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This paper studies moderate deviation behaviors of the generalized method of moments
and generalized empirical likelihood estimators for generalized estimating equations,
where the number of equations can be larger than the number of unknown parameters.
We consider two cases for the data generating probability measure: themodel assumption
and local contaminations or deviations from the model assumption. For both cases, we
characterize the first-order terms of the moderate deviation error probabilities of these
estimators. Our moderate deviation analysis complements the existing literature of the
local asymptotic analysis and misspecification analysis for estimating equations, and is
useful to evaluate power and robust properties of statistical tests for estimating equations
which typically involve some estimators for nuisance parameters.
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1. Introduction

This paper studies moderate deviation behaviors of the generalized method of moments (GMM) and generalized
empirical likelihood (GEL) estimators for generalized estimating equations, where the number of equations can be larger
than the number of unknown parameters.1 We consider two cases for the data generating probability measure: the model
assumption and local contaminations or deviations from the model assumption. For the model assumption or correct
specification case, ourmoderate deviation analysis extends the conventional local asymptotic analysis for the GMMand GEL
estimators focusing on n−1/2-neighborhoods (see, [8,23]) towardmoderate deviation regions focusing on cn-neighborhoods
with cn → 0 but cnn1/2

→ ∞, where n is the sample size. For the local contamination or local misspecification case,
our moderate deviation analysis extends the conventional misspecification analysis for estimating equations focusing on
globally misspecified models (see, [29]) to locally misspecified models drifting to the model assumption as n → ∞. For
the model assumption and local contamination cases, we characterize the first-order terms of the moderate deviation error
probabilities of the GMM and GEL estimators. Our moderate deviation analysis complements the existing literature of the
local asymptotic analysis and misspecification analysis, and is useful to evaluate power and robust properties of statistical
tests for estimating equations which typically involve some estimators for nuisance parameters.

Since Godambe [7] at least, there are numerous empirical applications and theoretical studies on estimating equations;
see, e.g., [11,8] for a review. If the number of estimating equations is identical to the number of unknown parameters
(called just-identification), we can apply the conventional method of moment estimator for point estimation, and its large
and moderate deviation behaviors have been studied in the literature (e.g., [27,18,20,16,15,1]). However, particularly in
econometrics and longitudinal data analysis, it is often the case that the number of estimating equations is larger than the
number of unknown parameters (called over-identification). In this case the method of moments is not directly applicable
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1 See, e.g., [13,21] for a review on the GMM and GEL approaches on generalized estimating equations particularly in econometrics.
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and several estimation methods have been proposed in the literature, such as the GMM [9] and GEL [28,23] which includes
empirical likelihood [25,26], Euclidean likelihood [10], and exponential tilting [22,14] as special cases; see also [12]. These
papersmostly focused on the local asymptotic properties of the GMMor GEL estimator under themodel assumption, i.e., the
local error probability P


√
n
θ̂ − θ0

 ≥ z

for an estimator θ̂ of θ0 with z > 0 and a correctly specified P . On the other

hand, Otsu [24] has investigated the large deviation properties of the GMM and GEL estimators, i.e., the large deviation error
probability Pn


√
n
θ̂ − θ0

 ≥
√
nz

for a locally contaminated Pn. Otsu [24] showed that under some regularity conditions

the GMM and GEL estimators have exponentially small large deviation error probabilities. The focus of this paper is on the
moderate deviation error probability Pn


√
n
θ̂ − θ0

 ≥ zn

with zn → ∞ but zn = o


n1/2


. Compared to the literature

on the method of moment estimator for the just-identified case, to our best knowledge, there is no theoretical work on
moderate deviation analysis of the GMM and GEL estimators for the over-identified case.

The technical contribution of this paper is to derive the first-order terms of the moderate deviation error probabilities
of the GMM and GEL estimators for over-identified estimating equations. The moderate deviation results are derived under
two setups for the data generating probability measure: the model assumption and local contaminations. These setups are
adopted by Inglot and Kallenberg [15] who derived moderate deviation results for some minimum contrast estimators. Our
results can be considered as extensions of Inglot and Kallenberg [15] to over-identified estimating equations estimated by
the GMM or GEL. It should be noted that although our results are extensions of the previous results to the over-identified
case, theoretical arguments for these extensions are not trivial. The GMM estimator is defined as a minimizer of a quadratic
formof the sample estimating equations and theGEL estimator is defined as aminimax solution of theGEL criterion function.
Therefore, existing technical tools to analyze moderate deviation errors are not directly applicable to our context.

As the literature suggests (e.g., [18,19,15]), there are several reasons to investigate moderate deviation behaviors of
estimators under the model assumption or local contaminations. First, moderate deviation analysis is a fundamental tool
to assess the quality of estimators and plays a complementary role to the local asymptotic and large deviation analyses.
Second, moderate deviation results are useful to evaluate power and robust properties of statistical tests which involve
some estimators for nuisance parameters. In our context, the validity of the over-identified estimating equations is checked
by the minimized GMM or GEL objective function, and parameter hypotheses are typically checked by likelihood ratio-type
statistics using the GMM or GEL objective function. Both test statistics involve parameter estimators, and our moderate
deviation results can be applied to evaluate power or robust properties of these tests when the data are generated from
locally contaminated or misspecified measures. Third, moderate deviation analysis can provide some optimality criteria to
evaluate statistical estimators or tests. For example, this paper shows asymptotic optimality results in a moderate deviation
sense for the two-step GMM and GEL estimators over the GMM estimators with non-optimal weights; see Remarks 3.8 and
3.11.

This paper is organized as follows. Section 2 introduces our basic setup. Section 3 presents main results. Section 4
concludes. We use the following notation. Let |A| = trace


A′A

be the Euclidean norm of a scalar, vector, or matrix

A, Bc, int(B), and cl(B) be the complement, interior, and closure of a set B, respectively, C and c be generic positive constants
that should be large and small enough, respectively, and ‘‘a.e.’’ means ‘‘almost every’’.

2. Setup

Suppose we observe a random sample (X1n, . . . , Xnn) of size n with support X ⊆ Rdx . We wish to estimate a vector of
unknown parameters θ0 ∈ Θ ⊆ Rdθ defined by the generalized estimating equations

E[g(X, θ0)] =

∫
g(x, θ0)dP(x) = 0, (1)

where g : X × Θ → Rdg is a vector of measurable functions with dg ≥ dθ . Except for the functional form of the estimating
function g , we do not impose any parametric restriction on the distributional form of P . When dg = dθ (i.e., θ0 is just-
identified by the estimating equations), we can apply the method of moments to estimate θ0 and there are several existing
results onmoderate deviation behaviors of themethod ofmoment estimator (e.g., [18,15]). On the other hand,when dg > dθ

(i.e., θ0 is over-identified by the estimating equations), the method of moment estimator does not exist in general and we
typically employ the GMMor GEL estimator or their variants to estimate θ0. Although our results apply to the just-identified
case as well, where the GMM and GEL estimators coincide with the method of moment estimator, this paper mainly focuses
on the over-identified case. There are numerous empirical examples and theoretical studies of over-identified estimating
equations. However, to our best knowledge, there is no paper which studies moderate deviation properties of the GMM or
GEL estimator. This paper studiesmoderate deviation behaviors of these estimators under themodel assumption (1) or local
contaminations from the model assumption. More specifically, we consider the following data generating measure for the
triangular array {(X1n, . . . , Xnn)}n∈N.

