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Limit Theorems for Change in Linear Regression 
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We consider some tests to detect a change-point in a multiple linear regression 
model. The tests are based on the maxima of the weighted cumulative sums 
processes. The limit distributions may be double exponential or maxima of 
Gaussian processes depending on the set where the maximum of the weighted 
cumulative sums of residuals is taken. The design-points can be fixed or random. 
We also give a few applications of our results. ~~ 1994 Academic Press, Inc. 

1. INTRODUCTION 

Let  3 '1,3 '2 .. . . .  y ,  be i n d e p e n d e n t  r a n d o m  va r i ab le s .  W e  a s s u m e  t h a t  
u n d e r  H o t hey  sat is fy  t he  l i n e a r  m o d e l  

v , =  [~xT+ 8,, 1 <~i<~n, (1.1)  

w h e r e  P = ( f l l , f l 2  .. . . .  flu) is a n  u n k n o w n  v e c t o r  a n d  x i = ( l , x 2 .  ~ .. . . .  xa.~) 
a re  k n o w n  d e s i g n - p o i n t s .  W e  a s s u m e  t h r o u g h o u t  th i s  p a p e r  t h a t  t h e  e r r o r s  

~1, e2 ... . .  e,, a re  i n d e p e n d e n t  i den t i c a l l y  d i s t r i b u t e d  r a n d o m  v a r i a b l e s  w i t h  

Eel=O, 0 < a 2 = v a r e ~ < o o  a n d  E l e A V < o o  f o r s o m e  v > 2 .  

(1.2)  
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44 GOMBAY AND HORVATH 

Under H~ there is a change in the linear model at the k*th observation, i.e., 

v, ~lixf + ~i, l<~i<~k* (1.3) 
" = ~ y x r i + e . i ,  k * < i < ~ n ,  

where k* and Y e R d are unknown parameters and II ~ 7. Tests for H o in the 
case of simple regression models (d=  2) discussed by Quandt (1958, 1960) 
became the starting point of further research for change-point in linear 
models• For review and historical accounts we refer to Brown, Durbin, and 
Evans (1975) and Kim and Sigmund (1989). 

Let 

1 
= E Yi, 

1 
E Xi~ 

Xk ~" l ~i~k 

Q,,= ~ ( x , -  ~, ,)(xi-  i,,) r 
I ~ < i ~ n  

and 

X,, = , Y , , =  )i 2 . 

I.. Y ,, _I 

The least-squares estimator of Ii is denoted by 

.... = (X,, X,) X,, Y,,. 

James, James, and Siegmund (1987) suggested that we reject Ho for large 
values of 

m a x  I U , ( k ) l ,  (1 .4 )  
t~ I ~.~ k ~ tl 2 

where 

[ k \ , /2  y k _ y , , _ ~ , , ( i k _ X , , ) r  

Brown, Durbin, and Evans (1975), among others, mention the 
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possibility of using functionals of the process of cumulative sums of 
residuals 

E ( Y i - - Y n - - ~ n ( X i - - X " ) T ) '  1 ~ k ~ H .  (1.5) 
l<<.i<<.k 

For a discussion on residuals and their applications in statistics we refer to 
Cook and Weisberg (1982) and Davison and Snell (1991). It is easy to see 
that 

where 

and 

U,,(k) = w,,(k) R,,(k), (1.6) 

= E 
l ~i<~k 

( y , -  y , , -  ~ , , (x , -  i,,) r ) (1.7) 

w,,(k) = ( 1 - - k ( x k - - X , , ) ( X k - - X , , ) T / ( Q , , ( 1 - - k / n ) ) )  -1/2 (1.8) 

Thus U,,(k) can be considered as weighted normalized cumulative sums, 
where the weight is w,,(k) of (1.8). Brown et al. (1975) noted that R,,(nt) 
converges weakly to a Gaussian process in ~ [ t l , t 2 ] ,  0 < t l < t 2 < l .  
However, the limit process is so complicated that it is very unlikely to yield 
exact formulas for the distribution functions of its functionals. Kim and 
Siegmund (1989) made a similar remark for the limit of U,,(nt) in 
@[t~, t2], 0 < t ~ < t 2 <  1. Also, it is very easy to check that the limits of 
U,,(nt) and R,,(nt) must be different. If we are interested in the weak 
convergence of U,,(nt) it is essential that we consider these processes in 
~ [ t , ,  t2], 0 < t ~ < t 2 <  1. It follows from the main results in Sections2 
and 3 that max,~ ,< , ,  IU,,(k)l--% oo and maxl~,<, ,  IR,,(k)l ~ oo, and 
therefore U,,(nt) and R,,(nt) cannot converge weakly in _~[0, 1] (cf. also 
Maronna and Yohai, 1978). 

Brown et al. (1975) suggested the functionals of U,,(k) and R,,(k) as test 
statistics without any motivation and specifying the alternative hypothesis. 
Using maximum likelihood arguments, Kim and Siegmund (1989) derived 
max~,<, , IU, , (k) l  to detect a change only in the intercept term of 
regression. Quandt (1958, 1960), Maronna and Yohai (1978), and Worsley 
(1983) derived the maximum likelihood ratio test against H~ assuming that 
the errors are normal random variables. The distributions of the statistics 
in Quandt (1958, 1960) and Worsley (1983) are unknown. We show (cf. 
Theorem 2.3 and the remark at the end of Section 3) that the statistics 
maxl ~k<,, IU,,(k)l and maxi ~<,<,, IR,,(k)l suggested by Brown et al. (1975) 
are consistent against Hi.  
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Kim and Siegmund (1989) studied the distribution ofmax, , ,  ~k.<,,,2 I U,,(k)l/6, 
0 < t ~  < t 2 <  1, when d = 2  (62 is the least-squares es t imator  of a2.) They 
obtained approx imat ions  for the significance levels (cf. also Hawkins ,  
1989). We believe that it is more  natural  to consider max~.<k<,, IU,,(k)l 
than max,,,,~<,~,,,21U,,(k)l, 0 < t ~ < t 2 < l .  It is not clear how to choose 
t t , t 2 and our  decision ( re ject ion-acceptance)  may  depend on the choice of  
these parameters .  In this paper  we study the asymptot ics  of  

Z . ( i , j ) =  max IU.(k) l  (1.9) 
i<~k < j  

and 

T . ( i , j ) =  max IR,,(k)l (1.10) 
i<~k<j 

for various choices of i and j. It turns out that  under Ho, Z , ( I ,  n) and 
T,,(1, n) have the same limit distribution. The "middle"  part  Z,,(nt~, nt2), 
0 <  t~ < tz< 1, does not contr ibute  to the distr ibution of Z, ( I ,  n) and the 
r andom variables Z,,(nt 1, nt2) (0 < t t < t 2 < 1 ), Z, , ( I ,  n) are asymptot ical ly  
indepenent if Ho holds. We prove in Theorem 2.3 that  our  statistics are 
consistent against  H i .  

