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a b s t r a c t

The definition of vectors of dependent random probability measures is a topic of interest
in applications to Bayesian statistics. They represent dependent nonparametric prior
distributions that are useful for modelling observables for which specific covariate
values are known. In this paper we propose a vector of two-parameter Poisson–Dirichlet
processes. It is well-known that each component can be obtained by resorting to a change
of measure of a σ -stable process. Thus dependence is achieved by applying a Lévy copula
to the marginal intensities. In a two-sample problem, we determine the corresponding
partition probability function which turns out to be partially exchangeable. Moreover, we
evaluate predictive and posterior distributions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Random probability measures are a primary tool in the implementation of the Bayesian approach to statistical inference
since they can be used to define nonparametric priors. The Dirichlet process introduced in [7] represents the first well-
known example. After the appearance of Ferguson’s work, a number of generalizations of the Dirichlet process have been
proposed. In the present paper, attention is focused on one of such extensions, namely the Poisson–Dirichlet process with
parameters (σ , θ), introduced in [16], which hereafterwe denote for short as PD(σ , θ). In particular, we confine ourselves to
considering values of (σ , θ) such that σ ∈ (0, 1) and θ > −σ . It is worth recalling that the PD(σ , θ) process also emerges in
various research areaswhich include, for instance, population genetics, statistical physics, excursions of stochastic processes
and combinatorics. See [18] and references therein. Its use within Bayesian nonparametric and semiparametric models has
recently becomemuchmore frequent. There are various reasons that explain such a growingpopularity in statistical practice.
Firstly, the PD(σ , θ) process yields a more flexible model for clustering than the one provided by the Dirichlet process.
Indeed, if X1, . . . , Xn are the first n terms of an infinite sequence of exchangeable random variables directed by a PD(σ , θ)
process, then the probability that X1, . . . , Xn cluster into k groups of distinct values with respective positive frequencies
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n1, . . . , nk coincides with

Π
(n)
k (n1, . . . , nk) =

k−1∏
i=1
(θ + iσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1 (1)

for k ∈ {1, . . . , n} and for any vector of positive integers (n1, . . . , nk) such that
∑k

j=1 nj = n, where (a)m = a(a+1) · · · (a+

m − 1) for any m ≥ 1 and (a)0 ≡ 1. See [16]. The parameter σ can be used to tune the reinforcement mechanism of larger
clusters as highlighted in [13]. Another featurewhichmakes convenient the use of a PD(σ , θ) process for Bayesian inference
is its stick-breaking representation. In order to briefly recall the construction, let (ξi)i≥1 be a sequence of independent and
identically distributed random variables whose probability distribution α is non-atomic and let (Vi)i≥1 be a sequence of
independent random variables where Vi is beta distributed with parameters (1 − σ , θ + iσ). If

p̃1 = V1 p̃j = Vj

j−1∏
i=1

(1 − Vi) j ≥ 2 (2)

then the random probability measure p̃ =
∑

j≥1 p̃j δξj coincides in distribution with a PD(σ , θ) process. The simple
procedure described in (2) suggests an algorithm for simulating the trajectories of the process. An alternative construction,
based on a transformation of theσ -stable completely randommeasure,will be used in the next sections. Finally, the proposal
and implementation of suitable Markov Chain Monte Carlo algorithms has made the application of PD(σ , θ) process quite
straightforward even in more complex hierarchical mixture models. A work that has had a remarkable impact in this
direction is [9].

Stimulated by the importance of PD(σ , θ) prior in Bayesian nonparametricmodelling, ourmain goal in the present paper
is the proposal of a definition of a two-dimensional vector of PD(σ , θ) processes along with an analysis of some of its
distributional properties. In this respect ourwork connects to a very active research areawhich is focused on the definition of
random probability measures suited for applications to nonparametric regression modelling. They are obtained as families
of priors {p̃w : w ∈ W} where W is a covariate space and any two random probabilities p̃w1 and p̃w2 , for w1 ≠ w2,
are dependent. The proposals that have appeared in the literature so far are based on variations of the stick-breaking
representation in (2). A typical strategy for introducing covariate-dependence in p̃ consists of letting the distribution of
the Vi’s or of the ξi’s, or both, depend on w. Among various recent contributions, we confine ourselves to mentioning
[15,4,5,21]. This approach, though fruitful from a computational point of view, has some limitations if one aims to obtain
analytical results related to the clustering structure of the observations or the posterior distribution of the underlying
dependent random probabilities. Besides these noteworthy applications to Bayesian nonparametric regression, other recent
contributions point towards applications to computer science and machine learning. For example, in [24] a hierarchical
Dirichlet process is applied to problems in information retrieval and textmodelling. The authors in [23] propose a dependent
two parameter Poisson–Dirichlet process prior which generalises the hierarchical Dirichlet process of [24] and apply it to
segmentation of object categories from image databases. Finally, [22] have proposed a dependent prior which takes on the
name of the Mondrian process and is used to model relational data.

In the present paper we resort to a construction of p̃ in terms of a completely random measure µ̃, a strategy that can
be adopted for defining the Dirichlet process itself, as pointed out by [7]. Hence, any two random probability measures
p̃w1 and p̃w2 are dependent if the completely random measures, say µ̃1 and µ̃2, that define them are dependent. We will
deal with the case where the covariate is binary so that W consists of two points. This is a typical setting for statistical
inference with two-sample data. Dependence between µ̃1 and µ̃2 is induced by a Lévy copula acting on the respective
marginal intensities. A similar approach has been undertaken in [6]with the aimofmodelling two-sample survival data, thus
yielding a generalization of neutral to the right priors. Assumingwithin group exchangeability and conditional independence
between data from the two groups, we obtain a description of the partition probability function generated by the process
we propose as a mixture of products of Gauss’ hypergeometric functions. Moreover, we deduce a posterior characterization
which allows to evaluate the corresponding family of predictive distributions. The structure of the paper is as follows.
In Section 2, the bivariate two parameter PD(σ , θ) random probability measure is defined. In Section 3, the analysis of
the induced partition structure is developed for a generic vector of two parameter PD(σ , θ) processes. A specific case is
considered in Section 4, where the PD(σ , θ) process vector is generated by a suitable Lévy–Clayton copula. Finally, Section 5
provides a posterior characterization, conditional on a vector of latent non-negative random variables, thus generalizing a
well-known result valid for the univariate case.

2. A bivariate PD process

Let (Ω,F , P) be a probability space and (X,X ) a measure space, with X Polish and X the Borel σ -algebra of subsets of
X. Suppose µ̃1 and µ̃2 are two completely randommeasures (CRMs) on (X,X )with respective marginal Lévy measures

ν̄i(dx, dy) = α(dx)νi(dy) i = 1, 2.
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The probabilitymeasureα onX is non-atomic and νi is ameasure onR+ such that


R+ min(y, 1)νi(dy) < ∞. For background
information on CRMs one can refer to [12]. We further suppose that both µ̃1 and µ̃2 are σ -stable CRMs, i.e.

