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a b s t r a c t

This paper introduces a new characterization of multivariate normality of a random vector
based on univariate normality of linear combinations of its components.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

As is well known, the multivariate normal distribution is central to multivariate analysis. Therefore, characterizations
and assessments of multivariate normality have attracted sustained interest from researchers as demonstrated in the
monographs and papers by [1,12,11,10] and others.
Commonly used assessments of multivariate normality or non-normality of a random vector include a variety of

approaches based on linear combinations of variates. In particular, many types of univariate-based plots are both easy
to make and simple to use for detecting skewness, outliers, and other departures from multivariate normality [11]. In
addition, there exist many formal tests for multivariate normality of a random vector based on examination of selected
linear combinations of its components [11,9]. Indeed, as pointed out by Anderson [1, p. 23], ‘‘One of the reasons that the
study of normal multivariate distributions is so useful is that marginal distributions and conditional distributions derived
frommultivariate normal distributions are also normal distributions. Moreover, linear combinations of multivariate normal
variates are again normally distributed.’’
One the other hand, it is well known that a non-normal random vector may have some normally distributed linear

combinations of its components [12,9]. This does raise a serious question concerning the effectiveness of the common
statistical practice for assessing multivariate normality by examining a few linear combinations of components. After all,
only a few of the infinitely many linear combinations can be plotted or tested in practice. Therefore, it is of theoretical
interest to characterize or measure the size of the set of normally distributed linear combinations. Probabilistically, one
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might ask: how large is the chance that a randomly selected linear combination of components from a non-normal random
vector is normally distributed? Indeed, this problem has attracted the attention of many researchers for a long time
[6,8,7]. Remarkably, Hamedani and Tata [8] proved that a bivariate random variable is normally distributed if it has a
infinite collection of distinct linear combinations of its components that are normally distributed. In particular, this result
implies that a non-normal bivariate random vector can only have finitely many normally distributed linear combinations
of its components. However, this characterization of bivariate normality cannot be extended to the multivariate case in a
straightforward way [7]. The main objective of this paper is to introduce a new characterization of multivariate normality
through univariate projections that holds in all dimensions. We show that, for any non-normal random vector, the set
of normally distributed linear combinations of its components is negligible among all possible linear combinations. In
particular, in any dimensions, the probability is zero that a randomly selected linear combination of components of a
non-normal random vector is normally distributed. This finding includes the existing bivariate result of Hamedani and
Tata [8] as a corollary (see Remark 2 in Section 2 for more details). Given the prominent role of normal distributions
in multivariate statistical analysis [1,12,11], the finding of this paper bears a certain significance for the assessment of
multivariate normality, and thus might be of interest to many researchers.
In the next section, we establish a new characterization of multivariate normality for a random vector by assessing the

normality of linear combinations of its components. The linear combinations will also be called projections on the vector of
coefficients. Section 3 contains concluding remarks.

2. Main results

The first subsection introduces the basic notation, the multivariate normal distribution, the normal directions, and a few
lemmas. The proofs of these lemmas are rather elementary, but are included for completeness. The new characterization of
multivariate normality can be found in the second subsection.

2.1. Notation and lemmas

Let Rp (p ≥ 1) be the p-dimensional Euclidean space. The inner product of two vectors x = (x1, . . . , xp)T and
y = (y1, . . . , yp)T ∈ Rp is denoted as xTy =

∑p
i=1 xiyi. We use S = {u ∈ Rp | uTu = 1} to denote the unit sphere, m

the Lebesgue measure in Rp, i.e.,m(A) denotes the Lebesgue measure of a measurable set A. Also, letΠ denote the uniform
measure on the unit sphere S, and N the set of natural numbers.
Wewill say that a random vector X = (X1, . . . , Xp) has amultivariate normal distribution if the support of X is the entire

space Rp and there exist a p-vector µ and a symmetric, positive-definite p × pmatrix Σ , such that the probability density
function of X can be expressed as

fX(x) =
1

(2π)p/2|Σ |1/2
exp

(
−
1
2
(x− µ)TΣ−1(x− µ)

)
,

where |Σ | is the determinant of Σ . The vector µ is the expected value and the matrix Σ is the covariance matrix of X. If
a random vector has a p-variate normal distribution, by the above definition, it must have a density function and a non-
singular covariancematrix. As is well known, given independent and identically distributed random observations, themean
vector µ and the covariance matrix Σ can be consistently estimated by their sample counterparts, i.e., the sample mean
X and sample covariance matrix S2n , respectively. Moreover, given the existence of a p-variate Lebesgue density of X, the
sample covariance matrix S2n is non-singular almost surely [5,4]. Therefore, it is not essential to know the mean vector µ
and the covariance matrix Σ . Indeed, without loss of generality, both the mean vector µ and the covariance matrix Σ are
commonly assumed unknown in statistics andmany other applications. Throughout this paper, we consider a given random
vector X = (X1, . . . , Xp)T ∈ Rp possessing a density function f (x) relative to the Lebesgue measurem. In particular, we call
a vector u = (u1, . . . , up)T ∈ S a normal direction of X (or fX ) if its one-dimensional projection on u, uTX, has a univariate
normal distribution.
Note that when uTX is normally distributed, its moment generating function exists. Then we can denote its mean and

variance by µu and σ 2u , respectively. Therefore uTX is normally distributed if and only if E{exp(tuTX)} = exp(µut +
t2σ 2u /2), σ

