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Abstract

In this paper, we propose robust estimators for the first canonical correlation and directions of random elements on
Hilbert separable spaces by combining sieves and robust association measures, leading to Fisher–consistent estimators
for appropriate choices of the association measure. Under regularity conditions, the resulting estimators are consistent.
The robust procedure allows us to construct detection rulesto identify possible influential observations. The finite
sample performance is illustrated through a simulation study in which contaminated data is included. The benefits of
considering robust estimators is also illustrated on a realdata set where the detection methods reveal the presence of
influential observations for the first canonical directionsthat would be missed otherwise.
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1. Introduction

Due to the growing interest in studying complex data, functional data analysis has become a relevant subject.
When dealing with functional data, each observation consists of one or several infinite–dimensional objects such
as curves, surfaces or images rather than scalars or vectors. Functional data analysis has applications in a wide
range of fields (archaeology, medical science, biometrics,econometrics, environmetrics, chemometrics,. . . ). As
mentioned in Ramsay and Silverman [41], in many areas of statistics the collected data are more naturally represented
as functions rather than finite-dimensional numerical vectors. It has been extensively discussed that simplifying
the functional model by discretizing the observations as sequences of numbers can often fail to capture some of its
important characteristics, such as the smoothness and continuity of the underlying functions. Statistical methods to
analyse such functional data may be found, for instance, in Ferraty and Romain [19], Ferraty and Vieu [20], Horváth
and Kokoszka [29], Hsing and Eubank [30] and Ramsay and Silverman [41]. For a summary of recent advances in
functional statistics see Aneiros et al. [1], Cuevas [15] and Goia and Vieu [23].

When the observed data are infinite–dimensional, dimensionreduction is an important task. To tackle this problem
and depending on the goal sought different procedures have been considered, including functional principal compo-
nents, single–index functional data analysis and other effective reduction methods as discussed in Yao et al. [45].
Functional canonical correlation analysis provides a useful dimension reduction tool to quantify correlation or as-
sociation between two functions recorded for a sample of subjects on the same population. For multivariate data,
canonical correlation analysis is performed by obtaining linear combinations of each subset of variables that maxi-
mize their correlation with the restriction that their variances are equal to one. Under a Gaussian model, Leurgans
et al. [36] showed that the natural extension of multivariate estimators to the functional scenario fails since there is
always a pair of directions with empirical canonical correlation equal to one. To solve this problem, they proposed
a consistent estimator which penalizes the roughness of thecanonical directions. On the other hand, He et al. [26]
provided conditions ensuring the existence and proper definition of the canonical directions and correlations for pro-
cesses admitting a Karhunen–Loève expansion, see also Cupidon et al. [17], while Cupidon et al. [18] derived the
asymptotic distribution of regularized functional canonical correlation and variates.

All aforementioned authors studied the problem of maximizing the Pearson correlation, which is known to be
sensitive to atypical observations (see Taskinen et al. [43]). In the multivariate scenario, there are several approaches
which consider robust estimators for the canonical correlations and directions. Croux and Dehon [11] and Karnel
[35] proposed a robust canonical correlation analysis replacing the sample covariance estimators byM−estimators or
minimum covariance determinant estimators of multivariate scatter in the equations defining the classical canonical
directions. The influence function of these robust plug–in canonical correlation estimators was discussed in Taskinen
et al. [43]. Exploiting the relation between canonical correlation and regression estimation, Filzmoser et al. [21]
proposed using robust alternating regression to obtain estimators of the first canonical variates. This proposal was
generalized in Branco et al. [10] to estimate all the canonical variates. A different approach based on projection–
pursuit uses a robust association measure instead of the Pearson correlation in the maximization procedure. This
procedure has been considered in Alfons et al. [4] and Croux and Filzmoser [13] for multivariate data. Furthermore,
Jin and Cui [34] studied the asymptotic distribution of the estimators obtained by projection–pursuit. As far as we
know, there are no robust proposals in the functional setting.

As a motivation, consider the writing data set consisting of2858 character samples that correspond to the speed
profile of a pen writing on a tablet. The data is available athttps://archive.ics.uci.edu/ml/datasets/

Character+Trajectories and has been used by Williams et al. [44] to have a better understanding of the sub–
blocks arising in biological movements and their timings. Among others, this data set has been considered in Hubert
et al. [31] to illustrate their depth–based functional outlier detection method and in Hubert et al. [32] to perform robust
supervised functional classification based on depth. We focus on the 186 data related to the speed of the pen on the
horizontal and vertical axis when writing the letter “e”, denotedX(t) andY(t) respectively. We seek to explain how the
movement variability on the horizontal axis is related to that of the vertical one. Figure 1 displays the data trajectories
where some trajectories, such as those labelled 139 and 175,clearly seem to deviate from the bulk of the data. For
that reason, it is important to provide a procedure for estimating the canonical directions that will not be influenced
by atypical trajectories, as well as to provide a rule allowing for the identification of these influential trajectories.
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Figure 1:Speed of the pen on the horizontal axisX (left panel) and on the vertical axisY (right panel). The trajectories labelled 139
and 175 are shown in solid black lines.

In this paper, we introduce robust estimators for the first canonical correlation and directions adapting the robust
projection pursuit approach considered in Alfons et al. [4]to the functional data setting by means of a sieve method.
As is well known, the sieves method involves approximating an infinite-dimensional parameter spaceΘ by a sequence
of finite-dimensional parameter spacesΘn, which depend on the sample sizen, and then estimating the parameters on
the spacesΘn rather than onΘ, allowing for the introduction of the dimension ofΘn as a smoothing parameter.

The paper is organized as follows. In Section 2, we begin by introducing some notation and then review some
basic concepts used throughout the paper. In Section 3, we define the robust estimators of the first canonical direction
and canonical correlation based on general association measures. Consistency results are established in Section 4,
while Fisher–consistency of the related functionals is presented in Section 4.1. Section 5 discusses the use of the
given robust proposals to construct detection rules allowing for the detection of influential observations, which is
an important step in any analysis. The results of a Monte Carlo study conducted to examine the robustness and
finite sample performance of the proposed procedures are reported in Section 6. The writing data set is analysed in
Section 7, where the advantage of the proposed estimators isillustrated. Furthermore, the robust estimators allow to
identify observations with a different writing pattern. Finally, Section 8 contains some concluding remarks. Proofs
are relegated to the technical supplementary material available on–line.

2. Notation and Preliminaries

Let H j , j = 1, 2, be Hilbert separable spaces with inner product〈·, ·〉H j and norm‖ · ‖H j . DenoteS j = {u ∈
H j : ‖u‖H j = 1}, j = 1, 2, the unit sphere inH j , H = H1 × H2 the product space and〈(u1, v1), (u2, v2)〉H =
〈u1, u2〉H1

+ 〈v1, v2〉H2
the inner product inH . Let Z = (X,Y)> be a random element of the Hilbert spaceH defined

in (Ω,A,Pr). WhenZ has finite second moment, i.e., E(‖Z‖2H ) < ∞, we denote asΓXX : H1 → H1, ΓYY : H2 → H2,
ΓXY : H2 → H1 andΓYX : H1 → H2, the covariance and cross–covariance operators, respectively. More precisely,
for any u1, u2 ∈ H1, v ∈ H2, we have that Cov(〈u1,X〉H1, 〈u2,X〉H1) = 〈u1, ΓXXu2〉H1, Cov(〈u1,X〉H1, 〈v,Y〉H2) =
〈u1, ΓXYv〉H1 and similarly forΓYY andΓYX. With this notation, the covariance operatorΓZZ : H → H can be
decomposed asΓZZ(u, v) = (ΓXXu+ ΓXYv, ΓYXu+ ΓYYv)>, allowing to writeΓZZ in the matrix form

ΓZZ(u, v) =

(
ΓXX ΓXY

ΓYX ΓYY

) (
u
v

)
.

Given a random sampleW i = (Si ,Ti)>, 1 ≤ i ≤ n, of a random vectorW = (S,T)> : Ω → R2, Pn[S,T] will
denote the empirical measure induced onR2. More precisely, forA ∈ B, whereB is the Borelσ-Algebra ofR2,
Pn[S,T](A) = (1/n)

∑n
i=1 IA(W i), whereIA(·) stands for the indicator function of the setA.
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2.1. Association measures

As mentioned in Alfons et al. [4], robust estimators of the canonical correlation for multivariate data can be
defined using the maximal value that a bivariate associationmeasure can attain between any pair of one-dimensional
projections. For that purpose, association measures giving an alternative to the classical Pearson correlation must be
considered. In this section, we recall the definition of an association measure and we review some examples of such
measures.

The associationρ between two univariate variablesS andT, denotedρ(S,T), is a functional defined in the space
of bivariate probability measures that verifies the following conditions

(i) ρ(S,T) = ρ(T,S),

(ii) ρ(aS+ b, cT + d) = sign(ac) ρ(S,T) for all a, b, c, d ∈ R,

(iii) ρ2(S,T) ≤ 1.

When (S,T)> ∼ P[S,T], we also denoteρ(P[S,T]) = ρ(S,T).

The most well–known association measure is thePearson correlation, denotedρcl, which measures linear corre-
lation. For a bivariate random vectorW = (S,T)> ∼ P[S,T] with covariance matrixΣ = Var(W), we have

ρcl(W) = ρcl(P[S,T]) =
Σ12√
Σ11Σ22

.

It is well known thatρcl is very sensitive to the presence of outliers. Alternativesto the Pearson correlation can be
seen in Maronna et al. [39] or Shevlyakov and Vilchevski [42]among others. We will now briefly describe some of
them.

