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Abstract

This paper establishes a link between a generalized matrix Matsumoto–Yor (MY) property and the
Wishart distribution. This link highlights certain conditional independence properties within blocks
of the Wishart and leads to a new characterization of the Wishart distribution similar to the one
recently obtained by Geiger and Heckerman but involving independences for only three pairs of
block partitionings of the random matrix.

In the process, we obtain two other main results. The first one is an extension of the MY inde-
pendence property to random matrices of different dimensions. The second result is its converse. It
extends previous characterizations of the matrix generalized inverse Gaussian and Wishart seen as a
couple of distributions.

We present two proofs for the generalized MY property. The first proof relies on a new version of
Herz’s identity for Bessel functions of matrix arguments. The second proof uses a representation of
the MY property through the structure of the Wishart.
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1. Introduction

In recent years the Wishart distribution and distributions derived from the Wishart have
received a lot of attention because of their use in graphical Gaussian models. The essence
of graphical models in multivariate analysis is to identify independences and conditional
independences between various groups of variables. For Gaussian models, this leads to
considering the Wishart distribution and the independences between blocks of the Wishart
matrix. In this perspective, Geiger and Heckerman [5] searched for a characterization of
the Wishart distribution for 2 × 2 random matrices. Realizing this is not possible, they
obtained instead a characterization of the quasi-Wishart. Letac and Massam [10] gave an
alternate proof of their result using the converse of the univariate Matsumoto–Yor (MY)
[14] property (henceforth abbreviated as MY property), which will be described below.
Pursuing their earlier work, Geiger and Heckerman [6] found a new characterization of
the Wishart for matrices of dimensions greater than or equal to three. For the Wishart
variate K partitioned into blocks (K1, K12, K2), this characterization involves the classical
independence properties of K2·1 = K2 − K21K

−1
1 K12 and (K1, K12) and of K1·2 = K1 −

K12K
−1
2 K21 and (K2, K12). Now, these imply the conditional independences of K1 and

K2·1 given K12 and of K2 and K1·2 given K21. The latter call to mind the MY property and it
is natural to wonder whether it is possible to find a multivariate version of the MY property
with matrices of different dimensions which links the Wishart and its characterization to this
new MY property just as it was done for 2×2 matrices in [10]. Accordingly, in this paper we
define and study the multivariate MY property for matrix variates of different dimensions
and establish the interplay between this MY property and the conditional structure of the
Wishart.

Recent works in graphical Gaussian models in a classical or Bayesian framework have
shown the importance of the parametrization of the type K1, K

−1
1 K12, K2·1 for the precision

matrix K = �−1. In this context understanding the role of the MY property in the structure
of the Wishart appears essential.

Let us now sketch here a brief history of the development of the MY property, which is
relatively recent, and give an outline of the paper.

Since the way of parametrizing the GIG and gamma distributions is of some impor-
tance here, we fix it in the following way. The generalized inverse Gaussian distribution
GIG(−p, a, b) is defined by its density

f (x) = 1

Kp(a, b)
x−p−1e−ax−b/x1(0,∞)(x),

where either p > 0, a�0, b > 0, or p < 0, a > 0, b�0 or p = 0, a > 0, b > 0
and Kp(a, b) = ap/2b−p/2Kp(2

√
ab), with � �→ Kk(�) being the modified Bessel

function of the third kind. The gamma distribution W(q, c) is defined by its Laplace
transform

L(�) =
(

c

c − �

)q

,
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where q �0 and c > 0. If q = 0 the distribution is degenerate at zero, while for q > 0 its
density has the form

g(y) = cq

�(q)
yq−1e−cy1(0,∞)(y).

While studying functionals of exponential Brownian motion, Matsumoto and Yor [14]
considered the transformation � that takes (x, y) ∈ (0, ∞)2 into (0, ∞)2, where

�(x, y) =
(
(x + y)−1, x−1 − (x + y)−1

)
. (1.1)

They observed that if (X, Y ) ∼ GIG(−p, a, b) ⊗ W(p, a) then (U, V ) = �(X, Y ) ∼
GIG(−p, b, a) ⊗ W(p, b) for positive p, a, b (see also [15]).

Letac and Wesołowski [11] considered the transformation � for X and Y positive defi-
nite random matrices of the same dimension and proved that the MY property still holds.
Moreover under certain smoothness conditions they proved the converse, that is the fol-
lowing characterization, if X and Y are independent r × r positive definite matrices and
U = (X + Y )−1 and V = X−1 − (X + Y )−1 are also independent then X and Y follow
a matrix variate GIG (see (2.1) below) and Wishart distribution, respectively. They also
proved that the smoothness conditions are no longer necessary in the univariate case. (Mul-
tivariate versions of the MY property driven by a graphical structure of trees and related
characterizations of the GIG and gamma distributions have been developed recently in
[13].)

Here we consider a more general situation: X and Y are positive definite random matrices
of dimensions r × r and s × s, respectively, z is a constant s × r matrix of full rank. We
define U = (zXzt + Y )−1 and V = X−1 − zt (zXzt + Y )−1z. First, in Section 3, we
show that if X is a matrix variate GIG and Y is a Wishart with suitably chosen parameters
and they are independent, then U and V are independent and respectively follow a matrix
variate GIG and Wishart distribution with specified parameters. We give two proofs for this
result. The first one relies on a new version of Herz’s identity for Bessel functions of matrix
arguments; the second one on a conditional independence property of the Wishart and a
result of Butler [2]. In Section 4, we give the characterization of the matrix variate GIG
and Wishart distribution through the independence of X and Y, and U and V, under certain
smoothness assumptions. This is an extension of the characterizations obtained in [11,17]
which were concerned only with random matrices of the same dimensions and z = Ir . Our
proof makes use of a functional equation result given in [17].

In Section 5, we give a characterization of the Wishart distribution closely related to that
given by Geiger and Heckerman [6]. They showed that for n�3, an n × n random matrix
K with absolutely continuous distribution is Wishart if and only if K2·1 and (K12, K2)

are independent for every block partitioning K1, K12, K2 of K. Our characterization of
the Wishart distribution requires independences of that type for only three pairs of block
partitionings of K, such that K1 is a 1 × 1 matrix. The proof relies on the characterization
of the GIG and Wishart given in Section 4 and on the link between the MY property and
the Wishart already established in Section 3 (see the second proof of Theorem 3.1).

