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Abstract

In this paper, we propose robust estimators for the first gi@abcorrelation and directions of random elements on
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The robust procedure allows us to construct detection tolédentify possible influential observations. The finite
sample performance is illustrated through a simulatiodyston which contaminated data is included. The benefits of
considering robust estimators is also illustrated on adatd set where the detection methods reveal the presence of
influential observations for the first canonical directitimst would be missed otherwise.

Key words: Canonical correlation, Fisher—consistency, FunctioatéddRobust estimation, Sieves

AMS Subject Classification: MSC 62G35; MSC 62H20

*Corresponding Author
Departamento de Matematicas, FCEyN, UBA
Ciudad Universitaria, Pabellon 2
Buenos Aires, C1428EHA, Argentina
Fax 54-11-45763375
Email addressesagustinalvarez01@gmail.com (Agustin Alvarez)gboente@dm.uba.ar (Graciela Boente),
nkudraszow@mate.unlp.edu.ar (Nadia Kudraszow)

Preprint submitted to Journal of Multivariate Analysis March 12, 2018



1. Introduction

Due to the growing interest in studying complex data, fuwl data analysis has become a relevant subject.
When dealing with functional data, each observation cém&it one or several infinite—dimensional objects such
as curves, surfaces or images rather than scalars or vedtorsctional data analysis has applications in a wide
range of fields (archaeology, medical science, biometdcenometrics, environmetrics, chemometrics). As
mentioned in Ramsay and Silverman [41], in many areas a$statthe collected data are more naturally represented
as functions rather than finite-dimensional numerical mext It has been extensively discussed that simplifying
the functional model by discretizing the observations agieaces of numbers can often fail to capture some of its
important characteristics, such as the smoothness antheitniof the underlying functions. Statistical methods to
analyse such functional data may be found, for instancegiray and Romain [19], Ferraty and Vieu [20], Horvéath
and Kokoszka [29], Hsing and Eubank [30] and Ramsay and r&ilae [41]. For a summary of recent advances in
functional statistics see Aneiros et al. [1], Cuevas [1%] &@oia and Vieu [23].

When the observed data are infinite—dimensional, dimemsiunction is an important task. To tackle this problem
and depending on the goal soughffelient procedures have been considered, including furadtpyrmcipal compo-
nents, single—index functional data analysis and otlfectve reduction methods as discussed in Yao et al. [45].
Functional canonical correlation analysis provides auwlsg#ifnension reduction tool to quantify correlation or as-
sociation between two functions recorded for a sample ofestdon the same population. For multivariate data,
canonical correlation analysis is performed by obtainingdr combinations of each subset of variables that maxi-
mize their correlation with the restriction that their \@arces are equal to one. Under a Gaussian model, Leurgans
et al. [36] showed that the natural extension of multivarigstimators to the functional scenario fails since there is
always a pair of directions with empirical canonical coaitiEln equal to one. To solve this problem, they proposed
a consistent estimator which penalizes the roughness afahenical directions. On the other hand, He et al. [26]
provided conditions ensuring the existence and properitlefirof the canonical directions and correlations for pro-
cesses admitting a Karhunen—Loéve expansion, see alsdd@ugt al. [17], while Cupidon et al. [18] derived the
asymptotic distribution of regularized functional cargalicorrelation and variates.

All aforementioned authors studied the problem of maxingzihe Pearson correlation, which is known to be
sensitive to atypical observations (see Taskinen et a]).[48the multivariate scenario, there are several apgresc
which consider robust estimators for the canonical caticgla and directions. Croux and Dehon [11] and Karnel
[35] proposed a robust canonical correlation analysisa@pg the sample covariance estimatorgvbyestimators or
minimum covariance determinant estimators of multivergtatter in the equations defining the classical canonical
directions. The influence function of these robust plug-ainanical correlation estimators was discussed in Taskinen
et al. [43]. Exploiting the relation between canonical etation and regression estimation, Filzmoser et al. [21]
proposed using robust alternating regression to obtaimatirs of the first canonical variates. This proposal was
generalized in Branco et al. [10] to estimate all the caraniariates. A diferent approach based on projection—
pursuit uses a robust association measure instead of thieoRezorrelation in the maximization procedure. This
procedure has been considered in Alfons et al. [4] and CradX¥@zmoser [13] for multivariate data. Furthermore,
Jin and Cui [34] studied the asymptotic distribution of tlstiraators obtained by projection—pursuit. As far as we
know, there are no robust proposals in the functional ggttin

As a motivation, consider the writing data set consistin@®68 character samples that correspond to the speed
profile of a pen writing on a tablet. The data is availablen&tps://archive.ics.uci.edu/ml/datasets/
Character+Trajectories and has been used by Williams et al. [44] to have a better gtateting of the sub—
blocks arising in biological movements and their timingsn@ng others, this data set has been considered in Hubert
etal. [31] to illustrate their depth—based functional muttletection method and in Hubert et al. [32] to perform sibu
supervised functional classification based on depth. Wesfon the 186 data related to the speed of the pen on the
horizontal and vertical axis when writing the letter “e” nde¢edX(t) andY(t) respectively. We seek to explain how the
movement variability on the horizontal axis is related tattbf the vertical one. Figure 1 displays the data trajeetori
where some trajectories, such as those labelled 139 andcte#sly seem to deviate from the bulk of the data. For
that reason, it is important to provide a procedure for egiing the canonical directions that will not be influenced
by atypical trajectories, as well as to provide a rule allugvior the identification of these influential trajectories.
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Figure 1:Speed of the pen on the horizontal aXigleft panel) and on the vertical axis(right panel). The trajectories labelled 139
and 175 are shown in solid black lines.

In this paper, we introduce robust estimators for the firaboécal correlation and directions adapting the robust
projection pursuit approach considered in Alfons et al.tpdihe functional data setting by means of a sieve method.
As is well known, the sieves method involves approximatimgnédinite-dimensional parameter spa@dy a sequence
of finite-dimensional parameter spa&s which depend on the sample sizeand then estimating the parameters on
the space®, rather than o®, allowing for the introduction of the dimension 6f, as a smoothing parameter.