TheSpearman’s rank correlatioñρsp andKendall’s tau correlatioñρk are well known association measures that
have been used in the finite–dimensional setting by Alfons etal. [4]. They are defined as

ρ̃sp(P[S,T]) = ρcl{FS(S), FT(T)} and ρ̃k(P[S,T]) = E
[
sgn{(S1 − S2)(T1 − T2)}] (1)

respectively, whereFS andFT are the cumulative distribution functions ofS andT and (S1,T1)> and (S2,T2)> are two
independent copies of (S,T)>. A discussion on the robustness properties of Spearman’s and Kendall’s correlations
can be found in Croux and Dehon [12].

Another robust alternative to the Pearson correlation can be obtained by means of a bivariate robust scatter func-
tionalV = V(S,T) instead of the classical covariance matrixΣ. The association measure induced by a bivariate scatter
matrixV is given by

ρV(P[S,T]) =
V12(S,T)

{V11(S,T)V22(S,T)} 1
2

, (2)

whereV i j (S,T) is the (i, j)−th element of the scatter matrixV(S,T). One possible choice forV(S,T) is theM−scatter
estimator defined by Maronna [38], since it provides an efficient estimator which is also highly robust in the bivariate
case. Another possible choice is to consider the orthogonalized Gnanadesikan–Kettenring covariance proposed by
Maronna and Zamar [40]. When usingM-estimators or the orthogonalized Gnanadesikan–Kettenring covariance the
corresponding association measures will be denoted byρVm andρogk respectively.

A desirable property is that different measures of association determine the same value, which is the target one, at
least for a given distribution familyP. If this occurs we will say that the corresponding measure isFisher-consistent
atP. This property will allow us to guarantee the consistency ofthe canonical directions and canonical association
estimators to the population quantities of interest. In particular, if P = {Pσ1,σ2,κ} is the family of bivariate elliptical
distributions (which contains the family of normal bivariate distributions) with location zero and scatter matrix

Σκ =

(
σ2

1 κ σ1σ2

κ σ1σ2 σ2
2

)
,
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we want to identify which association measures consistently estimate the quantity−1 < κ < 1. Without loss of
generality we can assumeσ1 = σ2 = 1 and denoteP = {Pκ}. Note that, if we defineT(κ) = ρ(Pκ), Fisher–consistency
is achieved whenT(κ) = κ. Maronna et al. [39] show that, if the robust scatter functional V is affine–equivariant,
V(Pκ) = cΣκ for some positive constantc. Hence, the association measureρV is Fisher–consistent forκ at the family
of elliptical distributions. In particular, we haveρVm(Pκ) = κ. Even if the orthogonalized Gnanadesikan–Kettenring
covariance is not affine equivariant, the results in Section 6.12.10 in Maronna etal. [39] easily entail thatρogk(Pκ) = κ.

Let us consider the family of normal distributionsPN = {N(µ,Σκ)}. One may transform the Spearman and Kendall
correlations defined in (1) as

ρsp(P[S,T]) = 2 sin
{
π

6
ρ̃sp(P[S,T])

}
and ρk(P[S,T]) = sin

{
π

2
ρ̃k(P[S,T])

}
(3)

to ensure thatρsp andρk are Fisher–consistent at the family of bivariate normal distributions. We will callρsp andρk
the normalized (or transformed) Spearman and Kendall correlations respectively.

3. The estimators

3.1. Functional canonical correlation analysis

Given (X,Y)> : Ω → H1 × H2 a random element of the Hilbert spaceH with probability measureP, we de-
note the probability measure of

(〈u,X〉H1, 〈v,Y〉H2

)> ∈ R2 induced byP as P[〈u,X〉H1, 〈v,Y〉H2]. The statistical
functionals of the canonical directions (or canonical weights) and the maximum canonical association defined in
the multivariate setting by Alfons et al. [4] can be extendedto the functional setting, replacing the inner product
in the Euclidean space by the corresponding inner product inthe Hilbert space. Givenρ an association measure
as defined in Section 2.1, letρXY(u, v) = ρ

(
P[〈u,X〉H1, 〈v,Y〉H2]

)
, ρXX(u1, u2) = ρ

(
P[〈u1,X〉H1, 〈u2,X〉H1]

)
and

ρYY(v1, v2) = ρ
(
P[〈v1,Y〉H2, 〈v2,Y〉H2]

)
. The first canonical direction (or weight) functionals related to the associ-

ation measureρ are defined as

(Φ1(P),Ψ1(P)) = (Φ1,Ψ1) = argmax
‖u‖H1=‖v‖H2=1

ρXY(u, v). (4)

As in the multivariate canonical correlation analysis, thefirst or maximum canonical association is given by

ρ1(P) = ρ1 = ρXY(Φ1,Ψ1) = ρ(P[〈Φ1,X〉H1, 〈Ψ1,Y〉H2]) , (5)

where〈Φ1,X〉H1 and〈Ψ1,Y〉H2 are the first canonical variates. As mentioned in Alfons et al. [4], condition (ii) in the
definition of the association measureρ entails that the maximum canonical association is indeed non–negative. As in
He et al. [25], higher order canonical variates may also be defined, see Section 8 for a discussion on this topic.

When the association measure is the Pearson correlation andthe random element (X,Y)> has finite second mo-
ments, the first canonical weights given in (4) will be denoted as (Φcl,1,Ψcl,1). Furthermore, in this case the function
ρXY : H → R can be defined using the covariance operatorΓZZ as

ρXY(u, v) =
〈u, ΓXYv〉H1√〈u, ΓXXu〉H1 〈v, ΓYYv〉H2

,

where the ratio〈u, ΓXYv〉2H1
/
(〈u, ΓXXu〉H1 〈v, ΓYYv〉H2

)
is equal to 0 when〈u, ΓXXu〉 = 0 or 〈v, ΓYYv〉 = 0.

More generally, given a linear self–adjoint, positive semi–definite and compact operatorΓ : H → H such that

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
, (6)
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Γ induces the functionalsρΓ : H → R, ρΓ11 : H1 × H1→ R andρΓ22 : H2 ×H2→ R as

ρΓ(u, v) =
〈u, Γ12v〉H1√〈u, Γ11u〉H1〈v, Γ22v〉H2

(7)

ρΓ11(u1, u2) =
〈u1, Γ11u2〉H1√〈u1, Γ11u1〉H1〈u2, Γ11u2〉H1

ρΓ22(v1, v2) =
〈v1, Γ22v2〉H2√〈v1, Γ22v1〉H2〈v2, Γ11v2〉H2

, (8)

whereu, u1, u2 ∈ H1, v, v1, v2 ∈ H2 and ρΓ(u, v) = 0 if either 〈u, Γ11u〉H1 = 0 or 〈v, Γ22v〉H2 = 0. Moreover,
ρΓ11(u1, u2) = 0 when either〈u1, Γ11u1〉H1 = 0 or 〈u2, Γ11u2〉H1 = 0 and similarly forρΓ22.

UsingρΓ, the canonical directions (ΦΓ,1,ΨΓ,1) associated toΓ can be defined as in (4), replacingρ by ρΓ. The first
or maximum canonical association associated toΓ, ρΓ,1, satisfies the equation

ρΓ,1 = ρΓ(P[〈ΦΓ,1,X〉H1, 〈ΨΓ,1,Y〉H2]) . (9)

When ρ is the Pearson correlation andH = L2(0, 1) × L2(0, 1), Leurgans et al. [36] showed that the esti-
mation method used in the Euclidean case breaks down in the infinite–dimensional setting. More precisely, let
(X1,Y1)>, . . . , (Xn,Yn)> be a random sample of (X,Y)> and denote asPn its empirical distribution. Whenρ is the
Pearson correlation and (X,Y)> is a Gaussian process, replacing in (4) and (5) the probability measureP by the
empirical distributionPn does not lead to reliable estimators since directions can befound with empirical canonical
correlation equal to one. This property shows that in the classical setting it is necessary to use a method involving
some smoothing. Proposition 3.1 shows that the same result holds when a general association measure is considered.

Given (u, v) ∈ H1 ×H2, denote asρn the empirical version ofρXY, that is,

ρn(u, v) = ρ(Pn[〈u,X〉H1, 〈v,Y〉H2]) . (10)

We will need the following assumptions

A1 Pr(X ∈ L) = 0 for any finite–dimensional proper linear spaceL ofH1.

A2 Given any bivariate probability measureQ supported on the lineR = {(x1, x2) ∈ R2 : x2 = x1} such that
Q({x1 = c}) = Q({x2 = c}) < 1 for all c ∈ R, the bivariate association measureρ satisfies thatρ(Q) = 1.

Remark 3.1 Straightforward arguments allow us to see thatA1 holds if for any orthonormal basis{δ j} j≥1 of H1

and anyk ∈ N such thatk ≤ dim(H1), thek−dimensional random vector (〈X, δ1〉H1, . . . , 〈X, δk〉H1)
> has a density.

In particular, this last statement holds ifX has an elliptical distribution, as defined in Bali and Boente[7], with a
dispersion operatorΓ11 with kernel reducing to{0}. Effectively, if X ∼ E(µ1, Γ11, ϕ) and ker(Γ11) = {0}, then X
can be written asX = µ1 + SX̃, where Pr(S > 0) = 1 and the scalar random variableS and the Gaussian random
elementX̃ ∈ H1 are independent (see Boente et al. [9]). Moreover, the covariance operator of̃X is proportional
to Γ11. Hence, (〈X − µ1, δ1〉H1, . . . , 〈X − µ1, δk〉H1)

> = S (〈X̃, δ1〉H1, . . . , 〈X̃, δk〉H1)
> and the result follows from the

fact thatw = (〈X̃, δ1〉H1, . . . , 〈X̃, δk〉H1)
> has ak−th dimensional non–singular multivariate normal distribution and is

independent ofS.