In the next section we investigate the distr ibutions of Z , ( i , j )  and 
T,,(i,j) when xi, l<~i<~n, the design points are non- random.  Sect ion3 
contains similar results assuming that  x i, 1 ~< i~< n, are r andom variables. 
We discuss a few applicat ions of our  results in Section 4 and the proofs are 
presented in the last section. 

2. NoN-RANDOM DESIGNS 

In this section we assume that  there is a function f ( t )=(f2( t )  ..... fd(t)) 
such that 

Xi.~=fj(i/n), 2<~j<<,d, 

We assume a few regularity conditions, 

where 

1 <<.i<~n. (2.1) 

max sup IJ)'(t)l < oo, 
2<~j<~d 0~<t~<l 

the rank o fA  = {6i.i, 1 ~<i , j~<d} is d, 

(2.2) 

(2.3) 
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61.~= 1, 

61. j=6j . l  = fj(t)dt,  2<~j<.d, 

1 

6, . i=  6j . i= fo f,.(t)fjdt, 2<~i,j~d, 

sup g(t) < 1, (2.4) 
O~<t~<l 

g ( t ) = a ( 1 - t )  ~ t fj(s) d s -  fj(s)ds , 
2 <~j~<d 

Q=z<_~<.a f~(s) d s -  fj(s) ds . 

If d =  2, then (2.3) means that f is not constant  on I-0, 1]. Condit ion (2.4) 
implies that w,,(k) < oo for each 1 ~<k <n .  

Let 

and 

THEOREM 2.1. 
have 

and 

a(x) = (2 log x) 1/2 

b(x) = 2 log x + ½ log log x - ½ log n. 

We assume that (1.1), (1.2), and (2.1)--(2.4) hold. Then we 

lim p{la(logn)Z,(l,n)<~x+b(logn)}=exp(-2e-X) (2.5) 
n ~  oo 

lim p I l a ( l o g n )  T,(1, n)<~x+b(logn)}=exp(-2e-X).  (2.6) 
n ~ o o  

Also, / f21(n)  ~ 0 ,  22(n) ~ 0 ,  mt =n21(n)--* oo, andmz=n22(n)~ oo, then 
we have 

683/48/1-4 
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lira P a logml  Z,,(l, ml)<~x+b logmt  
n ~ z c  

= exp( - 2e-X), 

lim p { l a ( ~ l o g m , )  T,,(l, ml)<~x+b(~logm,)}  
n ~  o c  

= exp( - 2e -x), 

lirno P ~ a  iogm 2 Z,,(n-m2, n)<~x+b logm2 

= exp( - 2e -x), 

lim p { la (~ logm2)  T,(n-m2, n)<~x +b(~logm2)}  
t a ~  o o  

= exp( - 2e - ~). 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

We note that Hu~kav~ (1993) also proved (2.6). Theorem 2.1 shows that 
Z(1, n) and T(1, n) are determined by the first and the last elements of the 
maxima. We use large weights on the tails and therefore tests based on 
(2.5) and (2.6) are more powerful on the tails (k* is too small or large) and 
less powerful in the middle. James et al. (1987) also pointed out that the 
restriction of the maximum to [ntl, nt2] increases the power to detect a 
change occurring near n/2 and without restriction the power attains the 
minimum when change occurs near the middle. However, it is very easy to 
combine Theorem 1 of Kim and Siegmund (1989) with our Theorem 2.1 
and we can obtain some asymptotic tests which are powerful on the tails 
as well as in the middle. Also, it is an interesting observation that Z , ( I ,  n) 
and  Z,(nt~, nt2) are asymptotically independent. We have the same result 
for T,(1, n) and T,(ntl, nt2). 

THEOREM 2.2. We assume that (1.1), (1.2), (2.1)-(2.4) hold and 
0< t~  < t z < 1. Then we have 

and 

lim p{la( logn)  T.(l,n)<~x+b(logn),l- T.(ntt,nt2)<~y} 
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Kim and Siegmund (1989) give an approximation for the tail percentiles 
of the distribution functions of ( l /a)  Z,(nt, ,  nt2) and (1/a)T,,(ntl, nt2). 
Hence, we can compute or at least approximate the limit distributions in 
Theorem 2.2. We also would like to point out that the limit distributions 
of Z,,(1, n), T,,(1, n) and also Z,,(1, mj), Z, , (n-m2,  n), T,,(1, ml), 
T,,(n-m2, n) do not depend on the design-points, i.e., on the unknown f. 
However, the limits of Z,(ntl ,  nt2) and T,(ntl, nt2) do depend on f; 
therefore we must specify f, if our test is based on Z,,(ntl,nt2) or 
T,(nt~, nt2). We can use Theorem 1 of Kim and Siegmund (1989) and 
Theorem 2.2 to obtain a test with good properties against changes on the 
tails or in the middle. We reject Ho if (1/a) a(log n) Z,,(1, n ) -b( logn)  or 
( l /a)  Z,,(nt~, nt2) are large. Using the independence in Theorem 2.2 and the 
approximate critical values in Kim and Siegmund (1989) we can construct 
the rejection region. 

Next we discuss the consistency of the tests based on Theorems 2.1 
and 2.2. For the sake of simplicity we assume that d =  2. Thus under the 
alternative we have 

{ ~l"~-~2Xi'Jl-~i, l~<i<~[m]  (2.13) 
Yi= 71+?2Xi+ei, [m]+l<~i<~n, 

where (ill, f12) :/: (~'l, 72) and 

x,=f(i/n),  1 <~ i<~n. (2.14) 

THEOREM 2.3. We assume that (1.2), (2.13), (2.14) hold and f is a 
continuous and increasing function on [0, 1]. Then there is a 2o~ (0, 1) such 
that 

lira inf IER,(n2o)l/n 1/2 > 0 (2.15) 
n ~  o c  

and 

lira inf IEU,(n2o)l/n l/z > 0. (2.16) 

It is clear that consistency follows from Theorem 2.3. 