Assumption P.
(i) For each n ∈ N, (X1n, . . . , Xnn) is an independently and identically distributed (i.i.d.) sample from the probability

measure Pn having the density dPn
dP with respect to P satisfying
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dPn
dP

(x) = 1 + anAn(x),

where {an}n∈N is a sequence of constants satisfying an → 0 and An : X → R is a measurable function satisfying

sup
n∈N

sup
x∈X

|An(x)| < ∞,

∫
An(x)dP(x) = 0,

∫
An(x)2dP(x) = 1. (2)

(ii) P is the probability measure under the model assumption and there exists a unique solution θ0 ∈ Θ ⊆ Rdθ for the
estimating equations E[g(X, θ0)] =


g(x, θ0)dP(x) = 0.

Hereafter the mathematical expectations under P and Pn are denoted by E[·] and En[·], respectively. Assumption P is an
adapted version of Inglot and Kallenberg [15, Assumption (A)] to the estimating equation context. This setup allows two
cases for the data generating measure Pn.

(a) Model assumption (an = 0): the data are generated from Pn = P and the estimating equations En[g(X, θ0)] = 0 are
satisfied.

(b) Local contamination (an ≠ 0): the data are generated from Pn ≠ P and the estimating equations En[g(X, θ0)] = 0 may
or may not be satisfied. However, since an → 0, the data generating measure Pn converges to the model assumption
measure P as the sample size increases.

Note that except for the convergence of an to zero and some boundedness conditions in (2), we do not impose any additional
restrictions on the way of deviations from the model assumption measure P . In this sense, our treatment on the local
contamination is nonparametric. Since the generalized estimating equations are commonly applied to the case where
the researcher does not have enough prior knowledge on the parametric distributional form of data, this nonparametric
treatment on the local contaminations is suitable for our setup.

This paper considers three popular estimators for the generalized estimating equations: (i) the GMM estimator with
some weight matrix, (ii) the optimally weighted two-step GMM estimator, and (iii) the GEL estimator. To deal with the
over-identified estimating equations, where the method of moment estimator (a solution of 1

n

∑n
i=1 g(Xin, θ) = 0 with

respect to θ ) does not exist in general, the GMM estimator with the dg × dg weight matrix Ŵ minimizes the quadratic form
of the sample estimating equations 1

n

∑n
i=1 g(Xin, θ), i.e.,

θ̂1 = argmin
θ∈Θ


1
n

n−
i=1

g(Xin, θ)

′

Ŵ


1
n

n−
i=1

g(Xin, θ)


. (3)

It is known that under the model assumption, Pn = P , mild regularity conditions guarantee that the GMM estimator θ̂1 is
consistent for θ0 and asymptotically normal (see, e.g., [8]),

√
n

θ̂1 − θ0


d

→N (0, VW ) ,

where VW =

G′WG

−1 G′WΩWG

G′WG

−1,

G = E
[

∂g (X, θ0)

∂θ ′

]
, Ω = E


g (X, θ0) g (X, θ0)

′

,

andW is the (probability) limit of Ŵ . The asymptotic varianceVW depends on the limitingweightmatrixW and isminimized
(in the positive semi-definite sense) whenW = Ω−1. Although the optimal weight Ω−1 is unknown, we can estimate it by
using θ̂1 as a preliminary estimator, i.e.,

Ω̂−1
=


1
n

n−
i=1

g

Xin, θ̂1


g

Xin, θ̂1

′

−1

. (4)

By using the estimated optimal weight matrix Ω̂−1, the optimally weighted two-step GMM estimator is defined as

θ̂2 = argmin
θ∈Θ


1
n

n−
i=1

g(Xin, θ)

′

Ω̂−1


1
n

n−
i=1

g(Xin, θ)


. (5)

Under the model assumption, Pn = P , mild regularity conditions guarantee the weak consistency of Ω̂−1 to Ω−1 and the
asymptotic normality of θ̂2,

√
n

θ̂2 − θ0


d

→N

0,

G′Ω−1G

−1


.
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It is known that the two-step GMM estimator θ̂2 attains the semiparametric efficiency (or information) bound under the
model assumption [4,2].

As an alternative class of estimators to the two-step GMM, we consider the GEL estimator:

θ̂3 = argmin
θ∈Θ

max
λ∈Λ

n−
i=1

ρ

λ′g(Xin, θ)


. (6)

In contrast to the two-step GMM estimator θ̂2, the GEL estimator does not require preliminary estimation for Ω−1. Under
suitable conditions this minimax problem can be interpreted as the dual problem of the minimum empirical discrepancy
problem (see, [23, Theorem 2.2]),

θ̂3 = argmin
θ∈Θ

min
{pi}ni=1

n−
i=1

h (pi) , (7)

subject to

n−
i=1

pi = 1,
n−

i=1

pig(Xin, θ) = 0,

for some h. Thus, the GEL estimator θ̂3 can be interpreted as a constrained maximum likelihood estimator by the
nonparametric likelihood function

∑n
i=1 h (pi), which puts probability weights {pi}ni=1 on the observed points of {Xin}

n
i=1

subject to the estimating equation constraints
∑n

i=1 pig(Xin, θ) = 0. Although the formulation in (7) is intuitive to
understand the rationale of the GEL estimator, this formulation is not practical because of the n-variable optimization
problem for {pi}ni=1. We employ the dual formula in (6) to define the GEL estimator, which is used in practice to compute the
GEL estimator.

To implement the GEL estimation, we need to specify the criterion function ρ (or h). The GEL estimator contains several
existing estimators for generalized estimating equations as special cases:

• Empirical likelihood: ρ(v) = log(1 − v) and h(p) = − log p.
• Euclidean likelihood: ρ(v) = −(1 + v)2/2 and h(p) = p2.
• Exponential tilting: ρ(v) = − exp(v) and h(p) = p log p.

• Cressie and Read [5] divergence: ρ(v) = −
(1+γ v)(γ+1)/γ

1+γ
and h(v) =

pγ+1
−1

γ (γ+1) for γ ∈ R.

Newey and Smith [23] showed that for a general class of the criterion functions ρ or h, the GEL estimator θ̂3 has the same
asymptotic distribution as the optimally weighted two-step GMM estimator θ̂2 under the model assumption Pn = P , i.e.,
√
n

θ̂3 − θ0


d

→N

0,

G′Ω−1G

−1

. Furthermore, Newey and Smith [23] investigated higher-order properties of the GEL

estimator under the model assumption and found that the GEL estimator has better higher-order bias properties than the
two-step GMM estimator.

The above asymptotic normality results approximate the local error probabilities P

√
n
θ̂j − θ0

 ≥ z

for z > 0 and

j = 1, 2, 3 based on the central limit theorems under the model assumption. On the other hand, Otsu [24] studied the large
derivation error probabilities Pn


√
n
θ̂j − θ0

 ≥
√
nz

under Pn, which allows local contaminations, and showed that under

some regularity conditions the GMM and GEL estimators have exponentially small large deviation error probabilities, i.e.,
Pn

√
n
θ̂j − θ0

 ≥
√
nz


≤ Ce−cn for some C, c > 0. The purpose of this paper is to bridge these two asymptotic results by

characterizing the first-order terms of the moderate deviation error probabilities Pn

√
n
θ̂j − θ0

 ≥ zn

for zn → ∞ but

zn = o

n1/2


.