On the other hand,A2 states that given a bivariate random vector (S,T) ∈ R2 such thatS = T almost surely, then
ρ(S,T) = 1, wheneverS andT are not constant. The Pearson correlation as well as the association measureρogk and
the transformed Spearman or Kendall correlations,ρsp andρk satisfyA2. As noted in Maronna [38], theM−scatter
functional is not defined whenS = T. However, defining the Mahalanobis distance as in page 185 ofMaronna et al.
[39] we get thatρVm = 1.

Proposition 3.1. Assume thatA1 holds and that for any v∈ H2, Pr(Y = v) = 0. Let ρ be a bivariate association
measure satisfyingA2 and n∈ N, 2 ≤ n ≤ dim(H1). Then, with probability one there exist un ∈ H1 and vn ∈ H2 such
thatρn(un, vn) = 1.
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It is worth noticing that the conclusion in Proposition 3.1 still holds when the roles ofX andY are reversed.

A direct consequence of Proposition 3.1 is that, if dim(H1) = ∞, some kind of smoothing is needed since
supu∈S1,v∈S2

ρn(u, v) = 1. Section 3.2 describes our proposal which combines robustprojection-pursuit with the method
of sieves as a smoothing tool.

3.2. Sieve approach for robust functional canonical correlation analysis

Let (X1,Y1)>, . . . , (Xn,Yn)> be a random sample of the random element (X,Y)> : Ω → H . Let {δi}i≥1 and{η j} j≥1

be orthonormal bases forH1 andH2 respectively. From now on, letH1,p andH2,q denote the subspaces ofH1 and
H2 spanned by{δ1, . . . , δp} and{η1, . . . , ηq} respectively. We denote byS1,p = S1 ∩ H1,p andS2,q = S2 ∩ H2,q the
unit spheres ofH1,p andH2,q respectively. The sieve estimators for the first canonical directions are defined as

(Φ̂1, Ψ̂1) = argmax
u∈S1,pn ,v∈S2,qn

ρn (u, v) (11)

whereρn is defined in (10), while the first or maximum canonical association estimator ˆρ1 ≥ 0 is such that

ρ̂1 = ρ
(
Pn[〈Φ̂1,X〉H1, 〈Ψ̂1,Y〉H2]

)
= ρn

(
Φ̂1, Ψ̂1

)
. (12)

These estimators depend on the chosen bases ofH1 andH2, on the sequences (pn)n∈N and (qn)n∈N and on the associ-
ation measureρ used. Some of the frequently used bases for functional data are the Fourier, polynomial, splines and
wavelet bases; see, for instance, Ramsay and Silverman [41].

3.3. Selection of the smoothing parameters

Once the association measureρ and the bases{δi}i≥1 and{η j} j≥1 are chosen, the selection of the approximating
linear space dimensionspn andqn that play the role of the smoothing parameters is an important practical issue. The
most popular general approach to address such a selection problem is to use cross–validation methods.

Denote byrn = (pn, qn) the parameter to be determined. Let (Φ̂(−i)
rn,1
, Ψ̂(−i)

rn,1
) be the first canonical direction estimators

computed without thei−th observation and when the approximating subspaces have dimensionspn andqn, that is,

(Φ̂(−i)
rn,1
, Ψ̂(−i)

rn,1
) = argmax

u∈S1,pn ,v∈S2,qn

ρ
(
P(−i)

n [〈u,X〉H1, 〈v,Y〉H2]
)
,

whereP(−i)
n (A) = (1/n)

∑
j,i IA(X j ,Yj) for a Borel setA ofH .

Let U (i)
rn,1
= 〈Φ̂(−i)

rn,1
,Xi〉H1 andV(i)

rn,1
= 〈Ψ̂(−i)

rn,1
,Yi〉H2 be the canonical variates of thei−th subject. He et al. [27]

proposed a selection method based on maximizing the sample correlation of the canonical variates. However, as
in other settings, using a non–robust criterion to select the smoothing parameters even if combined with a robust
estimation procedure may lead to non–resistant estimators. For that reason, we propose using the same association
measureρ considered in the estimation step to select the smoothing parameters. Let

RCVrn = ρ
2


1
n

n∑

i=1

∆(U(i)
rn ,1
,V(i)

rn,1
)

 ,

where∆(a,b) denotes the bivariate probability measure giving all its mass to the point (a, b). GivenR a set of possible
values for the parameterrn, the cross–validation parameter equalsr̂ where

r̂ = argmax
rn∈R

RCVrn . (13)

As in He et al. [27], once the dimension is chosen, one may alsochoose the valuẽρ1 =
√

RCV̂r as the estimator of
the first canonical association.
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3.4. Numerical implementation of the estimators

Except for the Pearson correlationρcl, the maximizers of (11) cannot be computed exactly. For thatreason,
algorithms to obtain approximate solutions are needed.

Given{δi}i≥1 and{η j} j≥1 orthonormal basis ofH1 andH2 respectively, the estimators proposed in (11) are obtained
searching directionsu =

∑pn

i=1 aiδi ∈ H1 andv =
∑qn

i=1 biηi ∈ H2,
∑pn

i=1 a2
i =

∑qn

i=1 b2
i = 1, that lead to the maximum

value ofρ(Pn[〈u,X〉H1, 〈v,Y〉H2]). Denotea = (a1, . . . , apn)
> andb = (b1, . . . , bqn)

> the coefficients ofu andv in the

considered basis and letx =
(
〈X, δ1〉H1, . . . , 〈X, δpn〉H1

)>
andy = (〈Y, η1〉H2 , . . . , 〈Y, ηqn〉H2)

>. Noting that〈u,X〉H1 =

a>x and〈v,Y〉H2 = b>y, the estimators given in (11) can be obtained using any multivariate algorithm allowing to
find the vectorŝa1 = (â11, . . . , â1pn)

> andb̂1 = (b̂11, . . . , b̂1qn)
> with norm 1 which maximizeρ(Pn[a>x, b>y]), i.e.,

(â1, b̂1) = argmin
‖a‖Rp=1,‖b‖Rq=1

ρ(Pn[a>x, b>y]) . (14)

The alternategrid algorithm described in Alfons et al. [3, 4] is a well known algorithm allowing to perform multi-
variate canonical analysis for association measures such as the Spearman and Kendall correlation and the association
measure based on a bivariateM−scatter matrix. It provides an accurate method to approximate the weightŝa1 andb̂1

maximizingρ(Pn[a>x, b>y]), using optimization in two–dimensional spaces. The algorithm is implemented through
the functionccaGrid in theR packageccaPP. Once the multivariate weightŝa1 andb̂1 are obtained, the canonical
direction estimators inH j can be reconstructed as

Φ̂1 =

pn∑

j=1

â1 jδ j and Ψ̂1 =

qn∑

j=1

b̂1 jη j . (15)

4. Consistency

As in Cupidon et al. [18] and Leurgans et al. [36], in this section we show that under mild conditions the
estimators of the first canonical weights and the related first canonical association defined in Section 3 are consistent
to the functionals given in (4) and (5). It is worth noticing that our results include the multivariate setting by taking
pn = dim(H1) andqn = dim(H2). In this sense, we extend the results given in Jin and Cui [34] from the Euclidean
to the infinite–dimensional case in a more general setting, since weaker assumptions are required. Finally, it should
be noticed that, in Theorem 4.1 when dim(H1) < ∞, we understand that the requirementpn → ∞ is replaced by
pn = dim(H1). Similarly, when dim(H2) < ∞, qn = dim(H2).

To derive the consistency of the estimators we will need the following assumptions. To avoid burden notation,
from now on, let (Φ1,Ψ1) = (Φ1(P),Ψ1(P)) the solution of (4), which we assume to exist, andρ1 = ρ1(P) the
functional defined in (5).

C1 supu∈S1,pn ,v∈S2,qn
|ρ2

XY(u, v) − ρ2
n(u, v)| a.s.−→ 0.

C2 ρ2
XY : H1 × H2→ R is continuous at the first canonical directions (Φ1,Ψ1).

C3 There exists a compact, self–adjoint and positive definite operatorΓ : H1 × H2 → H1 × H2 such that
ρ2

XX(u1, u2) = hX

{
ρ2
Γ11

(u1, u2)
}
, ρ2

YY(v1, v2) = hY

{
ρ2
Γ22

(v1, v2)
}

and

ρ2
XY(u, v) = h

{
ρ2
Γ(u, v)

}
, (16)

whereρΓ, ρΓ11 andρΓ22 are defined in (7) and (8). Furthermore, ifh̃ : [0, 1] → [0, 1] stands for any of the
functionsh, hX or hY, theñh is a strictly increasing function such thath̃(0) = 0 and limx→1− h̃(x) = 1.

C4 (Φ1,Ψ1) exists and is unique up to change of sign. Moreover, there exists ρ2 with 0 ≤ ρ2 < ρ1 such that if
ρXX(u,Φ1) = ρYY(v,Ψ1) = 0 thenρ2

XY(u, v) ≤ ρ2
2.
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The notion of convergence of the first canonical directions estimators to the first population canonical weights will
be the convergence with respect to the measures of association that is analogous to theΓ−norm convergence defined
in Leurgans et al. [36]. More precisely, given sequences (un)n∈N ⊆ H1, (vn)n∈N ⊆ H2, we say that (un, vn) converges
to (u, v) ∈ H in association ifρ2

XX(un, u) → 1 andρ2
YY(vn, v) → 1. As noted in Leurgans et al. [36], this convergence

means that the canonical variates obtained from (un, vn) for a given random element (X,Y) behave as those obtained
from (u, v). This kind of consistency is a desirable property to hold for the estimated canonical directions.

