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a b s t r a c t

Regression data often suffer from the so-called Berkson measurement error which
contaminates the design variables. Conventional nonparametric approaches to this errors-
in-variables problem usually require rather strong conditions on the support of the design
density and that of the contaminated regression function, which seem unrealistic in many
cases. In the current note, we introduce a novel nonparametric regression estimator, which
is able to identify the regression function on thewhole real line under normal Berkson error
although the location of the design variables is restricted to some bounded interval. The
asymptotic properties of this estimator are investigated and some numerical simulations
are provided.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric regression estimation has become an important tool to investigate the link between two random
quantities. Recently, there has been increasing interest in the so-called errors-in-variables problems where the design
variables are corrupted by measurement errors. In the classical measurement error model where the design variables are
contaminated before the dependent variables are observed, Fan and Truong [1] introduce a deconvolution procedure to
estimate the regression function despite the contamination of the data and study the optimal convergence rates.
On the contrary, the current paper deals with the Berkson regression model where one observes the data (Xj, Yj),

j = 1, . . . , n, with

Yj = g(Xj + δj)+ εj, (1)

where the random variables X1, δ1, ε1, . . . , Xn, δn, εn are independent; the δj are assumed to have the known density fδ
while we only assume that Eεj = 0 and Eε2j ≤ Cε < ∞ with respect to the εj. Assuming exact knowledge of the error
density is the standard approach in nonparametric errors-in-variables problems. In practice, this is a limitation, of course.
Sometimes, additional direct observations of the distribution of δj may be available so that fδ is accessible; see e.g. [2]. The
goal is to estimate theunknown regression function g . Therefore, the Berksonmodel differs from the standardnonparametric
regression model by the occurrence of the δj which are degenerated to zero otherwise; it is also different from the problem
studied in [1] as, in the Berkson setting, the design variables are contaminated after the Xj have been recorded.
TheBerksonmodel,whichhas been introducedbyBerkson [3], hasmainly been studied in a parametric or semiparametric

framework; see for example [4] or [5]. To our knowledge, the first nonparametric approach to the Berkson problem is given
in [2]. Meister [6] studies that setting in the case of Fourier-oscillating error densities. Carroll et al. [7] consider a model
which combines the classical and the Berkson measurement error.
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Many practical examples of errors-in-variables problems are given in the book of Carroll et al. [8]. In Delaigle et al. [2], a
real data example for the Berkson problem is described: The data originate from a survey conducted by the US Department
of Agriculture. Its goal is to compare three methods of estimating areas growing specific crops. These methods are aerial
photography, satellite imagery and personal statements of the farmers. The authors’ goal is to detect the link between
the data gained by aerial photography and data acquired by satellite imagery. However, in absence of photography data,
the authors consider the data from personal interviews as the predictor variables Xj and the satellite imagery data as the
response variables Yj—transferred to our notation. Then, the unobserved random variables Xj+δj represent the photography
data. Finally the function g describes the desired link. Thus those data can be studied via the nonparametric Berkson model.
Another real data set to which the Berkson problem is applicable is given in the Nevada Test Side Thyroid Disease Study. The
goal of that study is the investigation of the link between radiation exposure and thyroid disease outcomes. The predictor
data Xj denote some observations of dosimetry, which obviously represent only a part of (the logarithm of) the true radiation
exposure of an individual. This latter quantity is unobserved and a contaminated version of Xj. Hence, it may be interpreted
as Xj + δj. The response data indicate absence or presence of thyroid disease. That example is given in [7].
The estimator proposed by Delaigle et al. [2] leans on the fact that the convolved regression function

p(x) :=
[
g ∗ f −δ

]
(x) = E

(
Yj | Xj = x

)
, (2)

translated to our notation, is directly accessible by the empirical data set. Throughout this work, ∗ denotes convolution;
and E

(
Z | Xj = x

)
denotes the conditional expectation of a random variable Z given Xj = x. Then the authors propose

a deconvolution procedure based on Fourier methods to estimate the function g . The authors consider a random design
model; and they argue that, if supp fδ = R, then the design density must also be infinitely supported in order to be able to
identify g on a given interval where, throughout, we write supp f for the support of a function f , i.e.