3. RANDOMLY DISTRIBUTED DESIGNS 

We assume in this section that the design-points {x ,  l<~i<<.n} are 
random. For  the sake of simplicity we assume d =  2, i.e., we consider the 
simple linear model 

yi=fl t+fl2xi+~i,  l<~i<~n, (3.1) 
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where e~, e2 ..... e, are independent identically distributed random errors 
satisfying (1.2). The least-squares estimators of fll and f12 are denoted by 

ill. and f12,," 
First, we consider the case when x~ is given by 

where 

x, =f(~, ), (3.2) 

~, ~J, ~2 .... are independent, identically distributed 
random variables, 0 < ~ < 1 and E~ =/~ > 0. (3.3) 

We also assume that 

{ei, 1 <<.i<~n} and {¢i, 1 <<.i<~n} are independent. (3.4) 

The design function f of (3.2) satisfies the regularity conditions 

sup If '(t)l  < oo (3.5) 
0~<t~<l 

and 

0 < v a r f  (~) < ~ .  (3.6) 

The next result shows that Theorem 2.1 remains true when the design- 
points are random. 

THEOREM 3.1. We assume that (1.2) and (3.1)-(3.6) hold. Then we have 
(2.5)-(2.10). 

We can also prove an analogue of Theorem 2.2. Let {B(t), 0 ~< t ~<1} 
be a Brownian bridge. 

THEOREM 3.2. We assume that (1.2), (3.1)-(3.6) holdandO<tl < t 2 <  1. 
Then we have 

and 

= e x p ( - R e  " )P{  sup IB(t)l/(t(1-t))'/2<~y} 
t l  <~ t <~ t2 

iim p { l a ( l o g n )  T,,(1, n)<~x+b(logn),l- T,(nt,,nt,)<~y} 
tt ~ oc  

= e x p ( - 2 e - " ) P {  sup IB(t)l/(t(1-t))l/2<~y}. 
t l ~ t ~ t 2  

(3.7) 

(3.8) 
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A minor modification gives that in Theorem 3.2 the weighted Brownian 
bridge can be replaced by a Brownian bridge which makes the applications 
easier. 

Remark 3.1. If the conditions of Theorem 3.1 hold, then we have 

and 

iim P {la(logn)Z,,(1,  n)<~x +b(logn), 

1 ~ 2,,)) } - max n -'/'- Y] ( y s -Y , , - f i 2 . ( x i -  <~y 
O" l ~ < k < n  <~i<~k 

= e x p ( - 2 e - " )  P{ sup IB(t)<~y} 
O ~ t ~ l  

(3.9) 

lim P{~a(logn)  T, , ( l ,n)~x+b(logn),  

1 } 
- max n ,/2 ~ (),i_y,,_fi2.(xi_2,,)) <3, 

= e x p ( - 2 e - - " )  P{ sup IB(t)] ~<y}. (3.10) 
O~<t~<l 

Next we consider a model in which the design-points x~, 1 ~< i~<n, are 
random and may be an increasing function of i. We assume that 

x,=f(rh/n), where q i = ~ + ~ 2 + + G -  (3.11) 

We also need some regularity conditions on f ,  

sup If"(t)l < or, (3.12) 
O~<t~<l 

~;o'f2(u, d u > ( ~ f : f ( u ,  du) 2 (3.13) 

and 

sup r(t)< 1, (3.14) 
O~<t~<l 

where 

t(( I/t) I'o f(las) as - I~ f(I  Is) as) 2 
r(t) -- 

(1 -- t)(I~ f2(l~S) d s -  (I~ f(las) as)'-)" 

The following theorem shows that it does not make any difference whether 
x ,  1 <~i<~n, are defined by (2.1), (3.2), or (3.11). 
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THEOREM 3.3. We assume that (1.2), (3.1), (3.3)-(3.5), and(3.11)-(3.14) 
hold. Then we have (2.5)-(2.10). 

Conditions of Theorem 3.3 are very similar to the conditions in the non- 
random case. This is not surprising since in this case the random points in 
(3.11) can be replaced by non-random points and still have the same limit 
theorems. Let 

and 

f ( t )  =f(t/~) (3.15) 

.~, = f ( i /n  ) =f( ip /n  ). 

We again consider (3.1) but xi is replaced by 3:'i, 

(3.16) 

y,=fl~+fl,_Ycj+ei, l<~i<~n. (3.17) 

We compute the statistics in (1.9) and (1.10) using the non-random points 
in (3.16). The corresponding statistics are denoted by Z.,,(i, j )  and 7~,1(i, j) .  
It turns out, for example, that 2,1(1, n) and Z,,(1, n) are asymptotically 
the same and similarly Z.,,(ntl, nt2) and Z,,(ntt ,  ritE) have the same limit 
distribution. 

THEOREM 3.4. 
hold and 0 < tj < t 2 < 1. Then we have 

We assume that (1.2), (3.1), (3.3)-(3.5), (3.11)-(3.14) 

t l ~  oc, O" 

and 

n ~  ,zc, O" 

= e x p ( - 2 e  "),,~lim~ p{17r,,(nt~,nt2)<<.y}. 

(3.18) 

(3.19) 

Kim and Siegmund (1989) can be used again to obtain selected values 
of P{( l /a)  7",,(ntl, nt2)<~y} and P{( l /a)Z.n(nt l ,  nt2)<~y }. 

Comparing the results of Sections 2 and 3 we can observe that the limit 
distributions of Z,,(1, n) and Tn(1, n) do not depend on the assumptions on 
the desing-points. We have the same limits in the non-random as in 
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the random cases. However, we obtained completely different limit 
distributions for Z , (n t l ,  nt2) and T,,(nt l, nt2). It is well known that 

sup IB ( t ) l / ( t (1 -  t)) ~/'- g sup I V(t)l, 
t l  ~< t ~< t 2 0 ~< t ~< ( l o g ( ( (  1 -- t l  )l t l  ) ( t2 / (  I -- t 2 ) ) )  ) /2  

where {V(t), - ~  < t < ~ }  is an Ornstein-Uhlenbeck process with 
parameter 1 (i.e., EV(t)  V ( s ) = e x p ( - I t - s l ) ) .  Thus the tables in DeLong 
(1981) can be used to obtain the numerical values of the limit distributions 
(3.7) and (3.8). 

We note hat Theorem 2.3 remains valid in the case of randomly 
distributed design-points. 

4. APPLICATIONS 

We discuss a few applications of our results. The limit theorems in 
Sections 2 and 3 contain the unknown variance tr 2. The mean-square 
estimator 6, 2, of tr z is an unbiased estimator of a z under Ho. Assuming that 
v 1> 4 in (1.2), one can easily show that our results remain true when cr 2 is 
replaced by 6~,. However, under H~, 6 ] grossly overestimates tr 2, which 
may cause a failure to detect that Ho is false. Under H 1 we have only one 
change-point, so we can use the following estimator of a 2. We split the data 
into two subsets {(yi, xi), l<~i<n/2}  and {(Yi, xi)n/2<~i<~n}. Let 62.1 
be the mean-square estimator of tr 2 from { (y~, x~), 1 ~< i < n/2 } and 6]. 2 be 
the mean-square estimator of a 2 from the rest of the data. We define 
tr ,*2=mm(tG.l,  ,.2). An elementary exercise shows that ttr,*2-trzl = 
Oe(n -1/2) under Ho as well as H l, if v~>4 in (1.2). Hence our results 
remain true if tr is replaced by or*. (If we have at most k change points, the 
data must be split into k +  1 subsets, and the estimator is the smallest 
mean-square estimator from the subsets.) 