The paper is organized as follows. In Section 2, we begin bypducing some notation and then review some
basic concepts used throughout the paper. In Section 3, fivedke robust estimators of the first canonical direction
and canonical correlation based on general associatiosuresa Consistency results are established in Section 4,
while Fisher—consistency of the related functionals issenéed in Section 4.1. Section 5 discusses the use of the
given robust proposals to construct detection rules afigwor the detection of influential observations, which is
an important step in any analysis. The results of a MontedCstldy conducted to examine the robustness and
finite sample performance of the proposed procedures aogtegpin Section 6. The writing data set is analysed in
Section 7, where the advantage of the proposed estimatititsstsated. Furthermore, the robust estimators allow to
identify observations with a tferent writing pattern. Finally, Section 8 contains somechating remarks. Proofs
are relegated to the technical supplementary materididlaion—line.

2. Notation and Preliminaries

Let Hj, j = 1,2, be Hilbert separable spaces with inner produc}s; and norm| - |l,. DenoteS; = {u €
Hj o lully, = 1}, j = 1,2, the unit sphere inHj, H = Hi x H, the product space anduy, v1), (Uz, V2))¢ =
(U1, Up)gy, + (V1, Vo)qy, the inner product inH. LetZ = (X, Y)" be a random element of the Hilbert spaledefined
in (Q, A, Pr). WhenZ has finite second moment, i.e.,||En,§,) < oo, We denote abxx : H1 — H1, Iyy : Ho — Ho,
I'xy : Ho — Hi1 andlyx : H1 — H>, the covariance and cross—covariance operators, regglgciiore precisely,
for anyusg, Uy € Hi, v € H,, we have that CO‘((Jl, X)(Hl,<U2, X>‘Hl) = <U1,FxxU2>(H1, COV(<U1, X)(Hl,<V, Y)(/.{z) =
(u1, T'xyV)g, and similarly forI'yy andI'yx. With this notation, the covariance operaitt; : H — H can be
decomposed ds;z(u, V) = (Txxu + IxyVv, T'yxu + I'yy) 7, allowing to writeI'zz in the matrix form

T'zz(u, V) :( I'xx I'xy )( u )

I'yx Tyy v

Given a random sampM/; = (S;,T;))7, 1 < i < n, of a random vectow = (S, T)T : Q — R?, P,[S, T] will
denote the empirical measure induced®h More precisely, forA € B, where3 is the Borelo-Algebra of R?,
Pa[S, TI(A) = (1/n) XL, Ia(Wi), wherela(-) stands for the indicator function of the et
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2.1. Association measures

As mentioned in Alfons et al. [4], robust estimators of theawical correlation for multivariate data can be
defined using the maximal value that a bivariate associatieasure can attain between any pair of one-dimensional
projections. For that purpose, association measuresgasiralternative to the classical Pearson correlation naist b
considered. In this section, we recall the definition of aspamtion measure and we review some examples of such
measures.

The associatiop between two univariate variabl&andT, denoteg(S, T), is a functional defined in the space
of bivariate probability measures that verifies the follegvconditions

) p(S.T)=p(T.S),
(i) p(@aS+b,cT +d) =sign@c)p(S, T) foralla,b,c,de R,
(i) p?(S,T) < 1.

When G, T)™ ~ P[S, T], we also denotg(P[S, T]) = p(S, T).

The most well-known association measure isBearson correlatigmienoteg., , which measures linear corre-
lation. For a bivariate random vectdf = (S, T)" ~ P[S, T] with covariance matrit = Var(W), we have

X1
VEnZz

It is well known thato, is very sensitive to the presence of outliers. Alternatigethe Pearson correlation can be
seen in Maronna et al. [39] or Shevlyakov and Vilchevski [d2long others. We will now briefly describe some of
them.

pe(W) = pe(P[S, T]) =

The Spearman’s rank correlatign, and Kendall’s tau correlatioip, are well known association measures that
have been used in the finite—dimensional setting by Alforas.4]. They are defined as

pse(P[S, T]) = pc{Fs(S). Fr(T)}  and  pk(P[S, T]) = E[sgn{(S1 - S2)(T1 - T2)}] )

respectively, wher&s andFt are the cumulative distribution functions®fandT and G;, T1)" and S,, T») " are two
independent copies o8(T)". A discussion on the robustness properties of Spearmad’«eandall’s correlations
can be found in Croux and Dehon [12].

Another robust alternative to the Pearson correlation eolttained by means of a bivariate robust scatter func-
tionalV = V(S, T) instead of the classical covariance maRixXThe association measure induced by a bivariate scatter
matrix V is given by

V12(S,T)
(V11(S, T)V2o(S, T))?
whereV;;(S, T) is the {, j)—th element of the scatter matN& (S, T). One possible choice faf(S, T) is theM—scatter
estimator defined by Maronna [38], since it provides fiitient estimator which is also highly robust in the bivariate
case. Another possible choice is to consider the orthogmthiGnanadesikan—Kettenring covariance proposed by

Maronna and Zamar [40]. When usiirestimators or the orthogonalized Gnanadesikan—Kettgmavariance the
corresponding association measures will be denotgd/Qyandpqx respectively.

pv(P[S,T]) =

)

A desirable property is that fierent measures of association determine the same valugh ighhe target one, at
least for a given distribution familg. If this occurs we will say that the corresponding measufgsker-consistent
at®. This property will allow us to guarantee the consistencthefcanonical directions and canonical association
estimators to the population quantities of interest. Irtipalar, if # = {P,, .} is the family of bivariate elliptical
distributions (which contains the family of normal bivaegalistributions) with location zero and scatter matrix

0’% K0102
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we want to identify which association measures consistergtimate the quantityl < « < 1. Without loss of
generality we can assuneg = o, = 1 and denot® = {P,}. Note that, if we defin@ (x) = p(P,), Fisher—consistency

is achieved wheff () = k. Maronna et al. [39] show that, if the robust scatter funwio/ is afine—equivariant,
V(P,) = cX, for some positive constant Hence, the association measpyeis Fisher—consistent farat the family

of elliptical distributions. In particular, we hayey,, (P.) = «. Even if the orthogonalized Gnanadesikan—Kettenring
covariance is notfine equivariant, the results in Section 6.12.10 in Maron ¢89] easily entail thabosk (P,) = «.