νi(dy) =
σ

Γ (1 − σ)
y−1−σdy i = 1, 2 (3)

with σ ∈ (0, 1). Moreover, µ̃1 and µ̃2 are dependent and the random vector (µ̃1, µ̃2) has independent increments, in the
sense that given A and B in X , with A ∩ B = ∅, then (µ̃1(A), µ̃2(A)) and (µ̃1(B), µ̃2(B)) are independent. This implies that
for any pair of measurable functions f : X → R and g : X → R, such that


|f |σdα < ∞ and


|g|σdα < ∞, one has

E

e−µ̃1(f )−µ̃2(g)


= exp


−

∫
X

∫
(0,∞)2


1 − e−y1 f (x)−y2 g(x)


ν(dy1, dy2)α(dx)


. (4)

The representation (4) entails that the jump heights of (µ̃1, µ̃2) are independent from the locations where the jumps occur.
Moreover, these jump locations are common to both CRMs and are governed by α.

An important issue is the definition of the measure ν in (4): we will determine it in such a way that it satisfies the
condition∫

∞

0
ν(dx, A) =

∫
∞

0
ν(A, dx) =

σ

Γ (1 − σ)

∫
A
y−1−σdy (5)

for any A ∈ B(R+). In other words, the marginal Lévy intensities coincide with νi in (3). This can be achieved by resorting to
the notion of Lévy copulawhose description is postponed to Section 4. It is worth pointing out that a similar construction has
been provided for bivariate gamma processes in [10]. Indeed, they define a vector of randommeasures in a similar fashion as
we do with (µ̃1, µ̃2) =

∑
i≥1(Ji,1, Ji,2) δXi . There are twomain differences with the present paper. In [10] the marginal CRMs

are gamma and the dependence between jump heights Ji,1 and Ji,2 is induced by some dependent scaling random factors.
On the other hand, here we consider marginal σ -stable random measures with dependence between the jump heights Ji,1
and Ji,2 induced indirectly through a Lévy copula. Of course, both the scale invariance approach by [10] and the Lévy copula
approach can be extended to deal with CRMs different from the gamma and the σ -stable ones, respectively.

The model we adopt for the observables is as follows. We let (Xn, Yn)n≥1 be a sequence of exchangeable random vectors
taking values in X2 for which the following representation holds true

P [(X1, Y1) ∈ A1, . . . , (Xn, Yn) ∈ An] =

∫
PX2


n∏

i=1

∫
Ai
p(dx, dy)


Q (dp)

=

∫
P2

X


n∏

i=1

∫
Ai
p1(dx)p2(dy)


Q ∗(dp1, dp2)

where PX2 is the space of probabilitymeasures on (X2 ,X 2), P2
X = PX ×PX is the space of vectors (p1, p2)where both p1 and

p2 are probability measures on (X,X ) and the above representation is valid for any n ≥ 1 and any choice of sets A1, . . . , An
in X 2. It then follows that Q is a probability distribution on (PX2 ,PX2)which degenerates on (P2

X ,P
2
X). In order to define

Q ∗ we will make use of the σ -stable CRMs µ̃1 and µ̃2. Suppose Pi,σ is the probability distribution of µ̃i, for i = 1, 2. Hence
Pi,σ is supported by the space of all boundedly finite measuresMX on X endowed with the Borel σ -algebra MX with respect
to thew♯-topology (‘‘weak-hash’’ topology). Recall that a sequence ofmeasures (mi)i≥1 inMX converges, in thew♯-topology,
to a measure m in MX if and only if mi(A) → m(A) for any bounded set A ∈ X such that m(∂A) = 0. See [3] for further
details. Introduce, now, another probability distribution Pi,σ ,θ on (MX,MX) such that Pi,σ ,θ ≪ Pi,σ and

dPi,σ ,θ

dPi,σ
(µ) =

Γ (θ + 1)
Γ

θ
σ

+ 1
 [µ(X)]−θ .

Wedenotewith µ̃i,σ ,θ a randomelement defined on (Ω,F , P) and taking values in (MX,MX)whose probability distribution
coincides with Pi,σ ,θ . The random probability measure p̃i = µ̃i,σ ,θ/µ̃i,σ ,θ (X) is a PD(σ , θ) process. See, e.g., [19,18]. Hence,
Q ∗ is the probability distribution of the vector (p̃1, p̃2) of Poisson–Dirichlet random probability measure on (X,X ). We are
then assuming that the sequence of random variables (Xn, Yn)n≥1 is exchangeable, such that

P

Xn1 ∈ ×

n1
i=1 Ai; Yn2 ∈ ×

n2
j=1 Bj | (p̃1, p̃2)


=

n1∏
i=1

p̃1(Ai)

n2∏
j=1

p̃2(Bj) (6)

with Xn1 = (X1, . . . , Xn1) and Yn2 = (Y1, . . . , Yn2). We will particularly focus on the case where the dependence between
p̃1 and p̃2 is determined by the copula C1/σ as described later in (13).
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3. Partition structure

The description of the model as provided by (6) implies that we are considering the two samples (X1, . . . , Xn1) and
(Y1, . . . , Yn2) as independent, conditional on (p̃1, p̃2). Each p̃i is, almost surely, discrete so that

p̃1p̃2 =

−
i≥1

−
j≥1

ω1,iω2,jδZiδZj (7)

where δx is the usual notation for the unit mass concentrated at x,
∑

i≥1 ω1,i =
∑

i≥1 ω2,i = 1 (P-almost surely), and the
Zi’s are i.i.d. from the non-atomic probability distribution α on (X,X ).

Given the discrete nature of the random probability measure in (7), there might be ties, i.e. common values with certain
multiplicities, among Xi’s and the Yi’s. It, then, follows that there are 1 ≤ K ≤ n1 + n2 distinct values, say Z∗

1 , . . . , Z
∗

K among
the components of Xn1 = (X1, . . . , Xn1) and Yn2 = (Y1, . . . , Yn2). Moreover, let

Ni,1 =

n1−
l=1

1Xl=Z∗
i

Nj,2 =

n2−
l=1

1Yl=Z∗
j

i, j = 1, . . . , K

be the frequencies associated to each distinct value from the two samples. It is clear that there might also be values in
common between the Xn1 and the Yn2 sample so that for any i ∈ {1, . . . , k} both Ni,1 and Ni,2 are positive integers with
positive probability. According to this, for our purposes the data can be described as the set

{K ,N1,1, . . . ,NK ,1,N1,2, . . . ,NK ,2, Z∗

1 , . . . , Z
∗

K }.