supp f =
{
x ∈ R : lim sup

h↓0

1
2h

∫ x+h

x−h
f (y)dy 6= 0

}
,

and A denotes the closure of a set A. That requires some strong conditions on the relation between the support of fδ , g and
fX , i.e. the design density. More concretely, if the support of fδ , g and fX equals [aδ, bδ], [ag , bg ] and [aX , bX ], respectively, the
inequalities aX ≤ aδ + ag and bX ≥ bδ + bg must be satisfied; however, they seem to be rather unrealistic in many real data
applications. In [7], the case of infinitely supported g is discussed; however, the authors consider estimation of g only on a
domain where fX is bounded away from zero.
In the current note, we show that such strong assumptions on the support can be omitted when the error density fδ is

normal. Although normalmeasurement errors occur rather frequently in practice due to the central limit theorem, Gaussian
models are not very popular in deconvolution problems. Models involving ordinary smooth error densities – in the notation
of Fan [9] – with polynomial Fourier tails are usually favoured as the attainable convergence rates are faster; they are
algebraic for ordinary smooth error densities while supersmooth error densities such as the normal density only admit
logarithmic rates. However, in the framework of this work, we show that just the supersmoothness of the normal density
turns out to be an advantage. We introduce a novel procedure, which estimates g consistently on the whole real line, in the
setting where all the design variables X1, . . . , Xn are located in a fixed compact interval J . Even though the support of g may
be bounded in most practical applications that support could exceed the interval J . Then, our estimator is able to estimate
the function g as a whole while the approach of Delaigle et al. [2] is not and the estimator of Carroll et al. [7] is consistent
only for g(x), x ∈ J . It may be seen as surprising that g is identifiable at all under the given conditions. To provide some
better understanding of this fact, we mention that the function p in (2) is analytic if fδ is normal even if only finitely many
derivatives of g are supposed to exist. That latter condition is the standard assumption in nonparametric curve estimation.
That is also why, unfortunately, our procedure cannot be extended to ordinary smooth error densities. This means that p(x),
for all x ∈ R, is uniquely determined by its restriction to an open non-void interval, take (min{X1, . . . , Xn},max{X1, . . . , Xn})
as that interval. Therefore, p as a whole is empirically accessible by the data set drawn from model (1); and then g is
reconstructable by a deconvolution procedure. Motivated by that result, we derive a nonparametric estimator for g under
model (1) in Section 2. In Section 3, the convergence rates of this estimator are investigated. The graphical plots of some
numerical simulations are shown in Section 4. The proofs are deferred to Section 5.

2. Methodology

We assume throughout that fδ is the normal density with the mean 0 and the variance σ 2, denoted by N(0, σ 2). Also, we
assume that g is Lebesgue measurable and satisfies

|g(x)| ≤ C exp(D|x|), (3)

for all x ∈ R and some constants C,D > 0. This condition is significantly weaker than the assumptions imposed in [7] where
a polynomial bound on |g| is stipulated. As the normal density is supersmooth, i.e. its Fourier transformhas exponential tails,
the function p in (2) is differentiable infinitely often; its derivatives are

p(k)(x) =
1

√
2πσ

∫
g(y)

dk

dxk
exp

(
−(x− y)2/(2σ 2)

)
dy
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=
(−1)k
√
2πσ k

∫
g(x− σy) exp

(
−y2/2

)
Hk(y)dy,

where Hk denotes the kth Hermite polynomial. Applying Taylor’s expansion, we obtain that

p(x) =
K−1∑
k=0

(−1)k
√
2πk!σ k

∫
g(−σy) exp

(
−y2/2

)
Hk(y)dy · xk + RK (x). (4)

By Lagrange’s representation and (3), the residual term RK satisfies the inequality

|RK (x)| ≤
1
K !σ K

C exp(D|x|)|x|K
1
√
2π

∫
exp

(
−y2/2

)
exp(Dσ |y|)|HK (y)|dy

≤
1
K !σ K

C exp(D|x|)|x|K
1
√
2π

(∫
exp

(
−y2/2+ 2Dσ |y|

)
dy
)1/2
·

(∫
exp

(
−y2/2

)
|HK (y)|2dy

)1/2
≤ const · (K !)−1/2 exp(D|x|)|x/σ |K . (5)

Here and elsewhere const denotes a generic positive constant.
The representation (4) motivates us to apply a polynomial approach to estimate the function p. Therefore we introduce

Lk(x) =
(
(X(n) − X(1))/2

)−1/2√k+ 1/2 · L̃k (2[x− (X(n) + X(1))/2]/(X(n) − X(1))) ,
where L̃k denotes the kth Legendre polynomial, which can be represented by

L̃k(x) =
1
2kk!

dk

dxk
[
(x2 − 1)k

]
. (6)

That famous equality is also known as the Rodrigues formula. For details about Legendre polynomials, see e.g. the book of
El Attar [10]. Here and elsewhere, X(1) < · · · < X(n) denotes all elements of the set {X1, . . . , Xn}with increasing order. Thus,
Lk is the normalization of L̃k so that∫ X(n)

X(1)

|Lk(x)|2dx = 1.