Let us consider the family of normal distributiofs, = {N (i, X,)}. One may transform the Spearman and Kendall
correlations defined in (1) as

pr(PIS.T]) = 2sin{Zu(PIS. TD|  and pu(P[S.TD = sin{Z 5u(PIS. T ®

to ensure thagbg, andpg are Fisher—consistent at the family of bivariate normatitistions. We will callpg, andok
the normalized (or transformed) Spearman and Kendall ltivas respectively.

3. The estimators

3.1. Functional canonical correlation analysis

Given X,Y)T : Q — H; x H, a random element of the Hilbert spagé with probability measuré®, we de-
note the probability measure ¢fu, X4, (v, Y)Hz)T € R? induced byP as P[(u, Xa,» V, Y)gi,]. The statistical
functionals of the canonical directions (or canonical vsy and the maximum canonical association defined in
the multivariate setting by Alfons et al. [4] can be extendedhe functional setting, replacing the inner product
in the Euclidean space by the corresponding inner produtiierHilbert space. Givep an association measure
as defined in Section 2.1, lekv(u,v) = p (P[U, X)34, (V, V)9]), pxx(U, Uz) = p (P[{ug, X)ay,, (U2, X)9,]) @and
ovy(Vi, V2) = p (P[{V1, Y)gy,, (V2, Y)gy,]). The first canonical direction (or weight) functionals tethito the associ-
ation measurp are defined as

(@1(P), P1(P)) = (®1,¥1) = argmax pxy(u,V). (4)

llullze, =IVikye, =1

As in the multivariate canonical correlation analysis, fir& or maximum canonical association is given by

P1(P) = p1 = pxv(P1, ¥1) = p(P[{ D@1, X)31,, (V1. V)o1,]) 5)

where(®4, X)4, and(¥1, Y)4, are the first canonical variates. As mentioned in Alfons ef4| condition (i) in the
definition of the association measuyrentails that the maximum canonical association is indeee-negative. As in
He et al. [25], higher order canonical variates may also ieelé, see Section 8 for a discussion on this topic.

When the association measure is the Pearson correlatiothamrdndom elemen(Y)™ has finite second mo-
ments, the first canonical weights given in (4) will be dedas (0, 1, ¥..1). Furthermore, in this case the function
pxy . H — R can be defined using the covariance operbtgras

(U, TxyVyg
VU TxxWe, (Vs Ty yWgy, ’

pxv(U,V) =

where the ratidu, nyvﬁ{l/ (Cu, TxxUygy, (v, TyyV)gy,) is equal to 0 wheriu, I'xxu) = 0 or (v, I'yyv) = 0.

More generally, given a linear self—adjoint, positive sedefinite and compact operator +H — H such that

Iy T
I= , 6
( 21 T2 ) ©



I"induces the functionalg-: H — R, pr,, : H1 x H1 — R andpr,, : Ho X Ho, — R as

u, 1oV
AR — T ™
VKU T11W) gV, T22V),
(Ug, T11U2) (v1, Too\a)y
prp (U, Up) = 1, T1al2)gy P, (Ve Vo) = 1, T22V2) 1, ®

VU1, T11U ) (Uz, T11U) g, VL, T2oV1 ), (V2, T12V2) g4, ’

whereu,u, up € Hi, v,vi,V2 € Hp andpr(u,v) = 0 if either (u,I'11U)g, = 0 or (v,I'2ov)¢, = 0. Moreover,
pry, (U1, Up) = 0 when eithefus, T11U1 )4, = 0 Or{Up, I'11U2)¢, = 0 and similarly foror,,.

Usingpr, the canonical direction®X- 1, ¥r.1) associated td' can be defined as in (4), replacindy pr. The first
or maximum canonical association associatel, {@- 1, satisfies the equation

pri1 = PF(P[<(DF,1a X>‘7’117 <l1lr,1, Y)Wz]) . (9)

Whenp is the Pearson correlation afd = L?(0,1) x L?(0,1), Leurgans et al. [36] showed that the esti-
mation method used in the Euclidean case breaks down in fmétérdimensional setting. More precisely, let
(X1, YD), ..., (%n, Yn)" be a random sample oK(Y)™ and denote a®, its empirical distribution. Whep is the
Pearson correlation anX,(Y)" is a Gaussian process, replacing in (4) and (5) the probabileasureP by the
empirical distributionP, does not lead to reliable estimators since directions cdouoed with empirical canonical
correlation equal to one. This property shows that in thesital setting it is necessary to use a method involving
some smoothing. Proposition 3.1 shows that the same redd twvhen a general association measure is considered.

Given (U, V) € H1 x H,, denote ap, the empirical version gbxy, that is,

pn(u’ V) = p(Pn[<U, X>(H1’ <V, Y)’Hz]) . (10)

We will need the following assumptions

Al Pr(X e £) = 0 for any finite—dimensional proper linear spagef H;.

A2 Given any bivariate probability measu@ supported on the lin® = {(x;,X2) € R? : X = X} such that
Q({x1 = c}) = Q({x2 = c}) < 1 for allc € R, the bivariate association measgrsatisfies thap(Q) = 1.

Remark 3.1 Straightforward arguments allow us to see tAdtholds if for any orthonormal basigi};>1 of H1
and anyk € N such thatkk < dim(#H3), the k—dimensional random vectofX, 1), . . ., (X, dk)#,) " has a density.
In particular, this last statement holdsXfhas an elliptical distribution, as defined in Bali and Boe€fitfe with a
dispersion operatdr;; with kernel reducing td0}. Effectively, if X ~ &(u1,T11,¢) and ker('1;) = {0}, thenX
can be written aX = u; + SX, where Pr§ > 0) = 1 and the scalar random variateand the Gaussian random
elementX € H; are independent (see Boente et al. [9]). Moreover, the @wee operator oK is proportional
toI'11. Hence, (X — u1,61)24, - - - o AX = 11, 8)#) T = S ((X, 1)1y, - - (X, 6k)ar,) T @nd the result follows from the
fact thatw = ((X, 61)4y, - - -, (X, Sk)e,) T has ak—th dimensional non—singular multivariate normal disttibo and is
independent 08.