We close this section by pointing out some differences with the existing moderate deviation results on the method
of moments or minimum contrast estimators. The literature mostly focuses on the just-identified case and considers the
method of moment estimator (i.e., a solution of 1

n

∑n
i=1 g(Xin, θ) = 0 with dg = dθ ) or the minimum contrast estimator

(i.e., a minimizer of some objective function
∑n

i=1 γ (Xin, θ) with respect to θ or a solution of
∑n

i=1 ∂γ (Xin, θ)/∂θ = 0). It
should be mentioned that our moderate deviation analysis is a non-trivial extension of the previous results at least in three
senses. First, the GMM estimators θ̂1 and θ̂2 are defined as minimizers of quadratic forms of the sample estimating functions
1
n

∑n
i=1 g(Xin, θ), instead of a single summation of some contrast function. Second, the two-step GMM estimator θ̂2 contains

the preliminary GMM estimator θ̂1. Thus, we need to incorporate estimation errors of θ̂1 to analyze the moderate deviation
properties of θ̂2. Third, the GEL estimator is defined as a minimax solution rather than a simple minimization solution. This
minimax structure also complicates our moderate deviation analysis.
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3. Main results

In this section, we present the moderate deviation properties of the GMM and GEL estimators. Hereafter denote
G (x, θ) = ∂g (x, θ) /∂θ ′. We first consider θ̂1 in (3), the GMMestimatorwith theweightmatrix Ŵ . We impose the following
assumptions.

Assumption G1.
(i) Θ is compact and θ0 ∈ int (Θ). There exist a measurable function L : X → [0, ∞) and constants α, T1 ∈ (0, ∞) such

that |g (x, θ1) − g (x, θ2)| ≤ L(x) |θ1 − θ2|
α for all θ1, θ2 ∈ Θ and a.e. x, and E [exp (T1L(X))] < ∞. For each θ ∈ Θ ,

there exists a constant T2 ∈ (0, ∞) satisfying E [exp (T2 |g(X, θ)|)] < ∞.
(ii) There exist a measurable function H : X → [0, ∞), constants β, T3 ∈ (0, ∞), and a neighborhood N around θ0 such

that |G (x, θ) − G(x, θ0)| ≤ H(x) |θ − θ0|
β for all θ ∈ N and a.e. x, and E [exp (T3H(X))] < ∞. There exists a constant

T4 ∈ (0, ∞) satisfying E [exp (T4 |G(X, θ0)|)] < ∞. G has the full column rank. Ω is positive definite.

Assumption W. There exists a sequence of dg × dg matrices {Wn}n∈N such that

Pn
Ŵ − Wn

 ≥ n−1/2zn


≤ exp

−

z2n
2

+ O


z3n
√
n


+ O (log zn)


,

for any sequence {zn}n∈N satisfying zn → ∞ and n−1/2zn → 0, and Wn → W with a positive definite matrixW .

Assumption G1 restricts the shape of the estimating function g . Assumption G1(i) is on the global shape of g over
the parameter space Θ . Compared to the setups for the method of moment estimator (e.g., [16,15]), it is not easy to
avoid the compactness assumption on Θ without imposing additional restrictions on the shape of g , such as concavity
of the GMM objective function in θ . The Lipschitz-type condition on g is common in the literature and is satisfied with
α = 1 if g is differentiable on Θ for a.e. x and the derivative has an exponential moment. Boundedness conditions of
exponential moments are required to control large and moderate deviation probabilities for the sum of the estimating
functions. Assumption G1(ii) controls the local shape of the estimating functions g in a neighborhood of θ0. The Lipschitz-
type assumption on the derivative G (x, θ) is satisfied with β = 1 if g is second-order differentiable in a neighborhood of θ0
for a.e. x and the derivative has an exponential moment.

The boundedness conditions for several exponential moments in Assumption G1 are restrictive and unnecessary to
derive local asymptotic properties such as the asymptotic normality of the GMM estimator. However, to investigate the
tail behaviors of the estimators, it is hard to proceed without these bounded exponential moments. For example, the
conventional Cramér-type large and moderate deviation theorems for sums of random samples typically require existence
of moment generating functions (see, e.g., [6]). Also note that even for the just-identified case, we need similar boundedness
conditions for the moment functions and their derivatives to study large and moderate deviation properties of the method
of moment estimator (see, [18,16,15]).

Assumption W is a high-level assumption on the weight matrix Ŵ . This assumption should be checked for each specific
choice of Ŵ . If Ŵ is a constant positive definite matrix (i.e., Ŵ = Wn = W ), this assumption is trivially satisfied. If Ŵ is
defined as a sample mean, the conventional moderate deviation theorems for i.i.d. sums, such as Book [3], Yurinskii [30],
Jurečková et al. [17], and Dembo and Zeitouni [6], can be applied to verify this assumption.

Under these assumptions, we can characterize themoderate deviation behavior of the GMMestimator θ̂1 with theweight
matrix Ŵ as follows.

Theorem 3.1. Suppose that Assumptions P,W and G1 hold.
(i) For all n large enough and δ ∈ (0, ∞) small enough, there exists a unique θ1n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ} such that

En [G (X, θ1n)]′ WnEn [g (X, θ1n)] = 0,

θ1n = θ0 − an

G′WG

−1 G′WE [An(X)g(X, θ0)] + o (an) . (8)

(ii) For any sequence {zn}n∈N satisfying zn → ∞ and n−1/2zn → 0,

Pn
√

n
G′WΩWG

−1/2 G′WG

θ̂1 − θ1n

 ≥ zn


= exp

−

z2n
2

+ O

anz2n


+ O


z3n
√
n


+ O (log zn)


.

Remark 3.1. Part (i) of this theorem shows the existence of a unique natural parameter θ1n, which solves the population
analogue of the first-order condition of the GMM estimator θ̂1. Under the model assumption Pn = P, θ1n becomes θ0, the
‘‘true’’ parameter under correct specification. Under the local contamination Pn ≠ P , it is more natural to employ θ1n as a
parameter to be estimated by θ̂1. Using the terminology ofmisspecification analysis, θ1n maybe interpreted as a ‘‘pseudo-true
value’’ [29] in our local contamination context. Also, θ1n can be interpreted as a projection of the data generating measure
Pn to the parameter space Θ using the quadratic distance based on the population analogue of the GMM objective function
in (3), i.e., θ1n = argminθ∈Θ En[g(X, θ)]′WnEn[g(X, θ)].
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Remark 3.2. Part (ii) of this theorem says that even if the critical value zn diverges, the tail probability of
√
n

θ̂1 − θ1n


can be still approximated by the normal distribution N (0, VW ). The conventional local asymptotic theory based on a
central limit theorem says that the GMM estimator θ̂1 is asymptotically normal under the model assumption Pn = P , i.e.,
P

√
n
G′WΩWG

−1/2 G′WG

θ̂1 − θ1n

 ≥ z


→ 1 − 2Φ(z) with the standard normal distribution function Φ . On the
other hand, under similar assumptions, Otsu [24] showed that the large deviation error probability of the GMM estimator
is exponentially small, i.e., for every z > 0, there exist C, c > 0 such that Pn


√
n
θ̂1 − θ1n

 ≥
√
nz


≤ Ce−cn for all n
large enough. The moderate deviation result in Theorem 3.1(ii) bridges these two asymptotic results by focusing on the tail
probabilities with the critical value zn → ∞ but zn = o


n1/2


.

Remark 3.3. By taking the limit n → ∞ for the result in Theorem 3.1(ii), the moderate deviation rate function is obtained
as

lim
n→∞

z−2
n log Pn

√
n
G′WΩWG

−1/2 G′WG

θ̂1 − θ1n

 ≥ zn


= −
1
2
.

Remark 3.4. The statements in Theorem 3.1 hold even if we replace G,W , and Ω with En [G (X, θ1n)] ,Wn, and
En

g (X, θ1n) g (X, θ1n)

′

, respectively.

Remark 3.5. Although it is natural to consider the concentration of θ̂1 around the natural parameter θ1n, we can also derive
an analogous moderate deviation result for the contrast θ̂1 − θ0, i.e., if

∆1n = n1/2anz−1
n


G′WΩWG

−1/2 G′WEn [An(X)G(X, θ0)] → ∆1, (9)

with |∆1| ∈ [0, 1),2 then

Pn
√

n
G′WΩWG

−1/2 G′WG

θ̂1 − θ0

 ≥ zn


= exp

−

(1 − |∆1|)
2 z2n

2
+ O


|∆1n − ∆1| z2n


+ O


anz2n


+ O


z3n
√
n


+ O (log zn)


.