Our first example is the Old Faithful geyser. A geyser is a hot spring that 
occasionally becomes unstable and erupts hot water and steam into the air. 
One of th most well known geysers is Old Faithful in Yellowstone National 
Park (U.S.A.). Old Faithful erupts at an interval of about 40-100 min, with 
eruptions lasting from 1 to 6 min. Cook and Weisberg (1982) contains a 
scatter plot of y= in t e rva l  to the next eruption versus x = d u r a t i o n  of 
current eruption for 237 eruptions of Old Faithful in October 1980. The 
scatter plot suggests that the duration can be divided into two categories, 
short and long durations. We asked whether we should fit separate 
lines to the short and long durations. We used Z237(1 , 237)/tr'37 and the 
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observed value of the properly scaled and shifted Z(1, n) was 2.37, giving 
a p-value 0.17, so we can use a linear model to predict the next eruption 
of the geyser. 

The next example uses multiple linear regression. Moore and McCabe 
(1989) report data which were collected on 224 freshmen computer science 
majors at a large university. Of particular interest was the cumulative grade 
point average after three semesters. The average high school in mathe- 
matics (xz), science (x3), and English (x4) were recorded, and therefore our 
design vector is x = (1, x2, x3, x4). Moore and McCabe (1989) suggest that 
multiple linear regression can be fitted to these data. First, we ordered 
these data according to the scores in mathematics. The rejection of Ho 
should mean that we must use different multiple linear regressions for low 
and high scores in mathematics. We computed Z224(1,224)/o'*24 = 3.11 and 
the corresponding p-value, calculated from the extreme value limit 
theorem, is 0.13. Then we ordered the data according to the scores in 
science and English and obtained 0.15 and 0.25 as p-values, respectively. 
This means that the same multiple linear regression can be used for all 
s co re s .  

Finally, we considered the model of an index of gross domestic product 
in the United States as depending on labor-input index (x2) and capital- 
input index (x3) between 1929 and 1967. Maddala (1977) considered the 
log-linear model. His F-test was not significant, contrary to his expecta- 
tions. Our asymptotic test gave p-value 0.003, clearly indicating that the 
coefficients are not stable. 

We also performed a small scale Monte-Carlo simulation. We assumed 
that the errors follow a triangular distribution with density 1 + x  if 

- 1 < x ~< 0 and 1 - x if 0 < x < 1. We considered the case of non-stochastic 
designs as well as random x/s. The sample sizes were in the range 40-200, 
and the simulations were run 50 times in each case. We considered the 
simple regression model ( d =  1) and multiple regressions ( d = 2 ,  3). The 
outcome of the simulations did not depend on d. Under Ho we could not 
reject Ho at the 0.1 significance level at 95% of the simulations. The 
behavior of the rest was very good under H~. We always rejected H o when 
Hi was true at the 0.05 significance level. It seems to us that practically we 
always reject Ho when it is false. Thus these tests are conservative. 

The distribution of the maximum of a Gaussian process converges 
slowly to the double exponential distribution. It follows from the proofs 
that the double exponential limit distribution comes from the result that 
it is the limit of the distribution function of the suitably normalized 
supl/,,<.,<.l_l/~lB(t)l/(t(1--t)) 1/2, where {B(t),O<<.t<~l} is a Brownian 
bridge. In the case of small sample sizes (50~<n~<200) the discretized 
version of IB(t)l/(t(1 - t ) )  1/2, as in Yao and Davis (1986), provides a better 
approximation for the critical values. 



CHANGE IN LINEAR REGRESSION 55 

5. PROOFS 

We start with a well-known result. 

LEMMA 5.1. We assume that (1.1), (1.2), and (2.1)-(2.4) hold. Then, as 
n -* ~ ,  n~/Z(~,,- 11) goes in distribution to a d-dimensional normal random 
variable with mean 0 and eovarianee matrix a2A - ~. 

We need only a very simple consequence of Lemma 5.1. Let I1,*= 
(f12 ....... fld,) and Ii* = (f12 ..... rid). By Lemma 5.1 we have 

1/2 , I ~ ,  n ( [ i . -  )=  Oe(1). (5.1) 

Using the definitions of R,  and I1,* we can write 

where 

R . ( k ) =  V . ( k ) -  A . (k ) ,  

V,,(k) k(n---~)J ,<.i<<.k n l<~i<<.,, 

A,,(k)= (n-- k([},*-[}*)(~* - .  r 

(5.2) 

and x* = (x2. i ..... Xd.i), 'R~ = (1/k) ~..t<i<kX*. The distribution of 
max lV,(k) l  is well known (cf., for example, CsSrg6 and Horvfith (1988)) 
and it is summarized in the following lemma. 

LEMMA 5.2. We assume that (1.2) holds. Then we have 

lim p { l a ( l o g n ) m a x  IV.(k)l<.x+b(logn)}=exp(-2e-"). (5.3) 

I f  21(n)--+0, ).z(n)--*0, mj =nAj(n)---, ~ ,  and m2=n2~_(n) ---, ~ ,  then we 
have 

iim p { l a ( ~ l o g m ~ )  max 
n ~  o2. 1 ~< k ~< ml  

IV, , (k) l<~x+b logm~ 

= e x p ( - 2 e  -x) (5.4) 

and 

lim p { l a ( ~ i o g m z )  max 
n ~ oc .  n - -  ¢?12 ~ k < I t  

(1 )} 
IV, ,(k)r<~x+b ~log m2 

= exp( -2e -X) .  (5.5) 
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Jf 

y(n) = - -  c2(n) n- -c , (n)  
n - c 2 ( n )  c,(n) 

m ......+ (X) ~ 

then we have 

lim P {1 a ( ~ l o g  y,,) 
n ~ o c  

= exp( - 2e - ~). 

m a x  
cl ~ < k < c 2  

IV,,(k)l <~x + b ( "  log?,,)} 

(5.6) 

The limit theorems for max [R,,(k)] will follows from Lemma 5.2 if we 
can show that A,,(k) is negligible. We also prove that max IR,,(k)l and 
max lU,,(k)l have the same limit distributions. These proofs are based on 
the following technical lemma. 

and 

LEMMA 5.3. We assume that (2.1)-(2.4) hold. Then we have 

max (~.  - i , , ) ( ~  - ~,,)r < C, ,  
l < ~ k < n  

max Iw,,(k) - (1 - g(k/n))-  '/21 .%< c,_/// 
l ~ k < t l  

(5.7) 

(5.8) 

/ / 2  

max ~ 11 -- (I - g ( k /n ) )  -I/21 ~ C3, (5.9) 
l ~ k < , , k ( n - k )  

where C,, C2, and C3 are constants. 