The following Theorem shows the strong consistency of our estimators.

Theorem 4.1. Let (Φ̂1, Ψ̂1) andρ̂1 be the estimators defined in(11)and(12). Assume that the sequences(pn)n∈N and
(qn)n∈N are such that pn→ ∞ and qn→ ∞. Then, underC1 andC2, we have

i) ρ̂2
1

a.s.−→ ρ2
1 ;

ii) ρ2
XY(Φ̂1, Ψ̂1)

a.s.−→ ρ2
1 ;

iii) If in addition C3 andC4 hold, thenρ2
XX(Φ1, Φ̂1)

a.s.−→ 1 andρ2
YY(Ψ1, Ψ̂1)

a.s.−→ 1 .

We include below some comments regarding assumptionsC2 to C4. Conditions under whichC1 holds and further
comments onC2 are relegated to the supplementary file available on–line.

Remark 4.1. Assume that the association measure satisfies (16) for a continuous increasing functionh such that
h(0) = 0 and thatρ1 > 0, thenC2 holds. Effectively, fromρ1 > 0 and the fact thath is increasing, we get that the ratio

〈Φ1, Γ12Ψ1〉H1√〈Φ1, Γ11Φ1〉H1〈Ψ1, Γ22Ψ1〉H2

is positive, so〈Φ1, Γ11Φ1〉H1 , 0 and〈Ψ1, Γ22Ψ1〉H2 , 0. On the other hand, the compactness ofΓ entails that the
functionsg1(u) = 〈u, Γ11u〉H1, g2(u) = 〈v, Γ22v〉H2 andg12(u, v) = 〈u, Γ12v〉H1 are continuous functions which together
with the fact thatg1(Φ1) , 0 andg2(Ψ1) , 0 entail thatC2 holds.

Note that when the kernel ofΓ j j is equal to{0} for j = 1, 2, we haveg1(Φ1) , 0 andg2(Ψ1) , 0. Hence, ifh(t) = t,
C3 impliesC2. On the other hand, Lemma S.3.2 in the Supplementary file implies thatC2 holds if the association
measureρ is continuous with respect to the Prohorov distance at the bivariate distributionP[〈Φ1,X〉H1, 〈Ψ1,Y〉H2].

It is worth mentioning that (16) inC3 is analogous to assumption (iv) of Alfons et al. [4].

Remark 4.2. When we use Pearson’s correlationρ = ρcl in (4), ρXY = ρΓZ , with ΓZ the covariance operator ofZ,
henceC3 holds. Notice that, in this case, a necessary condition for agood definition of the canonical weights is that
both random elementsX andY have finite second moments. This condition may be relaxed when the random element
Z is elliptic and the association measure corresponds to one of those described in Section 2.1.

Let Z = (X,Y)> ∼ E(µ, Γ, ϕ) be a random element inH whereµ ∈ H andΓ is as in (6). Givenw = (w1,w2) ∈ H1×
H2, defineAw : H → R2 asAw(x, y) = (〈w1, x〉H1, 〈w2, y〉H2)

>. Using thatZ ∼ E(µ, Γ, ϕ), we get thatzw = Aw(X,Y)
has an elliptical distribution,zw ∼ E2(Awµ,AwΓA∗w), where the (i, j)−th element ofAwΓA∗w equals〈wi , Γi j w j〉Hi , for
i, j ∈ {1, 2}. Hence, given an association measureρ Fisher–consistent at the elliptical family, from the discussion given
in Section 2.1 we conclude that

ρ2
XY(u, v) =

〈u, Γ12v〉2H1

〈u, Γ11u〉H1 〈v, Γ22v〉H2

= ρ2
Γ(u, v) . (17)

Therefore,ρ satisfies (16) withh(t) = t. Moreover, we also haveρ2
XX(u1, u2) = ρ2

Γ11
(u1, u2) and ρ2

YY(v1, v2) =
ρ2
Γ22

(v1, v2), that is, Fisher–consistent association measures for bivariate elliptic families satisfyC3.
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Remark 4.3. AssumptionC4 is similar to assumption 3 in Leurgans et al. [36]. Consider the special situation of
an elliptical random elementZ = (X,Y)> ∼ E(µ, Γ, ϕ) whereΓ is given by (6) and letρ be an association mea-
sure Fisher–consistent for elliptical families. Assume that E‖Z‖2H < ∞, then, without loss of generality, we may

assume thatΓ is the covariance operator ofZ. DefineR = Γ−1/2
11 Γ12Γ

−1/2
22 , whereΓ−1/2

11 andΓ−1/2
22 are the general-

ized inverses of the roots ofΓ11 andΓ22 respectively. Assume that there exists only one orthonormal eigenfunc-
tion v1 associated to the first eigenvalueζ1 of R∗R and denote asu1 = Rv1/

√
λ1. WhenZ ∈ L2(0, 1) × L2(0, 1)

and ρ is the Pearson correlation, He et al. [26] provide conditions ensuring the existence and proper definition
of the canonical directions and correlations. Under these conditions, Theorem 4.8 of He et al. [26] entails that
(Φ1,Ψ1) = (Γ−1/2

11 u1/‖Γ−1/2
11 u1‖H1, Γ

−1/2
22 v1/‖Γ−1/2

22 v1‖H2) is the unique maximizer in (4) except for sign change. Fur-
thermore, ifζ2 < ζ1 whereζ2 is the second eigenvalue ofR∗R, then, givenu ∈ H1 andv ∈ H2 such thatρXX(u,Φ1) =
ρYY(v,Ψ1) = 0, we haveρXY(u, v) ≤ ρ2 =

√
ζ2 which shows thatC4 holds.

As mentioned in Remark 4.2, ifZ = (X,Y)> ∼ E(µ, Γ, ϕ) is an elliptical random element, Fisher-consistent
association measures for bivariate elliptic families, such as the coefficientsρVm or ρogk defined through (2), satisfy
(16). Hence, we haveρ1(P) = h(ρΓ,1), Φ1(P) = ΦΓ,1 andΨ1(P) = ΨΓ,1. Therefore, the above discussion implies that
C4 holds for these association measures, under the assumptions in Theorem 4.8 of He et al. [26].

On the other hand, for Gaussian processes,C4 holds when considering the transformed Spearman or Kendall
correlations,ρsp andρk, under the assumptions of Theorem 4.8 of He et al. [26].

4.1. Fisher–consistency

Theorem 4.1 shows that the estimators defined in (11) and (12)are consistent for the population first canonical
directions and the maximum canonical association given in (4) and (5). It is important to highlight that the quantities
ρ1 = ρ1(P) and (Φ1,Ψ1) = (Φ1(P),Ψ1(P)) depend on the chosen association measureρ and we need to clarify
what they represent. This section focusses on showing that the functionalsρ1(P) and (Φ1(P),Ψ1(P)) have a simple
interpretation, at least in some situations. In particular, our results hold for the elliptical families, even though they
are not restricted to them.

When the measure of association satisfiesC3, we haveρ1(P) = h(ρΓ,1), Φ1(P) = ΦΓ,1 andΨ1(P) = ΨΓ,1. Hence,
in this case, the estimated canonical directions defined in (11) are consistent for the first canonical weights associated
to Γ. Furthermore, ifh(t) = t, ρ̂1 provides a consistent estimator of the first canonical association associated toΓ. As
mentioned above, ifZ ∼ E(µ, Γ, ϕ) and has finite second moment, there exists a constantc > 0 such thatΓ = cΓZZ,
whereΓZZ is the covariance operator ofZ. Therefore, the canonical analysis done using the dispersion operatorΓ or
the covariance operatorΓZZ are identical.

We will see that for elliptic families, the functionalsρ1(P),Φ1(P) andΨ1(P) have a simple interpretation for some
of the association measures described in Section 2.1. LetZ = (X,Y)> ∼ E(µ, Γ, ϕ) be a random element inH where
µ ∈ H andΓ is as in (6). From Remark 4.2, we have thatC3 holds with the scatter operatorΓ, see (17), implying
that ρ1(P), Φ1(P) andΨ1(P) are the first canonical association and directions associated toΓ respectively. Hence,
Fisher-consistent association measures for bivariate elliptic families provide estimators of the quantities of interest.
Examples of association measures Fisher–consistent at theelliptical distributions are, for instance, those defined from
scatter matrices, i.e., the measuresρVm or ρogk defined through (2).

Finally, consider the family of Gaussian distributions andany association measure Fisher–consistent for normal
bivariate vectors, such as the normalized Spearman or Kendall correlationsρsp andρk given in (3). Then, using (17)
we get that (16) is satisfied withh(t) = t which implies thatρ1(P),Φ1(P) andΨ1(P) are the first canonical association
and directions associated toΓ respectively.

5. Detection methods to identify influential observations

An important use of robust estimators is the detection of potential outliers. In this section, we describe two criteria
to detect observations with a significant impact on the first canonical weight estimators. More precisely, we are not
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interested in providing a rule to detect any kind of outliersin functional data, but only to identify observations which
influence the first canonical directions estimators. The first method is based on prediction, while the second is based
in cross–prediction, both related to the functional canonical analysis described above.