We now analyze the two-step GMM estimator θ̂2. The following assumption is imposed.

Assumption G2. For each n ∈ N, there exist constants T5, T6, T7 ∈ (0, ∞) such that E

exp


T5L(X)2


< ∞,

E [exp (T6L(X) |g(X, θ0)|)] < ∞, and E

exp


T7
g (X, θ0) g (X, θ0)

′
 < ∞.

Assumption G2 is an additional boundedness condition on the estimating function g , which is used to control the
moderate deviation behavior of the optimal weight matrix estimator Ω̂−1. The moderate deviation properties of the two-
step GMM estimator is obtained as follows.

Theorem 3.2. Suppose that Assumptions P, W, G1 and G2 hold.
(i) For all n large enough and δ ∈ (0, ∞) small enough, there exists a unique θ2n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ} such that

En [G (X, θ2n)]′ En

g (X, θ1n) g (X, θ1n)

′
−1 En [g (X, θ2n)] = 0,

θ2n = θ0 − an

G′Ω−1G

−1
G′Ω−1E [An(X)g(X, θ0)] + o (an) .

(ii) For any sequence {zn}n∈N satisfying zn → ∞ and n−1/2zn → 0,

Pn
√

n
G′Ω−1G

1/2 
θ̂2 − θ2n

 ≥ zn


= exp

−

z2n
2

+ O

anz2n


+ O


z3n
√
n


+ O (log zn)


.

Remark 3.6. Similar remarks to Theorem 3.1 apply here. θ2n is the natural parameter for the two-step GMM estimator θ̂2,
which solves the population analogue of the first-order condition of θ̂2. The statements in Theorem 3.2 hold even if we
replace G and Ω with En [G (X, θ2n)] and En


g (X, θ1n) g (X, θ1n)

′

, respectively. The moderate deviation rate function is

obtained as

2 If n1/2anz−1
n → 0, then the condition in (9) is satisfied with ∆1 = 0. If n1/2anz−1

n → c , then we need to choose An(X) to satisfyc G′WΩWG
−1/2 G′WEn [An(X)G(X, θ0)]

 → |∆1| < 1, which is guaranteed by assuming, e.g., supn∈N supx∈X |An(x)| ≤
|G′WΩWG|

1/2

|c| |G′WE[|G(X,θ0)|]|
− δ for some

δ > 0. Similar comments apply to the conditions in (10) and (13) (by settingW = Ω−1).
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lim
n→∞

z−2
n log Pn

√
n
G′Ω−1G

1/2 
θ̂2 − θ2n

 ≥ zn


= −
1
2
.

Also, we can derive an analogous moderate deviation result for the estimation error θ̂2 − θ0 around θ0, i.e.,

Pn
√

n
G′Ω−1G

1/2 
θ̂2 − θ0

 ≥ zn


= exp

−

(1 − |∆2|)
2 z2n

2
+ O


|∆2n − ∆2| z2n


+ O


anz2n


+ O


z3n
√
n


+ O (log zn)


,

if

∆2n = n1/2anz−1
n


G′Ω−1G

−1/2
G′Ω−1En [An(X)G(X, θ0)] → ∆2, (10)

with |∆2| ∈ [0, 1).

Remark 3.7. A crucial difference with Theorem 3.1 is that now the moderate deviation probability of
√
n

θ̂2 − θ2n


is

approximated by the normal distribution N

0,

G′Ω−1G

−1

whose variance is always smaller or equal (in the positive

semi-definite sense) to that of the GMMestimator θ̂1 with someweight Ŵ . In otherwords, the distribution of
√
n

θ̂2 − θ2n


ismore concentrated around zero than that of

√
n

θ̂1 − θ1n


. Letmin eig(A) be theminimumeigenvalue of amatrix A. From

Theorems 3.1(ii) and 3.2 (ii), a similar argument to Inglot and Kallenberg [15, Corollary 3.3] implies

log Pn

√
n
θ̂2 − θ2n

 ≥ zn


log Pn

√
n
θ̂1 − θ1n

 ≥ zn
 →


min eig


G′Ω−1G


min eig (VW )

2

≤ 1, (11)

for any positive definiteW .

Remark 3.8. If we assume Pn = P , then the natural parameter becomes θ1n = θ2n = θ0 and the result obtained in (11)

becomes limn→∞

log P

√
n
θ̂2−θ0

≥zn


log P

√
n
θ̂1−θ0

≥zn
 ≤ 1. This result can be seen as an extension of the asymptotic optimality of the two-

step GMM estimator in the local asymptotics to the moderate deviation zone.

Remark 3.9. An intuition for the results in Remarks 3.7 and 3.8 may be explained as follows. Similar to the local asymptotic
analysis, dominant components to analyze the moderate deviation properties of

√
n

θ̂1 − θ1n


and

√
n

θ̂2 − θ2n


are still characterized by their score functions


G′WG

−1 G′W 1
√
n

∑n
i=1 g (Xi, θ1n) and


G′Ω−1G

−1 G′ 1
√
n

∑n
i=1 g (Xi, θ2n),

respectively. On the other hand,moderate deviation theorems for sumsof independent randomvariables (e.g., [6]) guarantee
that the moderate deviation properties for the sums (after normalization) can be characterized by the tail of the standard
normal distribution. Thus, the asymptotic efficiency of θ̂2 compared to θ̂1 in the local asymptotics is maintained in the
moderate deviation zone.

To derive the moderate deviation properties of the GEL estimator, we impose the following assumptions.

Assumption G3.

(i) Θ is compact and θ0 ∈ int (Θ). ρ(·) is strictly concave and ρ1(0) = ρ2(0) = −1. Λ is compact and 0 ∈ int (Λ). For
each θ ∈ Θ , the maximizer λ∗(θ) = argmaxλ∈Λ E


ρ

λ′g(X, θ)


satisfies λ∗(θ) ∈ int (Λ). g (x, θ) is differentiable

on Θ for a.e. x. There exists a constant T8 ∈ (0, ∞) satisfying E [exp (T8 |g(X, θ0)|)] < ∞. For each θ ∈ Θ ,
there exist a constant T9 ∈ (0, ∞) and neighborhoods Nθ and Nλ∗(θ) around θ and λ∗(θ), respectively, satisfying

E

exp


T9 supϑ∈Nθ

supλ∈Nλ∗(θ)

ρ1

λ′g(X, ϑ)


G(X, ϑ)

 < ∞.

(ii) There exist a constant T10 ∈ (0, ∞) and neighborhoods Nρ and N ′
ρ around θ0 and 0, respectively, satisfying

E

exp


T10 supθ∈Nρ

supλ∈N ′
ρ

ρ2

λ′g(X, θ)


g(X, θ)g(X, θ)′

 < ∞.

Assumption G3(i) is a replacement of Assumption G1(i). All examples of the GEL criterion function ρ listed in Section 2
are strictly concave and satisfy ρ1(0) = ρ2(0) = −1. Although technical arguments become more complicated, the
compactness assumption on Λ may be avoided by adding a similar assumption to Inglot and Kallenberg [15, Assumption
(R2’)] which controls the global behaviors of the contrast function outside some compact set for λ. The last condition
in Assumption G3(i), which corresponds to the bounded exponential moment for L(X) in Assumption G1(i), restricts the
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slope of the GEL objective function with respect to θ . This condition needs to be checked for specific choices of ρ and g .
Assumption G3(ii) contains additional conditions to control the local curvatures of the GEL objective function with respect
to λ in a neighborhood of 0.