On the other handA2 states that given a bivariate random vec®rT) € R? such thaS = T almost surely, then
p(S, T) = 1, whenevefs andT are not constant. The Pearson correlation as well as theiasso measurgqx and
the transformed Spearman or Kendall correlatiggsandpy satisfyA2. As noted in Maronna [38], thM—scatter
functional is not defined whe® = T. However, defining the Mahalanobis distance as in page 18%0ofnna et al.
[39] we get thapy,, = 1.

Proposition 3.1. Assume thaAl holds and that for any e H, Pr(Y = v) = 0. Letp be a bivariate association
measure satisfying2 and ne N, 2 < n < dim(H1). Then, with probability one there exist 8 H; and v, € H, such
thatpn(un, Vi) = 1.
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It is worth noticing that the conclusion in Proposition 3till folds when the roles oK andY are reversed.

A direct consequence of Proposition 3.1 is that, if difff = oo, some kind of smoothing is needed since
SURkes, ves, Pn(Us V) = 1. Section 3.2 describes our proposal which combines rqajgction-pursuit with the method
of sieves as a smoothing tool.

3.2. Sieve approach for robust functional canonical catiein analysis

Let (X1, Y1)T,...,(Xn, Yn)" be a random sample of the random elemeqity)™ : Q — H. Let{di}i-1 and{n;}j>1
be orthonormal bases f@t; andH- respectively. From now on, lét(; , and ¥, denote the subspaces®fh and
H> spanned byd, ..., dp} and{ny, ..., ngq} respectively. We denote by, p = S1 N Hyp andSyq = So N Haq the
unit spheres of{y , andH- 4 respectively. The sieve estimators for the first canonicabtions are defined as

(@1, %;) = argmax pn (U, V) (11)

UESlApn aVESZ,qn

wherep,, is defined in (10), while the first or maximum canonical asstich estimatop; > 0 is such that
p1=p (Pal(®1, Xyz. (P2, Y)p0,]) = pn (1. 91). (12)

These estimators depend on the chosen basgg§ ahd >, on the sequenceg{)ney and @n)nen @nd on the associ-
ation measurp used. Some of the frequently used bases for functional datdne Fourier, polynomial, splines and
wavelet bases; see, for instance, Ramsay and Silverman [41]

3.3. Selection of the smoothing parameters

Once the association measwrand the basef;}i-1 and{nj};-1 are chosen, the selection of the approximating
linear space dimensiorns andq, that play the role of the smoothing parameters is an impbpiattical issue. The
most popular general approach to address such a selectiblepris to use cross—validation methods.

Denote byr, = (pn, gn) the parameter to be determined. Léfnf), ‘i’f;ii) be the first canonical direction estimators
computed without thé-th observation and when the approximating subspaces hanendions, andq,, that is,

(@) §C ')) = argmax p(PE,‘i)[(u, Xy (Vs Y>’H2]) ,

1’
UESL Pn ,VESan

whereP((A) = (1/n) 314 Ia(X;, Y;) for a Borel se® of .

Let U(') <d3( s Xidgt, andV(') <‘P( , Yi)g, be the canonical variates of theth subject. He et al. [27]
proposed a select|on method based on maX|m|2|ng the samplelation of the canonical variates. However, as
in other settings, using a non-robust criterion to seleetsimoothing parameters even if combined with a robust
estimation procedure may lead to non—resistant estimakansthat reason, we propose using the same association
measure considered in the estimation step to select the smoothiraypeters. Let

RCV, =p2{ Z%szlw } :

whereA, ) denotes the bivariate probability measure giving all itssnia the pointd, b). GivenR a set of possible
values for the parametey, the cross—validation parameter equaighere

T =argmaxRCV, . (13)

rherR

As in He et al. [27], once the dimension is chosen, one maydaisose the valug; = +RCW- as the estimator of
the first canonical association.
7



3.4. Numerical implementation of the estimators

Except for the Pearson correlatipp , the maximizers of (11) cannot be computed exactly. For teason,
algorithms to obtain approximate solutions are needed.

Given{di}i>1 and{n;}j-1 orthonormal basis of{; andH> respectively, the estimators proposed in (11) are obtained
searching directions = Y & € Hi andv = 3% bin € Hp, ¥ a2 = ¥ b2 = 1, that lead to the maximum
value ofp(Pn[{U, X}, (V, Y)4,]). Denotea = (ay,...,ap,)" andb = (bs,...,bg,)" the codlicients ofu andv in the
considered basis and bet= ((X, OV Hys - - - (X 6pn>q{1)T andy = ((Y,71)94, - - -, (Y. ng.)96) - Noting that(u, X)4, =
a'x and(v,Y)s, = bTy, the estimators given in (11) can be obtained using any vauitite algorithm allowing to
find the vectorgy = (&1, ..., &p,)" andby = (bis, . .., big,) ™ with norm 1 which maximize(P,[a™x,bTy]), i.e.,

(a1,by) = argmin  p(Py[a"x,bTy]) . (14)
llallzp =L |Ibllpa=1

The alternatesrip algorithm described in Alfons et al. [3, 4] is a well known afghm allowing to perform multi-
variate canonical analysis for association measures sutttecBpearman and Kendall correlation and the association
measure based on a bivariafie-scatter matrix. It provides an accurate method to approeite weightsy, andb,
maximizingpe(Pn[a"x, bTy]), using optimization in two—dimensional spaces. The atgm is implemented through
the functionccaGrid in theR packagezcaPP. Once the multivariate weighs andb, are obtained, the canonical
direction estimators if{j can be reconstructed as

Pn Gn
Og = Z &50; and ¥ = Z bijn; (15)
= =1

4. Consistency

As in Cupidon et al. [18] and Leurgans et al. [36], in this sBttwe show that under mild conditions the
estimators of the first canonical weights and the relatetidasonical association defined in Section 3 are consistent
to the functionals given in (4) and (5). It is worth noticirfgat our results include the multivariate setting by taking
pn = dim(#1) andgn = dim(#2). In this sense, we extend the results given in Jin and Cyiff84n the Euclidean
to the infinite—dimensional case in a more general settingesveaker assumptions are required. Finally, it should
be noticed that, in Theorem 4.1 when diffi) < oo, we understand that the requirement— oo is replaced by
pn = dim(Hy). Similarly, when dimfHy) < oo, gy = dim(H2).