Proof It follows from (2.1) and (2.2) that 

I.~,.~-.e,.,,l= ~ E f,(i/n) -1- E f,l~/n) 
I <~i<~k n l <<. i<~n 

1 I Z(i/n) +1_ 

<<. C4(n - k)ln, (5.10) 

which implies (5.7). Similar arguments give 

= / ~ - ~ " ) ( ~ - ~ " ) T -  Y" t n ~o f A t ) d r -  Z(t)dt 
2<~j<~d /n 

<~ Cs(n - k)/n 2. (5.1 1 ) 
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It is easy to see that 

Q,,/n = Q + O(1/n). (5.12) 

Hence, from (5.11) and (5.12) we obtain 

A ( X k - - X , , ) ( ' ~ k - - X , , )  T 
g(k/n) ~ C6/n, (5.13) 

which implies (5.8). One can verify 

lim g(t)/t < ~ ,  (5.14) 
t ~ O  

lira g(t)/(1 - t ) <  or, (5.15) 
t ~ l  

and therefore (5.9) follows from (5.8). 

Now we are ready to proceed with the proof  of Theorem 2.1. 

Proof of Theorem 2.1. First we prove (2.6). Let al=n/ logn.  We see 
from (5.1) and (5.10) that 

max IA,,(k)l=Oe((logn)-l/2),  (5.16) 
I ~ k ~ a  I 

max [A,,(k)[ = Oe(1)  (5.17) 
a l ~ k ~ t l - - a  I 

and 

max IA,,(k)l = Oe(( log  n)-1/2). 
n - - a l < ~ k < s ~  

(5.18) 

Using (5.6) we obtain 

max 
al <~ k ~ n - u  I 

I V,,(k)l = Op((log log log n)J/2), (5.19) 

which immediately implies 

a(log n) max 
al <~ k <~ n al 

I V,,(k)[ - ~r(x + b(log n)) ~ - ~ .  (5.20) 

Similarly, by (5.17), (5.19), and (5.2) we have 

a(log n) max I R , ( k ) l - t r ( x + b ( l o g n ) )  e---~ -oo.  
al <~k < ~ n -  al 

(5.21) 
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From (5.16), (5.17), (5.18), (5.20), and (5.21) we obtain 

lim p { l a ( l o g n ) m a x  [V,t(k)-A,,(k)l<~x+b(logn)} 
n ~  x I <~k<n 

=limP{ la ( l °gn}max(max , l -  ~ 1 ( k ( o  I IV,,(k)-A,l(k)l, 

max IV,,(k)-A,,(k)l)<~x+b(logn)} 
t l  ¢11 ~ k "~ tt 

=lim,,_ ~. P {1 a(log n)max( i  ~<k~<almax [ Vn{k)[ , 

max [V,,(k)l)~x+b(logn)}. 
n u I ~ k < t t  

(5.22) 

Using (5.20) and (5.4) we have 

limp{la(logn)max(max [ V,,(k)[, 
n ~  ~. 1 ~ < k ~ < a  I 

max IV,,(k)l)~x+b(logn)} 
t t  - -  ¢II ~ k < t l  

=lim,,_~ p{la(logn),~k<,,max IV,,(k)l<~x+b(logn)} 

= exp( - 2e -"), (5.23) 

which completes the proof  of (2.6). 
Next we prove (2.8). Let a2=m~/logmt. 

(5.16)-(5.21) we obtain 
Arguing similarly to 

m a x  
1 ~<k  ~<a2  

m a x  
a 2 ~ k ~ m l  

m a x  
a2  <~ k <~ m l  

IA,,(k)l=Oe((logm,) li~_), 

IA,,(k)l = Oe((m~/n) m) = oe( l  ), 

I V,,(k)l = Oe(( log log log ml )t/2). 

(5.24J 

(5.25) 

(5.26) 

Hence we have 

a(½1ogm,)  max [R,,(k)r-a(x+b(½1ogml)) e-£-~-~ (5.27) 
a 2 ~< k ~< m I 
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and 

a(½1ogm~) max IV,,(k)l-a(x+b(½1ogml)) ?--~-~. (5.28) 
a 2 ~< k ~< t~'l I 

We just proved that maxl~<k~,,,, [R,,(k)l, max,~<,~, 2 [R,,(k)l, 
max~<~k<~,lV,,(k)l, and maxt~<k~,,,, IV,,(k)[ must have the same limit 
distribution. Hence (2.8) follows from (5.4). 

The proof of (2.10) is similar to that of (2.8) and therefore is omitted. 
Now we show that (2.6), (2.8), and (2.10) imply (2.5), (2.7), 

and (2.9). Using (5.8) we find that maxj~k<,,lR,,(k) w,,(k)l and 
maxl_<k<,, [R,,(k)(1-g(k/n)) 1/-' I must have the same limit. We apply 
(5.9), (2.8) and obtain 

max [R,,(k)(1 -g(k/n))-1/21 = Oe((log log n)l/2/log n) (5.29) 
l < ~ k < ~ a l  

and (5.9), (2.10) give 

max IR,,(k)(1 -g(k/n))-  '/21 = Op((log log n)l/2/log n). 
n - a l  <~k < t~ 

(5.30) 

Similarly to (5.21) we have 

a(logn) max IR,,(k)(1 -g(k/n))-l/ '~l-a(x + b(logn))--~ e - ~  
a l ~ k ~ n - a  I 

(5.31) 

Hence (2.5) follows from (5.21) and (2.6). 
By (5.8) it is enough to consider maxl<k<,,,, IR,,(k)(1-g(k/n))-~/'- I. 

Using (5.9) and (2.8) we have 

max IR,,(k)((1 -g(k/n))-1/2_ 1)[ 
I <~k<~a  2 

= Oe (--~ (loglogm,)t/"/logm,). (5.32) 

Similarly to (5.27) we have 

a(½1ogml) max IR,,(k)(l-g(k/n)) -l/'-] 
a 2 ~ < k ~ < m l  

- - a ( x + b ( l l o g m l ) ) ~  - -~ .  (5.33) 

Hence (2.7) follows from (5.27), (5.33), (5.32), and (2.8). 
The proof of (2.9) is very similar to that of (2.7) and hence is omitted. 