The boundedness conditions for exponential moments in Assumption G3 are typically more stringent and difficult to
verify than the ones for the GMM estimator (Assumption G1) or the ones for the method of moment estimator [15]. For
example, in the case of the empirical likelihood estimator (i.e., ρ(v) = log(1 − v)), the last condition in Assumption G3(i)
becomes E


exp


T9 supϑ∈Nθ

supλ∈Nλ∗(θ)

 1
1−λ′g(X,ϑ)

G(X, ϑ)

 < ∞, and the condition in Assumption G3(ii) becomes

E
[
exp


T10 supθ∈Nρ

supλ∈N ′
ρ

 1

(1−λ′g(X,θ))
2 g(X, θ)g(X, θ)′

] < ∞. Such restrictions and complications are attributable

to the fact that the GEL estimator is defined as a minimax solution using auxiliary parameters λ.
Under these assumptions, the moderate deviation properties of the GEL estimator is obtained as follows.

Theorem 3.3. Suppose that Assumptions P and G1 (ii), and G3 hold.

(i) For all n large enough and δ ∈ (0, ∞) small enough, there exists a unique θ3n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ} such that

En [G (X, θ3n)]′ En

g (X, θ3n) g (X, θ3n)

′
−1 En [g (X, θ3n)] = 0,

θ3n = θ0 − an

G′Ω−1G

−1
G′Ω−1E [An(X)g(X, θ0)] + o (an) . (12)

(ii) For any sequence {zn}n∈N satisfying zn → ∞ and n−1/2zn → 0,

Pn
√

n
G′Ω−1G

1/2 
θ̂3 − θ3n

 ≥ zn


= exp

−

z2n
2

+ O

anz2n


+ O


z3n
√
n


+ O (log zn)


.

Remark 3.10. Similar remarks to Theorems 3.1 and 3.2 apply here. θ3n is the natural parameter for the GEL estimator θ̂3. The
statements in Theorem 3.3 hold even if we replace G and Ω with En [G (X, θ3n)] and En


g (X, θ3n) g (X, θ3n)

′

, respectively.

The moderate deviation rate function is obtained as

lim
n→∞

z−2
n log Pn

√
n
G′Ω−1G

1/2 
θ̂3 − θ3n

 ≥ zn


= −
1
2
.

Also, we can derive the moderate deviation result for the estimation error θ̂3 − θ0 around θ0, i.e.,

Pn
√

n
G′Ω−1G

1/2 
θ̂3 − θ0

 ≥ zn


= exp

−

(1 − |∆3|)
2z2n

2
+ O


|∆3n − ∆3| z2n


+ O


anz2n


+ O


z3n
√
n


+ O (log zn)


,

if

∆3n = n1/2anz−1
n


G′Ω−1G

−1/2
G′Ω−1En [An(X)G(X, θ0)] → ∆3, (13)

with |∆3| ∈ [0, 1).

Remark 3.11. Similar to the two-step GMM estimator, the moderate deviation error probability of
√
n

θ̂3 − θ3n


is

approximated by the normal distribution N

0,

G′Ω−1G

−1

. From Theorem 3.3(i), we can see that the GEL estimator also

enjoys the asymptotic optimality in the moderate deviation sense, i.e.,
log Pn


√
n
θ̂3−θ3n

≥zn


log Pn

√
n
θ̂2−θ2n

≥zn
 → 1. This result can be seen as

an extension of the asymptotic equivalence between the two-step GMM and GEL estimators under the local asymptotics to
the moderate deviation region.

Remark 3.12. This paper mainly focuses on the case of over-identification, i.e., dg > dθ . If the estimating equations are
just-identified, i.e., dg = dθ , then the above three estimators coincide with the method of moment estimator and the above
theorems become variants of the moderate deviation results in [15].

4. Conclusion

This paper studies moderate deviation behaviors of the generalized method of moments (GMM) and generalized
empirical likelihood (GEL) estimators for generalized estimating equations. As data generating probability measures, we
consider the model assumption and locally contaminated measures. For both cases, we characterize the first-order terms
of the moderate deviation error probabilities of the GMM and GEL estimators. There are several directions of the future
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research. First, to compare the two-step GMM and GEL estimators which have the same moderate deviation rate function,
it is important to study higher-order terms of those moderate deviation probabilities. For example, we can expect that the
rate function of the GEL estimator depends on the criterion function ρ, and this rate function allows us to compare the
competing members of the GEL estimators, such as the empirical likelihood and exponential tilting. Second, the GMM and
GEL estimators are commonly applied to time series or panel data. Therefore, it is useful to extend the obtained results
to more general data environments. Finally, it is interesting to extend the present results to more general models, such as
non-compact parameter spaces and non-differentiable estimating functions (e.g., quantile restrictions).
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Appendix. Mathematical appendix

Hereafter let xn = (x1n, . . . , xnn), ĝ(θ) =
1
n

∑n
i=1 g(Xin, θ), and Ĝ(θ) =

1
n

∑n
i=1 G(Xin, θ).

A.1. Proof of Theorem 3.1

Proof of (i). First, we show the continuity of

Qn(θ) = En[g(X, θ)]′WnEn[g(X, θ)] − En[g(X, θ0)]
′WnEn[g(X, θ0)],

in θ ∈ N , where the neighborhood N is defined in Assumption G1(ii). By Assumption P, Qn(θ) is well defined on Θ . Pick
any ϑ, θ ∈ N . By an expansion of En [g(X, ϑ)] around ϑ = θ ,

|Qn(ϑ) − Qn(θ)| ≤ 2
En G X, ϑ̄

′
WnEn[g(X, θ)]

 |ϑ − θ | +

En G X, ϑ̄
′

WnEn

G

X, ϑ̄

 |ϑ − θ |
2 , (14)

where ϑ̄ is a point on the line joining ϑ and θ . From Assumptions P and G1,

|En[g(X, θ)]| ≤ |E[g(X, θ)]| + an |E [An(X)g(X, θ)]| < ∞,En G X, ϑ̄
 ≤

E G X, ϑ̄
+ an

E An(X)G

X, ϑ̄

 < ∞, (15)

for each n ∈ N, where the last inequality follows from
E G X, ϑ̄

 ≤ E [H(X)]
ϑ̄ − θ0

β + E [|G(X, θ0)|] < ∞ using
Assumption G1(ii). From (14) and (15), Qn(θ) is continuous on N for each n ∈ N.

Second, we show the differentiability of Qn(θ) in θ ∈ N . Pick any θ ∈ N and ε ≠ 0 small enough so that θ + εej ∈ N ,
where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth unit vector. Let Gj(X, θ) be the jth column of G(X, θ). By a Taylor expansion of
En

g

X, θ + εej


around ε = 0 combined with Assumptions P and G1 and (15),ε−1 Qn


θ + εej


− Qn(θ)


− 2En


Gj(X, θ)

′ WnEn[g(X, θ)]

 ≤ C

|ε̄|β + |ε|α


,

where ε̄ is a point between ε and 0. Thus, by taking ε → 0 (so, ε̄ → 0 as well), we obtain the differentiability of Qn(θ) in
θ ∈ N for each n ∈ N with the derivative Dn(θ) = 2En[G(X, θ)]′WnEn[g(X, θ)].