Furthermore, the sequence (Lk){k≥0} is an orthonormal basis of the Hilbert space consisting of all squared-integrable
functions on the domain [X(1), X(n)]. That inspires us to consider

p̂K (x) =
K−1∑
k=0

ĉk · Lk(x),

with

ĉk =
n−1∑
j=1

Y(j) ·
∫ X(j+1)

X(j)

Lk(z)dz, (7)

as an estimator of p(x) where Y(j) denotes that Yl which correlates with the design variable X(j). Therein, note that the
polynomials Lk can uniquely be continued from the domain [X(1), X(n)] to the whole of R in a natural way. The parameter K
is still to be selected.
We denote the coefficients of Lk by λk,j, i.e.

Lk(x) =
k∑
j=0

λk,jxj.

Hence, according to (4), it is reasonable to consider

d̂j =
K−1∑
k=j

ĉkλk,j,

as an empirical version of

(−1)j
√
2π j!σ j

∫
g(−σy) exp

(
−y2/2

)
Hj(y)dy.
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Moreover, it is well known that the Hermite polynomials form an orthogonal basis of the Hilbert space of all functions f
satisfying ‖f ‖2w = 〈f , f 〉w <∞with respect to the inner product

〈f , g〉w :=
∫
f (x)g(x) exp(−x2/2)dx.

In particular, we have the representation

gσ (x) =
∞∑
k=0

1
√
2πk!
〈gσ ,Hk〉wHk,

where the infinite sum must be understood as a 〈·, ·〉w-limit; and gσ (x) = g(−σ x).
Therefore, we define

ĝ(x) :=
bcK (K−1)c∑
k=0

(−σ)kd̂k · Hk(−x/σ), (8)

as our nonparametric linear estimator of g with some parameter cK ∈ (0, 1). Note that (8) is a spectral cut-off
estimator and bcK (K − 1)c denotes that integer where the cut-off takes place. It corresponds to one by the bandwidth
in kernel regularization. In the related field of density deconvolution, a similar regularization techniques involving Hermite
polynomials is introduced in [11]. In the context of the current work, where we aim at estimating a regression function
rather than a density, the polynomial approach seems to be even more appropriate.
As a great advantage of our method, we point out that only one smoothing parameter K remains to be selected while the

choice of cK will not be critical as shown in the next section; unlike the approach of Delaigle et al. [2] where a local smoother,
including an additional smoothing parameter, is used to estimate the convolved regression function.

3. Asymptotics

In this section, we will study the convergence rates attained by the estimator ĝ as defined in (8). With respect to the
design variables X1, . . . , Xn, we give two alternative conditions.
Condition D: We consider either the fixed design model and assume that

const · 1/n ≤ X(j+1) − X(j) ≤ const · log n/n,

holds true for all integer n > 0, j = 1, . . . , n − 1 and uniform constants, and that all X1, . . . , Xn are located in some fixed
compact interval J; or consider the random design model and assume that all X1, . . . , Xn lie in some fixed compact interval
J almost surely and have the design density fX which is bounded away from zero by a constant cX > 0 and bounded above
by CX on J .
The following lemma is valid under both alternatives.

Lemma 1. Under Condition D, we have

E
(
max

{
X(j+1) − X(j) : j = 1, . . . , n

})4
= O

(
n−4 log4 n

)
,

and

E
(
X(n) − X(1)

)−α
≤ constα,

for all α ∈ (0, n/2) and some positive constant which is independent of n.

With respect to the target regression function g , we impose some smoothness conditions by stipulating that g is β-fold
differentiable (β ∈ N) on the whole real line and satisfies∫

|xkg(j)(x)|2 exp(−x2/(2σ 2))dx/σ ≤ CG, (9)

for some positive constant CG and all integers k+ j ≤ β , k, j ≥ 0. All functions g which satisfy (9) as well as (3) are collected
in the function class G = Gβ,CG,C,D. As an important property, the functions contained in G are well approximable by the
basis of the Hermite polynomials, which is shown in the following lemma.