In particular, in the present section we will investigate the probability distribution of the partition of Xn1 and Yn2 expressed
in terms of K ,N1 = (N1,1, . . . ,NK ,1) and N2 = (N1,2, . . . ,NK ,2). This takes on the name of partition probability function
according to the terminology adopted in [16] and we shall denote it as

Π
(n1,n2)
k (n1, n2) = P [K = k,N1 = n1,N2 = n2]

for 1 ≤ k ≤ n and for vectors of non-negative integers ni = (n1,i, . . . , nk,i) such that
∑k

j=1 nj,i = ni, for i = 1, 2, and
nj,1 + nj,2 ≥ 1 for j = 1, . . . , k. As a consequence of (6) one has

Π
(n1,n2)
k (n1, n2) = E

[∫
Xk
π
(n1,n2)
k (dz)

]
(8)

where

π
(n1,n2)
k (dz) =

k∏
j=1


µ̃1,σ ,θ (dzj)
µ̃1,σ ,θ (X)

nj,1  µ̃2,σ ,θ (dzj)
µ̃2,σ ,θ (X)

nj,2
.

As we shall shortly see, an important lemma for obtaining an expression forΠ (n1,n2)
k in (8) is the following

Lemma 1. Let (µ̃1, µ̃2) be a vector of CRMs with Laplace exponent ψ(·, ·). If Cϵ ∈ X is such that diam(Cϵ) ↓ 0 as ϵ ↓ 0, then

E


e−sµ̃1(Cϵ )−tµ̃2(Cϵ )

2∏
i=1

{µ̃i(Cϵ)}qi


= (−1)q1+q2−1α(Cϵ)e−α(Cϵ )ψ(s,t) ×
∂q1+q2

∂sq1∂tq2
ψ(s, t)+ o(α(Cϵ)) (9)

as ϵ ↓ 0.

Proof. The proof follows from a simple application of a multivariate version of the Faá di Bruno formula as given in [1]. For
notational simplicity, let |w| :=

∑d
i=1wi for any vectorw = (w1, . . . , wd) in Rd. We then recall a linear order on the set Nd

0
of d-dimensional vectors of non-negative integers adopted in [1]. Given two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd)
in Nd

0, then x ≺ y if either |x| < |y| or |x| = |y| and x1 < y1 or if |x| = |y| with xi = yi for i = 1, . . . , j and xj+1 < yj+1 for
some j in {1, . . . , d}. Hence note that

E


e−sµ̃(Cϵ )−tµ̃(Cϵ )

2∏
i=1

{µ̃i(Cϵ)}qi


= (−1)q1+q2
∂q1+q2

∂sq1∂tq2
e−α(Cϵ )ψ(s,t)

and by virtue of Theorem 2.1 in [1] one has that the right-hand side above coincides with

e−α(Cϵ )ψ(s,t)q1!q2!
q1+q2−
k=1

(−1)k[α(Cϵ)]k ×

q1+q2−
j=1

−
pj(q1,q2,k)

j∏
i=1

1
λi!(s1,i!s2,i!)λi


∂ s1.i+s2,i

∂ss1,i∂ts2,i
ψ(s, t)

λi
where pj(q1, q2, k) is the set of vectors (λ, s1, . . . , sj) with λ = (λ1, . . . , λj) a vector whose positive coordinates are such
that

∑j
i=1 λi = k and the si = (s1,i, s2,i) are vectors such that 0 ≺ s1 ≺ · · · ≺ sj. Obviously, in the previous sum, all terms

with k ≥ 2 are o(α(Cϵ)) as ϵ ↓ 0. Hence, by discarding these summands one has the result stated in (9). �
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If we further suppose that the bivariate Lévy measure is of finite variation, i.e.

‖y‖≤1 ‖y‖ν(y1, y2)dy1dy2 < ∞ where

‖y‖ stands for the Euclidean norm of the vector y = (y1, y2), then one also has

‖y‖≤1 y

n1
1 yn22 ν(y1, y2)dy1dy2 < ∞ for any

n1 and n2 positive integers. Consequently, one can interchange derivative and integral signs to obtain from (9) the following
expression

E


e−sµ̃(Cϵ )−tµ̃(Cϵ )

2∏
i=1

{µ̃i(Cϵ)}qi


= α(Cϵ)e−α(Cϵ )ψ(s,t)gν(q1, q2; s, t)+ o(α(Cϵ)) (10)

as ϵ ↓ 0, for any s > 0 and t > 0, where

gν(q1, q2; s, t) :=

∫
(0,∞)2

yq11 yq22 e−sy1−ty2ν(y1, y2)dy1dy2.

One can now state the main result which provides a probabilistic characterization of the partition structure induced by the
random probability distribution structure (7).

Theorem 1. For any positive integers n1, n2 and k and vectors n1 = (n1,1, . . . , nk,1) and n2 = (n1,2, . . . , nk,2) such that∑k
j=1 nj,i = ni and ni,1 + ni,2 ≥ 1, for i = 1, 2, one has

Π
(n1,n2)
k (n1, n2) =

σ 2

Γ 2

θ
σ

 1
2∏

i=1
(θ)ni

∫
(0,∞)2

sθ+n1−1tθ+n2−1e−ψ(s,t)
×

k∏
j=1

gν(nj,1, nj,2; s, t)dsdt. (11)

Proof. For simplicity, we let µ̃i denote the i-th σ -stable completely random measure µ̃i,σ ,0, for i = 1, 2. By virtue of the
definition of the two-parameter Poisson–Dirichlet process one can then evaluateΠ (n)

k in (8) by replacing π (n1,n2)k with

π̃
(n1,n2)
k (n1, n2, dz) =

σ 2Γ 2(θ)

Γ 2

θ
σ

 2∏
i=1


µ̃i(X)

θ+ni

k∏
j=1


µ̃1(dzj)

nj,1 µ̃2(dzj)
nj,2

for any k ≥ 1 and ni = (n1,i, . . . , nk,i) such that
∑k

j=1 nj,i = ni for i = 1, 2. We will now show that the probability

distribution E

π̃
(n1,n2)
k


admits a density on N2k

×Xk with respect to the productmeasure γ 2k
×αk, where γ is the counting

measure on the positive integers, and will determine its form. To this end, suppose Cϵ,x denotes a neighbourhood of x ∈ X
of radius ϵ > 0 and Bϵ = ×

k
j=1 Cϵ,zj . Then∫

Bϵ
E

π̃
(n1,n2)
k (n1, n2, dz)


=

σ 2

Γ 2

θ
σ

 2∏
i=1
(θ)ni

∫
∞

0

∫
∞

0
sθ+n1−1tθ+n2−1

× E


e−sµ̃1(X)−tµ̃2(X)

k∏
j=1


µ̃1(Cϵ,zj)

nj,1 µ̃2(Cϵ,zj)
nj,2 dsdt.

Define Xϵ to be the whole space X with the neighbourhoods Cϵ,zr deleted for all j = 1, . . . , k. By virtue of the independence
of the increments of the CRMs µ̃1 and µ̃2, the expression above reduces to

σ 2

Γ 2

θ
σ

 2∏
i=1
(θ)ni

∫
∞

0

∫
∞

0
sθ+n1−1tθ+n2−1E


e−sµ̃1(Xϵ )−tµ̃2(Xϵ )


×

k∏
j=1

Mj,ϵ(s, t)dsdt

where, by virtue of Lemma 1,

Mj,ϵ(s, t) := E

e−sµ̃1(Cϵ,zj )−tµ̃2(Cϵ,zj )


µ̃1(Cϵ,zj)

nj,1 µ̃2(Cϵ,zj)
nj,2

= α(Cϵ,zj)e
−α(Cϵ,zj )ψ(s,t)gν(nj,1, nj,2; s, t)+ o(α(Cϵ,zj)).