Third, we show the existence of θ1n defined in (8). Let Q (θ) = E[g(X, θ)]′WnE[g(X, θ)] and NQ = {θ ∈ Θ :

|θ − θ0| < δ,Q (θ) < ϵ}. Pick any δ, ϵ ∈ (0, ∞) small enough so that cl

NQ


⊂ {θ ∈ Θ : |θ − θ0| ≤ δ} ⊂ N . For
any θ ∈ N c

Q \ {θ ∈ Θ : |θ − θ0| ≤ δ}, Assumption P implies

Qn(θ) = Q (θ) + 2anE [An(X)g(X, θ)]′ WnE[g(X, θ)] + a2n

E [An(X)g(X, θ)]′ WnE [An(X)g(X, θ)]

− E [An(X)g(X, θ0)]′ WnE [An(X)g(X, θ0)]


> ϵ/2, (16)

for all n large enough. From Qn (θ0) = 0, the point θ1n = argminθ∈cl(NQ ) Qn(θ) (which always exists by the Weierstrass
theorem) is a global minimizer of Qn(θ) on {θ ∈ Θ : |θ − θ0| ≤ δ}. Also, since θ1n ∉ N c

Q , the minimizer θ1n belongs to NQ
(i.e., an interior solution of minθ∈cl(NQ ) Qn(θ)), which implies that θ1n satisfies the first-order condition Dn (θ1n) = 0.

Fourth, we show the uniqueness of θ1n. To this end, it is sufficient to show that Dn(θ) is one-to-one on the set
{θ ∈ Θ : |θ − θ0| ≤ δ} for sufficiently small δ. Pick any θ, θ + ϑ ∈ {θ ∈ Θ : |θ − θ0| < δ} ⊂ N (taking δ small enough)
with ϑ ≠ 0. From the triangle inequality,

|Dn (θ + ϑ) − Dn(θ)| ≥
2G′WGϑ

− Dn (θ + ϑ) − Dn(θ) − 2G′WGϑ
 . (17)

Since G is full rank andW is positive definite (Assumption G1(ii) andW), the first term
2G′WGϑ

 is a positive constant. Also
the second term of (17) satisfies
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1
2

Dn (θ + ϑ) − Dn(θ) − 2G′WGϑ
 ≤ C |ϑ | an + C |Wn − W | + C


En [H(X)] δβ

+ an

,

where the inequality follows from an expansion of En [g (X, θ + ϑ)] around ϑ = 0 and

|En[G(X, θ)] − G| ≤ En [H(X)] |θ − θ0|
β

+ Can, (18)

for each θ ∈ {θ ∈ Θ : |θ − θ0| < δ} (by Assumptions P and G1(ii)). Since the first term of (17) is positive and the second
term of (17) can be arbitrary small for sufficiently small δ and large n, we obtain |Dn (θ + ϑ) − Dn(θ)| > 0 for all δ small
enough and n large enough. Therefore, θ1n exists uniquely for all n large enough.

Finally, we show (8). By expanding Dn (θ1n) = 0 around θ1n = θ0 with Assumption P and (18),

0 = G′W

anE [An(X)g(X, θ0)] + G′ (θ1n − θ0)


+ O


(an + |θ1n − θ0|) |Wn − W | + |θ1n − θ0|

1+β

+ |θ1n − θ0|
2
+ an |θ1n − θ0|

β
+ an |θ1n − θ0| + a2n


.

Solving this equation for θ1n yields (8). �

Proof of (ii). Let

B1n =

θ̂1 − θ0

 ≤ ϵ, Ĝ

θ̂1

′

Ŵ ĝ

θ̂1


= 0


, BGn =

Ĝ (θ0) − G
 ≤ cGn−1/2zn


,

BHn =


1
n

n−
i=1

H (Xi) ≤ E [H(X)] + 1


, BWn =

Ŵ − Wn

 ≤ cWn−1/2zn


,

Yin = I−1/2
1n G′

1nWng (Xin, θ1n) , T1n = I−1/2
1n G′

1nWnG1n


θ̂1 − θ1n


,

I1n = G′

1nWnΩ1nWnG1n, I1 = G′WΩWG, t1n = |θ1n − θ0|
β

+ n−1/2zn,

G1n = En [G (X, θ1n)] , Ω1n = En

g (X, θ1n) g (X, θ1n)

′

,

for ϵ, cG, cW ∈ (0, ∞). Note that since |I1n − I1| → 0 and I1 is positive definite (by Assumption G1(ii) and W), I−1/2
1n exists

for all n large enough. For a.e. xn ∈ B1n and all n large enough, an expansion of Ĝ

θ̂1

′

Ŵ ĝ

θ̂1


= 0 around θ̂1 = θ1n yields

0 =
1
n

n−
i=1

Yin + T1n + I−1/2
1n


Ĝ

θ̂1


− G1n

′

Ŵ + G′

1n


Ŵ − Wn


ĝ (θ1n)

+ I−1/2
1n



Ĝ

θ̂1


− G1n

′

Ŵ Ĝ

θ̄1


+G′

1nŴ

Ĝ

θ̄1

− G1n


+ G′

1n


Ŵ − Wn


G1n

θ̂1 − θ1n


, (19)

where θ̄1 is a point between θ̂1 and θ1n. Observe that for a.e. xn ∈ B1n ∩ BGn ∩ BHn ∩ BWn and all n large enough and ϵ small
enough so that {θ ∈ Θ : |θ − θ0| < ϵ} ⊂ N , Assumptions P and G1 guaranteeĜ θ̂1− G1n

 ≤ C
θ̂1 − θ1n

β + t1n


, |G1n| ≤ C |θ1n − θ0|

β
+ |G| , (20)Ŵ − Wn

 ≤ cWn−1/2zn, |I1n| ≤ C

|θ1n − θ0| + |θ1n − θ0|

β
+ |Wn − W |


+ |I1| .

Thus, for a.e. xn ∈ B1n ∩BGn ∩BHn ∩BWn and all n large enough and ϵ small enough, the norms of the third and fourth terms
of (19) are bounded by C


|T1n|β + t1n

  1
n

∑n
i=1 Yin

 and C

|T1n|β + t1n


|T1n|, respectively. Combining these results, for a.e.

xn ∈ B1n ∩ BGn ∩ BHn ∩ BWn and all n large enough and ϵ small enough,1n
n−

i=1

Yin

 ≥

1 − C

|T1n|β + t1n +


|T1n|β + t1n

2
1 + C


|T1n|β + t1n

 |T1n| ,

1n
n−

i=1

Yin

 ≤

1 + C

|T1n|β + t1n +


|T1n|β + t1n

2
1 − C


|T1n|β + t1n

 |T1n| .

Let B̃1n = B1n ∩ BGn ∩ BHn ∩ BWn. Since t1n → 0 by θ1n − θ0 → 0 (from Part (i) of this theorem) and n−1/2zn → 0, it holds
that for all n large enough and ϵ small enough, and some sequence cn → 0,

Pn

|T1n| ≥ n−1/2zn


≤ Pn

n−1/2
n−

i=1

Yin

 ≥ (1 − cn) zn


+ Pn


B̃c
1n


, (21)
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Pn

znn−1/2

≤ |T1n|


≥ Pn

n−1/2
n−

i=1

Yin

 ≥ (1 + cn) zn


− Pn


B̃c
1n


.

From [24], which establishes the large deviation results Pn

Bc
1n


≤ Ce−cn and Pn


BHc

n


≤ Ce−cn, and Assumption W,

Pn

B̃c
1n


≤ Pn


Bc
1n


+ Pn


BGc

n


+ Pn


BHc

n


+ Pn


BW c

n


≤ Ce−cn

+ Pn

BGc

n


+ exp


−

c2W z2n
2

+ O


z3n
√
n


+ O (log zn)


. (22)

Nowconsider themoderate deviationprobability Pn

BGc

n


. FromAssumptions P andG1(ii),wehave En [exp (T4 |G(X, θ0)|)] <

C for all n ∈ N. Then for each v ∈ Rdg , j = 1, . . . , dθ , and k ∈ N,

En


v′Gj(X, θ0)
k

≤ |v|
k En

Gj(X, θ0)
k ≤ |v|

k T−k
4 k!En


(k!)−1

Gj(X, θ0)
k

≤ |v|
k T−k

4 k!En

exp


T4
Gj(X, θ0)

 < ∞.