Lemma 2. For any g ∈ G, we have
∞∑
k=0

kβ
1

√
2πk!
|〈gσ ,Hk〉w|2 ≤ CG,

for a constant CG > 0 which is dependent of only G but not of g explicitly.
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The following theorem gives us an upper bound on the convergence rates of the MISE (mean integrated squared error)
of estimator (8) with the N(0, σ 2)-density as the weight function. Thus, we consider estimation of g on the whole real line
and not only on the support of fX as in [7].

Theorem 1. Assume that Condition D holds. Choose K = Kn � blog n/ log log nc, i.e. Kn = const · blog n/ log log nc, and
cK ∈ (0, 1) such that

lim
n→∞

cKK/
log n
log log n

∈ (0, 1).

Then, the estimator (8) satisfies

sup
g∈G
E
∫
|ĝ(x)− g(x)|2 exp

(
−x2/(2σ 2)

)
dx/σ = O

(
(log n/ log log n)−β

)
.

Apparently, the estimator (8) achieves the common rates of convergence for deconvolution with normal error densities
under smoothness constraints (see e.g. [9]) up to the deterioration caused by the iterated logarithm. Moreover, the choice
of parameter K is auto-adaptive, i.e. it is independent of the unknown smoothness degree β of g . Obviously, no data-driven
selection procedure for K such as cross-validation or plug-in is required to attain those rates.
As a corollary of Theorem 1, wemay conclude that the same convergence rates can be established when we consider the

uniform MISE

sup
g∈G
E
∫ b

a
|ĝ(x)− g(x)|2dx,

for all fixed real numbers a < b since the normal density chosen as the weight function is continuous and non-vanishing.
Note that S = [a, b]may, by far, exceed the interval J , which contains all the observations X1, . . . , Xn.
In the following theorem, we give a lower bound on the attainable convergence rates with respect to any estimator in

the given statistical experiment, provided the εj are normally distributed.

Theorem 2. Assume that Condition D holds. Let ĝ be an arbitrary estimator of g based on the data (X1, Y1), . . . , (Xn, Yn) drawn
from model (1). Assume that β > 2 and allow for CG sufficiently large; and suppose that the εj have the standard normal
distribution. Then, for any a < b, we have

sup
g∈G
E
∫ b

a
|ĝ(x)− g(x)|2dx ≥ const · (log n)−β ,

for n sufficiently large.

Hence, combining Theorems 1 and 2, we have shown that estimator (8) achieves nearly optimal convergence rates up to
an iterated logarithmic factor under smoothness constraints.

4. Simulations

Now the finite sample performance of the estimator (8) is considered based on numerical simulations. As we face a
difficult nonparametric problemwith slow convergence rates, our simulation study is restricted to the case of a large sample
size; we choose n = 1000. The design variables X1, . . . , Xn are drawn from the uniform density on the interval [−1, 1]. The
Berkson errors δj have a standard normal density; and the regression errors εj are N(0, 0.22)-distributed and independent
of the Berkson errors. We have studied two different target regression functions; they are

g(x) = g1(x) = 2− 0.8x,
g(x) = g2(x) = −0.5+ 0.3x− 1.5x2.

With respect to the selection of the parameters K and cK , one must avoid choosing K too large, in particular, as the variance
term may explode. In both of our considered examples, we found that K = 4 and cK = 0.7 is an appropriate choice.
Obviously, this selection also leads to satisfying results in a broader class of regression functions. One could also think of
data-driven selectors such as cross-validation methods; however, the slow rates and the restriction of K to the set of all
integers seem to limit those interests.
Fig. 1 shows five independent replicates of the estimator (8) under the linear regression function g1; while, in Fig. 2, g2 is

the underlying regression function. The true curves are plotted with dotted linestyle. We realize that our estimator is able
to detect the basic structure of the curves in both cases. In particular, we highlight the fact that our procedure estimates the
regression curves well on the domain [−2, 2]which is larger than the support [−1, 1] of the design density. That has been
the main motivation for the construction of the estimator (8).
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5. Proofs

Proof of Lemma 1. Under the first alternative of Condition D, both assertions are trivial. Under the second alternative, we
consider that

E
[
max

{
X(j+1) − X(j) : j = 1, . . . , n

}]4
=

∫
∞

0
P
[
max

{
X(j+1) − X(j) : j = 1, . . . , n

}
≥ x1/4

]
dx

≤ M−4 + (λ4 −M−4) · P
[
max

{
X(j+1) − X(j) : j = 1, . . . , n

}
≥ 1/M

]
,

for some integerM > 0 where λ denotes the Lebesgue measure of J . Thus, the assertion

max
{
X(j+1) − X(j) : j = 1, . . . , n

}
≥ 1/M

implies the existence of at least one k = 1, . . . , 2M such that none of the Xj is located in Tk where Tk, k = 1, . . . , 2M denotes
the partition of the interval J consisting of 2M equidistant intervals with the length λ/(2M). That gives us

E
[
max

{
X(j+1) − X(j) : j = 1, . . . , n

}]4
≤ M−4 + λ4

2M∑
k=1

P
[
Xj 6∈ Tk,∀j = 1, . . . , n

]
≤ M−4 + 2λ4M (1− cXλ/(2M))n .