To describe the first detection rule, let (X,Y)> be a centered random element ofH = H1 × H2. Our detection
method considers the orthogonal projections on the first canonical weights〈X,Φ1〉H1Φ1 and〈Y,Ψ1〉H2Ψ1 as predictors
of X andY respectively. More precisely, given a sample{(Xi,Yi)>}ni=1 ⊂ H , let µ̂ = (µ̂X, µ̂Y) be robust location esti-
mates computed from this sample, such as the spatial median,that is,µ̂X = argminθ∈H1

∑n
i=1

(‖Xi − θ‖H1 − ‖Xi‖H1

)
/n

andµ̂Y = argminθ∈H2

∑n
i=1

(‖Yi − θ‖H2 − ‖Yi‖H2

)
/n. Let (Φ̂1, Ψ̂1) be the robust estimates of the first canonical weights

defined in Section 3.2 and computed as described in Section 3.4. Robust estimators are needed since, as in other
settings, the detection methods based on the Pearson correlation may produce a masking effect that will not allow us
to properly identify the influential observations.

Denote asX(c)
i = Xi − µ̂X andY(c)

i = Yi − µ̂Y the centered observations and letX̂(c)
i = 〈X(c)

i , Φ̂1〉H1Φ̂1 andŶ(c)
i =

〈Y(c)
i , Ψ̂1〉H2Ψ̂1 be their predictors respectively. We expect that an influential or atypical observation will be poorly

fitted leading to large values of at least one of the two squared residuals normsR2
X,i = ‖X(c)

i − X̂(c)
i ‖2H1

or R2
Y,i =

‖Y(c)
i − Ŷ(c)

i ‖2H2
. As noticed in Boente and Salibián–Barrera [8], exploringthe residuals norms may allow to detect

abnormal points in the data. Taking into account that the distribution of the residuals squared norm is typically skewed
to the right, we propose to flag an observation as atypical if its squared residual norm exceeds the upper whisker of a
skewed–adjusted boxplot (see Hubert and Vandervieren [33]). More precisely, denote asGX andGY the set of indices
exceeding the upper whisker of the skewed–adjusted boxplotof the residuals (R2

X,i)1≤i≤n and (R2
Y,i)1≤i≤n respectively.

The observations with indices in the setsGX,GY orGX∪GY are considered as potential influential observations which,
from now on, are calledoutliersas shorthand.

The detection rule based on cross–predictions is based on the following property that can be found in Yohai and
Garcı́a Ben [46]. Letx ∈ Rp andy ∈ Rq be centered random vectors and assume that E‖x‖2Rp < ∞ and E‖y‖2Rq < ∞.
Given a random vectorz ∈ R`, denote asy∗z the best linear predictor fory based onz, i.e., y∗z = E(yz>)E(zz>)−1z.
Then, when each componentzj of z = (z1, . . . , z̀ ) is a linear function ofx, the random vectorz that minimizes the
determinant of the matrix E(y − y∗z)(y − y∗z)

> is given by the first̀ canonical variables related tox.

As in Section 3.4, given{δi}i≥1 and{η j} j≥1 orthonormal bases ofH1 andH2 respectively and a sample{(Xi ,Yi)>}ni=1

setxi =
(
〈Xi , δ1〉H1, . . . , 〈Xi , δpn〉H1

)>
andyi = (〈Yi , η1〉H2, . . . , 〈Yi , ηqn〉H2)

>. Denotex(c)
i = xi − µ̂x andy(c)

i = yi − µ̂y,
the centered observations where ˆµx andµ̂y are robust location estimates, such as the spatial median computed from
the samples{xi}1≤i≤n and {yi}1≤i≤n respectively. Furthermore, letâ1 and b̂1 be defined as in (14) and compute the
sample of the centered first canonical variables ˆu(c)

i = â>1 x(c)
i and v̂(c)

i = b̂>1 y(c)
i . It is worth noticing that ˆu(c)

i =

〈Xi , Φ̂1〉H1 − â>1 µ̂X provides an approximation for the centered canonical variate in the spaceH1 given by Û (c)
i =

〈X(c)
i , Φ̂1〉H1 = 〈Xi , Φ̂1〉H1 − 〈µ̂X, Φ̂1〉H1 and similarly for v̂(c)

i . Using for each observation the centered canonical
variates, we obtain the best robust linear predictors ofx(c) andy(c) based on ˆv(c) andû(c) respectively, denoted asx̂∗v̂
andŷ∗û. As before, one expects that an influential observation willbe poorly predicted causing large values of at least
one of the two squared residuals normsr2

X,i = ‖x(c)
i − x̂∗v̂,i‖2Rp andr2

Y,i = ‖y(c)
i − ŷ∗û,i‖2Rq. Three different set of indices

are used to identify the possible atypical data. As above,GX andGY indicate the sets of indices exceeding the upper
whisker of the skewed–adjusted boxplot of the residuals (r2

X,i)1≤i≤n and (r2
Y,i)1≤i≤n respectively, whileGX+Y stands for

those indices exceeding the upper whisker of the skewed–adjusted boxplot of the sample (r2
X,i + r2

Y,i)1≤i≤n. Finally, any
observation with index in the setsGX, GY, GX ∪ GY orGX+Y is considered as a potential atypical data.

It is worth noticing that a detection rule based on the bagplot of (Û (c)
i , V̂

(c)
i ) may also be considered as a diagnostic

tool. We refer to Alvarez [2] for readers interested on the performance of this detection method.

6. Monte Carlo study

In this Section, we numerically explore the finite sample behaviour of the proposed estimators for different asso-
ciation measures and different choices for the approximating subspaces when the Hilbert spaces areL2-spaces. More
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precisely, we report the results of a Monte Carlo study designed to compare the performance, for Gaussian and con-
taminated data, of the first canonical association and direction estimators defined in (11) and (12) when using the
Pearson correlation and two robust association measures. In all cases, we performedNR= 1000 replications.

6.1. The estimators

As mentioned above, the estimators defined in (11) depend both in the association measure to be maximized and in
the bases generating the approximating spaces. Beyond the Pearson correlationρcl, we report here the results obtained
using the association measure defined through theM−scatter matrixρVm defined in (2), whereVm is computed using
Huber’s score function with tuning constantk1 = (χ2

2,0.9)
1/2, and the normalized Spearman coefficientρsp given in (3).

The results for other association measures can be seen in Alvarez [2].

Two different sieve bases are considered: the cubicB−spline basis as fixed basis and the basis of functional
principal directions as an adaptive one. The elements of theB−spline basis are orthonormalized before applying the
algorithm to compute the estimators. On the other hand, whenρ is the Pearson correlationρcl, the principal direction
basis on each space is chosen as the eigenfunctions of the sample covariance operators ofX andY respectively. For
the robust association measures, robust principal direction estimators are considered. Taking into account that, when
performing cross–validation, the principal directions need to be computed each time an observation is removed, we
need to choose a robust and fast procedure to compute the principal direction estimators. The spherical principal
directions defined in Locantore et al. [37] and studied in Gervini [22] achieve this goal, since they provide a simple
and fast method to obtain estimators of the functional principal directions.

The canonical direction estimators were computed as described in Section 3.4 using the alternategrid algorithm
implemented through the functionccaGrid. It is worth mentioning that an algorithm using the centereddata as
possible directions may also be considered to estimate the first canonical directions, following the ideas used by
Croux and Ruiz-Gazen [14] for the estimation of the first principal component. However, as shown in Alvarez [2],
the grid algorithm leads to better results. For that reason, we omit the results obtained using the centered data as
candidates and we refer to Alvarez [2] for further discussions.

To select the dimension of the approximating spaces, we use the criterion defined in Section 3.3, where for com-
putational simplicity, we have only considered the same dimensions in both spaces, that is,R = {(p, p) : p ∈ R?}, so
rn equals (p, p) in (13). The setR? is taken asR? = {3, . . . , 11} for both bases. It is worth noticing that the possible
values of the dimensionp start in 3 when usingB−splines since we are using cubic splines. On the other hand, for
the simulation model to be described in Section 6.2, the eigenvalues related to the first three principal directions are
equal, so the principal directions are not uniquely defined for p < 3. Once the valuêr = (p̂, p̂) in (13) is obtained, the
estimators of the canonical weights are computed using the algorithm described below, leading to the first canonical
weights estimators (̂Φ1, Ψ̂1) and the maximum canonical association estimator ˆρ1. We also computed the estimator
ρ̃1 = ρ̃p̂,1 defined as̃ρ1 =

√
RCV̂r .

6.2. Simulation settings

Our simulation model is similar to the one considered in He etal. [27]. For each replication, we generate
independent samples{(Xi ,Yi)>}ni=1 ⊂ H1×H2 of sizen = 100 withH j = L2[0, 50]. The processes were observed over
an equispaced grid of 50 pointst j , j = 1, . . . , 50. Hence, the inner products〈Xi , u〉H1 and〈Yi , v〉H2 were approximated
as sums over the design points{t j}1≤ j≤50.

The clean data sets, denotedC0, were generated with the same distribution as the Gaussian random element
(X,Y)> ∈ H1×H2, given byX(t) =

∑m
j=1 ξ j f j(t) andY(t) =

∑m
j=1 ζ j f j(t), where{ f j} j≥1 is the Fourier basis ofL2[0, 50]

andm = 21. The scoresξ = (ξ1, . . . , ξm)> andζ = (ζ1, . . . , ζm)> arem−dimensional normally distributed random
vectors, (ξ>, ζ>)> ∼ N(0,Σ) where

Σ =

(
Σ11 Σ12

Σ>12 Σ22

)

with Σ22 = Σ11 = 10 diag(1, 1, 1, 0.75, . . . , 0.75m−3) andΣ12 = diag(7, 3, 1, 0, . . . , 0).
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Taking into account that the process (X,Y) is Gaussian and that all the considered association measures are Fisher–
consistent at the bivariate normal distribution, the target quantities to be estimated do not depend on the selected
association measure and are equal to the canonical weights and correlations defined in He et al. [25]. Hence, they will
be simply denoted asρ` and (Φ`,Ψ`). For the process described above, we haveρ1 = 0.7, ρ2 = 0.3, ρ3 = 0.1 and
ρ` = 0 if ` > 3, whereas the canonical weights areΦ`(t) = Ψ`(t) = f`(t), for ` = 1, 2, 3 .