To derive the consistency of the estimators we will need tfleWing assumptions. To avoid burden notation,
from now on, let (01, V1) = (D1(P), ¥1(P)) the solution of (4), which we assume to exist, and= p1(P) the
functional defined in (5).

a.s.
C1 SUFbestn,vesz,qn |p>z(y(u: V) —p%(u, V)] — 0.
C2 p&y : Hix H, — Ris continuous at the first canonical directiods (¥1).
C3 There exists a compact, self—adjoint and positive definiteratorl’ : H; x H, — Hi x H, such that
PZx (U1, Up) = hy {P%H(UL Uz)}, oV, Vo) = hY{PI%ZZ(Vls Vz)} and

Piv(u,V) = h{pf(u, V), (16)

wherepr, pr,, andpr,, are defined in (7) and (8). Furthermorehif: [0,1] — [0, 1] stands for any of the
functionsh, hx or hy, thenh is a strictly increasing function such thg0) = 0 and lim,_,3- h(x) = 1.

C4 (@1, ¥,) exists and is unique up to change of sign. Moreover, theigtsge with 0 < p, < p; such that if

oxx(U, @1) = pyy(v, ¥1) =0 thenpf(Y(u, V) < p%.
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The notion of convergence of the first canonical directigstgeators to the first population canonical weights will
be the convergence with respect to the measures of assodiat is analogous to tHe-norm convergence defined
in Leurgans et al. [36]. More precisely, given sequencghdy C Hi, (Va)nen € Ha, we say thatif,, vi) converges
to (u,Vv) € H in association ipZ, (U, u) — 1 andp?,(vn,v) — 1. As noted in Leurgans et al. [36], this convergence
means that the canonical variates obtained frognw) for a given random elemenX(Y) behave as those obtained
from (u, v). This kind of consistency is a desirable property to holdiie estimated canonical directions.

The following Theorem shows the strong consistency of otimesors.

Theorem 4.1. Let (d4, ¥1) andp; be the estimators defined (1) and (12). Assume that the sequen¢ps)ney and
(On)nen are such that p— oo and ¢, — co. Then, unde€1 andC2, we have

. ~ a.s.
) p2 = p?;

. ~ ~ a.s.
i) poy(®1,¥1) — p?;

iii) If in addition C3 andC4 hold, therp2  (®1, 1) =3 1 andp2, (¥4, ¥1) > 1.

We include below some comments regarding assump@@re C4. Conditions under whic1 holds and further
comments oIC2 are relegated to the supplementary file available on—line.

Remark 4.1. Assume that the association measure satisfies (16) for &naons increasing functioh such that
h(0) = 0 and thap; > 0, thenC2 holds. Hfectively, fromp; > 0 and the fact thét is increasing, we get that the ratio

(@1, T12¥1)9,
V(@1 T11®@1)34, (V1. T22P 1) 34,

is positive, so(®1,'11P1)4, # 0 and(¥1,I22¥1)4, # 0. On the other hand, the compactnes§ @htails that the
functionsgy (u) = (u, ['11Uey, G2(U) = (V, T22V)g, andgia(u, V) = (u, I'1oV)4, are continuous functions which together
with the fact thag; (@) # 0 andg,(¥1) # 0 entail thatC2 holds.

Note that when the kernel f; is equal to{0} for j = 1, 2, we haveg:(P1) # 0 andgx(‘¥1) # 0. Hence, if(t) = t,
C3 impliesC2. On the other hand, Lemma S.3.2 in the Supplementary fileigmhatC2 holds if the association
measure is continuous with respect to the Prohorov distance at tariaite distributiorP[(D1, X)4,, (Y1, Y)s,]-

It is worth mentioning that (16) i€3 is analogous to assumption (iv) of Alfons et al. [4].

Remark 4.2. When we use Pearson’s correlatijor= pc. in (4), pxy = pr,, With I'z the covariance operator &,
henceC3 holds. Notice that, in this case, a necessary condition fmaa definition of the canonical weights is that
both random elemends andY have finite second moments. This condition may be relaxedhierandom element
Z is elliptic and the association measure corresponds to bthse described in Section 2.1.

LetZ = (X, Y)" ~ &, T, ¢) be arandom elementil whereu € H andl is as in (6). Giverw = (w1, Wp) € Hix
Hy, defineAy : H — RZasAy(XY) = (Wi, X)gq,, (Wa, Y)r,) 7. Using thatZ ~ E(u, T, ¢), we get thatz, = Ay(X,Y)
has an elliptical distributiorg, ~ Ex(Awu, Awl'A;,), where the i( j)—th element ofA, A}, equals(w;, T'jjw;)g;, for
i, j €{1,2}. Hence, given an association measuFésher—consistent at the elliptical family, from the dission given
in Section 2.1 we conclude that

2
(U, I'av)s,

= o2(u,V). 17
(U, T1aU)gy, <V, T22V)y, Pi(Y) (17)

P?(Y(U, V) =

Therefore,p satisfies (16) witth(t) = t. Moreover, we also haveg,(ui,Uz) = pZ (U1, U) and pgy(vi,v2) =
Péz("l’ Vo), that is, Fisher—consistent association measures faribte elliptic families satisf{C3.
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Remark 4.3. AssumptionC4 is similar to assumption 3 in Leurgans et al. [36]. Consither $pecial situation of
an elliptical random elemer = (X,Y)" ~ &(u,T,¢) whereT is given by (6) and lep be an association mea-
sure Fisher—consistent for elliptical families. AssumettE|Z||§( < oo, then, without loss of generality, we may

assume thar is the covariance operator @ DefineR = I'};/’T12l5,,/%, wherel';1 and T,y are the general-
ized inverses of the roots @f;; andT'», respectively. Assume that there exists only one orthonbeig&nfunc-
tion v; associated to the first eigenvalgieof R'R and denote as; = Rw/ V.. WhenZ € L2(0,1) x L%(0,1)
andp is the Pearson correlation, He et al. [26] provide condgiensuring the existence and proper definition
of the canonical directions and correlations. Under thes®litions, Theorem 4.8 of He et al. [26] entails that
(D1, V1) = (l"ﬁ/zul/||rj/2u1||%,F£21/2v1/||1"£21/2v1||q{2) is the unique maximizer in (4) except for sign change. Fur-
thermore, if¢, < &1 wheres; is the second eigenvalue BfR, then, giveru € H; andv € H; such thapxx(u, ®1) =
oyy(v, P1) = 0, we havepxy(u, V) < p2 = /22 which shows tha€4 holds.