Proof of Theorem 2.2. We show the asymptotic independence in (2.12) 
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only. Using Lemma5.3,  (2.11) follows from (2.12). In the proof of 
Theorem 2.1 we showed that 

lim p{la(logn) T.(1, n)~ 
n ~  oc, 

x +b(logn)} 

= lim p{la(logn)max( max IV,(k)l, max IV,(k)l) 
n ~ o c  I ~ k  ~ a  I n - a l  <~k  < n  

~< x + b(log n)}. (5.34) 

By the central limit theorem and the definition of a~ we have 

max ~ = Oe( l/(log n) I/2) 
l <~ k ~ a l I -< t ~< n 

and 

(5.35) 

(k(nn_ k) )  i/z n - k max ~ ei =Oe(I/(logn)m). 
n - a l < ~ k < n  I'1 l < ~ i <  n 

Putting together (5.34)-(5.36) we obtain 

(5.36) 

lim p{la(logn) T,(l,n)<~x+b(logn)} 
t t ~  o~ 

= lim P a(log n) max max - -  

max ( n  ~1/2[ e i )  } ~, <~x +b(logn) . (5.37) 
. . . .  ,<_k<,, k n ( n - - k ) ]  k . . . . .  

Let ~* I1,, denote the least-squares estimator of p* based on {(y~, xi), 
al <i<n-al  }. It is easy to check that under (1.2) 

* ~* (5.38) I[I. - -  [I,, [ = o p ( n -  , / z ) .  

We define 

Lemma 5.3 and (5.38) imply 

sup 
n t  I ~ k ~ n t  2 

[A.(k ) - ~l.(k )[ = oe(l  ). (5.39) 
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Next we introduce 

F',,(k) k(n--k)J al<i<~ k n 0,<~ . . . . .  , 
ntl <~k <~nt2. 

The central limit theorem gives 

max IV.(k)-  F',,(k)l =Oe(1/(logn)m). 
rtt I ~< k ~< nt2 

(5.40) 

Thus we have 

max [ R . ( k ) - R , , ( k ) l  =oe(1), 
t~t I ~< k ~< nt2 

(5.41) 

where ~ , ( k ) =  F',,(k)-A,,(k). It is clear that max,,,,~k~,,,2 IR,(k)l and 

max max E max E ~i 
l<k<,, n(n---k)J t<~,<~k . . . .  l<~k'<n k<~i<~n 

are independent, and therefore (2.12) follows from (5.37) and (5.41). 

Proof of Theorem 2.3. The estimator of f12 is denoted by ~2n" I t  is easy 
to see that 

- I~o f ( t )  d t -  r I~ f ( t )  dt 
l i n a  f12, = fl* = ?2 + (fit - )'1 ) ~0 ~ f 2 ( t ) - - ~ o f -  ~ ~) .  

+ (f12 -- ?2) S~ f 2(t) dt - So f( t )  dt ~ f(s) ds 

Thus we have 

lim 1 E 2 
n ~ o o  n 1 ~<i~<n2 

( y _ y , _ f i , , z ( x _ f , , ) ) = ~ f , ( 2 ) ,  if 0 < 2 ~ < r  
I.fz(2), if r ~ < 2 < l ,  

where 

f~(2)=2( l - ~)(fl, - ? , )  + (f lz-  fl*) { f j  f( t)  d t -  2 Ij f( t)  dt } 

1 

+2(fl2 --72) I~ f ( t )  dt 
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and 

r 2 

f - , (2)= r ( f l , - -~ , , )+2y ,  + fl-, Io f(t)dt+y,_~, f(t)dt 

{ ;; } - 2  rflt +f12 f ( t ) d t+( l - r ) y ,+~2  f(t)dt 

-[3* {I; ' . f ( t)dt-2 I; f(t)dt }. 

If f t  (2) = 0 for all 2 e (0, r ] ,  then we must have f ' t  (2) < 0, which implies 
fl2=fl*. Similarly, if f 2 ( 2 ) = 0  for all 2e  I t ,  1) we must have ~2=fl*.  
Hence fl_, = ?2 = fl* and therefore f~ (2) = 0 implies ,6~ = ~,,. Thus we have 

lim 1E Z (Yi-P,,-fi,,2(xi-Y:,,)) =0 
n ~  n 1 ~<i~<n2 

for all 2~(0 ,  1) if and only if fll ='~'l and fl2=72, which completes the 
proof of (2.15). 

It is clear that (2.15) implies (2.16). 

The proofs of Theorem 3.1-3.3 require a generalization of Lemmas 5.1 
and 5.3 for random design points. 

LEMMA 5.4. We assume that (1.2), (3.1)-(3.6) hold. Then, as n ~ oo, we 
have 

n ' /2( f i2 ,  , - f12) = 0 e (  1 ) (5.42) 

and 

max IXk - :?hi = Oe((log log n)m),  (5.43) 
l ~ < k < n  

max Iw, , (k)-  11 = Oe((log log n)/n). (5.44) 
1 ~ < k < n  

Proof It is well known that 

~ 2 n -  ~2 -- n E l  <~ i<.n X i ~ ' i -  E l  <~ i<~n Xi ~'~1 <~ i<~n ~i ( 5 . 4 5 )  

n Z, <,<,,x~-- (Z,<i~. xi) 2 

Using (3.3) we have immediately 

_ x2_(! )2 1 E  Ex ,  
n l<~i<~n t ~ n  l<~i<~ n 

=var f(~)+Oe(n-l/z). (5.46) 
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Thus it is enough to show that 

and 

n -'/2 ~ x:,=Op(1) (5.47) 
1 <~i<~n 

1 
- E X i  r l - l / 2  E ~ / =  O p ( 1 ) .  ( 5 . 4 8 )  
F/ l~<i~<n l~<i~<n 

The central limit theorem and the weak law of large numbers imply (5.47) 
and (5.48), which also completes the proof of (5.42). 

We apply the central limit theorem and obtain 

Q,/n = var f (~)  + Oe(n-m). (5.49) 

Let z i = x ; - E x  i. Thus we can write gk--Y,,=(1/k){Zl<~;<,z;-- 
(k/n) Zl ~i<., z~}, and therefore Lemma 5.2 implies (5.43). 

Putting together (5.43) and (5.49) we obtain 

k(X, - g,,)2 
max - Oe((log log n)/n), 

1 ~<*<,, Q , , ( 1  - k / n )  

which gives (5.44). 

Proof of Theorem 3.1. We follow the proof of Theorem 2.1. Using (5.42) 
instead of (5.1) we can check that the contribution of A,,(k) to the maxi- 
mum of R,(k) is negligible, and therefore Lemma 5.2 implies (2.6), (2.8), 
and (2.10). 