This shows that E[π̃ k
] admits a density with respect to γ 2k

× αk and it is given by

σ 2

Γ 2

θ
σ

 2∏
i=1
(θ)ni

∫
∞

0

∫
∞

0
sθ+n1−1tθ+n2−1e−ψ(s,t)

k∏
j=1

gν(nj,1, nj,2; s, t)dsdt.

And this completes the proof. �
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It is worth noting that the results displayed in the previous Theorem 1 can be adapted to obtain an evaluation of the
mixed moment of the vector (p̃1(A), p̃2(B)) for any A and B in X . Indeed, one has

Theorem 2. Let A and B be any two sets in X . Then

E

p̃1(A)p̃2(B)


= α(A)α(B)+

α(A ∩ B)− α(A)α(B)
Γ ( θ

σ
+ 1)

2 ∫
(R+)2

(st)θe−ψ(s,t)gν(1, 1; s, t)dsdt. (12)

Proof. Proceeding in a similar fashion as in the proof of the previous Theorem 1, one has

E

p̃1(A)p̃2(B)


=

σ 2

θ2Γ 2(θ/σ )

∫
(R+)2

(st)θE

e−sµ̃1(X)−tµ̃2(X)µ̃1(A)µ̃2(B)


dsdt.

It now suffices to consider the partition of X induced by {A, B} which allows to exploit the independence of the increments
of (µ̃1, µ̃2) and resort to the following identity∫

(R+)2
(st)θe−ψ(s,t)

{gν(1, 0; s, t)gν(0, 1; s, t)+ gν(1, 1; s, t)} dsdt = Γ 2

θ

σ
+ 1


,

for any θ > −σ , σ ∈ (0, 1) and ν. Then the application of the multivariate Faá di Bruno formula yields the claimed
result. �

The expression in (12) can be used to determine the correlation between p̃1(A) and p̃2(B), a quantity which is of great
interest for prior specification in Bayesian nonparametric inference. Recalling that E[p̃i(C)] = α(C) for any C ∈ X and for
any i = 1, 2, then

cov(p̃1(A), p̃2(B)) =
α(A ∩ B)− α(A)α(B)

Γ

θ
σ

+ 1
2 ∫

(R+)2
(st)θe−ψ(s,t)gν(1, 1; s, t)dsdt.

As expected, if the two events A and B are independent with respect to the probability measure α, then the corresponding
random probability masses p̃1(A) and p̃2(B) are uncorrelated. Moreover, if one recalls that for a Poisson–Dirichlet process
p̃ with parameters (σ , θ) and baseline measure α one has var(p̃(A)) = α(A)[1 − α(A)](1 − σ)/(θ + 1), one can
straightforwardly note that

corr(p̃1(B), p̃2(B)) =
θ + 1

(1 − σ)Γ 2

θ
σ

+ 1
 ∫

(R+)2
(st)θe−ψ(s,t)gν(1, 1; s, t)dsdt

for any B in X . The fact that the previous correlation does not depend on the specific set B is usually seen as a desired
property in applications to Bayesian inference, since it can be considered as an overall measure of dependence between
random probability measures p̃1 and p̃2.

4. Lévy–Clayton copula

Let us now focus on the case where the µ̃i’s are both σ -stable CRMs whose dependence is determined by a Lèvy copula.
See [2,11]. A well-known example is the so-called Lévy–Clayton copula defined as

Cλ(x1, x2) = (x−λ
1 + x−λ

2 )−
1
λ (13)

withλ > 0 and its name is due to fact it is reminiscent of the Clayton copula for probability distributions. In this construction
λ is a parameter that tunes the degree of dependence between µ̃1 and µ̃2. See [2]. As a consequence of Theorem 5.4 in [2],
the Lévy intensity of the random vector (µ̃1, µ̃2) is

ν(y1, y2) =
∂2Cλ(x1, x2)
∂x1∂x2


x1=U1(y1), x2=U2(y2)

ν1(y1)ν(y2)

where Ui(y) = νi(y,+∞), for i = 1, 2, are the marginal tail integrals. It can be easily checked that in this case one would
have

ν(y1, y2) =
(λ+ 1)σ 2

Γ (1 − σ)

yλσ−1
1 yλσ−1

2

(yλσ1 + yλσ2 )
1
λ
+2
1(0,+∞)2(y1, y2). (14)

A direct use of this bivariate Lévy intensity in Theorem 1 makes it difficult to provide an exact analytic evaluation of the
function gν(nj,1, nj,2; s, t). On the other hand, if we confine ourselves to considering the case where λ = 1/σ one has

ν(y1, y2) =
σ(1 + σ)

Γ (1 − σ)
(y1 + y2)−σ−21(0,+∞)2(y1, y2) (15)

and the function gν can be exactly evaluated. Besides this analytical advantage, it should also be noted that setting λ = 1/σ
links the parameter governing the dependence between µ̃1 and µ̃2 and the parameter that influences the clustering
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structure induced by the bivariate PD processes (p̃1, p̃2). The effect of this assumption is a lower bound on λ since it implies
that λ ∈ (1,∞). In other terms, λ cannot approach values yielding the independent copula from (13), see [2]. Nonetheless, if
one is willing to preserve the general form of the intensity in (14), with the additional parameter λ governing the correlation
structure, it is possible to proceed with a numerical evaluation of the integral defining gν(nj,1, nj,2; s, t). Alternatively, a full
Bayesian analysis based on this vector prior can be developed by relying on a simulation algorithm as devised in [2]. Here
we do not pursue this issue which will be the object of future research.

If we take (15) as the bivariate Lévy intensity, for any s, t > 0, with s ≠ t , the Laplace exponent of (µ̃1, µ̃2) is

ψ(s, t) :=

∫
(0,+∞)2


1 − e−sy1−ty2


ν(y1, y2)dy1dy2 =

tσ+1
− sσ+1

t − s
. (16)

Moreover,ψ(t, t) = (σ +1)tσ for any t > 0. Interestingly note thatψ is symmetric, i.e.ψ(s, t) = ψ(t, s) for any s > 0 and
t > 0. Given this, we now proceed to determine the partially exchangeable partition probability function corresponding to
the bivariate PD process. Define the function

ζk(n1, n2; z) :=

k∏
j=1

nj,1!nj,2!

(n̄j + 1)!
2F1(nj,2 + 1, n̄j − σ ; n̄j + 2; 1 − z)

2F1(1,−σ ; 2; 1 − z)

ξk(n1, n2; z) =

k∏
j=1

nj,1!nj,2!