2
u > 0, for all t ∈ R. Or equivalently, in terms of the density f of X,∫

Rp
exp(tuTx)f (x) dx = exp(µut + t2σ 2u /2), σ 2u > 0, for all t ∈ R. (1)

Let G be the set of lines in Rp that lie on normal directions of X and pass through the origin, that is,

G = {u ∈ Rp | uTX is normally distributed}. (2)
We assume 0 ∈ G. Also, denoteU as the set of normal directions ofX; thenU = G∩S. Since a univariate normal distribution
is completely determined by its moments [3, p. 389], U can be written in terms of moment equations. Let φ be the density
of the standard normal distribution; then

U =
{
u ∈ S

∣∣∣∣∫
Rp
(uTx)nf (x) dx−

∫
R
tn
1
σu
φ

(
t − µu

σu

)
dt = 0, for all n ∈ N

}
. (3)
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With the above notation, it is well known that X is normally distributed if and only if G = Rp or U = S. Next we are going
to show that X is normally distributed as long as G has positive Lebesgue measure. In the first lemma, we will show that G
is a closed set and thus Lebesgue measurable.

Lemma 1. The set G = {u ∈ Rp | uTX is normally distributed} is closed if X has a density in Rp.

Proof. It suffices to show that the set G contains all its limiting points. If a non-zero sequence {un}n≥1 ⊂ G converges
to u0 6= 0, then uTnX converges to u

T
0X in distribution, where u

T
0X is non-degenerate because X has a Lebesgue density by

assumption. Let αn = E(uTnX), β
2
n = Var(u

T
nX); then β

−1
n (u

T
nX−αn) has a standard normal distribution. By the convergence

of types theorem [3, p. 193], there exist real numbers β > 0 and α such that limn→∞ αn = α, limn→∞ βn = β and uT0X has
a normal distribution. Thus u0 ∈ G and G is a closed set in Rp. �

Before proving that X is normally distributed, it is necessary to show that all moments of X exist, which is true if G has
positive Lebesgue measure, i.e.m(G) > 0, as asserted by the next lemma.

Lemma 2. For a random vector X with a Lebesgue density in Rp, all moments of X exist if the set G = {u ∈ Rp |
uTX is normally distributed} has positive Lebesgue measure.

Proof. Let m be the Lebesgue measure in Rp. Since m(G) > 0, there exists a basis of Rp, {u1, . . . ,up} ⊂ G. Otherwise
there exists {ui1 , . . . ,uir } ⊂ G with r < p, such that any element in G is a linear combination of ui1 , . . . ,uir . Then G
would be a subset of the linear vector space spanned by ui1 , . . . ,uir , which has Lebesgue measure 0 in Rp. Consequently
m(G) = 0, which is a contradiction. Now we can assume that {u1, . . . ,up} can be chosen as a basis in Rp. Let Y =
(Y1, . . . , Yp)T = (u1, . . . ,up)TX, i = 1, . . . , n; then E|Yi|m < ∞ for all m ∈ N because Yi = uTi X is normal. Moreover,
X = {(u1, . . . ,up)T}−1Y, that is, each Xi is a linear combination of normal random variables. Thus for each i, E|Xi|m <∞ for
allm ∈ N, or equivalently, E{|X1|r1 · · · |Xp|rp} <∞ for all r1, . . . , rp ∈ N. �

Remark 1. It is clear that m(G) = 0 if and only ifΠ(U) = 0, where m andΠ are the Lebesgue measures in Rp and on the
unit sphere S, respectively.

When all moments of X exist, letW = (W1, . . . ,Wp)T be a normal random vector having the samemean and covariance
matrix as X and define the following moment equations:

gn(u) = E{(uTX)n} − E{(uTW)n}, u = (u1, . . . , up)T ∈ Rp, n ∈ N. (4)

Let Hn be the set of solutions to the above moment equations gn = 0, that is,

Hn = {u ∈ Rp | gn(u) = 0}, n ∈ N. (5)

Lemma 3. Using the notation in (2), (4), (5), if all moments of X exist, thenG = ∩n≥1 Hn. Moreover, for each n, either m(Hn) = 0
or Hn = Rp.