Therefore, we can apply Yurinskii [30, Theorem 3.1], which implies

Pn

BGc

n


≤ exp


−

c2Gz
2
n

2
+ O


z3n
√
n


+ O (log zn)


. (23)

From (22), (23), and taking cW and cG small enough, there exists some c̄ ∈ (0, 1) satisfying

Pn

B̃c
1n


≤ exp


−

c̄z2n
2

+ O


z3n
√
n


+ O (log zn)


. (24)

Also, since En [Yin] = 0, En

YinY ′

in


equals the identity matrix, and En


exp


T̄ |Yin|


< C for some T̄ ∈ (0, ∞) (by

|G1n| ≤ C, |Wn| ≤ C, |Ω1n| ≤ C , and Assumption G1(i)), we can apply the same argument as the proof of Inglot and
Kallenberg [15, Lemma 4.2] which yields

Pn

n−1/2
n−

i=1

Yin

 ≥ zn


= exp


−

z2n
2

+ O


z3n
√
n


+ O (log zn)


. (25)

Combining (21), (24) and (25), we obtain the conclusion. �

A.2. Proof of Theorem 3.2

Based on Theorem 3.1, it is sufficient to show that AssumptionW is satisfied with Ŵ = Ω̂−1,Wn = Ω−1
1n , andW = Ω−1.

A detailed proof is available from the author upon request.

A.3. Proof of Theorem 3.3

Proof of (i). First, we show the continuity of

Qρn(θ) = En

ρ

λn(θ)′g(X, θ)


− En


ρ

λn(θ0)

′g(X, θ0)


,

in θ ∈ N , where the neighborhood N around θ0 appears in Assumption G1(ii) and λn(θ) = argmaxλ∈Λ En

ρ

λ′g(X, θ)


.

Note that themaximizerλn(θ) exists for each θ ∈ Θ and n ∈ N byAssumptionG3(i) and theWeierstrass theorem. Therefore,
Qρn(θ) is well defined for each θ ∈ Θ and n ∈ N. Since ρ(·) is strictly concave and Λ is compact, the maximum theorem
guarantees that λn(θ) is continuous in θ ∈ N for each n ∈ N. Pick any ϑ, θ ∈ N . By expansions of ρ


λn(ϑ)′g(X, ϑ)


and

g(X, ϑ) around λn(ϑ) = λn(θ) and ϑ = θ , respectively,Qρn(ϑ) − Qρn(θ)
 ≤

En ρ1


λn(θ)′g(X, ϑ̃)


G(X, ϑ̃)

 |λn(θ)| |ϑ − θ |

+

En ρ1


λ̃′

ng(X, ϑ)

g(X, ϑ)

 |λn(ϑ) − λn(θ)| , (26)

for each n ∈ N, where λ̃n is a point on the line joining λn(ϑ) and λn(θ) and ϑ̃ is a point on the line joining ϑ and θ . From
Assumptions P and G1(ii), and G3(i),En ρ1


λn(θ)′g(X, ϑ̃)


G(X, ϑ̃)

 < ∞,

En ρ1


λ̃′

ng(X, ϑ)

g(X, ϑ)

 < ∞, (27)

for each n ∈ N. From (26), (27), and continuity of λn(θ) in θ ∈ N ,Qρn(θ) is continuous in θ ∈ N for each n ∈ N.
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Second, we show the differentiability of Qρn(θ) in θ ∈ N . Pick any θ ∈ N and ε ≠ 0. By expansions of

ρ

λn

θ + εej

′ g X, θ + εej


and g

X, θ + εej


around λn


θ + εej


= λn(θ) and ε = 0, respectively,ε−1 Qρn


θ + εej


− Qρn(θ)


− En


ρ1

λn(θ)′g(X, θ)


Gj(X, θ)′


λn(θ)


≤

En ρ1


λn

θ + ε̇ej

′ g X, θ + ε̇ej


g

X, θ + ε̇ej

′ dλn

θ + ε̇ej


dθj


+
En ρ1


λn(θ)′g


X, θ + ε̇ej


Gj

X, θ + ε̇ej


− ρ1


λn(θ)′g(X, θ)


Gj(X, θ)

 |λn(θ)| (28)

for any ε small enough, where λ̇n is a point between λn

θ + εej


and λn(θ), and ε̇ is a point between ε and 0. The implicit

function theorem guarantees the existence of dλn(θ+ε̇ej)
dθj

for any ε small enough. Also, since λn(θ) → λ̄(θ) ∈ int (Λ) for each
θ ∈ N , λn(θ) satisfies the first-order condition

En

ρ1

λn(θ)′g(X, θ)


g(X, θ)


= 0, (29)

for each θ ∈ N , which implies that the first term of (28) is zero. So, by taking ε → 0 (so, ε̇ → 0 as well) with
Assumptions P andG1(ii), andG3(i) and (27),weobtain the differentiability ofQρn(θ)onN for eachn ∈ Nwith thederivative
Dρn(θ) = En


ρ1

λn(θ)′g(X, θ)


G(X, θ)′


λn(θ).

Third, we show the existence of θ3n. Let Qρ(θ) = E

ρ

λ̄(θ)′g(X, θ)


and N3 =


θ ∈ Θ : |θ − θ0| < δ,Qρ(θ) < ϵ


.

Pick δ, ϵ ∈ (0, ∞) small enough so that cl (N3) ⊂ {θ ∈ Θ : |θ − θ0| ≤ δ} ⊂ N . For any θ ∈ N c
3 \ {θ ∈ Θ : |θ − θ0| ≤ δ},

expansions around λn(θ) = λ̄(θ) and λn(θ0) = 0 with Assumption P yield

Qρn(θ) = Qρ(θ) + E

ρ

λ̇′

ng(X, θ)

g(X, θ)′

 
λn(θ) − λ̄(θ)


+ anE


An(X)ρ


λn(θ)′g(X, θ)


− E


ρ

λ̈′

ng(X, θ0)

g(X, θ0)

′

λn(θ0) − anE


An(X)ρ


λn(θ0)

′g(X, θ0)


> ϵ/2, (30)

for all n large enough, where λ̇n is a point on the line joining λn(θ) and λ̄(θ) and λ̈n is a point on the line joining λn(θ0) and
0. From Qρn(θ0) = 0, the point θ3n = argmaxθ∈cl(N3) Qρn(θ) (which always exists by the Weierstrass theorem) is a global
maximizer of Qρn(θ) on {θ ∈ Θ : |θ − θ0| ≤ δ}. Also, since θ3n ∉ N c

3 , the maximizer θ3n belongs to N3 (i.e., θ3n is a interior
solution of maxθ∈cl(N3) Qρn(θ)), which implies that θ3n satisfies the first-order condition Dρn (θ3n) = 0.

Fourth, we show the uniqueness of θ3n. To this end, it is sufficient to show that Dρn(θ) is one-to-one on the set
{θ ∈ Θ : |θ − θ0| ≤ δ} for sufficiently small δ. Pick any θ, θ + ϑ ∈ {θ ∈ Θ : |θ − θ0| < δ} ⊂ N (taking δ small enough)
with ϑ ≠ 0. From the triangle inequality,Dρn (θ + ϑ) − Dρn(θ)

 ≥
G′Ω−1Gϑ

− Dρn (θ + ϑ) − Dρn(θ) − G′Ω−1Gϑ
 . (31)

From Assumption G1(ii),
G′Ω−1Gϑ

 is a positive constant. By the triangle inequality,Dρn (θ + ϑ) − Dρn(θ) − G′Ω−1Gϑ
 ≤

G′

λn (θ + ϑ) − λn(θ) − Ω−1Gϑ


+
En ρ1


λn (θ + ϑ)′ g (X, θ + ϑ)


G (X, θ + ϑ)′


− G′

 |λn (θ + ϑ) − λn(θ)|

+
En ρ1


λn (θ + ϑ)′ g (X, θ + ϑ)


G (X, θ + ϑ)′

 |λn(θ)| +
En ρ1


λn(θ)′g(X, θ)


G(X, θ)

 |λn(θ)|

= A1 + A2 + A3 + A4.