(n̄j + 1)!
2F1(nj,1 + 1, n̄j − σ ; n̄j + 2; 1 − z)

2F1(1,−σ ; 2; 1 − z)

where n̄j := nj,1 + nj,2 ≥ 1, for any j, and 2F1 denotes the Gauss hypergeometric function. Hence, one can deduce the
following result

Theorem 3. For any integer n ≥ 1 and vector (k, n, l) in An1,n2 , one has

Π
(n1,n2)
k (n1, n2) =

σ 1+kΓ
 2θ
σ

+ k


Γ 2

θ
σ

 2∏
i=1
(θ)ni

k∏
j=1

(1 − σ)n̄j−1

∫ 1

0


1 − z

1 − zσ+1

 2θ
σ

×

zθ+n2−1ζk(n1, n2; z)+ zθ+n1−1ξk(n1, n2; z)


dz. (17)

Proof. Set q̄ := q1 + q2, for any integers q1 and q2, and suppose q̄ ≥ 1. Since ψ(s, t) is evaluated as in (16) one obtains

gν(q1, q2; s, t) = (−1)q̄−1 ∂ q̄

∂sq1∂tq2
ψ(s, t)

=

q2−
j=0

[σ + 1]j(−1)q1−j+1(q̄ − j)!

q2
j


tσ+1−j(t − s)−q̄−1+j

+

q1−
i=0

[σ + 1]i(−1)q2−i+1(q̄ − i)!
q1

i


sσ+1−i(s − t)−q̄−1+i

where [a]j =
∏j

i=1(a− i+ 1) is the j-th descending factorial coefficient of a, with [a]0 ≡ 1. First split the area of integration
in (11) into the two disjoint regions A+

= {(s, t) : 0 < t ≤ s < ∞} and A−
= {(s, t) : 0 < s ≤ t < ∞}. For (s, t) ∈ A+,

one can resort to Proposition 7 in the Appendix A to obtain

gν(q1, q2; s, t) =
q1!q2!σ(σ + 1)(1 − σ)q̄−1

(q̄ + 1)!
sσ−q̄

2F1


q2 + 1, q̄ − σ ; q̄ + 2; 1 −

t
s


and the change of variable (t/s, s) = (z, w) leads to∫

A+

sθ+n1−1tθ+n2−1e−ψ(s,t)
k∏

j=1

gν(nj,1, nj,2; s, t)dsdt

= σ k(σ + 1)k
k∏

j=1

nj,1!nj,2!(1 − σ)n̄j−1

(n̄j + 1)!

∫
∞

0
w2θ+kσ−1

∫ 1

0
e−wσ 1−zσ+1

1−z zθ+n2−1

×

k∏
j=1

2F1(nj,2 + 1, n̄j − σ ; n̄j + 2; 1 − z)dzdw

= σ k−1Γ


2θ
σ

+ k
 k∏

j=1

(1 − σ)n̄j−1

∫ 1

0
zθ+n2−1


1 − z

1 − zσ+1

 2θ
σ

ζk(n1, n2; z)dz
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where the last equality follows from 1 − zσ+1
= (σ + 1)(1 − z)2F1(1,−σ ; 2; 1 − z). One works in a similar fashion for

(s, t) ∈ A− since, in this case, Proposition 7 yields

gν(q1, q2; s, t) =
q1!q2!σ(σ + 1)(1 − σ)q̄−1

(q̄ + 1)!
tσ−q̄

2F1

q1 + 1, q̄ − σ ; q̄ + 2; 1 −

s
t


so that∫

A−

sθ+n1−1tθ+n2−1e−ψ(s,t)
k∏

j=1

gν(nj,1, nj,2; s, t)dsdt = σ k−1Γ


2θ
σ

+ k
 k∏

j=1

(1 − σ)n̄j−1

×

∫ 1

0
zθ+n1−1


1 − z

1 − zσ+1

 2θ
σ

ξk(n1, n2; z)dz.

The proof of (17) is then completed. �

The representation obtained in Theorem 3 suggests a few considerations that are of great interest if compared to
the well-known results for the univariate two parameter PD process. A nice feature about the exchangeable partition
probability functionΠ (n)

k in (1) is its symmetry: for any permutation τ of the integers (1, . . . , k) one hasΠ (n)
k (n1, . . . , nk) =

Π
(n)
k (nτ(1), . . . , nτ(k)). The exchangeability property can be extended to the partition probability function of bivariate PD

process in the following terms. Let rj = (nj,1, nj,2) and note that theremight be rj vectors whose first or second coordinate is
zero. To take this into account, we introduce disjoint sets of indices I1 and I2 identifying those rj with the first or the second
zero coordinate, respectively. Hence, if ki is the cardinality of Ii one has 0 ≤ k1 + k2 ≤ k. An interesting configuration arises
when I1 ∪ I2 = {1, . . . , k} which implies this corresponds to the case where Xi ≠ Yj for any i and j and k1 + k2 = k. When
this happens, we set I1 = {i1, . . . , ik1}, I2 = {j1, . . . , jk2} and

Π
(n1,n2)
k (n1, n2) = Π

(n1,n2)
k (ni1,1, . . . , nik1 ,1

, nj1,2, . . . , njk2 ,2
).

One can now immediately deduce the following

Corollary 4. The partition probability function in (17), seen as a function of (r1, . . . , rk) is symmetric in the sense that for any
permutation τ of (1, . . . , k) one has

Π
(n1,n2)
k (r1, . . . , rk) = Π

(n1,n2)
k (rτ(1), . . . , rτ(k)).

Moreover, if k1+k2 = k, then for any permutations τ1 and τ2 of integers in I1 = {i1, . . . , ik1} and I2 = {j1, . . . , jk2}, respectively,
one has

Π
(n1,n2)
k (ni1,1, . . . , nik1 ,1

, nj1,2, . . . , njk2 ,2
) = Π

(n1,n2)
k (nτ1(i1),1, . . . , nτ1(ik1 ),1, nτ2(j1),2, . . . , nτ2(jk2 ),2).

Hence one observes that, seen as a function of the pairs of integers (nj,1, nj,2),Π
(n1,n2)
k is symmetric. On the other hand, if

Π
(n1,n2)
k is restricted to those partitions of n1 +n2 data such that Xi ≠ Yj for any i and j, thenΠ (n1,n2)

k is partially exchangeable
with respect to the single frequencies ni,1 and nj,2.