Besides the central Gaussian model, we have considered two contaminated situations that can be described as
follows

C1: (Xi,Yi)> are i.i.d. with the same distribution as (1−B)(X,Y)>+BW( f2, f2)>, whereB ∼ B(1, 0.1),W ∼ N(25, 1)
andW, B, (X,Y)> are all independent of each other. This contamination corresponds to a strong contamination
in the direction of the second canonical direction of (X,Y)>.

C2: (Xi,Yi)> are i.i.d. and the processXi andYi are such that

Xi ∼ (1− B) X + B

ξ1 f1 + W
f3 + f4√

2
+ 0.1ξ3 f3 + 0.1ξ4 f4 +

21∑

j=5

ξ j f j



Yi ∼ (1− B) Y+ B

ζ1 f1 + W
f3 + f4√

2
+ 0.1ζ3 f3 + 0.1ζ4 f4 +

21∑

j=5

ζ j f j



whereB ∼ B(1, 0.1),W ∼ N(25, 0.01) independent ofB, X andY and (ξ>, ζ>)> ∼ N(0,Σ). This contamination
corresponds to a strong contamination in the direction of a linear combination of the third and fourth canonical
weights of (X,Y)>.

It is worth noticing that, whenρ is the Pearson correlation,Φ`(P) = Ψ`(P) = f` for ` = 1, 2, 3 underC0, but
not necessarily for the contaminated distributions. More precisely, underC1 the order betweenf1 and f2 is reversed
when usingρ = ρcl, so the first canonical directions areΦ1(P) = Ψ1(P) = f2 for this association measure, whilef1
corresponds to the second canonical weights.

6.3. Simulation results

For each situation, we evaluate the performance of the first canonical directions and the maximum canonical
association. To compare the performance of the first canonical weight estimators (̂Φ1, Ψ̂1) of (Φ1,Ψ1), we compute

• a global goodness of fit measure, denoted as MISE, consideredalso in He et al. [27], which is the average over
replications of‖Φ̂1 −Φ1‖2 + ‖Ψ̂1 −Ψ1‖2.

• the average over replications of the absolute Pearson correlation between the canonical variates computed only
for the non–atypical data, that is, the average of

ρ̂X = ρ̂cl,XX,clean(Φ1, Φ̂1) =

∣∣∣∑n
i=1(1− Bi)UiÛi

∣∣∣
√∑n

i=1(1− Bi)Û2
i

∑n
i=1(1− Bi)U2

i

,

whereUi = 〈Xi ,Φ1〉 andÛi = 〈Xi , Φ̂1〉. This measure provides a way to quantify how the proposals fitthe good
observations. A similar measure was computed forΨ̂1.

Taking into account that the results obtained forΨ̂1 are similar to those obtained for̂Φ1, we only report the
summary measures for the first component of the canonical direction estimators. More precisely, Table 1 reports the
MISE and averages over replications of ˆρX for different association measures and bases. We also report the median of
the dimension ˆp obtained by cross–validation to illustrate how the contaminations affect the dimension of the chosen
linear spaces.
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The better performance of the estimators computed using a robust association measure is better illustrated in
Figures 2 and 3, where, for simplicity, the functional principal direction basis is denoted FPC. More precisely, Figure
2 plots in red triangles and blue solid circles the MISE and the average over replications of ˆρX = ρ̂cl,XX,clean(Φ1, Φ̂1)
respectively.
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Figure 2:MISE of the canonical weight estimators (in red triangles) and average of ˆρX = ρ̂cl,XX,clean(Φ1, Φ̂1) (in blue solid points),
when using the Pearson correlationρcl, the association measureρVm defined in (2) and the normalized Spearman coefficientρsp
given in (3). The considered sieve bases are the cubicB−spline basis and the basis of estimated functional principal directions,
labelledB−Splines and FPC, respectively.
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Figure 3:Mean (in blue solid points) and mean square error (MSE) (in red triangles) of the estimators̃ρ1, when using the Pearson
correlationρcl, the association measureρVm defined in (2) and the normalized Spearman coefficient ρsp given in (3). The con-
sidered sieve bases are the cubicB−spline basis and the basis of estimated functional principal directions, labelledB−Splines and
FPC, respectively.

Note that for clean data the average of ˆρX is close to 1, while the values of the MISE are small, as expected. This
fact is more evident in Figure 2 which reveals that underC0 all the procedures lead to similar results. On the other
hand, for contaminated samples the estimators based on Pearson’s correlation are strongly affected by the presence
of outliers. Indeed, in this case Figure 2 shows that the average values of ˆρcl,XX,clean(Φ1, Φ̂1) move away from 1
approaching 0 and the MISE grows taking values very close to 4, which is the maximum possible value. On the other
hand, both robust estimators give more resistant results. However, the proposal based on the Spearman coefficient
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stands out, since it has the lowest MISE value and the averageover replications of ˆρcl,XX,clean(Φ1, Φ̂1) is the one closer
to 1 for the considered bases in both contaminated scenarios.

To summarize the behaviour of a given estimator ˆρ1 of the maximum canonical associationρ1, we compute the
mean over replications of the obtained values as well as the mean square error (MSE). Table 2 reports the mean and
mean square error (multiplied by 104) of the estimators ˆρ1 and ρ̃1 = ρ̃p̂,1. On the other hand, Figure 3 shows the
mean and MSE of the estimatorsρ̃1 in blue solid points and red triangles respectively revealing the sensitivity of the
classical procedure based on the Pearson correlation that increases its mean square error due to its increased bias. The
same conclusion can be obtained from the estimator ˆρ1 reported in Table 2. Indeed, for clean data the mean values
of the estimates ˆρ1 are close toρ1 and the MSE are low and very similar to each other. However, itshould be noted
that the estimates ˆρ1 present a positive bias in all cases, while the estimatorρ̃p̂,1 is slightly negatively biased. In this
scenario, the absolute bias ofρ̃p̂,1 is lower than that of ˆρ1, leading to MSE values which are in general smaller than
those of ˆρ1.

For contaminated samples, both estimators ˆρ1 and ρ̃p̂,1 are strongly affected, moving away fromρ1, when the
Pearson correlation is used. The best procedure is the one based on the normalized Spearman coefficient giving the
smallest mean square errors and only a small increase on the estimators bias. As for uncontaminated samples, the
MSE of ρ̃p̂,1 is somewhat lower than the one obtained with ˆρ1, in all cases. We can explain this result by the nature of
the introduced contamination, which tends to increase the values of the correlation estimators. Recall that for clean
samples̃ρp̂,1 has a negative bias, while ˆρ1 has a positive bias. In this case, as a result of the considered contamination,
the estimators̃ρp̂,1 andρ̂1 give larger values resulting in estimatorsρ̃p̂,1 with smaller bias than ˆρ1.

C0 C1 C2

ρ p̂ ρ̂X MISE p̂ ρ̂X MISE p̂ ρ̂X MISE

B−splines

ρcl 3 0.98 0.14 3 0.21 3.20 5 0.28 2.98

ρVm 3 0.96 0.23 4 0.82 0.82 5 0.84 0.87

ρsp 4 0.95 0.26 4 0.93 0.38 5 0.90 0.54

Functional principal direction basis

ρcl 4 0.97 0.23 3 0.19 3.30 4 0.26 3.07

ρVm 5 0.95 0.33 5 0.81 0.94 5 0.83 0.90

ρsp 4 0.95 0.33 4 0.89 0.57 5 0.89 0.56

Table 1:MISE and mean over replications of ˆρX = ρ̂cl,XX,clean(Φ1, Φ̂1) for different contamination settings, when using the Pearson
correlationρcl, the association measureρVm defined in (2) and the normalized Spearman coefficientρsp given in (3). The median of
the dimension ˆp obtained by cross–validation is also reported. The considered sieve bases are the cubicB−spline and the estimated
functional principal directions bases.

We also study the performance of the two methods proposed in Section 5 to detect influential observations. For
each detection method, Tables 3 and 4 report the average sensitivity and specificity over the 1000 replications. Recall
that sensitivity is the proportion of actual atypical trajectories that are correctly flagged as such, while specificityis the
proportion of non–atypical curves correctly identified as not atypical. An ideal method will simultaneously maintain
high sensitivity and specificity. As described in Section 5,the detection rule based on prediction flags as outliers the
observations with indices in the setsGX,GY orGX∪GY defined therein, leading to the detection methods denotedatX,
atY andatXoY respectively in Table 3. On the other hand, the cross–prediction method defines three sets of indicesGX,
GY andGX+Y based on the skewed–adjusted boxplot of the cross–prediction residuals norms. Any observation with
index in the setsGX, GY, GX ∪ GY or GX+Y is considered as a potential atypical data, leading to the detection rules
labelled byatX, atY, atXoY andatX+Y respectively in Table 4.