In the next section we set the notation adopted throughout the paper and give some
preliminary results to be used later on.
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2. Preliminaries

We will briefly address the following: the definitions of the Wishart and the matrix
variate GIG distributions, the basics of the Cholesky decomposition, the definition and some
elementary properties of the mapping �z which is a natural extension to matrix arguments
of the mapping � defined in the introduction, a formula for the covariance of aX and bX
when X is a normal matrix variate and a and b are given non-random matrices and finally a
useful property of conditional independence.

Let Vn be the Euclidean space of n × n real symmetric matrices equipped with the inner
product 〈a, b〉 = tr (ab). Let dx denote the Lebesgue measure on Vn assigning the unit
mass to the unit cube. Let V+

n denote the cone of positive definite matrices in Vn and let V+
n

denote its closure. For x ∈ Vn let |x| denote the determinant of x.
Let c ∈ V+

n and q ∈ �n = {0, 1
2 , 2

2 , . . . , n−1
2 } ∪ ( n−1

2 , ∞). Then the random matrix

Y taking its values in V+
n is said to follow the Wishart Wn(q, c) distribution if its Laplace

transform is

LY (�) = |c|q
|c − �|q , c − � ∈ V+

n .

Note that here, we conveniently parameterize the Wishart matrixY by taking qc−1 = E(Y ).
It is well known that the above formula is the Laplace transform of a probability measure
if and only if c ∈ V+

n and q ∈ �n. The set �n is called a Gindikin set (see [3,7]). When
q > n−1

2 , that is when Y takes its values in V+
n , this distribution has density of the form

fY (y) = |c|q
�n(q)

|y|q− n+1
2 exp(−〈c, y〉)1V+

n
(y),

where �n is the multivariate Gamma function, see [16]. When q ∈ �n and q < n−1
2 the

distribution is singular and is concentrated on the boundary of V̄+
n . In the special case q = 0,

it is the Dirac measure concentrated at the zero matrix.
A random matrix X, taking its values in V+

n , is said to follow the GIGn(−p, a, b) distri-
bution if it has density of the form

fX(x) = 1

K
(n)
p (a, b)

|x|−p− n+1
2 exp

(
−〈a, x〉 − 〈b, x−1〉

)
1V+

n
(x), (2.1)

where K
(n)
p is the matrix variate modified Bessel function of the third kind, see [8]. (The su-

perscript (n) indicating the dimension of the matrix arguments will be omitted in the sequel,
since the dimension will always be obvious from the context.) Letac [9] has observed that
the GIGn(−p, a, b) is well defined iff p, a, b satisfy one of the following three conditions:

1. a, b ∈ V+
n and p ∈ R,

2. a ∈ V̄+
n with rank(a) = m ∈ {0, 1, . . . , n − 1}, b ∈ V+

n and p > n−m−1
2 ,

3. a ∈ V+
n , b ∈ V̄+

n with rank(b) = m ∈ {0, 1, . . . , n − 1} and p < −n−m−1
2 .

This extends earlier definitions of the matrix variate GIG as given in [1] or [2].
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It is immediate to see that the GIG distribution has the following property

if X ∼ GIGn(−p, a, b) then X−1 ∼ GIGn(p, b, a), (2.2)

which can be rephrased in terms of Bessel functions as

K−p(a, b) = Kp(b, a). (2.3)

For X ∼ GIGn(p, a, b) and for a + � and b +� satisfying one of conditions 1–3 above,
we have the following obvious identity

E(exp(〈�, X〉 + 〈�, X−1〉) = Kp(a + �, b + �)

Kp(a, b)
. (2.4)

For any matrix k ∈ Vn consider the following block partitioning

k =
(

k1 k12
k21 k2

)

with k1 of dimension r × r , k12 = kt
21 of dimension r × s, k2 of dimension s × s and

r + s = n.
For k ∈ V+

n and k1 ∈ V+
r we consider the following block Cholesky (or Frobenius)

decomposition

k = �k

(
k1 0
0 k2·1

)
�t
k , where �k =

(
Ir 0

k21k
−1
1 Is

)
(2.5)

and k2·1 = k2−k21k
−1
1 k12 and Ir and Is are unit matrices of dimensions r and s, respectively.

We note that the rank of k is equal to the rank of

(
k1 0
0 k2·1

)
. So, k ∈ V+

n if and only if

k2·1 ∈ V+
s . From (2.5) we see that

|k| = |k1||k2·1|. (2.6)

In a dual way, for k ∈ V+
n and k2 ∈ V+

s we consider the following block Cholesky (or
Frobenius) decomposition

k = 	t
k

(
k1·2 0
0 k2

)
	k , where 	k =

(
Ir 0

k−1
2 k21 Is

)
(2.7)

and k1·2 = k1 − k12k
−1
2 k21. We note that the rank of k is equal to the rank of

(
k1·2 0
0 k2

)
.

So, k ∈ V+
n if and only if k1·2 ∈ V+

r . From (2.7) we see that

|k| = |k2||k1·2|. (2.8)

If k ∈ V+
n then from (2.6) and (2.8) it follows that

|k| = |k1||k2·1| = |k2||k1·2|. (2.9)
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For any s × r real matrix z of full rank, we will denote by P(z) the linear mapping

x ∈ Vr �→ P(z)x = zxzt ∈ Vs .

As mentioned in the introduction we generalize the transformation � defined in (1.1). To
do so we need the following two lemmas.

Lemma 2.1. Let z be an s × r real matrix of full rank. For (x, y) ∈ V+
r × V+

s and such
that P(z)x + y is positive definite we define �z as follows:

�z(x, y) = (u(x, y), v(x, y))

=
(
(P(z)x + y)−1, x−1 − P(zt )(P(z)x + y)−1

)
. (2.10)

Then (u, v) belongs to V+
s × V+

r .

Moreover, y ∈ V+
s if and only if v ∈ V+

r , which is equivalent to y ∈ V+
s \ V+

s if and only

if v ∈ V+
r \ V+

r .