As for the correlation between p̃1(A) and p̃2(B), one has

gν(1, 1; s, t) =
sσ−2(−σ − 1)3

3! 2F1


2 − σ , 2; 4; 1 −

t
s


0 ≤ t ≤ s < ∞

and, by virtue of symmetry of the function (s, t) → (st)θe−ψ(s,t)gν(1, 1; s, t),∫
(R+)2

(st)θe−ψ(s,t)gν(1, 1; s, t)dsdt = 2
∫

∞

0
ds
∫ s

0
dt(st)θe−ψ(s,t)gν(1, 1; s, t)

= 2
∫

∞

0
dw

∫ 1

0
dzw2θ+σ−1e−wσ 1−zσ+1

1−z zθ (1 − z)−3

×


−

1−
j=0

[σ + 1]j(2 − j)!zσ+1−j(1 − z)j +
1−
0

[σ + 1]i(2 − i)!(1 − z)i

dz

=
Γ
 2θ
σ

+ 1

(1 − σ 2)

3

∫ 1

0
zθ


1 − z
1 − zσ+1

 2θ
σ +1

2F1(2 − σ , 2; 4; 1 − z)dz.
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This implies that for any A and B in X

corr(p̃1(A), p̃2(B)) =
α(A ∩ B)− α(A)α(B)

√
α(A)α(B)(1 − α(A))(1 − α(B))

(θ + 1)(σ + 1)Γ
 2θ
σ

+ 1


3Γ 2

θ
σ

+ 1


×

∫ 1

0
zθ


1 − z
1 − zσ+1

 2θ
σ +1

2F1(2 − σ , 2; 4; 1 − z)dz

fromwhich one easily deduces corr(p̃1(B), p̃2(B)). A simplification occurs if θ = 0, in which case p̃i is a normalised σ -stable
completely randommeasure and

corr(p̃1(B), p̃2(B)) =
1
3

∫ 1

0

2F1(2 − σ , 2; 4; 1 − z)

2F1(−σ , 1; 2; 1 − z)
dz (18)

for any B inX . The correlation between p̃1(B) and p̃2(B) does not depend on the specific set B: this is an argument commonly
used in Bayesian statistics to interpret the expression in (18) as a prior guess on the correlation between p̃1 and p̃2.

5. A posterior characterization

The determination of the posterior distribution of the vector (p̃1, p̃2), given D = {Xi, Yj : i = 1, . . . , n1, j = 1, . . . , n2}

represents an important issue in Bayesian statistical inference. In the one-sample case, in [17], it is shown that if (Xi)i≥1 is
a sequence of exchangeable random elements directed by a PD(σ , θ) process, then, conditional on a sample X1, . . . , Xn
featuring k distinct values X∗

1 , . . . , X
∗

k with respective frequencies n1, . . . , nk, the random probability measure p̃σ ,θ is
identical in distribution to

k−
j=1

wjδX∗
j

+ (1 − w1 − · · · − wk) p̃∗

with the vector (w1, . . . , wk) being distributed according to a k-variate Dirichlet distribution with parameters (n1 −

σ , . . . , nk − σ , θ + kσ) and p̃∗ coinciding in distribution with a PD(σ , θ + kσ) process. Here we aim at extending this
result to a vector (p̃1, p̃2) of dependent PD(σ , θ) random probability measures.

To this end, we suppose the n1 + n2 data in D are represented by k distinct values, Z∗

1 , . . . , Z
∗

k , with corresponding
frequencies (m1, . . . ,mk)where mi = ni,1 + ni,2 for any i = 1, . . . , k. The vector of completely random measures (µ̃1, µ̃2)
has intensity ν on (R+)2 and we let (S, T ) be a vector of non-negative random variables whose distribution, conditional on
D, admits a density

f (s, t|D) ∝ sθ+n1−1tθ+n2−1e−ψ(s,t)
k∏

j=1

gν(nj,1, nj,2; s, t) (19)

with ∝ meaning that equality holds up to a proportionality constant. As in the previous section, (µ̃1, µ̃2) has the intensity
ν specified in (15) so that the marginal components are both σ -stable. Moreover, conditional on (S, T ) and on D, (µ̃∗

1, µ̃
∗

2)

is a vector of completely random measures with Lévy intensity ν∗(y1, y2) = e−Sy1−Ty2ν(y1, y2). From this one can deduce
that the conditional univariate Lévy intensities of µ̃∗

1 and of µ̃∗

2 are

ν∗

1 (y) =
σ(σ + 1)tσ+1

Γ (1 − σ)
e−(s−t)yΓ (−σ − 1; ty)

ν∗

2 (y) =
σ(σ + 1)sσ+1

Γ (1 − σ)
e−(t−s)yΓ (−σ − 1; sy)

respectively. The Laplace exponent of (µ̃∗

1, µ̃
∗

2) is given by ψ∗(λ1, λ2) = ψ(s + λ1, t + λ2) − ψ(s, t) for any s, t, λ1, λ2,
where ψ is as in (16). Note that this implies, for example, that the marginal Laplace exponent for µ̃∗

1 coincides with

ψ∗

1 (λ1) =
σ(σ + 1)tσ+1

Γ (1 − σ)

∫
∞

0


1 − e−λ1y


e−(s−t)yΓ (−σ − 1; ty)dy

for any s, t and λ1 such that s ≠ t and s + λ1 ≠ t . Finally, introduce a collection of k mutually independent random pairs
{(Mj,1,Mj,2) : j = 1, . . . , k} and the density function of (Mj,1,Mj,2), conditional on (S, T ) and on D, is

xnj,1ynj,2e−Sx−Tyν(x, y)
gν(nj,1, nj,2; S, T )

1(0,+∞)2(x, y). (20)

At this point, we are able to describe a characterization of the posterior distribution of (µ̃1,σ ,θ , µ̃2,σ ,θ ) given the data D and
the random vector (S, T ).
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Theorem 5. Let (p̃1, p̃2) be a vector of dependent two-parameter Poisson–Dirichlet processes and suppose the data D =

(Xn1 , Yn2) satisfy (6). Moreover, let D contain k distinct values Z∗

1 , . . . , Z
∗

k with respective frequencies n1,1+n1,2, . . . , nk,1+nk,2.
The posterior distribution of (µ̃1,σ ,θ , µ̃2,σ ,θ ) given D and (S, T ) coincides with the distribution of the CRM

(µ̃∗

1, µ̃
∗

2)+

k−
j=1

(Mj,1δZ∗
j
,Mj,2δZ∗

j
) (21)

where (µ̃∗

1, µ̃
∗

2) and the k vectors of jump heights (Mj,1,Mj,2), j = 1, . . . , k, are independent.

An analogous description for the univariate PD(σ , θ) process is provided by [14], where the mixture is explicitly
evaluated to reproduce Pitman’s result. It is worth noting that from (20) one can deduce an expression for the marginal
distributions of the jumps, conditional on (S, T ) and on D. Resorting to (3.383.4) and (7.621.3) in [8] one finds out that the
density function ofMj,1, conditional on (S, T ) and on D, is

fMj,1(x) =
(n̄j + 1)!

nj,1!Γ (n̄j − σ)

t1−
nj,2−σ

2 s−1−nj,1

2F1

nj,1 + 1, σ + 2; n̄j + 2; 1 −

t
s

 × xnj,1+
nj,2−σ

2 −1e−(s− t
2 )xW

−
nj,2+σ+2

2 ,−
nj,2−1−σ

2
(tx)

where n̄j := nj,1 + nj,2,Wλ,µ is the Whittaker function and 2F1(a, b; c; x) is to be interpreted as the analytic continuation of
the series representation of the hypergeometric function for x in the complex plane cut along [1,∞).