As mentioned in Remark 4.2, & = (X,Y)T ~ &, T,¢) is an elliptical random element, Fisher-consistent
association measures for bivariate elliptic families,hsas the cofficientspy,, or posx defined through (2), satisfy
(16). Hence, we have;(P) = h(or.1), ®1(P) = ®@r; and¥1(P) = Wr.1. Therefore, the above discussion implies that
C4 holds for these association measures, under the assusptidheorem 4.8 of He et al. [26].

On the other hand, for Gaussian processgbsholds when considering the transformed Spearman or Kendall
correlationspg, andpg, under the assumptions of Theorem 4.8 of He et al. [26].

4.1. Fisher—consistency

Theorem 4.1 shows that the estimators defined in (11) andafE2¢onsistent for the population first canonical
directions and the maximum canonical association gived)md (5). It is important to highlight that the quantities
p1 = p1(P) and @1,¥1) = (®1(P), ¥1(P)) depend on the chosen association meaguaed we need to clarify
what they represent. This section focusses on showinghedunctionals;(P) and @1(P), ¥1(P)) have a simple
interpretation, at least in some situations. In partigudar results hold for the elliptical families, even thougley
are not restricted to them.

When the measure of association satisi@ we havep,1(P) = h(or.1), ®1(P) = ®r1 and¥1(P) = ¥r1. Hence,
in this case, the estimated canonical directions definetilingre consistent for the first canonical weights assatiate
toT". Furthermore, ih(t) = t, o1 provides a consistent estimator of the first canonical éagon associated tb. As
mentioned above, & ~ E(u, T, ¢) and has finite second moment, there exists a constan® such thal” = cI'zz,
wherel'z7 is the covariance operator @f Therefore, the canonical analysis done using the dispecgeratoi” or
the covariance operatdy are identical.

We will see that for elliptic families, the functionalg(P), ®1(P) and¥1(P) have a simple interpretation for some
of the association measures described in Section 2.1Z ketX,Y)" ~ E(u,T, ¢) be a random element i where
1 € H andI is as in (6). From Remark 4.2, we have tig8 holds with the scatter operatby see (17), implying
that p1(P), ®1(P) and¥1(P) are the first canonical association and directions assatial” respectively. Hence,
Fisher-consistent association measures for bivariaggielfamilies provide estimators of the quantities of iretst.
Examples of association measures Fisher—consistent elifftecal distributions are, for instance, those definexhf
scatter matrices, i.e., the measysgg or poex defined through (2).

Finally, consider the family of Gaussian distributions @my association measure Fisher—consistent for normal
bivariate vectors, such as the normalized Spearman or Hlesateelationsog, andpg given in (3). Then, using (17)
we get that (16) is satisfied with(t) = t which implies thap1(P), ®1(P) and¥1(P) are the first canonical association
and directions associatediaespectively.

5. Detection methods to identify influential observations

An important use of robust estimators is the detection o il outliers. In this section, we describe two criteria
to detect observations with a significant impact on the fiastonical weight estimators. More precisely, we are not
10



interested in providing a rule to detect any kind of outlierfunctional data, but only to identify observations which
influence the first canonical directions estimators. Theffirsthod is based on prediction, while the second is based
in cross—prediction, both related to the functional cacalanalysis described above.

To describe the first detection rule, 1e¢,{Y)” be a centered random elementfdf = H; x H,. Our detection
method considers the orthogonal projections on the firstimigal weights X, @1)4, ®1 and(Y, ¥1)4, VY1 as predictors
of X andY respectively. More precisely, given a samfil%;, Y;) "}, ¢ H, letj = (iix, fty) be robust location esti-
mates computed from this sample, such as the spatial mehatns,ix = argmin,.,, S (1% = Ollgg, — 11 Xillg,) /N
anduy = argmin,.g, >y (Y = Ollgg, — Yillgg,) /n. Let (ﬁ)l, ‘?1) be the robust estimates of the first canonical weights
defined in Section 3.2 and computed as described in SectlbnRobust estimators are needed since, as in other
settings, the detection methods based on the Pearsonatimmahay produce a maskingfect that will not allow us
to properly identify the influential observations.

Denote aX(® = X; - ix andY = Y, - fiy the centered observations and %? = (X, &1)5, &1 and¥© =
(Yi(c),‘i’1>«H2‘i’1 be their predictors respectively. We expect that an inflaéot atypical observation will be poorly
fitted leading to large values of at least one of the two sqliagsiduals norm&2; = X - X©|2, or R, =

||Yi(°) - \?i(°)||§12. As noticed in Boente and Salibian—Barrera [8], explotiing residuals norms may allow to detect
abnormal points in the data. Taking into account that thigibigion of the residuals squared norm is typically skewed
to the right, we propose to flag an observation as atypictd Bquared residual norm exceeds the upper whisker of a
skewed-adjusted boxplot (see Hubert and Vanderviere. [BR]re precisely, denote & andGy the set of indices
exceeding the upper whisker of the skewed—adjusted bogrplbie residuaIsF@){i)lsiSn and R%i)lsisn respectively.
The observations with indices in the sgts, Gy or Gx UGy are considered as potential influential observations which
from now on, are calledutliersas shorthand.