As shown in Tables 3 and 4, all detection rules have high specificity levels under all scenarios, even though the
rules based onatXoY identify more data as atypical, resulting in a slightly lower specificity but a higher sensitivity.
This behaviour is more clearly observed in Figures S.1 and S.2 in the supplementary file.
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C0 C1 C2

Mean 104×MSE Mean 104×MSE Mean 104×MSE

ρ p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1 p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1 p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1

B−splines

ρcl 3 0.73 0.69 34 33 3 0.91 0.90 437 415 5 0.89 0.87 373 306

ρVm 3 0.74 0.69 45 36 4 0.86 0.82 288 171 5 0.82 0.75 177 57

ρsp 4 0.75 0.68 53 45 4 0.80 0.76 124 63 5 0.79 0.72 104 42

Functional principal direction basis

ρcl 4 0.73 0.68 36 40 3 0.91 0.90 435 419 4 0.89 0.87 356 321

ρVm 5 0.74 0.68 48 45 5 0.86 0.81 287 146 5 0.82 0.74 167 57

ρsp 4 0.75 0.67 55 62 4 0.79 0.73 116 52 5 0.78 0.71 92 43

Table 2: Mean and mean square error (multiplied by 104) of the maximum canonical association estimators ˆρ1 and ρ̃1 = ρ̃p̂,1

for different contamination settings, when using the Pearson correlation ρcl, the association measureρVm defined in (2) and the
normalized Spearman coefficient ρsp given in (3). The median of the dimension ˆp obtained by cross–validation is also reported.
The considered sieve bases are the cubicB−spline and the estimated functional principal directions bases.

ρ C0 C1,0.1 C2,0.1

Specificity Specificity Sensitivity Specificity Sensitivity

atX atY atXoY atX atY atXoY atX atY atXoY atX atY atXoY atX atY atXoY

B−splines

ρVm 0.991 0.991 0.982 0.998 0.998 0.997 0.887 0.888 0.917 0.999 0.999 0.998 0.933 0.929 0.966

ρsp 0.990 0.991 0.981 0.999 0.999 0.998 0.964 0.978 0.994 0.999 0.999 0.998 0.984 0.978 0.997

Functional principal direction basis

ρVm 0.990 0.991 0.982 0.999 0.999 0.998 0.887 0.884 0.920 0.999 0.999 0.998 0.914 0.911 0.953

ρsp 0.991 0.991 0.982 0.999 0.999 0.998 0.949 0.956 0.973 0.999 0.999 0.998 0.980 0.976 0.995

Table 3: Specificity and sensitivity for the detection rule based on the prediction errors squared normR2
X,i = ‖X(c)

i − X̂(c)
i ‖2H1

or

R2
Y,i = ‖Y(c)

i − Ŷ(c)
i ‖2H2

. The estimators are obtained using the association measureρVm defined in (2) or the normalized Spearman
coefficientρsp given in (3) combined with two possible sieve bases: the cubic B−spline basis and the basis of estimated functional
principal directions.

ρ C0 C1,0.1 C2,0.1

Specificity Specificity Sensitivity Specificity Sensitivity

atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y

B−splines

ρVm 0.992 0.992 0.984 0.991 0.999 0.999 0.998 0.999 0.812 0.815 0.869 0.883 0.999 0.999 0.998 0.999 0.834 0.814 0.907 0.912

ρsp 0.992 0.992 0.984 0.991 0.999 0.999 0.998 0.999 0.931 0.932 0.975 0.978 0.999 0.999 0.998 0.999 0.858 0.862 0.942 0.953

Functional principal direction basis

ρVm 0.992 0.992 0.983 0.989 0.998 0.998 0.997 0.998 0.748 0.748 0.821 0.821 0.999 0.999 0.998 0.999 0.890 0.883 0.943 0.942

ρsp 0.991 0.991 0.983 0.990 0.999 0.999 0.997 0.999 0.870 0.873 0.929 0.919 0.999 0.999 0.998 0.999 0.959 0.957 0.988 0.989

Table 4:Specificity and sensitivity for the detection rule based on the cross–prediction errors squared normr2
X,i = ‖x(c)

i − x̂∗v̂,i‖2Rp and

r2
Y,i = ‖y(c)

i − ŷ∗û,i‖2Rq. The estimators are obtained using the association measureρVm defined in (2) or the normalized Spearman
coefficientρsp given in (3) combined with two possible sieve bases: the cubic B−spline basis and the basis of estimated functional
principal directions.

For the method based on prediction, the detection ruleatXoY seems to be the one with the best performance, since
the decrease in specificity with respect to those labelledatX or atY is small compared to the increase in sensitivity
obtained. Analogous results are observed in the method based on cross–predictions when using the detection rules
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atX+Y andatXoY. In almost all cases, the detection ruleatXoY corresponding to the method based on prediction overcome
in sensitivity the rules based on cross–prediction.

For the scenarios considered here, the detection ruleatXoY based on prediction, using the functional principal
direction basis and the transformed Spearman correlation leads to specificity results similar to those obtained with
B−splines with only a slightly smaller sensitivity. Taking into account that the functional principal direction basis
is adaptive, the practitioner may prefer to use as a diagnostic tool the ruleatXoY based on prediction, the association
measureρsp and the functional principal direction basis, when considering a real data set. However, taking into
account the better overall performance of the detection rule based onB−splines and the fact that theB−spline basis is
sufficiently rich to represent most data sets, we still recommendusing this basis for diagnostic purposes.

7. Example: The writing data set

To illustrate the performance of the proposed first canonical directions estimators and of the atypical data detection
rules, we consider the writing data set described in the Introduction. We only analyse the 186 data related to the speed
of the pen on the horizontal and vertical axis when writing the letter “e” denotedX(t) andY(t) respectively.

To identify potential atypical observations, we use as detection rules those that turn out to be the most effective
ones in the simulation study described in Section 6. Table 5 reports the indices corresponding to observations detected
as outliers/influential by the prediction and cross–prediction methodsusing the detection rules labelledatXoY and
atX+Y respectively. The estimates of the first canonical weights were computed as described in Section 6.1, using
the normalized Spearman coefficientρsp defined in (3) combined withB−splines and with the functional principal
direction basis. The dimension of the approximating spaceswas selected by the cross-validation criterion given in
(13) withR = {(p, p) , 3 ≤ p ≤ 11}, when usingB−splines andR = {(p, p) , 1 ≤ p ≤ 11} for the functional principal
direction basis. When the maximum was attained at 11, the possible values ofp were enlarged up to 20. For the
B−spline basis, the pair satisfying (13) has coordinates ˆp = 8, while for the functional principal direction basis the
maximum is attained at ˆp = 5. It is worth noticing that for theB−spline basis, when 5≤ p ≤ 8, the values ofRCV(p,p)

are very close to the maximumRCV(p̂,p̂) (see Figure S.3 in the supplementary file available on–line). In order to show
that, forB−splines, with a smaller dimension of the approximating spaces we can also obtain reliable results, Table 5
reports the results corresponding to dimensionp = 5. Observations 33, 38, 139 and 175 are detected as atypical or
influential curves for all bases and detection methods. On the other hand, when using the functional principal direction
basis, the detection rule based on predictions detects as atypical some additional observations.

B−splines
p Detection rule Index of the detected observation
5 Prediction methodatXoY 33, 38, 139, 175
5 Cross–prediction methodatX+Y 33, 38, 139, 175

Functional principal direction basis
p̂ Detection rule Index of the detected observation
5 Prediction methodatXoY 7, 33, 38, 113, 139, 154, 175, 137, 140
5 Cross–prediction methodatX+Y 33, 38, 139, 175

Table 5: Atypical observations detected by the prediction and cross–prediction methods using normalized Spearman coefficient
combined with the cubicB−spline basis or the basis of estimated functional principaldirections. The dimension of the approxi-
mating subspaces is also reported.

In order to evaluate the influence of the potential atypical data on the estimators based on the Pearson correlation,
the classical estimates of the canonical weights were computed after removing the detected atypical observations.
More precisely, when usingB−splines, the observations with indices inI1 = {33, 38, 139, 175}are excluded from the
analysis. On the other hand, when projecting on the functional principal direction basis, taking into account that the
observations inI1 are also detected by the cross–prediction method, we compute the estimators based on the data set
without the observations inI1 and those obtained omitting the trajectories with indices in I2 = {7, 33, 38, 113, 139,
154, 175, 137, 140}. We denote aŝΦ

−I j

cl,1 the classical first canonical weight estimator in theX space obtained after
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removing the observations indexed inI j , while Φ̂cl,1 or Φ̂sp,1 stand for the estimators computed with the whole data
set using the Pearson correlation or the normalized Spearman coefficient respectively. The results for the maximal
canonical association are reported in the supplementary file, while the results obtained for the first canonical weight
associated toY are omitted, since they are similar to those corresponding to X.

Table 6 gives some summary measures that illustrate the behaviour of the first canonical directions estimates
of X. To compare the performance of the classical estimators with those obtained using the normalized Spearman
coefficient, we report the absolute cosine of the angle between therobust and the classical first canonical weight
estimates. As mentioned above, the estimators based on the Pearson correlation are computed with the complete
sample and after removing the observations detected as atypical. We denote as ˆcsp,cl the absolute cosine of the angle

betweenΦ̂sp,1 andΦ̂cl,1 and as ˆc
−I j
sp,cl that of the angle between̂Φsp,1 andΦ̂

−I j

cl,1. It is worth noticing that we cannot
compute the measure ˆρcl,XX,clean defined in Section 6.3, since the abnormal data were not artificially introduced but
detected by our diagnostic rules. For that reason, taking into account that the Spearman coefficient provides a reliable
measure when atypical data arise in the sample, we report theempirical normalized Spearman correlation between
the robust and classical canonical variables corresponding to such canonical directions. More precisely, we report the
values ˆρsp,cl = ρsp(Pn[〈Φ̂sp,1,X〉, 〈Φ̂cl,1,X〉]) and ρ̂ −I j

sp,cl = ρsp(Pn[〈Φ̂sp,1,X〉, 〈Φ̂−I j

cl,1,X〉]).