Example 1. A possible use of previous result is the determination of the predictive distribution with a bivariate two
parameter Poisson–Dirichlet process. For ease of exposition, here we confine ourselves to considering a sample of size
n1 = 1 and n2 = 0 and will determine P[Y1 ∈ A|X1, S, T ] and P[X2 ∈ A|X1, S, T ]. In this case, conditional on (X1, S, T ),
by virtue of Theorem 5 one has (µ̃1,σ ,θ , µ̃2,σ ,θ )

d
= (µ̃∗

1, µ̃
∗

2)+ (M1δX1 ,M2δX1). This leads to

P[Y1 ∈ A|X1, S, T ] = E
[
µ∗

2(A)+ M2δX1(A)
µ∗

2(X)+ M2

]
.

SinceM2 is a non-negative random variable whose density, conditional on (X1, S, T ), coincides with

fM2(y) =
2

Γ (1 − σ)

t−1s
σ+1
2

2F1

1, σ + 2; 3; 1 −

s
t

y 1−σ
2 −1e−(t− s

2 )yW
−
σ+3
2 , σ2

(sy).

Using this fact, one obtains

P[Y1 ∈ A|X1, S, T ] = α(A)ω0 + δX1(A)ω1 (22)

where

ω0 =
σ(σ + 1)

2
sσ+1tσ−2eψ(s,t)

2F1

1, 2 + σ ; 3; 1 −

s
t

 ∫ ∞

0
(t + u)−1e−ψ(s,t+u)

× 2F1


1, 2 + σ ; 3; 1 −

s
t + u


2F1


1, 1 − σ ; 3; 1 −

s
t + u


du

ω1 =
1 − σ

3
s
σ+1
2 t−1eψ(s,t)

2F1

1, 2 + σ ; 3; 1 −

s
t

 ×

∫
∞

0
(t + u)−2e−ψ(s,t+u)

2F1


2, 2 + σ ; 4; 1 −

s
t + u


du.

Similarly, one can show that

P[X2 ∈ A|X1, S, T ] = α(A)ω′

0 + δX1(A)ω
′

1 (23)

with

ω′

0 =
σ(σ + 1)

(2 + σ)Γ (1 − σ)

eψ(s,t)tσ+2s−2

2F1

2, 2 + σ ; 3; 1 −

t
s

 ∫ ∞

0
(s + u)σ−2e−ψ(s+u,t)

× 2F1


2 + σ , 2 + σ ; 3 + σ ; 1 −

t
s + u


2F1


1, 1 − σ ; 3; 1 −

t
s + u


du

ω′

1 =
2

(3 + σ)Γ (1 − σ)

tσ+2s−2eψ(s,t)

2F1

2, 2 + σ ; 3; 1 −

t
s

 ∫ ∞

0
(s + u)σ−3e−ψ(s+u,t)

× 2F1


3 + σ , 2 + σ ; 4 + σ ; 1 −

t
s + u


du.

It should be recalled that an analogous expression could have been attained by resorting to the partition probability function
described in Section 4.



492 F. Leisen, A. Lijoi / Journal of Multivariate Analysis 102 (2011) 482–495

Acknowledgments

Antonio Lijoi is partially supported by MIUR grant no. 2008MK3AFZ and by the Collegio Carlo Alberto project ‘‘New
approaches to stochastic modeling in Economics via Bayesian Nonparametrics’’.

Appendix A. Technical results

We first prove a combinatorial result that serves as a tool for proving the Proposition 7.

Lemma 6. Suppose h ∈ {0, 1, . . . ,m} and let n ≥ m. Then

h−
j=0

(−1)j

h
j


n − j
m


=

h!(n − h)!
m!(n − m)!

m
h


. (A.1)

If h ∈ {m + 1, . . . , n}, then

h−
j=0

(−1)j

h
j


n − j
m


= 0. (A.2)

Proof. Indeed
h−

j=0

(−1)j

h
j


n − j
m


=

1
m!

∂m

∂sm

h−
j=0

(−1)j

h
j


sn−j


s=1

=
1
m!

∂m

∂sm
sn−h(s − 1)h


s=1

=
1
m!

m−
i=0

m
i

 ∂ i
∂si

sn−h

s=1

∂m−i

∂sm−i
(s − 1)h


s=1

=
1
m!

m
h


[n − h]m−hh!

and (A.1) follows. The proof of (A.2) can be deduced in a similar fashion. �

Let us now state the main proposition which is involved in the proof of the results stated in Theorem 2.

Proposition 7. Let q1 and q2 be two non-negative integers and q̄ = q1 + q2. For any z ∈ (0, 1) one has

q1−
j=0

[σ + 1]j(q̄ − j)!

q1
j


zσ+1−j(1 − z)j −

q2−
i=0

(−1)i[σ + 1]i(q̄ − i)!
q2

i


(1 − z)i

= (1 − z)q̄+1 (−1)q1q1!q2!(−σ − 1)q̄+1

Γ (q̄ + 2) 2F1(q1 + 1, q̄ − σ ; q̄ + 2; 1 − z).

Proof. Suppose that q2 > q1. Since zσ+1−j
=
∑

v≥0[σ + 1 − j]v(−1)v(1 − z)v/v!, then

q1−
j=0

[σ + 1]j(q̄ − j)!

q1
j


zσ+1−j(1 − z)j =

∞−
v=0

(−1)v

v!

q1−
j=0

[σ + 1]j+v(q̄ − j)!

q1
j


(1 − z)j+v

=

∞−
h=0

[σ + 1]h(1 − z)h
h−

v=0∨(h−q1)

(−1)v

v!
(q̄ − h + v)!


q1

h − v



=


q1−
h=0

+

q2−
h=q1+1

+

q̄−
h=q2+1

+

∞−
h=q̄+1


[σ + 1]h(1 − z)h ×

h−
v=0∨(h−q1)

(−1)v

v!
(q̄ − h + v)!


q1

h − v


and a ∨ b := max{a, b}. As for the first sum above, note that for any h ∈ {0, 1, . . . , q1}

h−
v=0

(−1)v

v!
(q̄ − h + v)!


q1

h − v


=

q1!q2!
h!

h−
v=0

(−1)v

h
v


q̄ − h + v

q2


=

q1!q2!
h!

(−1)h
h!(q̄ − h)!
q1!q2!

q2
h





F. Leisen, A. Lijoi / Journal of Multivariate Analysis 102 (2011) 482–495 493

where the last equality follows from (A.1). When h ∈ {q1 + 1, . . . , q2} one has
h−

v=h−q1

(−1)v

v!
(q̄ − h + v)!


q1

h − v


= (−1)h(q̄ − h)!

q1−
j=0

(−1)j

q1
j


q̄ − j
q̄ − h


= (−1)h(q̄ − h)!

q2
h


by virtue of (A.2) to show that the second sum is zero. On the other hand, for any h ∈ {q2 + 1, . . . , q̄} it can be seen that

h−
v=h−q1

(−1)v

v!
(q̄ − h + v)!


q1

h − v


= (−1)h

q1−
j=0

(−1)j

q1
j


[q̄ − j]q̄−h = 0.