Proof. Clearly (u, v) ∈ V+
s × Vr . For (x, y) ∈ V+

r × V+
s we define

k1 = x−1 , k21 = z = kt
12 , k2 = P(z)x + y

so that

x = k−1
1 , y = k2·1 , u = k−1

2 , v = k1·2.

We consider the symmetric (r + s) × (r + s) matrix k

k =
(

k1 k12
k21 k2

)
.

From (2.5) and (2.7) it follows that

k = �k

(
x−1 0

0 y

)
�t
k = 	t

k

(
v 0
0 u−1

)
	k.

Since y ∈ V+
s then k is positive semi-definite and so is v. Moreover since x and u are positive

definite it follows that y ∈ V+
s if and only if v ∈ V+

r . �

Lemma 2.2. The mapping �z is a bijection from V+
r × V+

s onto V+
s × V+

r . The absolute
value of the Jacobian of �−1

z is equal to

|J | =
∣∣∣∣�(x, y)

�(u, v)

∣∣∣∣ = |u|−(s+1)|v + P(zt )u|−(r+1). (2.11)

Proof. From the previous lemma we know that �z is a mapping from V+
r ×V+

s into V+
s ×V+

r .
Conversely, �zt is a mapping from V+

s × V+
r into V+

r × V+
s and therefore �z is a bijection

and �−1
z = �zt .
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Let us now compute the Jacobian of �−1
z . We decompose �z as �z = 
2 ◦ 
1, where


1 : V+
r × V+

s → � ⊂ V+
r × V+

s with � being the image of V+
r × V+

s by 
1, is defined by


1(x, y) = (�(x, y), 
(x, y)) = (x, P(z)x + y)

and 
2 : � → V+
s × V+

r is defined by


2(�, 
) = (u(�, 
), v(�, 
)) = (
−1, �−1 − P(zt )(
−1)).

Let us note that both 
1 and 
2 are bijections with respective Jacobians

�(�, 
)

�(x, y)
= J1 = Det

(
idV+

r
∗

0 idV+
s

)

and

�(u, v)

�(�, 
)
= J2 = Det

( −P(
−1) ∗
0 −P(�−1)

)
,

where the parts of J1 and J2 not needed in our calculations have been denoted by * and Det
denotes the determinant of operators. Therefore

�(u, v)

�(x, y)
= J1J2 = Det(P(
−1))Det(P(�−1))

= |
|−(s+1)|�|−(r+1) = |x|−(r+1)|P(z)x + y|−(s+1).

The equality before last follows from Theorem 2.1.7 in [16]. Since x = (P(zt )u+v)−1 and
P(z)x + y = u−1, (2.11) follows immediately. �

Let Mm,n be the space of real m × n matrices with inner product 〈u, v〉 = tr (utv).
Let us recall that given two matrix variates X and Y taking their values in Mm,n, the

covariance operator is defined as the unique symmetric bilinear form Cov(X, Y ) : Mm,n ×
Mm,n → IR such that for all u, v ∈ Mm,n

〈u, Cov(X, Y )v〉 = cov(〈u, X〉, 〈v, Y 〉).
Given a ∈ Mm,m and b ∈ Mn,n, the Kronecker product a ⊗ b of a and b is the bilinear
form on Mm,n × Mm,n defined by (u, v) �→ (a ⊗ b)(u, v) = 〈u, avbt 〉.

When X in an m × n normal matrix variate, Cov(X) = �1 ⊗ �2 for some �1 ∈ V+
m and

�2 ∈ V+
n . If a, b ∈ Mm,m are constant, then clearly

Cov(aX, bX) = (a�1b
t ) ⊗ �2. (2.12)

Finally let us recall a conditional independence property that we will often use here. For
any random variates X, Y, Z

{ (X, Y ) ⊥⊥ Z } ⇔ { (X ⊥⊥ Z)|Y and Y ⊥⊥ Z }. (2.13)
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3. The Matsumoto–Yor property for matrix variates of different dimensions

In this section, we give a further extension of this property to the case where X and Y are
random matrices of not necessarily the same dimension using the mapping �z as defined
in (2.10). In the special case when X and Y have the same dimension and z is the identity
matrix our result reduces to the MY property given by Letac and Wesołowski [11]. The
direct MY property for random matrices of different dimensions is as follows.

Theorem 3.1. Let X and Y be two independent random matrices with GIG and Wishart
distributions

X ∼ GIGr(−p, P(zt )a, b) and Y ∼ Ws(q, a) (3.1)

such that q ∈ �s and p = q + r−s
2 ∈ �r . Let z be a given constant s × r matrix of full

rank. Then P(z)X + Y is positive definite a.s. Moreover U and V defined as

U = (P(z)X + Y )−1 and V = X−1 − P(zt )(P(z)X + Y )−1

are independent with GIG and Wishart distributions

U ∼ GIGs(−q, P(z)b, a) and V ∼ Wr(p, b). (3.2)

We are going to present two proofs of this result. The first proof uses Laplace transform
techniques, while the second relies on the normal representation of the Wishart. We think
that both methods are interesting. The first one relies on a new identity for Bessel functions
of matrix variates of different dimensions which extends an earlier result by Hertz [8] and
a later result by Letac and Wesołowski [11]. The second one relates the MY property to the
conditional structure of the Wishart matrix.

3.1. First proof: using a Bessel functions identity

Our basic tool is a new identity for Bessel functions given in the following proposition.
Its proof is deferred to the Appendix A.

Proposition 3.1. Let a ∈ V+
s , b ∈ V+

r and let z be an s × r matrix of full rank. Let
p, q > −1/2 and q = p − r−s

2 . Then

�s(q)|b|pKp(b, P(zt )a) = �r (p)|a|qKq(a, P(z)b). (3.3)

We note that (3.1) makes sense for p or q in (−1/2, 0) with, in this case, the following
convention

�r (p)

�s(q)
=

⎧⎪⎪⎨
⎪⎪⎩

�r−s(p)�
s(r−s)

2 if s < r, (which implies p > 0),[
�s−r (q)�

r(r−s)
2

]−1
if s > r, (which implies q > 0),

1 if r = s, (which implies p = q).
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For arbitrary r and s and p > r−1
2 , identity (3.3) was given in [8]. For r = s, z = Ir and

arbitrary p = q it was given in [11] as

|b|pKp(b, a) = |a|pKp(a, b). (3.4)

They used it in the proof of the MY property for matrices of the same dimensions. We will
follow a similar pattern.