By (2.6) and (5.44) we have 

max IR,,(k)(w.(k) - 1 )l = Oe((iog log n)3/2/n), 
l < ~ k < n  

and therefore (2.6), (2.8), and (2.10) imply (2.5), (2.7), and (2.9). 

Proof of Theorem 3.2. It is enough to prove (3.8) because by (5.44) it 
implies (3.7). As in the proof of Lemma 5.4, let z;= x;-Ex;. Donsker's 
invariance principle yields 

( ) ~t°''] (var~)'/2B(t)' /'/-1/2 E z;--t ~ z; 
l <~ i <~ nt l <~ i <~ n 

where {B(t), 0~< t ~<1} is a Brownian bridge. Hence (5.42)gives 

max IA,(k)l = 07(n-1/2). (5.50) 
nt I <~ k ~ nl 2 

683/48/1-5 
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In the proof of Theorem 2.2 we showed that maxt.<k<,, I Vkl and 

T,* = max max 
t<.k<.~, ( n - - k ) /  l~ ,~k  

// n "~1/2 "~ 
m a x  / .  - / 2 ~i 

n- , , ,<k<.  \ k ( n - k ) ]  k<i<.<. ) 

are asymptotically equivalent, where al =n / logn .  By (5.40) and (5.50), 
max,,,, ~ k .< ,,,2 IR,(k)r and max,,,t~k.<,,,2 I~',(k)l must have the same limit 
distribution. The random variables T,* and max,,, <~k<,,,21F',(k)l are inde- 
pendent for each n, which establishes the asymptotic independence in (3.8). 
The asymptotic distribution of T,(1, n) was computed in Theorem 3.1 and 
therefore it is enough to show that 

1 
- max I~',,(k)l---~ sup I B ( t ) l / ( t ( l - t ) )  1/2. (5.51) 
Cf ntl <. k <~ nt 2 t I <~ t ~ t 2 

Donsker's invariance principle gives 

1 ~[tt.t23 - V.(nt)  
f f  

, B(t)/(t(1 - t)) 1/2, 

and therefore by (5.40) we have immediately (5.51). 

Proof  o f  Remark 3.1. It follows from the proof of Theorem 3.2. We showed 
that it is enough to consider T* and m a x l ~ k ~ , ( ( k ( n - k ) ) m / n )  I V,(k)l. 
Applying (5.40) we obtain 

( k ( n - k ) )  1/2 
m a x  

I ~<k~<n I"/ 
I V,,(k)- V.(k)l = op(1). 

which implies (3.10). Using (5.44) one can easily check that (3.10) yields 
(3.9). 

The following lemma is needed in the proofs of Theorem 3.3 and 3.4. We 
compare f12,,-/32 of (5.45) and 

fl2,,-~2= 

We also define 

n Z l  ~;<~,, e i x i -  Z i  <i~..¢c, Z t  ~<i<~,, ei 
¢c 2 .'.'2i) 2 rl Z l < ~ i < ~ , , -  i - - ( E , < ~ i < , ,  

n ,~1/2 
. 4 . ( k ) =  k(n----k)] k(/32n - -  /32) kl~<i~<k n l < ~ i < ~ n  



LEMMA 5.5. 
hold. Then, as n --* oo, we have 

and 
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We assume that (1.2), (3.1), (3.3)-(3.5), and (3.11)-(3.14) 

m a x  
I ~<k<n  

m a x  
l ~ < k < n  

,7'/2(/L, - f i , , , )  = O , 4 1  ), 

IA,,(k) - A,,(k)l = O e ( n  - l /z  log n), 

IR,,(k) - /~, , (k)l  = Op(n  -1/2 log n) 

(5.52) 

(5.53) 

(5.54) 

Similar arguments give 

E I (x i - .%) / i l l2 l  = O(1/n) .  

Next we show 

E ](x~ - .¢c~ )/i '/21 = O( l /n  ). 

It follows from (5.59) and (5.60) that 

(: ): (! )3 I Y - # -  Z -~, E x, = y. x, =O,(n-"=). 
n 1 <~i<~n \ n  i <~i<~n 1 <~i<~n i <~i<~n 

(5.61) 

y' <(&-x,)l=OAl) 
I <~i<~n 

(5.62) 

(5.59) 

(5.60) 

Thus we have 

max I w , , ( k ) - ( 1 - r ( k / n ) ) - l a l = O e ( n - I / 2 1 o g n ) .  (5.55) 
l ~ < k < n  

P r o o f  Koml6s, Major, and Tusnhdy (1975, 1976) constructed a 
Wiener process { W(t) ,  0 ~< t < oo } such that 

Ink -- I~k - ~,W(k)l ~ O(log k) (5.56) 

and 

E Ir/k - /2k  - 7 W(k)l ~ = O(log k) (5.57) 

for all r/> 1, where 72 = var ~. A two-term Taylor expansion and (3.11 ) give 

I x ~ -  S z i - f ' ( i l t / n ) ( q , -  il~)/nl <~ CT(q~- il~)2/n 2. (5.58) 
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and 

Z 
1 ~<i~<n 

(.~-.,:~) Y ~,=o,,IEl). 
I ~i<~n 

(5.63) 

We note that 

E E ~ i ( f f i - x i ) = O ,  
l<~i<~n 

{5.04) 

and by (5.57) and (5.58) we have 

.) 

-= ~ E(£ri-x, E ~ ~i(.¢:i-xi) a'- )2 
l <~i<~n l <~i<~n 

( i ~i~_~-4) =0  ~ (f'(il.~/El))2-£~+ ~~ 
I <<.i~n I -<t~<n 

= O( 1 ). (5.65) 

Now (5.62) follows from (5.64) and (5.65). The central limit theorem 
implies that 

//-1/2 E /3i= Op(1 ). 
<~ i <<. n 

(5.66) 

By (5.58) we have that n-J/2 Z~ ~<i~<n ( ' ~ - - X ~ )  is asymptotically normal, 
which completes the proof of (5.63). By (5.61)-(5.63) we have immediately 
(5.52). 

Next we use (5.58) and obtain 

X k - - X ' l - -  Z "~i 1 E 5 ~ i - - ~  Z ( , , - - i ] . l )  
1 <~i<~k El I <~i~tl 1 <~i<~k 

n z ~ (qi-i~) <~C7 max Ir/i-i/~l/n 2 
l ~ i<~n I <~i <~n 

= Oe(n-3/2). (5.67) 

We apply (5.56) and obtain 

m a x  ~ (qi il~-yW(i)) ,i.~. O((logn)/n). (5.68) 
I ~ k < ~ n  I ~ i ~ k  
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The scale transformation of the Wiener process gives 

- •1  <~i~k  

~" 1' f ,  n}. (5.69) = W(!), 

By Garsia (1970) and (3.12) we have 

- f ' (p t )  W(t) max ~ W T ~o 
' <~k<~n ' <~i<~k 

= Oe((log n)/n). (5.70) 

It is easy to see that 

f~ f ' ( t )  W(t) dt = Oe(1 ). 