Then, selectingM = cMn/ log nwith a constant cM > 0 sufficiently small proves the first assertion.
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With respect to the second assertion, we consider that

E(X(n) − X(1))−α =
∫
∞

0
P
[
X(n) − X(1) < s−1/α

]
ds

≤ E
∫
∞

0
P
[
|Xj − X1| < s−1/α, ∀j ∈ {1, . . . , n} | X1

]
ds

≤

∫
∞

0
min

{
1, (2CX )n−1s−(n−1)/α

}
ds

≤ Cα +
α

n− α − 1
Cα (2CX/C)n−1

≤ (C ′)α,

for some constants C , C ′ large enough so that the lemma has been proved. �

Proof of Lemma 2. First, we mention that (9) implies that

‖gk,j,σ‖2w ≤ σ
2kCG =: C ′G,

by an elementary substitution for all nonnegative integers j+k ≤ βwhere gk,j,σ (x) = xkg(j)(−σ x).Wedefine the normalized

Hermite polynomials H̃k = Hk/
(
(2π)1/4

√
k!
)
, which form an orthonormal basis with respect to the inner product 〈x, y〉w

for two functions x, y. Utilizing the equality

H ′k+1(x) = (k+ 1)Hk(x), ∀x ∈ R,

for all integer k, we derive by integration by parts that

〈gσ , H̃k〉w =
1

√
k+ 1

∫
g(−σ x)H̃ ′k+1(x) exp(−x

2/2)dx

=
σ

√
k+ 1

∫
g ′(−σ x)H̃k+1(x) exp(−x2/2)dx+

1
√
k+ 1

∫
g(−σ x)xH̃k+1(x) exp(−x2/2)dx,

where the boundary terms vanish as the function g(−σ x)H̃k+1(x) exp(−x2/2) is integrable so that there exist two sequences
(Rn)n ↑ ∞ and (Sn)n ↓ −∞ such that

lim
n→∞

g(−σRn)H̃k+1(Rn) exp(−R2n/2) = limn→∞
g(−σ Sn)H̃k+1(Sn) exp(−S2n/2) = 0.

Repeating that procedure β-times where in the next step the function g(−σ x)must be replaced by xg(−σ x) and g ′(−σ x),
we obtain that

|〈g, H̃k〉w| ≤ const · k−β/2 ·max
{∣∣∣∣∫ g(j)(−σ x)xl exp(−x2/2)H̃k+β(x)dx∣∣∣∣ : j+ l ≤ β, integer j, l ≥ 0} .

Therefore, we may conclude that

∞∑
k=0

kβ |〈gσ , H̃k〉w|2 ≤ const ·
∑

j,l≥0,j+l≤β

(
∞∑
k=0

|〈gl,j,σ , H̃k+β〉|2
)

≤ const ·
∑

j,l≥0,j+l≤β

‖gl,j,σ‖2w ≤ const · C
′

G,

by Parseval’s identity. Rescaling H̃k to Hk gives us the desired inequality. �

Proof of Theorem 1. Utilizing Parseval’s identity for general orthogonal bases, we obtain that

E
∫
|ĝ(x)− g(x)|2 exp

(
−x2/(2σ 2)

)
dx/σ = E

∫
|ĝ(−σ x)− g(−σ x)|2 exp

(
−x2/2

)
dx

=

bcK (K−1)c∑
k=0

√
2πk!EE

(∣∣∣∣(−σ)kd̂k − 1
√
2πk!
〈gσ ,Hk〉w

∣∣∣∣2 | σX
)
+

∞∑
k=bcK (K−1)c+1

1
√
2πk!
|〈gσ ,Hk〉w|2. (10)