Proof of Theorem 3.1. Let us first assume that s�r . Then P(z)X + Y is positive definite
a.s. and so U is well defined. We therefore consider the transform

M(U,V )(�, �) = E
(
e〈�,P(zt )U+V 〉+〈�,U−1〉)

for � ∈ V+
r and � ∈ V+

s . It uniquely determines the distribution of (U, V ) since it is the
Laplace transform of the distribution of (P(zt )U + V, U−1). By (3.1), the independence
assumption, formulas (2.4) and (2.3) we have

M(U,V )(�, �) = E
(
e〈�,X−1〉+〈�,P(z)X+Y 〉) = E

(
e〈P(zt )�,X〉+〈�,X−1〉) E

(
e〈�,Y 〉)

= K−p(P(zt )(a + �), b + �)

K−p(P(zt )a, b)

|a|q
|a + �|q

= Kp(b + �, P(zt )(a + �))

Kp(b, P(zt )a)

|a|q
|a + �|q .

Consider now random matrices U1, V1 such that

(U1, V1) ∼ GIGs(−q, P(z)b, a) ⊗ Wr(p, b).

To complete the proof we need only show that M(U,V ) = M(U1,V1). By an argument similar
to that followed above we see that

M(U1,V1)(�, �) = Kq(a + �, P(z)(b + �)

Kq(a, P(z)b)

|b|p
|b + �|p .

Now, for the case s�r , the result follows by Proposition 3.1.
Let us now consider the case r < s. Take two independent random matrices

X1 ∼ GIGs(−q, P(z)b, a) and Y1 ∼ Wr(p, b), X1 ∈ V+
s , Y1 ∈ V̄+

r . Note that, since
r < s, P(zt )X1 + Y1 is positive definite. According to what we just showed,

(X, Y )
d=

(
(P(zt )X1 + Y1)

−1, X−1
1 − P(z)(P(zt )X1 + Y1)

−1)
)

. (3.5)

Then,

P(z)X + Y
d= X−1

1

and therefore it is positive definite a.s. Thus U and V are well defined. Moreover, using
(3.5), we have

(U, V ) =
(
(P(z)X + Y )−1, X−1 − P(zt )(P(z)X + Y )−1

)
d= (X1, Y1). �
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3.2. Second proof: using the structure of the Wishart

Our basic tool here is the following proposition giving certain conditional independences
for the Wishart distribution.

Proposition 3.2. Let K be an (r+s)×(r+s)Wishart random matrix, s�r , with parameters
Q ∈ �r+s , Q > r−1

2 , and c ∈ V+
r+s . We partition K and c in blocks according to the

dimensions r and s as

K =
(

K1 K12
K21 K2

)
, c =

(
c1 c12
c21 c2

)
,

assuming that c1 ∈ V+
r and c2 ∈ V+

s .
Then K1 is of full rank and the conditional distribution of (K1, K2·1) given K12 is a

product of GIG and Wishart

(K1, K2·1)|K12 ∼ GIGr

(
Q − s

2
, c1, K12c2K21

)
⊗ Ws

(
Q − r

2
, c2

)
. (3.6)

Dually, K2 is of full rank and the conditional distribution of (K2, K1·2) given K12 is GIG
and Wishart

(K2, K1·2)|K12 ∼ GIGs

(
Q − r

2
, c2, K21c1K12

)
⊗ Wr

(
Q − s

2
, c1

)
. (3.7)

Proposition 3.2 highlights the role of the matrix GIG distribution and the connection
between the MY property and the Wishart, a theme we will study in detail in Section 5.

The proof of Proposition 3.2 can be derived from the independence of K2·1 and (K1, K12)

and an extension of a result by Butler [2] giving the conditional distribution of K1 given
K12. The independence of K2·1 and (K1, K12) is a well-known result for non-singular K.
A proof using densities can be found for example in [16], and though it is given only for
Q = l/2, l ∈ N, l�r + s, it can immediately be extended for any Q > (r + s − 1)/2 (see
[12] for such a proof in a more general framework). Another proof for Q = l/2, l ∈ N,
l�r+s, using the normal representation of the Wishart, can be found in [4]. The assumption
l�r + s is redundant in that proof and the result is therefore valid for Q = l/2, l ∈ N,
l�r . Further details are given in the Appendix A.

Before we give the second proof of Theorem 3.1 let us make some remarks relevant to
the remainder of the paper.

Remark 3.1. From Proposition 3.2, using property (2.2), we immediately get analogues
of (3.6) and (3.7) respectively:

(K−1
1 , K2·1)|K12 ∼ GIGr

(
−Q + s

2
, K12c2K21, c1

)
⊗ Ws

(
Q − r

2
, c2

)
, (3.8)

(K−1
2 , K1·2)|K12 ∼ GIGs

(
−Q + r

2
, K21c1K12, c2

)
⊗ Wr

(
Q − s

2
, c1

)
. (3.9)

Remark 3.2. Observe that the GIG in (3.8) is well defined since c1 ∈ V+
r , K12c2K21 ∈ V̄+

r

is of rank s and Q − s
2 > r−s−1

2 due to our assumption Q > r−1
2 . The GIG in (3.9) is also

well defined since both K21c1K12 and c2 are in V+
s .
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Remark 3.3. We note that the shape parameters of the conditional distribution of (K1, K2·1)
and (K2, K1·2) given K12 depend on c only through blocks c1 and c2.

Proof of Theorem 3.1. Let us first assume that s�r . In this case, P(z)X + Y is of full
rank and U and V are well defined.