By expanding (29) around λn(θ) = 0 and solving for λn(θ),

λn(θ) = Ω̂ρ(θ)−1En[g(X, θ)], (32)

where Ω̂ρ(θ) = En

ρ2


λ̃′
ng(X, θ)


g(X, θ)g(X, θ)′


and λ̃n is a point on the line joining λn(θ) and 0 (note that by

Assumption G1(ii) and G3, Ω̂ρ(θ) is invertible for any δ small enough and n large enough). Thus, an expansion around θ = θ0
combinedwith Assumptions P and G3(ii) and (15) yields |λn(θ)| ≤ C (an + δ). Similarly, we have |λn (θ + ϑ)| ≤ C (an + δ).
Thus, from Assumption G3(i), we have A2, A3, A4 ≤ C (an + δ). We now consider A1. From (32) (which also holds for
λn (θ + ϑ)),

λn (θ + ϑ) − λn(θ) − Ω−1Gϑ =


En

ρ2

λ̇′

ng (X, θ + ϑ)

g (X, θ + ϑ) g (X, θ + ϑ)′

−1
− Ω−1


En [g (X, θ + ϑ)]

+


Ω−1

− Ω̂ρ(θ)−1

En[g(X, θ)] + Ω−1 (En [g (X, θ + ϑ)] − En[g(X, θ)] − Gϑ) = A11 + A12 + A13,

where λ̇n is a point between λn (θ + ϑ) and 0. An expansion around θ = θ0 and Assumption G1(ii) imply |En[g(X, θ)]| ≤En G X, θ̃
 |θ − θ0| ≤ Cδ and thus |A12| ≤ Cδ (using Assumption G3(ii)). Similarly, we have |En [g (X, θ + ϑ)]| ≤ Cδ
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and |A11| ≤ Cδ. For A13, an expansion around ϑ = 0 combined with Assumptions P and G1(ii) yield |A13| ≤ C

δβ

+ an

.

Combining these results, we can see that the first term of (31) is positive and the second term of (31) can be arbitrary small
for sufficiently small δ and large n. Therefore, we obtain

Dρn (θ + ϑ) − Dρn(θ)
 > 0 for all δ small enough and n large

enough, which implies that θ3n exists uniquely for all n large enough.
Finally, we show (12). From (32),

0 = Dρn (θ3n) =

En

ρ1

λn (θ3n)

′ g (X, θ3n)

G (X, θ3n)


+ G

′
Ω̂ρ (θ3n)

−1 En [g (X, θ3n)]

−G′


Ω̂ρ (θ3n)

−1
− Ω−1


En [g (X, θ3n)] − G′Ω−1En [g (X, θ3n)]

= A5 − A6 − A7. (33)

For A5, the triangle inequality, Assumption G3(ii), and an expansion around λn (θ3n) = 0 imply

|A5| ≤ C |En [G (X, θ3n)] − G| |En [g (X, θ3n)]|

+ C
En ρ2


λ̃′

ng (X, θ3n)

G (X, θ3n)

′ g (X, θ3n)
 |λn (θ3n)| |En [g (X, θ3n)]|

≤ C

|θ3n − θ0|

β
+ an


(|θ3n − θ0| + an) + (|θ3n − θ0| + an)2 ,

where the second inequality follows from Assumptions P and G1(ii), and G3(i), an expansion of En [g (X, θ3n)] around
θ3n = θ0, and (32) (which guarantees |λn (θ3n)| ≤ C (|θ3n − θ0| + an)). Similarly, A6 satisfies |A6| ≤ C (|θ3n − θ0| + an)2. For
A7, an expansion around θ3n = θ0 yields

A7 = G′Ω−1En[g(X, θ0)] + G′Ω−1G (θ3n − θ0) + O

|θ3n − θ0|

1+β
+ an |θ3n − θ0|


,

where θ̄3 is a point between θ3n and θ0. Inserting these results to (33) and solving for θ3n, we have (12). �

Proof of (ii). Pick any n ∈ N. Let λ̂(θ) = argmaxλ∈Λ
1
n

∑n
i=1 ρ


λ′g (Xi, θ)


,

B3n =

θ̂3 − θ0

 ≤ ϵ, D̂ρ


θ̂3


= 0


, BΩn =

1n
n−

i=1

g (Xin, θ0) g (Xin, θ0)
′
− Ω

 ≤ cΩn−1/2zn


,

D̂ρ(θ) =
1
n

n−
i=1

ρ1


λ̂(θ)′g(Xin, θ)


G(Xin, θ)′λ̂(θ), Y3in = −I−1/2

3n G′

3nΩ
−1
3n g (Xin, θ3n) ,

T3n = −I1/23n


θ̂3 − θ3n


, I3n = G′

3nΩ
−1
3n G3n, I3 = G′Ω−1G,

G3n = En [G (X, θ3n)] , Ω3n = En

g (X, θ3n) g (X, θ3n)

′

, t3n = |θ3n − θ0|

β
+ n−1/2zn,

for ϵ ∈ (0, ∞). Since |I3n − I3| → 0 and I3 is positive definite (by Assumption G1(ii)), I−1/2
3n exists for all n large enough. For

a.e. xn ∈ B3n, the condition D̂ρ


θ̂3


= 0 for θ̂3 satisfies

0 =
1
n

n−
i=1

Y3in + T3n − I−1/2
3n {(Ĝ(θ̂3) − G3n)

′Ω̂ρ(θ̂3)
−1

− G′

3n(Ω̂ρ(θ̂3)
−1

− Ω−1
3n )}ĝ(θ3n)

− I−1/2
3n


(Ĝ(θ̂3) − G3n)

′Ω̂ρ(θ̂3)
−1Ĝ(θ̄3)

−G′

3n(Ω̂ρ(θ̂3)
−1

− Ω−1
3n )Ĝ(θ̄3) − G′

3nΩ
−1
3n (Ĝ(θ̄3) − G3n)


(θ̂3 − θ3n),

for all n large enough, where the second equality follows from (32) and an expansion around λ̂

θ̂3


= 0 (λ̄3 is a point on the

line joining λ̂

θ̂3


and 0), and the third equality follows from an expansion around θ̂3 = θ3n (θ̄3 is a point on the line joining

θ̂3 and θ3n). Note that for a.e. xn ∈ B3n ∩ BGn ∩ BHn ∩ BΩn with any ϵ small enough so that {θ ∈ Θ : |θ − θ0| < ϵ} ⊂ N , a
similar argument to (20) yieldsĜ θ̂3− G3n

 ≤ C |θ3n − θ0|
β

+ |G| ,

Ω̂ρ


θ̂3

−1
− Ω−1

3n

 ≤ C
θ̂3 − θ3n

β + t3n


,Ω−1

3n

 ≤ C |θ3n − θ0|
β

+
Ω−1

 , |I3n| ≤ C

|θ3n − θ0| + |θ3n − θ0|

β

+ |I3| .

Thus, for a.e. xn ∈ B3n ∩ BGn ∩ BHn ∩ BΩn with any ϵ small enough and n large enough,1n
n−

i=1

Y3in + T3n

 ≤ C

|T3n|β + t3n

 1n
n−

i=1

Y3in

+ C

|T3n|β + t3n +


|T3n|β + t3n

2
|T3n| .

Therefore, the same argument to the proof of Theorem 3.1 yields the conclusion. �
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