Proof. G = ∩n≥1 Hn follows from the fact that a univariate normal distribution is determined by its moments. When all
moments of X exist, gn(u) is a homogeneous multivariate polynomial in u1, . . . , up with degrees at most n. If gn is the zero
function, then Hn = Rp. If gn is not the zero function, then for any fixed (u1, . . . , up−1)T, there are at most n values of up
such that (u1, . . . , up) ∈ Hn by the fundamental theorem of algebra (i.e. a polynomial of degree n has at most n solutions).
Thus m(Hn) = 0, because we define Hn(u1, . . . , up−1) = {up ∈ R | (u1, . . . , up)T ∈ Hn}, which is a finite set in this case.
Letm1 be the Lebesgue measure in R; then the Lebesgue measurem in Rp is the product measuremp1 = m1 × · · · ×m1. By
Tonelli’s theorem [2, p. 152],m(Hn) =

∫
Rp−1 m1

{
Hn(u1, . . . , up−1)

}
dmp−11 = 0. �

2.2. A new characterization of multivariate normality

If the set G = {u ∈ Rp | uTX is normally distributed} has positive Lebesgue measure, then, by Lemma 2, all moments
of X exist, and then G = Rp by Lemma 3. On the other hand, if G has zero measure, then clearly X cannot be normally
distributed. This yields the following theorem.

Theorem 1. A random vector X ∈ Rp with a Lebesgue density f is not normally distributed if and only if the set of normal
directions, U = {u ∈ S | uTX is normally distributed}, has measure 0, i.e., Π(U) = 0.

Onemight think that a set with Lebesgue measure zero is not necessarily small. For example, the set of rational numbers
has Lebesgue measure zero but is dense in Rp. However, G here is a nowhere dense set. In particular, in the bivariate case,
if X is not normally distributed, U not only has measure zero, but also is a finite set, as claimed by the next corollary.
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Corollary 1. If a bivariate random vector X (or its density) is not normal, then X has at most finitely many normal directions,
i.e., U = {u ∈ S | uTX is normally distributed} is a finite set.

Proof. Suppose U has two or more points; the same arguments as in Lemma 2 yield that X has finite moments of all orders
and U satisfies all the moment equations gn = 0 by Lemma 3. However, if gn is not the zero function, gn(u) is essentially a
univariate polynomial (due to the homogeneity of gn), which has finitely many solutions on the unit circle. Thus U is a finite
set if X is not normal. �

Remark 2. A result equivalent to the above corollary for the bivariate case was established previously by Hamedani and
Tata [8] and also claimed as part of the results in [6]. While Ferguson [6] did not give a proof, Hamedani and Tata [8]
proved the fact using characteristic functions. In particular, Theorem 3 of Hamedani and Tata [8] asserts that, given
{(ak, bk), k = 1, 2, . . .}, a countable distinct sequence in R2, such that for each k, akX1 + bkX2 is a normal random variable,
then X = (X1, X2)T is a bivariate normal random variable. To see that this fact directly follows from the above corollary, it
suffices to take uk = (u1k, u2k)T where u1k = ak/

√
a2k + b

2
k and u2k = bk/

√
a2k + b

2
k . Then akX1 + bkX2 is a normal random

variable if and only if uk = (u1k, u2k)T is a normal direction of X = (X1, X2)T . However, the above result as stated in [8] for
the bivariate case does not hold in three or higher dimensions as pointed out in [7]. Thus, Theorem 1 of this paper, which
holds for any dimension p ≥ 2, provides a non-straightforward generalization to the existing result for the bivariate case.

Suppose Y is another random vector with Lebesgue density. If X is not normally distributed, then m(G) = m({u ∈ Rp |
uTX is normally distributed}) = 0 by Theorem 1. Thus P(Y ∈ G) = 0 or P{(YTY)−

1
2 Y ∈ U} = 0, since the probability

measure of Y is dominated bym. Therefore we obtain the following corollary.

Corollary 2. If a random vector X is not normally distributed, then for any other random vector Y ∈ Rp with a Lebesgue density,
the probability of (YTY)−

1
2 Y taking values of normal directions of X is zero.

Remark 3. Formal tests for multivariate normality of a random vector might be constructed on the basis of randomly
selected linear combinations of its components. SupposeX, X1, . . . ,Xn is an independent random sample from an unknown
density f . Then we can consider univariate data XTXi, i = 1, . . . , n, which can be viewed as projections of X1, . . . ,Xn on
X. If f is not normal, then each XTXi, conditioned on X, is not normally distributed almost surely, and thus can be tested
using a consistent univariate test for normality such as the [11,9] test. By Corollary 2, such a univariate-based test would
have power against any non-normal alternative density. Thus one may construct univariate tests for multivariate normality
based on a randomly selected direction. Tests based such univariate projections might be found in [11] and others.

3. Concluding remarks

This paper establishes that a multivariate density is not normal if and only if its set of normal directions has
Lebesgue measure zero. Consequently, the normal directions of a non-normal density are indeed quite rare. Note that this
characterization of a non-normal multivariate density holds in any fixed dimension. Moreover, this new characterization is
not an asymptotic result and thus its validity does not depend on typical assumptions such as a large sample size. The main
finding of this paper may have some significance for the assessment of multivariate normality which is of great relevance
in multivariate analysis.
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