Given (X, Y ) as in (3.1), by Proposition 3.2 and Remark 3.1, there exists a random matrix
K ∼ Wr+s(Q, c) with

Q = r

2
+ q = s

2
+ p,

c =
(

c1 c12
c21 c2

)
=

(
b c12

c21 a

)
∈ V+

r+s , c1 ∈ V+
r , c2 ∈ V+

s ,

such that the conditional distribution of (K−1
1 , K2·1) given K12 = zt is the same as the

distribution of (X, Y ). We note that c12 = ct
21 can be chosen arbitrarily as long as c ∈ V+

r+s .
In order to find the distribution of (U, V ) let us consider its Laplace transform. From

(3.8) of Remark 3.1,

E
(
e〈�,U〉+〈
,V 〉) = E

(
e〈�,(P(z)X+Y )−1〉+〈
,X−1−P(zt )(P(z)X+Y )−1〉)

= E
(
e〈�,(P(z)K−1

1 +K2·1)−1〉+〈
,K1−P(zt )(P(z)K−1
1 +K2·1)−1〉|K21 = z

)

= E
(
e〈�,K−1

2 〉+〈
,K1·2〉|K21 = z
)

.

And now from (3.9) we can conclude that (U, V ) has the required distribution.
The case r < s can be treated exactly as in the first proof. �

4. The characterization of the GIG and Wishart distribution

In this section, we are going to prove a characterization of the GIG and Wishart dis-
tribution, that is the converse to the MY property for X and Y matrix variates of different
dimensions. For r = s and z = Ir such a characterization has been proved in [11] under
the assumption that the densities are strictly positive and twice continuously differentiable.
The same characterization was given in [17] under the weaker smoothness assumptions of
strict positivity and differentiability of the densities. These weaker conditions will be our
smoothness assumptions here.

Theorem 4.1. Let X and Y be two independent random matrices taking their values in V+
r

and V+
s respectively. Assume that X and Y have strictly positive differentiable densities with

respect to the Lebesgue measure. Let

�z(x, y) =
(
(P(z)x + y)−1, x−1 − P(zt )(P(z)x + y)−1

)
, (4.1)

where z is a given constant s × r matrix of full rank. Let (U, V ) = �z(X, Y ).



114 H. Massam, J. Wesołowski / Journal of Multivariate Analysis 97 (2006) 103–123

If U and V are independent, then there exists (a, b) ∈ V+
s × V+

r and scalars p and q
satisfying p −q = r−s

2 , p > r−1
2 , such that X and Y are independent GIG and Wishart with

(X, Y ) ∼ GIGr(−p, P(zt )a, b) ⊗ Ws(q, a). (4.2)

It also follows immediately that U and V are independent GIG and Wishart with

(U, V ) ∼ GIGs(−q, P(z)b, a) ⊗ Wr(p, b) (4.3)

Remark 4.1. Observe that if r > s the parameter P(zt )a of the GIG distribution of X is
singular (semi-positive definite), but the distribution is well defined since p > r−1

2 . Dually,
if r < s the parameter P(z)b of the GIG distribution of U is singular (semi-positive definite),
but again the distribution is well defined since q > s−1

2 .

Proof. Let us first note that without loss of generality we can assume that s�r . Indeed, as
we have seen it in the proof of Lemma 2.2, �−1

z = �zt . Therefore the couples (U, V ) and
(X, Y ) = �zt (U, V ) play symmetric roles and we can therefore arbitrarily choose to have
s�r .

We then have that P(zt )(V+
s ) = V+

r . Indeed, clearly, P(zt )(V+
s ) ⊂ V+

r . To prove the
reverse inclusion it is sufficient to show that for any given v ∈ V+

r there exists u ∈ V+
s such

that P(zt )u = v. We write zt = [zt
1, z

t
2], where without loss of generality we can assume

that z1 is an r × r invertible matrix, while z2 ∈ Ms−r,r . Since V+
r is an open set there exists

� > 0 such that v − �zt
2z2 ∈ V+

r . Define the r × r matrix u1 to be

u1 = (zt
1)

−1(v − �zt
2z2)z

−1
1 .

Then we see that

u =
(

u1 0
0 �Is−r

)
∈ V+

s

with P(zt )u = v and therefore P(zt )(V+
s ) = V+

r . This fact will be used twice in the proof
below.

Let us now prove the theorem. From Lemma 2.2, we know that the Jacobian of the
transformation �−1

z (u, v) is

J = |u|−(s+1)|P(zt )u + v|−(r+1).

Therefore the relationship between the densities of X, Y, U and V is, for any (u, v) ∈
V +

s × V +
r ,

fU(u)fV (v) = |u|−(s+1)|P(zt )u + v|−(r+1)fX((P(zt )u + v)−1)fY (y(u, v)), (4.4)

where y(u, v) = u−1 − P(z)(P(zt )u + v)−1. Writing


1(u) = log(fU (u)) + (s + 1) log |u| = 
̃1(u
−1) 
2(v) = log fV (v)


3(x) = log(fX(x)) + (r + 1) log |x| = 
̃3(x
−1) 
4(y) = log fY (y)
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and taking logarithms of (4.4), we obtain


1(u) + 
2(v) = 
̃3(P(zt )u + v) + 
4(y(u, v)). (4.5)

Let us now differentiate (4.5) with respect to u. We obtain


′
1(u) = P(z)

[

̃

′
3(P(zt )u + v)

]

+
[
P(z)P((P(zt )u + v)−1)P(zt ) − P(u−1)

]

′

4(y(u, v))

= P(z)
[

̃

′
3(P(zt )u + v)

]

+
[
P

(
P(z)(P(zt )u + v)−1

)
− P(u−1)

]

′

4(y(u, v)). (4.6)

Differentiating (4.5) with respect to v, we obtain


′
2(v) = 
̃

′
3(P(zt )u + v) + P((P(zt )u + v)−1)P(zt )
′

4(y). (4.7)

Taking P(z) of (4.7) and subtracting it from (4.6), gives us


′
1(u) − P(z)
′

2(v) = −P(u−1)
′
4(y),

which yields immediately


′
4(y(u, v)) = P(u)P(z)
′

2(v) − P(u)
′
1(u). (4.8)

We can rewrite (4.5) in terms of x and y as follows


̃1(P(z)x + y) + 
2(v(x, y)) = 
3(x) + 
4(y).