The detection rule based on cross—predictions is basededioltbwing property that can be found in Yohai and
Garcia Ben [46]. Lex € RP andy € RY be centered random vectors and assume tmalf{lg < oo and E£|y||]§q < 0o,
Given a random vectar € R, denote ay; the best linear predictor for based org, i.e.,y: = E(yz")E(zz") 'z
Then, when each componegjtof z = (z,...,7) is a linear function ok, the random vectoz that minimizes the
determinant of the matrix E(— y;)(y — y3)" is given by the first canonical variables related xo

As in Section 3.4, give{®;}i-1 and{n;};-1 orthonormal bases ¢ff; andH; respectively and a samplex;, Yi) "},

T ~ ~
setx; = ((Xi,(51>741, o (X, 6pn>’Hl) andy; = ({Y;, 771)7.(2, (Y, 7]qn>sz)T. Denotexi(c) = Xi — Hy andyi(c) =Yi—fy,

the centered observations wheggandyi, are robust location estimates, such as the spatial medrapwed from
the samplegx;}i<i<n and{yi}i<i<n respectively. Furthermore, 1é4 and 61 be defined as in (14) and compute the
sample of the centered first canonical variahi§s = a7x(® andv® = by, It is worth noticing thau® =
<Xi,ci)1>«H1 - a]j1 provides an approximation for the centered canonical i@iiathe spacegH; given by Ui(c) =
(XO D)y, = (X, D1)g, — (fix, D1)a, and similarly forv®. Using for each observation the centered canonical
variates, we obtain the best robust linear predictors@fandy© based on/® and® respectively, denoted &
andy;. As before, one expects that an influential observationlelpoorly predicted causing large values of at least
one of the two squared residuals norrgs = X — &: /|2, andr2, = [y — §; |2,. Three diferent set of indices
are used to identify the possible atypical data. As abgyeandGy indicate the sets of indices exceeding the upper
whisker of the skewed—adjusted boxplot of the residu%s)kign and ('%i)lggn respectively, whilggx,y stands for
those indices exceeding the upper whisker of the skeweds®dj boxplot of the sampleg; + r%,)i<i<n. Finally, any
observation with index in the se@&x, Gy, Gx U Gy Or Gx+v is considered as a potential atypical data.

It is worth noticing that a detection rule based on the bagp‘l()Ui(C), \7i(°)) may also be considered as a diagnostic
tool. We refer to Alvarez [2] for readers interested on thggenance of this detection method.

6. Monte Carlo study

In this Section, we numerically explore the finite sampleadsébur of the proposed estimators foffdrent asso-
ciation measures andffirent choices for the approximating subspaces when thettipaces are?-spaces. More
11



precisely, we report the results of a Monte Carlo study desigo compare the performance, for Gaussian and con-
taminated data, of the first canonical association and tireestimators defined in (11) and (12) when using the
Pearson correlation and two robust association measurad.dases, we performédR = 1000 replications.

6.1. The estimators

As mentioned above, the estimators defined in (11) depeindibtiie association measure to be maximized and in
the bases generating the approximating spaces. Beyoneédnsdn correlatiop., , we report here the results obtained
using the association measure defined througlivthecatter matriypy,, defined in (2), wher®/; is computed using
Huber's score function with tuning constaat= (v3,,)"%, and the normalized Spearman fiagentps, given in (3).
The results for other association measures can be seenanezli2].

Two different sieve bases are considered: the c@bispline basis as fixed basis and the basis of functional
principal directions as an adaptive one. The elements oBtepline basis are orthonormalized before applying the
algorithm to compute the estimators. On the other hand, wheithe Pearson correlatign, , the principal direction
basis on each space is chosen as the eigenfunctions of tipdeseonariance operators #fandY respectively. For
the robust association measures, robust principal dineetstimators are considered. Taking into account thatnwhe
performing cross—validation, the principal directiongdéo be computed each time an observation is removed, we
need to choose a robust and fast procedure to compute thapalidirection estimators. The spherical principal
directions defined in Locantore et al. [37] and studied inv@@{22] achieve this goal, since they provide a simple
and fast method to obtain estimators of the functional ppaidirections.

The canonical direction estimators were computed as destin Section 3.4 using the alternatep algorithm
implemented through the functiotxaGrid. It is worth mentioning that an algorithm using the centedeth as
possible directions may also be considered to estimate tstecnonical directions, following the ideas used by
Croux and Ruiz-Gazen [14] for the estimation of the first pipal component. However, as shown in Alvarez [2],
the grip algorithm leads to better results. For that reason, we dmitrésults obtained using the centered data as
candidates and we refer to Alvarez [2] for further discussio

To select the dimension of the approximating spaces, wehgseriterion defined in Section 3.3, where for com-
putational simplicity, we have only considered the sameedlisions in both spaces, thatf= {(p, p) : p € R*}, so
rn equals p, p) in (13). The seR* is taken asR* = {3,..., 11} for both bases. It is worth noticing that the possible
values of the dimensiop start in 3 when usin@®-splines since we are using cubic splines. On the other hand, f
the simulation model to be described in Section 6.2, thenz@jees related to the first three principal directions are
equal, so the principal directions are not uniquely defimegf< 3. Once the value = (f, p) in (13) is obtained, the
estimators of the canonical weights are computed usingltfeeithm described below, leading to the first canonical
weights estimatorsd(;, ¥;) and the maximum canonical association estimator\We also computed the estimator

p1 = ppa defined ap; = VRC V-

6.2. Simulation settings

Our simulation model is similar to the one considered in Healet[27]. For each replication, we generate
independent samplg@X;, Y;) T}, ¢ Hix Ho of sizen = 100 withH; = L2[0,50]. The processes were observed over
an equispaced grid of 50 poirtis j = 1,...,50. Hence, the inner produg¥;, u)4, and(Y;, v)¢, were approximated
as sums over the design poiffitg1<j<so.

The clean data sets, denot€g, were generated with the same distribution as the Gausai@hom element
(X, Y)T € Hy x H>, given byX(t) = Z?llfi fj(t) andY(t) = er*‘:l £ fi(t), where{ fj}j»1 is the Fourier basis df?[0, 50]
andm = 21. The score§ = (&1,...,&m)" andZ = (&, ..., ¢m)" arem—dimensional normally distributed random
vectors, £7,¢7)"T ~ N(0, X) where

5 :( Y11 X )

X, Iz

with £y, = 47 = 10diag(11, 1,0.75,...,0.75™3) andZ, = diag(7, 3, 1,0,...,0).
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Taking into account that the proce3§ Y) is Gaussian and that all the considered association mesaate Fisher—
consistent at the bivariate normal distribution, the tageantities to be estimated do not depend on the selected
association measure and are equal to the canonical weigttarelations defined in He et al. [25]. Hence, they will
be simply denoted g% and @, ¥,). For the process described above, we have 0.7, p, = 0.3, p3 = 0.1 and
pe = 0if £ > 3, whereas the canonical weights @gt) = W, (t) = f,(t), for£ =1,2,3.