Therein, σX denotes the σ -algebra generated by the X1, . . . , Xn andwewrite E(· · · | σX ) and var(· · · | σX ) for the conditional
expectation and variance, respectively, given σX .
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We show that the first addend in (10) is asymptotically negligible compared to the second one. As p − RK as in (4) is a
polynomial with the degree≤ K − 1 we have

p(x)− RK (x) =
K−1∑
m=0

Lm(x)〈Lm, p− RK 〉I =
K−1∑
m=0

m∑
j=0

λm,jxj〈Lm, p− RK 〉I

=

K−1∑
j=0

(
K−1∑
m=j

λm,j〈Lm, p− RK 〉I

)
xj,

for all x ∈ R almost surely. Note that two polynomials which coincide on an open non-void interval coincidewith each other
on the whole real line. Therein, we write

〈f , g〉I =
∫
I
f (x)g(x)dx,

and put I = [X(1), X(n)]. Comparison of the coefficients gives us

(−1)j
√
2π j!σ j

〈gσ ,Hj〉w =
K−1∑
m=j

λm,j〈Lm, p− RK 〉I ,

for all j = 0, . . . , K − 1. With respect to the first term in (10), we obtain that

EE

(∣∣∣∣(−σ)kd̂k − 1
√
2πk!
〈gσ ,Hk〉w

∣∣∣∣2 ∣∣∣∣ σX
)
= σ 2kEE

∣∣∣∣∣K−1∑
j=k

λj,k
(
ĉj − 〈Lj, p− RK 〉I

)∣∣∣∣∣
2 ∣∣∣∣ σX


= σ 2kE

∣∣∣∣∣K−1∑
j=k

λj,k
(
E(ĉj | σX )− 〈Lj, p− RK 〉I

)∣∣∣∣∣
2

+ σ 2kEvar

(
K−1∑
j=k

λj,k
(
ĉj − 〈Lj, p− RK 〉I

) ∣∣∣∣ σX
)
. (11)

Let us calculate the following conditional expectation

E(ĉk | σX ) =
n−1∑
j=1

p(X(j)) ·
∫ X(j+1)

X(j)

Lk(z)dz

=

∫ X(n)

X(1)

p(z)Lk(z)dz +
n−1∑
j=1

∫ X(j+1)

X(j)

(
p(X(j))− p(z)

)
· Lk(z)dz.

Hence, we have∣∣E(ĉk | σX )− 〈p, Lk〉I ∣∣ ≤ ‖p′‖J,∞ ·max {|X(j+1) − X(j)| : j = 1, . . . , n− 1} · ∫ X(n)

X(1)

|Lk(z)|dz

≤ ‖p′‖J,∞ ·max
{
|X(j+1) − X(j)| : j = 1, . . . , n− 1

}
· (X(n) − X(1))1/2,

by the Cauchy–Schwarz inequality and the orthonormality of the Lk, where ‖p′‖J,∞ denotes the constraint supremum of
|p′(x)| on the compact set x ∈ J with J as in ConditionD. By (3), ‖p′‖J,∞ is uniformly bounded above.Moreover, (X(n)−X(1))1/2
is uniformly bounded above by the square root of the Lebesguemeasure of J . Thus the bias term contained in (11) is bounded
above by a uniform constant times

σ 2kE

(
K−1∑
j=k

|λj,k|
(
max

{
|X(l+1) − X(l)| : l = 1, . . . , n− 1

}
+ |〈Lj, RK 〉I |

))2

≤ const · σ 2k ·

E (K−1∑
j=k

|λj,k|

)41/2 · ([E (max {|X(l+1) − X(l)| : l = 1, . . . , n− 1})4]1/2 + constK/K !) ,
due to (5). In order to derive an upper bound on the coefficients |λj,k|, we calculate the derivatives in (6), hence we have for
all k = 0, . . . , j,

|λj,k| ≤
√
2j+ 1 · 2−j

∣∣∣∣∣b(j−k)/2c∑
m=0

(
j
m

)(
2j− 2m
j

)(
j− 2m
k

)
[(X(1) + X(n))/2]j−2m−k

[(X(n) − X(1))/2]j−2m+1/2

∣∣∣∣∣
≤ constK ·

[
(X(n) − X(1))−K+1/2 + const

]
. (12)
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Therefore we conclude by Lemma 1 that for all k = 0, . . . , j,

E

(
K−1∑
j=k

|λj,k|

)4
≤ constK ,

for some sufficiently large constant. Using Lemma 1 again, the bias term in (11) has the upper bound

constK ·
[
n−2 log2 n+ 1/K !

]
.