Following steps parallel to the previous ones we differentiate with respect to x and y
successively. We obtain


′
2(v(x, y)) = P(x)P(zt )
′

4(y) − P(x)
′
3(x). (4.9)

We find it convenient to introduce the notation:

�1(u) = P(u)
′
1(u), �2(v) = 
′

2(v), �3(x) = P(x)
′
3(x), �4(y) = 
′

4(y)

so that (4.8) and (4.9) can be rewritten as

�4(y) = P(u)P(z)�2(v) − �1(u), (4.10)

�2(v) = P(x)P(zt )�4(y) − �3(x). (4.11)

Multiplying (4.10) by P(x)P(zt ) and subtracting (4.11) from it, we obtain

�3(x) = (
P(x)P(zt )P(u)P(z) − Idr )

)
�2(v) − P(x)P(zt )�1(u)

= (
P(x)P(P(zt )u) − Idr

)
�2(v) − P(x)P(zt )�1(u),

which we rewrite as

P(x−1)�3(x) =
(

P(P(zt )u) − P(x−1)
)

�2(v) − P(zt )�1(u)

= (
P(P(zt )u) − P(P(zt )u + v)

)
�2(v) − P(zt )�1(u). (4.12)
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Since for any fixed v, x = (P(zt )u + v)−1 is a function of ũ = P(zt )u, it follows that
P(zt )�1(u) is a function A of ũ and therefore (4) is of the form

C(ũ + v) = A(ũ) + [P(ũ + v) − P(ũ)]�2(v) (4.13)

holding for all ũ, v ∈ V+
r , where C(x) = −P(x)�3(x

−1).

We now need the following theorem given in [17].

Theorem 4.2. Let V be the space of symmetric matrices of a given dimension d and V+
be its cone of positive definite matrices. Also let A, B : V+ → V be some functions and
C : V+ × V+ → V be a symmetric function, that is, C(u, v) = C(v, u) for any u, v ∈ V+.
If

A(u) + [P(u + v) − P(u)]B(v) = C(u, v)

holds for any u, v ∈ V+, then there exist a, b ∈ V and � ∈ R such that for any u, v ∈ V+

A(u) = a − �u + P(u)b , B(v) = b + �v−1,

C(u, v) = a + �(u + v) + P(u + v)b.

We apply this theorem with d = r and V+ = V+
r to Eq. (4.13) and it follows immediately

that there exist ã, b ∈ Vr and a scalar � such that


′
2(v) = −b + �v−1 , 
′

3(x) = −ã − �x−1 + P(x−1)b.

Taking antiderivatives yields the densities for V and X as follows:

fV (v) = cV |v|� exp(−〈b, v〉),
fX(x) = cX|x|−(�+r+1) exp(−〈ã, x〉 − 〈b, x−1〉),

where cX and cV are appropriate constants. Since fV and fX are densities of probability
measures it follows that ã and b belong to V+

r and there exists p > r−1
2 such that � = p− r+1

2
so that � + r + 1 = p + r+1

2 . As noted before any ã ∈ V+
r can be written as ã = P(zt )a for

some a ∈ V+
s . Therefore we have proved that

X ∼ GIGr(−p, P(zt )a, b) and V ∼ Wr(p, b).

Writing the densities of X and V in (4.4) gives

fU(u)cV |v|p− r+1
2 exp −〈b, v〉

= |u|−(s+1)|x|(r+1)cX|x|−p− r+1
2 exp

(
−〈P(zt )a, x〉 − 〈b, x−1〉

)
fY (y).

Using the fact that |x||y|−1 = |u||v|−1 and defining the scalar q such that

p − q = r − s

2
,
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the preceding equation gives us

fU(u) = C|u|−(s+1)|x|−p+ r+1
2 |v|−p+ r+1

2 exp
(
−〈P(zt )a, x〉 − 〈b, x−1 − v〉

)
fY (y)

= C|u|−(s+1)(|u||y|)−p+ r+1
2 exp

(−〈P(zt )a, x〉 − 〈b, P(zt )u〉) fY (y)

= C|u|−p+ r−s
2 − s+1

2 |y|−p+ r+1
2 exp (−〈P(z)b, u〉 − 〈a, P(z)x〉) fY (y)

= C|u|−q− s+1
2 |y|−p+ r+1

2 exp
(
−〈P(z)b, u〉 − 〈a, u−1 − y〉

)
fY (y)

= C|u|−q− s+1
2 exp

(
−〈P(z)b, u〉 − 〈a, u−1〉

)
|y|−p+ r+1

2 exp (〈a, y〉) fY (y),

where C is an appropriate constant. By the principle of separation of variables and since
−p + r+1

2 = −q + s+1
2 , it follows that the density fY of Y is that of the Ws(q, a) and the

density fU of U is that of the GIGs(−q, P(z)b, a). �

5. A characterization of the Wishart distribution through independence of blocks

The link between the conditional structure of theWishart distribution and the MY property
was first used in the case of 2×2 matrices in [10]. This link carries on here for the extended
MY property and Wishart matrices of dimension n × n, n�3. As was observed in [6] it is
not possible to characterize the Wishart distribution for n = 2 and indeed in [10] the MY
property was linked to the quasi-Wishart distribution only. Geiger and Heckerman [6] gave
a characterization of the Wishart for n�3 assuming independences for all possible block
partitionings of the random matrix considered. In our characterization, given in Theorem
5.1 below, the importance of the fact that n must be greater than or equal to 3 in order to
obtain a characterization of the Wishart is indicated by the fact that we need independences
for only three different block partitionings of the random matrix.

For an n × n matrix k and a given i ∈ {1, . . . , n}, define the partitioning into blocks
(ki,(1), ki,(12), ki,(2)), where

ki,(1) = [kii] , ki,(12) = [kij ]j �=i = kt
i,(21) , ki,(2) = [klm]l �=i and m�=i . (5.1)

The dimensions of the blocks are 1 × 1, 1 × (n − 1) and (n − 1) × (n − 1), respectively.
Our assumption, in this section, is that k belongs to V+

n and therefore ki,(1)
−1 and ki,(2)

−1

exist. We can then use the following notation

ki,(2)·(1) = ki,(2) − ki,(21)ki,(1)
−1ki,(12),

ki,(1)·(2) = ki,(1) − ki,(12)ki,(2)
−1ki,(21).

Theorem 5.1. Let K be an n × n random matrix taking its values in V+
n having a strictly

positive differentiable density. Then K is Wishart distributed if and only if

(Ki,(1), Ki,(12)) and Ki,(2)·(1) are independent (5.2)
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and also

(Ki,(2), Ki,(12)) and Ki,(1)·(2) are independent (5.3)

for three distinct values of i ∈ {1, . . . , n}.