Integration by parts gives 

and therefore Darling and Erd6s (1956)imply 

max f'(tt~) W(t) =Op((loglogn)'/2). 
, <~k <n  ~0 

Hence we have 

max IA, , (k)-A, , (k) l  
, <~ k <~ . /2  

<~ 
. n .~ ,/2 

max k(fi2,, - flz) 
J<-*<-,,n \ k ( n - k ) ]  

X X k - - . ~ n - -  k , < ~ i < ~ k  Fl,<<.i<~n 

+ max k( f l2 , -  f iz , ) (~k-  ~,,) 
, ~ k  ~ n / 2  

(5.71) 

(5.72) 

= D,,  + D2, ,. (5.73) 
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Using (5.1), (5.52), and (5.67)-(5.72) we have 

Dj,, = O p(n -l/2(log log n)t/2). (5.74) 

Similarly, (5.52) and (5.10) give 

D2, , = Oe(n - ,/2). (5.75) 

Observing that 

's,i } f ' (# t )  W(t) d t - -  f'(lat) W(t) dt 
~0 El 

l ,  } 
=n '/2 - f ' (# t )  W ( t ) d t - n f ~ / , f ' ( u t )  W(t) 

Erd6s and Darling (1956) imply 

,,/2<~k<,,max n '/2 kJo Ilk/" l f~ / f '(ltt) W ( t ) d t -  n f ' (# t )  W(t)dt ((n-k)' /21n) 

= Oe(( log log n)m). (5.76) 

Thus similarly to (5.74) and (5.75) we have 

max IA, , (k)- ,4 , , (k) l  = Oe(n 1/2 log n), 
n/2 ~< k < n 

which completes the proof  of (5.53). 
By (5.2), (5.53) implies (5.54). 

The proof  of  (5.55) is similar to that of (5.53) and therefore it is omitted. 

Proof of Theorems 3.3 and 3.4. It follows from Lemma 5.5 that Z,,(i, j)  
(T,,(i,j)) and Z,,(i , j)  (7",,(i,j)) must have the same limit distribution. 
Hence these results follow from Theorems 2.1 and 2.2. 

ACKNOWLEDGMENTS 

The authors are grateful to Professor R. D. Cook for providing the Old Faithful data and 
to a referee for the careful reading of our paper and for useful remarks. 

REFERENCES 

I-I ] ANDREWS, D. F., AND HERZBERG, A. M. (1985). Data. Springer-Verlag, New York. 
[2] BROWN, R. L., DURBIN, J., AND EVANS, J. M. (1975). Techniques for testing the 

constancy of regression relationships over time (with discussions). J. Roy. Statist. Soc. 
Set. B 37 149-192. 



CHANGE IN LINEAR REGRESSION 69 

[3] COOK, R. D., AND WEISBERG° S. (1982). Residuals and Influence in Regression. Chapman 
& Hall, New York. 

[4] CSORG6, AND HORVATH, L. (1988). Nonparametric methods for changepoint problems. 
In Handbook of Statistics, Vol. 7 (P. R. Krishnaiah and C. R Rao, Eds.), pp. 403-425. 
North-Holland, Amsterdam. 

[5] DARUNG, D. A., AND ERD6S, P. (1956). A limit theorem for a maximum of normalized 
sums of independent random variables. Duke Math. J. 23 143-155. 

[6] DAVlSON, A. C., AND SNELL, E. J. (1991). Residuals and diagnostics. In Statistics, 
Theory and Modelling (D. V. Hinkley, N. Reid, and E. J. Snell, Eds.), pp. 83-106. 
Chapman & Hall, New York. 

[7] DE LONG, D. M. (1981). Crossing probabilities for a square root boundary by a Bessel 
process. Comm. Statist. Theory Methods Set. A 10 2197-2213. 

[8] GARSIA, A. M. (1970) Continuity properties of Gaussian processes with multidimen- 
sional time parameter. In Proceedings 6th Berkeley Sympos. Math. Statist. Probab., 
Vol. 2, pp. 369-374. University of Carolina, Berkeley. 

[9] HAWKINS, D. L. (1989). A U-I approach to retrospective testing for shifting parameters 
in a linear model. Comm. Statist. Theory Methods Ser. A 18 3117-3134. 

[10] HU~,KOV~,, M. (1993). Nonrecursive procedures for detecting changes in simple linear 
regression. In Proceedings of IMSIBAC 4, to appear. 

[ 11 ] JAMES, B., JAMES, K. L., AND SIEGMUND, D. (1987). Tests for a change-point. Biometrika 
74 71-84. 

[12] KIM, H. J., AND SmGMUNO, D. (1989). The likelihood ratio test for a change-point in 
simple linear regression. Biometrika 76 409-423. 

[13] KOML6S, J., MAJOR, P., AND TUSN.KDV, G. (1975). An approximation of partial sums of 
independent R. V.'s and the sample DF, I. Z. Wahrsch. verw. Gebiete 32 111-131. 

[14] KOML6S, J., MAJOR, P., AND TUSNADV, G. (1976). An approximation of partial sums of 
independent R. V.'s and the sample of DF, II. Z. Wahrsch. verw. Gebiete 34 33-58. 

[15] MADDALA, G. S. (1977). Econometrics. McGraw-Hill, New York. 
[16] MARONNA, R., AND YOHAJ, V. J. (1978). A bivariate test for the detection of a 

systematic change in mean. J. Amer. Statist. Assoc. 73 640-645. 
[17] MOORE, D. S., AND MCCABE, G. P. (1989). Introduction to the Practice of Statistics. 

Freeman, New York. 
[18] QUANDT, R. E. (1958). The estimation of the parameter of a linear regression system 

obeying two separate regimes. J. Amer. Statist. Assoc. 53 873-880. 
[19] QUANDT, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two 

separate regimes. J. Amer. Statist. Assoc. 55 324-330. 
[20] WORSLEV, K. J. (1986). Testing a two-phase multiple regression. Technometrics 26 

35-42. 
[21] YAO, Y.-C., AND DAVIS, R. A. (1986). The asymptotic behavior of the likeliood ratio 

statistic for testing a shift in mean in a sequence of independent normal variates. 
Sankhy~ Set. A 48 339-353. 