With respect to the variance term in (11), we derive that

σ 2kEvar

(
K−1∑
j=k

λj,k
(
ĉj − 〈Lj, p− RK 〉I

) ∣∣∣∣ σX
)
= σ 2kEvar

(
K−1∑
j=k

λj,kĉj

∣∣∣∣ σX
)

≤ σ 2kE
n−1∑
l=1

[
K−1∑
j=k

λj,k

∫ X(l+1)

X(l)

Lj(z)dz

]2
E
(
Y 2(l) | σX

)
,

as the random variable 〈Lj, p− RK 〉Iλj,k is measurable in σX where E
(
Y 2(l) | σX

)
≤ const follows from (3) and fδ = N(0, σ 2).

Applying (12), supx∈[−1,1] |L̃k(x)| ≤ 1, ∀k, and Lemma 1 again, we obtain that the variance term is bounded above by

const · σ 2k
n−1∑
l=1

E [K−1∑
j=k

|λj,k| sup
z∈I
|Lj(z)|

]41/2 · (E(X(l+1) − X(l))4)1/2

≤ const · n−1 log2 nσ 2k

E [K−1∑
j=k

|λj,k|

]4
4

(X(n) − X(1))2

1/2 (K + 1/2)
≤ constK · n−1 log2 n.

Inserting those upper bounds into the first addend in (11) and then in (10) gives us the following upper bound on this
term,

constK · (bcK (K − 1)c)! ·
(
n−1 log2 n+ 1/K !

)
= o

(
log−γ n

)
,

for all γ > 0 by the specific selection of K as proposed in the theorem and Stirling’s formula. Hence, the first addend in (10)
is asymptotically negligible and we face a dominating bias phenomenon as usual in supersmooth deconvolution.
Now we focus on the second term in (10). Lemma 2 gives us O

(
K−β

)
as an upper bound on this term. Inserting K as

suggested in the theorem completes the proof. �

Proof of Theorem 2. We define the function

gn(x) = an
sin(x/b2n)
πx

cos(2bnx),

for all x ∈ Rwhere the sequences (an)n ↓ 0 and (bn)n ↑ ∞ remain to be chosen; also we introduce the function g̃n = −gn.
We can guarantee that gn, g̃n ∈ G holds true when we assume that

an � b2−βn ,

with appropriate constants. Then, gn and g̃n compete to be the true regression function. First we consider the fixed design
model. Then, in the fixed design alternative of Condition D, the joint density of the data Y1, . . . , Yn is given by

fξ (y1, . . . , yn) =
n∏
j=1

1
√
2π

∫
exp

(
−
1
2

(
yj − ξ(Xj + s)

)2) fδ(s)ds,
when ξ = gn, g̃n, respectively, is the true regression function where fδ denotes the density of the δj, that is N(0, σ 2). We
derive an upper bound on the L1(Rn)-distance between fgn and fg̃n . Note that each of the factors in the definition of fξ is a
univariate density, which integrates to one. By the telescopic sum, we obtain that

‖fgn − fg̃n‖1 ≤
1
√
2π

n∑
j=1

∫ ∣∣∣∣∫ [
exp

(
−
1
2

(
y+ gn(Xj + s)

)2)
− exp

(
−
1
2

(
y− gn(Xj + s)

)2)]
· fδ(s)ds

∣∣∣∣ dy
=

1
√
2π

n∑
j=1

∫ ∣∣∣∣∣ ∞∑
k=0

1
k!

(
dk

dyk
exp(−y2/2)

) (
1− (−1)k

) ∫
gkn(Xj + s)fδ(s)ds

∣∣∣∣∣ dy
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≤
2
√
2π

n∑
j=1

∞∑
k=0

1
(1+ 2k)!

·

∫
|H1+2k(y)| exp(−y2/2)dy · |g2k+1n ∗ fδ|(Xj),

by Taylor’s expansion where g2k+1n ∗ fδ denotes the convolution of the functions g2k+1n and fδ . Therein, note that gn ∈ L2(R).
The fact that the even terms in Taylor’s expansion vanish is essential. Applying the Cauchy–Schwarz inequality, we obtain
that ∫

|H1+2k(y)| exp(−y2/2)dy ≤
(∫
|H1+2k(y)|2 exp(−y2/2)dy

)1/2 (∫
exp(−y2/2)dy

)1/2
≤ const ·

√
(1+ 2k)!.

From there we may conclude by Fourier inversion that

‖fgn − fg̃n‖1 ≤ const ·
∞∑
k=0

1
√
(1+ 2k)!