Hence, one is left just with the last sum where h ≥ q̄ + 1. In this case, from Eq. 0.160.2 in [8] one has
h−

v=h−q1

(−1)v

v!
(q̄ − h + v)!


q1

h − v


= (−1)h+q1

Γ (h − q2)q2!
h!Γ (h − q̄)

.

Consequently, one has
q1−
j=0

[σ + 1]j(q̄ − j)!

q1
j


zσ+1−j(1 − z)j −

q2−
i=0

(−1)i[σ + 1]i(q̄ − i)!
q2

i


(1 − z)i

=

∞−
h=q̄+1

[σ + 1]h(−1)h+q1
q2!Γ (h − q2)
h!Γ (h − q̄)

(1 − z)h

=

∞−
j=0

[σ + 1]j+q̄+1(−1)j+q2+1Γ (j + q1 + 1)q2!
Γ (j + q̄ + 2)j!

(1 − z)j+q̄+1

=
(−1)q1q1!q2!
Γ (q̄ + 2)

(1 − z)q̄+1
∞−
j=0

Γ (−σ + j + q̄)
Γ (−σ − 1)

(q1 + 1)j
j!(q̄ + 2)j

(1 − z)j

which yields the stated result. For the case q2 ≤ q1 one works in a similar fashion. �

Appendix B. Proof of Theorem 5

The result will be proved by evaluating the posterior Laplace transform of the vector (µ̃1,σ ,θ (A), µ̃2,σ ,θ (A)), given D and
(S, T ). To this end, we resort to a technique introduced in [20]. The idea is to evaluate an approximation of the posterior
which is simpler to handle and, then, obtain the posterior via a limiting procedure. This is better illustrated as follows. First
note that since X is separable there exists a sequence (Πm)m≥1 of measurable partitions, withΠm = {Am,i : i = 1, . . . , km},
such that: (a)Πm+1 is a refinement ofΠm; (b) if Gm = σ(Πm), then X = σ(∪m≥1Gm); (c) max1≤i≤km+1 diam(Am,i) → 0 as
m → ∞. Accordingly, define sequences (X ′

m,i)i≥1 and (Y ′

m,i)i≥1 ofX-valued randomelementswithX ′

m,l =
∑km+1

i=1 xm,iδAm,i(Xl)

and Y ′

m,l =
∑km+1

i=1 ym,iδAm,i(Yl), for any l ≥ 1, where xm,i and ym,i are points in Am,i. It follows that

P[X ′

m,r ∈ A, Ym,s ∈ B | (µ̃1,σ ,θ , µ̃2,σ ,θ )] =

km+1−
i,j=1

µ̃1,σ ,θ (Am,i)

µ̃1,σ ,θ (X)
µ̃2,σ ,θ (Am,j)

µ̃2,σ ,θ (X)
δxm,i(A)δym,j(B).

It is apparent that if F
(m)
n1,n2 = σ(X ′

m,n1 , Y
′
m,n2) is the σ -algebra generated by X ′

m,n1 = (X ′

m,1, . . . , X
′
m,n1) and Y ′

m,n2 =

(Y ′

m,1, . . . , Y
′
m,n2), then

F (m)
n1,n2 ⊂ Fn1,n2 := σ(X1, . . . , Xn1 , Y1, . . . , Yn2).

Moreover, set j = (j1, . . . , jn1+n2) ∈ {1, . . . , km + 1} and Rm,j = ×
n1+n2
i=1 Am,ji , and note that

E[e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A) | F (m)
n1,n2 ] =

−
j

1Rm,j (X
′

m,n1 , Y
′

m,n2)

×

E


e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A)

n1∏
i=1

µ̃1,σ ,θ (Am,ji )
µ̃1,σ ,θ (X)

n1+n2∏
l=n1+1

µ̃2,σ ,θ (Am,jl )
µ̃2,σ ,θ (X)



E


n1∏
i=1

µ̃1,σ ,θ (Am,ji )
µ̃1,σ ,θ (X)

n1+n2∏
l=n1+1

µ̃2,σ ,θ (Am,jl )
µ̃2,σ ,θ (X)


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for any positive λ1 and λ2. An application of Proposition 2 in [20] implies that

E[e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A) | F (m)
n1,n2 ] → E[e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A) | Fn1,n2 ] (B.1)

almost surely, as m → ∞. Our main goal will then be the evaluation of the left hand side of (B.1), so that the stated
equivalence in distribution with (21) can be achieved by taking the limit as m → ∞. Let us suppose that, for m large
enough, the data are gathered into 1 ≤ k ≤ n1+n2 sets Am,i1 , . . . , Am,ik and set the frequencies nj,1 =

∑n1
r=1 1Am,j(Xr), nj,2 =∑n2

r=1 1Am,j(Yr). The left hand side of (B.1) reduces to

E


e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A)

k∏
j=1


µ̃1,σ ,θ (Am,j)
µ̃1,σ ,θ (X)

nj,1  µ̃2,σ ,θ (Am,j)
µ̃2,σ ,θ (X)

nj,2

E


k∏

j=1


µ̃1,σ ,θ (Am,j)
µ̃1,σ ,θ (X)

nj,1  µ̃2,σ ,θ (Am,j)
µ̃2,σ ,θ (X)

nj,2 . (B.2)

By virtue of Theorem 1, the denominator coincides with

σ 2
k∏

j=1
α(Am,j)

Γ 2

θ
σ

 2∏
i=1
(θ)ni

∫
∞

0

∫
∞

0
sθ+n1−1tθ+n2−1e−ψ(s,t)

k∏
j=1

gν(nj,1, nj,2; s, t)dsdt + am

asm → ∞, where am is such that limm→∞ = am/(
∏k

j=1 α(Am,j)) = 0, andwe are taking into account that α is a non-atomic
probability measure on (X,X ). On the other hand, one can check that the numerator of (B.2) is

σ 2
k∏

j=1
α(Am,j)

Γ 2

θ
σ

 2∏
i=1
(θ)ni

∫
∞

0

∫
∞

0
sθ+n1−1tθ+n2−1e−α(A)ψ(s+λ1,t+λ2)−α(Ac )ψ(s,t)

×

∏
j:A∩Am,j≠∅

∫
∞

0

∫
∞

0
xnj,1ynj,2e−(λ1+s)x−(λ2+t)yν(x, y)dxdydsdt + a′

m

as m → ∞, where a′
m is such that limm→∞ = a′

m/
∏k

j=1 α(Am,j)


= 0. When taking the limit as m → ∞ one finds out
that for any A ∈ X

E

e−λ1µ̃1,σ ,θ (A)−λ2µ̃2,σ ,θ (A)|D


=

∫
(R+)2

f (s, t|D)e−α(A)[ψ(s+λ1,t+λ2)−ψ(s,t)]

×

∏
i:Z∗

i ∈A


(R+)2 e

−λ1x−λ2yxnj,1ynj,2e−sx−tyν(x, y)dxdy

gν(nj,1, nj,2; s, t)
dsdt.

And this yields the representation in (21). �
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