ̂dS h;i)2r̂i−1 (6

r̂0 =

(
1 − p

n1

)
1>p S−1

n1
1pb>Sn1 b − 1. (6

ilarly, in the overlapping case, the matrix of asset returns YNi is used to construct the traditional samp
or of wGMV given by

ŵS ;Ni =
S−1

Ni
1p

1>p S−1
Ni

1p
, SNi =

1
Ni − 1

YNi

(
INi −

1
Ni

1Ni 1
>
Ni

)
Y>Ni

, (6

s shrunk at time ti to the holding portfolio weights ŵdS h;Ni−1 . The minimization of the out-of-sample varian
ti then leads to

ŵdS h;Ni = Ψ̂dS h;iŵS ;Ni + (1 − Ψ̂dS h;i)ŵdS h;Ni−1 , (6

j → C j ∈ (0, 1) as N j → ∞, j ∈ {1, . . . , i} and i ∈ {1, . . . ,T }, where

Ψ̂dS h;i =
(R̂i−1 + 1) − K̂i

(R̂i−1 + 1) + (1 −Ci)−1 − 2K̂i
, (6

R̂0 = r̂0, R̂i = Ψ̂2
dS h;i

Ci

1 −Ci
+ (1 − Ψ̂dS h;i)2R̂i−1 + 2Ψ̂dS h;i(1 − Ψ̂dS h;i)(K̂i − 1), (6

K̂i = β̂i−1;0 +

i−1∑

j=1

β̂i−1; jD j,i, (6

β̂0;0 = 1, β̂i−1;i−1 = Ψ̂dS h;i−1, β̂i−1; j = (1 − Ψ̂dS h;i−1)β̂i−2; j, j ∈ {0, ..., i − 2} (6

D j,i = 1 − 2(1 −C j)

(1 −C j) + (1 −Ci)
C j

Ci
+

√(
1 − C j

Ci

)2
+ 4(1 −Ci)

C j

Ci

. (6

ough the dynamic shrinkage estimator of the GMV portfolio weights based on the overlapping sample is mo
ationally intensive, it possesses a great advantage with respect to non-overlapping samples since it requires th
> p. All other values of ni can be smaller than p. In contrast, it is needed that all ni > p in the non-overlappi

o this end, we note that the practical implementation of both dynamic shrinkage strategies are available in t
ge DOSPortfolio. The presented dynamic approach for the GMV portfolio weights can further be extended
portfolio with much more involved recursive formulas for the shrinkage intensities Ψ̂dS h;i.
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