·

n∑
j=1

|g2k+1n ∗ fδ|(Xj)

≤ const ·
∞∑
k=0

1
√
(1+ 2k)!

n∑
j=1

∣∣∣∣ 12π
∫
exp(−itXj)[g2k+1n ]

ft(t)f ftδ (t)dt
∣∣∣∣

≤ const ·
∞∑
k=0

n
√
(1+ 2k)!

∫
|[g2k+1n ]

ft(t)f ftδ (t)|dt. (13)

where f ft denotes the Fourier transform of a function f .
Under the random design alternative of Condition D, the density fξ must be seen as the conditional density of the

Y1, . . . , Yn given the X1, . . . , Xn. All the inequalities derived above follow analogously as almost sure versions.
We calculate

[g2k+1n ]
ft(t) = 2−2k−1a2k+1n

∫
exp(itx)

(
sin(x/b2n)
πx

)2k+1
(exp(2bnxi)+ exp(−2bnxi))2k+1 dx

= 2−2k−1a2k+1n

2k+1∑
j=0

(
2k+ 1
j

)
η
ft
k (t − 2(2j− 2k− 1)bn) ,

where ηk(x) =
(
sin(x/b2n)/(πx)

)2k+1 so that ηft0 = χ[−1/b2n,1/b2n], i.e. the indicator function of the interval [−1/b2n, 1/b2n]. For
k ≥ 1 we have that

‖η
ft
k ‖∞ ≤ const ·

∫ ∣∣∣∣ sin xπx
∣∣∣∣3 dx <∞,

via estimation by the L1(R)-norm of ηk. Summarizing, we have established that ‖ηk‖∞ is bounded above by a constant
uniformly with respect to all k ≥ 0. Furthermore, by Fourier inversion, we have

η
ft
k = (2π)

−2k

ηft0 ∗ · · · ∗ ηft0︸ ︷︷ ︸
(2k+1)-times

 ,
whereηft0 equals 2/b

2
n times the uniformdensity on the interval [−1/b

2
n, 1/b

2
n] so thatwe are guaranteed thatη

ft
k is supported

on [−1, 1]whenever k ≤ cb · b2n for some positive constant cb. By the binomial formula, we conclude that

‖[g2k+1n ]
ft
‖∞ ≤ const · a2k+1n , ∀n, k ∈ N,

and that the support of
[
g2k+1n

]ft is included in R \ (−bn, bn) if k ≤ cb · b2n. Inserting those results into (13), we obtain that

‖fgn − fg̃n‖1 ≤ const ·
bcbb2nc∑
k=0

n
√
(1+ 2k)!

a2k+1n exp
(
−b2nσ

2/2
)
+ const ·

∞∑
k=bcbb2nc

n
√
(1+ 2k)!

a2k+1n .

We choose

bn = cB(log n)1/2,

with a constant CB sufficiently large. Then, ‖fgn − fg̃n‖1 converges to zero by the normality of fδ and Stirling’s formula. In the
random design case, this convergence occurs almost surely so that E‖fgn − fg̃n‖1 → 0 as n→∞ follows.
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In the sequel Eξ denotes the expectation with respect to the data X1, . . . , Xn, Y1, . . . , Yn when ξ is the true regression
function. We conclude that

sup
g∈G
E
∫ b

a
|ĝ(x)− g(x)|2dx ≥

1
2

(
Egn

∫ b

a
|ĝ(x)− gn(x)|2dx+ Eg̃n

∫ b

a
|ĝ(x)− g̃n(x)|2dx

)
≥
1
2
E
∫ b

a

∫
· · ·

∫ (
|ĝ(x, y1, . . . , yn)− gn(x)|2 + |ĝ(x, y1, . . . , yn)+ gn(x)|2

)
× min

{
fgn(y1, . . . , yn), fg̃n(y1, . . . , yn)

}
dy1 · · · dyn

≥

∫ b

a
g2n (x)dx ·

(
1−

1
2
E‖fgn − fg̃n‖1

)
,

where the expectation can be removed in the last three lines in the fixed design case. Hence, we have

sup
g∈G
E
∫ b

a
|ĝ(x)− g(x)|2dx ≥ const ·

∫ b

a
g2n (x)dx

≥ const · a2nb
−2
n

∫ b/b2n

a/b2n

∣∣∣∣ sin xπx
∣∣∣∣2 cos2(2b3nx)dx

≥ const · a2nb
−4
n � b

−2β
n � (log n)−β ,

where the periodicity of the function cos2(x)must be taken into account. That completes the proof of the theorem. �
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