Proof. If K is non-singular Wishart then it is well known that these independences are
satisfied for any block partitioning of K.

Let us now prove the converse. For any i such that (5.2) and (5.3) hold, let us consider
the random variates (X, Y ) having the same distribution as the conditional distribution of
(Ki,(1)

−1, Ki,(2)·(1)) given Ki,(12) = zt . Then (U, V ) = �z(X, Y ) follows the same law as
the conditional law of (Ki,(2)

−1, Ki,(1)·(2)) given Ki,(12) = zt for any given z of appropriate
dimension. This can be seen for instance through a Laplace transform argument as in the
second proof of Theorem 3.1. By (5.2), X and Y are independent and by (5.3), U and V
are independent. Then by Theorem 4.1, there exist scalars pi and qi and constant matrices
ai ∈ V+

s , bi ∈ V+
r satisfying the conditions given in Theorem 4.1, such that, conditionally

on Ki,(12), we have [(
Ki,(1)

−1, Ki,(2)·(1)

)
| Ki,(12) = zt

]
∼ GIG1(−pi, P (zt )ai, bi) ⊗ Wn−1(qi, ai) (5.4)

and [(
Ki,(2)

−1, Ki,(1)·(2)

)
| Ki,(12) = zt

]
∼ GIGn−1(−qi, P (z)bi, ai) ⊗ W1(pi, bi). (5.5)

Since the Wishart distributions Wn−1(qi, ai) and W1(pi, bi) are the conditional distributions
of Ki,(2)·(1) given Ki,(12) = zt and Ki,(1)·(2) given Ki,(12) = zt , respectively, the parameters
pi , qi , ai and bi may be dependent upon z. However, Ki,(2)·(1) and Ki,(12) are independent
and so are Ki,(1)·(2) and Ki,(12) and therefore these parameters are constants.

Without loss of generality we can assume that the three values of i for which the inde-
pendences hold are i = 1, 2, 3.

To go further in our proof we need to set some notation:

K−1 = (K2,3, K2,4, . . . , K2,n, K3,4, . . . , K3,n, . . . , Kn−1,n),

K−2 = (K1,3, K1,4, . . . , K1,n, K3,4, . . . , K3,n, . . . , Kn−1,n),

K−3 = (K1,2, K1,4, . . . , K1,n, K2,4, . . . , K2,n, K4,5, . . . K4,n, . . . , Kn−1,n).

Following the definition of ki,(12) in (5.1) we make the following identifications

K1,(12) = (K1,2, K1,3, . . . , K1,n),

K2,(12) = (K1,2, K2,3, . . . , K2,n),

K3,(12) = (K1,3, K2,3, K3,4, . . . , K3,n).

At this point let us note that, for each i = 1, 2, 3 the pair (Ki,(12), K−i ) consists of all
the off-diagonal elements in the upper triangular part of K. We denote this set of elements
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as K−d . From (5.5) we know that the conditional distribution of K−1
i,(2) given Ki,(12) is

GIGn−1(qi, P (Ki,(21))bi, ai). Thus by (2.2), the conditional distribution(
Ki,(2) | Ki,(12)

) ∼ GIGn−1(−qi, ai, P (Ki,(21))bi)

and therefore we know the marginal conditional distribution of K−i given Ki,(12). Their
densities can be written as

f−i|i,(12)(k−i |ki,(12)) = ci(k−d) = f (k−d)

fi(ki,(12))
, (5.6)

where ci is known, i = 1, 2, 3. Therefore

c1(k−d)f1(k1,(12)) = c2(k−d)f2(k2,(12)) = c3(k−d)f3(k3,(12)). (5.7)

Since k−d = (k1,(12), k−1), then setting k1,(12) = (0, . . . , 0) = 0 in the first equality of
(5.7), we get

c1(0, k−1)f1(0) = c2(0, k−1)f2(0, k2,3, . . . , k2,n). (5.8)

Setting k1,2 = 0 in the second equality of (5.7) we obtain

c2(k1,2 = 0, k1,3, . . . , k1,n, k2,3, . . . , k2,n, . . . , kn−1,n)f2(0, k2,3, . . . , k2,n)

= c3(k1,2 = 0, k1,3, . . . , k1,n, k2,3, . . . , k2,n, . . . , kn−1,n)f3(k3,(12)). (5.9)

Since it is assumed that the density is non-zero then

c2(0, k−1) �= 0 and c3(0, k1,3, . . . , k1,n, k2,3, . . . , k2,n, . . . , kn−1,n) �= 0.

Then, combining (5.8) and (5.9) we see that the density f3(k3,(12)) is uniquely determined
by the functions c1, c2 and c3.

From (5.5) with i = 3 it now follows that the joint distribution of(
K3,(2), K3,(1)·(2), K3,(12)

)
is uniquely identified by the set of parameters {ai, bi, pi, qi, i = 1, 2, 3}. We have therefore
uniquely identified the distribution of K.

Since the Wishart distribution satisfies the independence conditions in our assumptions
the distribution of K must be Wishart. �

Appendix A.

A.1. Proof of Proposition 3.1

For the proof of Proposition 3.1 we need the following lemma.

Lemma A.1. Let x ∈ V+
r and y ∈ V̄+

r with rank(y) = s ∈ {0, 1, . . . , r − 1}. Denote by
y1, y12, y2 the block decomposition of the matrix y with respective dimensions of the blocks:
(r − s) × (r − s), (r − s) × s and s × s, and assume that y2 ∈ V+

s . Let p > r−s−1
2 and

q = p − r−s
2 .
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Then

Kp(x, y) = �r−s(p)�
r(r−s)

2 |x|−p
∣∣(P(	y)x)2

∣∣q Kq

(
(P(	y)x)2, y2

)
, (A.1)

where

	y =
(

Ir−s 0
y−1

2 y21 Is

)

and (d)2 denotes the diagonal block d22 of the matrix d.

Proof. We first observe that

y = 	t
y ỹ2	y , with ỹ2 =

(
0 0
0 y2

)
.