B−splines

ρ̂sp,cl ρ̂
−I1
sp,cl ĉsp,cl ĉ −I1

sp,cl

0.71 1.00 0.09 0.99

Functional principal direction basis

ρ̂sp,cl ρ̂
−I1
sp,cl ρ̂

−I2
sp,cl ĉsp,cl ĉ −I1

sp,cl ĉ −I2
sp,cl

0.95 0.97 0.97 0.79 0.86 0.85

Table 6:Association between canonical variables and absolute cosine of the angle between the robust and classical first canonical
weight estimates computed withB−splines or with the functional principal direction basis using the Pearson correlation and the
transformed Spearman coefficient. We label as−I j the results obtained when the classical estimator is computed after removing
the observations indexed inI j with I1 = {33,38, 139, 175} andI2 = {7,33, 38,113, 139, 154, 175, 137, 140}.

The obtained results show that, when considering the estimates based onB−splines and computed with the com-
plete data set, the robust and classical canonical weight estimators are far from each other, since the association
measure ˆρsp,cl is far from 1 and the absolute cosine ˆcsp,cl is close to 0 implying that the directions are almost orthogo-
nal. On the other hand, the canonical variable〈Φ̂sp,1,X〉 and the classical one obtained when the potentialoutliersare
removed,〈Φ̂−I1

cl,1,X〉, attain the largest possible empirical association and theabsolute cosine ˆc −I1
sp,cl is also close to 1. It

is also worth noticing that, when the whole data set is considered and the estimators are computed using the Pearson
coefficient andB−splines, the maximum ofRCV(p,p) is attained at ˆp = 16 with valueRCV(p̂,p̂) = 0.94, while the values
of RCV(p,p) for 5 ≤ p ≤ 10 are between 0.78 and 0.85, so a smaller dimension cannot be considered in this case.On
the other hand, after removing the data with indices inI1 the maximum is attained at ˆp = 5. Hence, the dimension of
the approximating space and the canonical weights computedwith the Pearson correlation coefficient after removing
the observations with indices inI1 are closer to the canonical weights computed with the Spearman coefficient using
the whole data set. Hence, as expected, the robust procedureleads to more reliable results without excluding atypical
data.

A different phenomenon is observed for the functional principal direction basis. In this situation, the classical
and robust first canonical variates in the spaceX, computed with the whole sample, are highly associated since
ρsp(Pn[〈Φ̂sp,1,X〉, 〈Φ̂cl,1,X〉]) = 0.95, while the angle between the robust and classical canonical weights is close to
38o. After removing the potential atypical observations, the cosine of the angle slightly increases resulting in an angle
around 30o. Again, as expected, the estimators based on the normalizedSpearman coefficient computed with the
complete data set give estimates close to those obtained with the Pearson correlation coefficient after removing the
observations detected as atypical.
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To highlight the behaviour of the detected observations, Figure 4 gives a plot of the data trajectories. The thin grey
lines in the background correspond to the complete set of observations, and they are included for visual reference,
while the potential atypical trajectories are given in black lines. To help in visualizing both sets of atypical data,
Figure 4 shows the potential outliers with indices inI1 in black dashed lines, while those corresponding to indicesin
I2 − I1 are given in solid black lines (recall thatI1 ⊂ I2).
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Figure 4:Speed of the pen on the horizontal and vertical axes. Black dashed curves correspond to atypical observations with indices
in I1, while the black solid curves to those with indices belonging toI2 − I1.

Most of the trajectories with indices inI2 − I1 correspond to individuals with a higher writing speed over the
interval [0.8, 1]. It is clear from Figure 4 that the observations with indices belonging toI1 correspond to observations
far away from the bulk of the data due to their behaviour both in shape and phase. More precisely, these trajectories
seem to have a temporal phase shift with respect to the bulk ofthe data. Effectively, the time when their maximum
(minimum) is reached is far from the time in which most of the trajectories reach their maximum (minimum). In
particular, two of the trajectories ofI1, corresponding to the observation labelled as 139 and 175, present a distinctly
different behaviour within the interval [0.8, 1] (see Figures S.4 and S.5 in the supplementary file). In thistwo cases,
the pen moves slower than the majority on the vertical axis. Furthermore, the individual corresponding to the data
labelled 175 has a handwriting of the character “e” slower than most individuals when ending its writing. On the
other hand, the observation labelled 33 is atypical since ithas a high writing speed on the vertical axis and a low one
on the horizontal axis within the interval [0.8, 1]. Finally, the maximum ofX(t) in the interval [0, 0.5] corresponding
to observation 38 clearly exceeds the remaining trajectories. Moreover, this maximum is attained approximately at
t = 0.3, while for most of the data, the value where the maximum is reached is close to 0.2. As shown in Figure S.6
of the supplementary file, the robust proposal given in this paper was useful to identify potential atypical data which
affect the estimation of the first canonical directions. These atypical data correspond to individuals with a clearly
different handwriting of the character “e”.

8. Concluding remarks

In this paper, we introduce a family of robust estimators forthe first canonical weights and the related maximal
association for functional data. Using robust associationmeasures, our proposal adapts the projection–pursuit ideas
introduced in Alfons et al. [4], Branco et al. [10] and Croux and Filzmoser [13] for multivariate samples with the
sieve approach considered in He et al. [27].
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Among other contributions, we provide an extension of the result given in Leurgans et al. [36], when a general
association measure and not only the Pearson correlation isused. More precisely, we show that the natural extension
of the projection–pursuit multivariate estimators considered in Alfons et al. [4] to the functional scenario fails, since
directions can be found with empirical canonical association equal to one, motivating our robust proposal which
combines robust projection-pursuit with the method of sieves as a smoothing tool.

The robust estimators introduced for the first canonical directions and the maximal association are consistent under
mild conditions on the association measure. As in the multivariate case, the proposed estimators are Fisher–consistent
for elliptical or Gaussian processes for appropriate choices of the association measure.

Finally, our simulation study confirms the inadequate behaviour of the classical estimators when atypical data arise
in the sample, while the robust procedures based on the association measure defined through anM−scatter matrix or
the normalized Spearman coefficient lead to more reliable results. In particular, we recommend the procedure based
on the normalized Spearman coefficient. As shown in our simulation study, the robust estimators are useful to detect
atypical data using the predicted canonical variates. The benefits of considering robust estimators is also illustrated on
a real data set where the detection rules reveal the presenceof influential observations that would be missed otherwise.

The described procedure can be extended to robustly estimate the subsequent canonical correlations and directions.
More precisely, fork ≥ 2, thek−th canonical directions related to the association measureρ may be defined as
(Φk(P),Ψk(P)) = (Φk,Ψk) = argmax(u,v)∈Bk

ρXY(u, v), whereBk = {(u, v) ∈ S1 × S2 : ρXX(u,Φ j) = ρYY(v,Ψ j) =
0, for all 1 ≤ j ≤ k − 1}, while thek−th maximal canonical association equalsρk(P) = ρ(P[〈Φk,X〉H1, 〈Ψk,Y〉H2]).
The sieves estimators for thek−th canonical directions are defined as (Φ̂k, Ψ̂k) = argmax(u,v)∈Bk,pn,qn

ρn (u, v), whereρn is

given in (10) andBk,pn,qn = {(u, v) ∈ S1,pn ×S2,qn : ρ(Pn[〈u,X〉H1, 〈Φ̂ j ,X〉H1]) = ρ(Pn[〈v,Y〉H2, 〈Ψ̂ j ,Y〉H2]) = 0, for all
1 ≤ j ≤ k−1} . Finally, thek-th maximal canonical association estimator equals ˆρk = ρn

(
Φ̂k, Ψ̂k

)
. These estimators can

be computed using the alternategrid algorithm as described in Section 3.4 for the first canonicaldirection estimators.
Consistency results for the canonical directions and correlations whenk ≥ 2 are an interesting topic but beyond the
scope of this paper. The main difficulties arise by the side null–association conditionsρ(Pn[〈u,X〉H1, 〈Φ̂ j ,X〉H1]) =
ρ(Pn[〈v,Y〉H2, 〈Ψ̂ j ,Y〉H2]) = 0, for 1≤ j ≤ k− 1. It is worth noticing that, when dealing with the Euclideancase, Jin
and Cui [34] impose orthogonality conditions, i.e.,〈u, Φ̂ j〉H1 = 〈v, Ψ̂ j〉H2 = 0 as in principal component analysis to
derive the consistency of the estimators loosing the desired null association property between the canonical variates
〈Φ̂ j,X〉H1, 1 ≤ j ≤ k. These robust canonical direction estimators may be helpful to obtain a resistant estimation
procedure for functional canonical regression generalizing the approach considered in He et al. [28].

Functional discrimination has been extensively considered and we refer to Cuevas et al. [16] and Hubert et al.[32]
for a depth approach, to Yao et al. [45] for an approach when dealing with sparse data and to Baillo et al. [6] for
further discussions. The relation between canonical correlation and discriminant analysis has been widely described
in the multivariate setting and also extended to the functional case, see, for instance, Hastie et al. [24] and Ramsay
and Silverman [41]. Hence, the robust proposal considered in this paper may be useful to deal with robust functional
optimal scoring and discriminant analysis takingY as a dummy vector coding the group class.
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