Thus

Kp(x, y) =
∫

V+
r

|u|p− r+1
2 e−〈x,u〉−〈ỹ2,	yu−1	t

y 〉 du.

In the above integral, we make the change of variable u �→ v = (	t
y)

−1u	−1
y . The Jacobian

is clearly 1 and, since 〈ỹ2, v
−1〉 = 〈y2, (v

−1)2〉 = 〈y2, v
−1
2·1〉, we obtain

Kp(x, y) =
∫

V+
r

|v|p− r+1
2 e−〈x̃,v〉−〈y2,v

−1
2·1〉 dv,

where x̃ = 	yx	t
y .

Now using the identity

〈x̃, v〉 = 〈x̃2, v2·1〉 + 〈x̃1·2, v1〉 + 〈x̃12x̃
−1
2 + v−1

1 v12, x̃2(x̃
−1
2 x̃21 + v21v

−1
1 )v1〉 (A.2)

and making the change of variables

v = (v1, v12, v2) �→ w = (w1 = v1, w12 = v−1
1 v12, w2 = v2·1),

the Jacobian of which is J = |w1|s , after a routine calculation we obtain (A.1). �

Proof of Proposition 3.1. We first consider the case of p > r−1
2 , that is q > s−1

2 . In this
case, by (2.3), we have

�s(q)|a|−qKp(b, P(zt )a) = �s(q)|a|−qK−p(P(zt )a, b)

=
∫

V+
s ×V+

r

|y|q− s+1
2 |x|p− r+1

2 e−〈a,y+P(z)x〉−〈b,x−1〉 dy dx.

Making the change of variables

u = (P(z)x + y)−1 ∈ V+
s , v = x−1 − P(zt )[P(z)x + y]−1 ∈ V+

r ,

which, by Lemma 2.2, is a bijection with Jacobian of the inverse equal to |u|−(s+1)|x|r+1,
and remembering that |x|−1|y| = |u|−1|v| we obtain

�s(q)|a|−qKp(b, P(zt )a) = K−q(P(z)b, a)�r (p)|b|−p.

The result now follows by (3.4).
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Let us now consider the case where p ∈ (
r−s−1

2 , r−1
2

]
. We are going to use Lemma

A.1. We therefore need to identify y = P(zt )a and the corresponding 	y . Without loss of
generality we can assume that z can be decomposed into blocks z = [z1, z2] of dimensions
s × (r − s) and s × s respectively where z2 is of rank s. Since

y = P(zt )a =
(

zt
1az1 zt

1az2
zt

2az1 zt
2az2

)

then

	y =
(

Ir−s 0
z−1

2 a−1(zt
2)

−1zt
2az1 Is

)
=

(
Ir−s 0
z−1

2 z1 Is

)
,

and
(
P(	y)b

)
2

=
((

Ir−s 0
z−1

2 z1 Is

) (
b1 b12
b21 b2

) (
Ir−s zt

1(z
−1
2 )t

0 Is

))
2

= z−1
2 (P(z)b)(z−1

2 )t .

Thus by Lemma A.1 we obtain

Kp(b, P(zt )a) = �r−s(p)�
(r−s)s

2 |b|−p|z2|−2q |(P(z)b)|q
×Kq

(
z−1

2 (P(z)b)(z−1
2 )t , zt

2az2

)
.

Since Kq(z−1
2 c(z−1

2 )t , zt
2az2) = |z2|2qKq(c, a) we obtain

Kp(b, P(zt )a) = �r (p)

�s(q)
|b|−p|P(z)b|qKq(P(z)b, a).

Now (3.3) follows by (3.4). �

A.2. Proof of Proposition 3.2

Proof of Proposition 3.2. As mentioned in Section 3, the independence of K2·1 and
(K1, K12) when K is Wishart Wr+s(Q, c) has been proved or can be immediately de-
rived from existing proofs, for all values of Q ∈ �r+s . The conditional independences (3.6)
and (3.7) then follow by (2.13). The distributions of K2·1 and K1·2 which are, of course,
also conditional distributions given K12 are also well known to be Wishart as given in (3.6)
and (3.7). It only remains to show that the conditional distributions of K1 and K2 given
K12 are GIG’s with appropriate parameters. This result for the non-singular case, that is for
Q > r+s−1

2 , is given in Theorem 1 of Butler [2]. The singular case was considered in his
Theorem 2 which we can apply directly to derive the conditional distribution of K2 given
K12 as given in (3.7) since both matrix parameters are then positive definite. Theorem 2 can
also be directly applied to derive the conditional distribution of K1 given K12 as given in
(3.8) in the particular case that r = s. However, for the conditional distribution of K1 given
K12, in the case that s < r , the second matrix parameters of the GIG is not of full rank.
Then the range of the scalar parameter for the GIG given in [2] does not coincide with the
range given in Section 2 of the present paper.
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To clarify the situation let us therefore consider the case Q ∈ ( r−1
2 , r+s−1

2 ] ∩ �r+s in
more detail. Following a classical approach, as done in [2], we write N = 2Q and take X
and Y to be two N × r and N × s matrices, respectively, such that the N rows of the matrix
N × (r + s) matrix [X, Y ] are i.i.d. Nr+s(0, �) random vectors. Then

K =
(

K1 K12
K21 K2

)
d=

(
Xt

Y t

)
( X Y ) =

(
XtX XtY

Y tX Y tY

)
,

where
d= denotes identity of the distributions.

It is well known that

XtY | X ∼ Nr,s

(
XtX�−1

1 �12, �2·1 ⊗ XtX
)

. (A.3)

Since the conditional distribution of XtY given X depends on X only through XtX, for any
� ∈ Mr,s the Laplace transform of the conditional distribution of XtY given XtX is

E(e〈�,XtY 〉|XtX) = E(E(e〈�,XtY 〉|X)|XtX) = E(
�(X
tX)|XtX) = 
�(X

tX), (A.4)

where 
�(X
tX) = E(e〈�,XtY 〉|X). Thus the conditional distribution of XtY given X is the

same as the conditional distribution of XtY given XtX. Now the distribution of XtX is
known and we therefore have the joint distribution of K12, K1 and proceed from there as
in Appendix A of Butler [2] to obtain the conditional distribution of K1 given K12 as given
in (3.6). �
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