Besides the central Gaussian model, we have consideredamtarninated situations that can be described as
follows

Ci: (X, Y)T are i.i.d. with the same distribution as{B)(X, Y)" + BW(f,, f2)T, whereB ~ 8(1,0.1), W ~ N(25,1)
andW, B, (X,Y)T are all independent of each other. This contamination spmeds to a strong contamination
in the direction of the second canonical directionXfY)".

Co: (X, Y5)T are i.i.d. and the proces$ andY; are such that

fa+ Ty 2
Xi ~ (1— B)X + B f]_ fl + W + Olf3 f3 b Olf4 f4 + g fi
i [ \/E ?:5 I

fa+ f 2t
Y, ~ (1-B)Y+ B[§1f1+W%+O.1{3f3+0.1§4f4+25,-f,-]

i=5

whereB ~ 8(1,0.1), W ~ N(25,0.01) independent d, X andY and ¢",¢")" ~ N(0, ). This contamination
corresponds to a strong contamination in the direction ofeal combination of the third and fourth canonical
weights of X, Y)T.

It is worth noticing that, whep is the Pearson correlatio®,(P) = ¥,(P) = f, for ¢ = 1,2,3 underCy, but
not necessarily for the contaminated distributions. Maezisely, unde€; the order betweery, andf; is reversed
when using = pc., SO the first canonical directions ate(P) = W1(P) = f, for this association measure, while
corresponds to the second canonical weights.

6.3. Simulation results
For each situation, we evaluate the performance of the fensbwical directions and the maximum canonical
association. To compare the performance of the first canbwigight estimatorsd;, V1) of (¥4, ¥1), we compute
e aglobal goodness of fit measure, denoted as MISE, consid&eth He et al. [27], which is the average over
replications of|®1 — @412 + |[¥1 — P41/

e the average over replications of the absolute Pearsonlatiorebetween the canonical variates computed only
for the non—atypical data, that is, the average of

>, (- B)UiUj|

[A)X ' 4 FA)CL,XX,CLEAN(q)lﬁ (IA)l) =

\/Zin=1(1 - By)U? 3iL,(1 - B)U? ’

whereU; = (X;, ®1) andU; = (X;, ®,). This measure provides a way to quantify how the proposélsfigood
observations. A similar measure was computedifar

Taking into account that the results obtained ér are similar to those obtained fdr;, we only report the
summary measures for the first component of the canonicadtiin estimators. More precisely, Table 1 reports the
MISE and averages over replicationsogffor different association measures and bases. We also report thenroéd
the dimensiorp oObtained by cross—validation to illustrate how the contations #ect the dimension of the chosen

linear spaces.
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The better performance of the estimators computed usindastassociation measure is better illustrated in
Figures 2 and 3, where, for simplicity, the functional pipat direction basis is denoted FPC. More precisely, Figure
2 plots in red triangles and blue solid circles the MISE arelatierage over replications of = per xxceas (@1, P1)
respectively.
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Figure 2:MISE of the canonical weight estimators (in red triangles) average obx = pcr xxcrean (P1, ®,) (in blue solid points),
when using the Pearson correlatjof, the association measug,, defined in (2) and the normalized Spearmantitcient psp

given in (3). The considered sieve bases are the cBbgpline basis and the basis of estimated functional prihcipactions,
labelledB—-Splines and FPC, respectively.
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Figure 3:Mean (in blue solid points) and mean square error (MSE) (@ntriengles) of the estimatofs, when using the Pearson
correlationpc, the association measupg,, defined in (2) and the normalized Spearmanfitcient psp given in (3). The con-
sidered sieve bases are the cuBiespline basis and the basis of estimated functional prithdipections, labelled—-Splines and
FPC, respectively.

Note that for clean data the averagepgfisS close to 1, while the values of the MISE are small, as exqokcEhis
fact is more evident in Figure 2 which reveals that un@gall the procedures lead to similar results. On the other
hand, for contaminated samples the estimators based osdhé&acorrelation are stronglyffacted by the presence
of outliers. Indeed, in this case Figure 2 shows that thea@eralues 0pe xxcrea(P1, (i)l) move away from 1
approaching 0 and the MISE grows taking values very close whith is the maximum possible value. On the other
hand, both robust estimators give more resistant resultsveMer, the proposal based on the Spearmafficesnt
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stands out, since it has the lowest MISE value and the averageaeplications 0p& x x creax(P1, ®,) is the one closer
to 1 for the considered bases in both contaminated scenarios

To summarize the behaviour of a given estimatpof the maximum canonical associatipn, we compute the
mean over replications of the obtained values as well as #wrsquare error (MSE). Table 2 reports the mean and
mean square error (multiplied by 4)0of the estimatorg;"andp; = pp1. On the other hand, Figure 3 shows the
mean and MSE of the estimatgrsin blue solid points and red triangles respectively reviegihe sensitivity of the
classical procedure based on the Pearson correlatiomtiratises its mean square error due to its increased bias. The
same conclusion can be obtained from the estimataeported in Table 2. Indeed, for clean data the mean values
of the estimatep; are close t@; and the MSE are low and very similar to each other. Howevshauld be noted
that the estimates, present a positive bias in all cases, while the estimageris slightly negatively biased. In this
scenario, the absolute bias@jf1 is lower than that op7, leading to MSE values which are in general smaller than
those ofp.

For contaminated samples, both estimajarsuridpp i are strongly fiected, moving away fromp;, when the
Pearson correlation is used. The best procedure is the ceel loem the normalized Spearman fti@égent giving the
smallest mean square errors and only a small increase orstineators bias. As for uncontaminated samples, the
MSE ofpp 1 is somewhat lower than the one obtained withiri all cases. We can explain this result by the nature of
the introduced contamination, which tends to increase #heeg of the correlation estimators. Recall that for clean
sample®p 1 has a negative bias, white has a positive bias. In this case, as a result of the considergamination,
the estimatorgp 1 andg: give larger values resulting in estimat@ig; with smaller bias thaps”

Co C C,
p |P pPx MISE|Pp px MISE|p px MISE
B-splines
pe. |3 098 014, 3 021 320 5 0.28 298
pvy |3 096 023 4 082 087 5 084 0.87
psp |4 095 026 4 093 038 5 090 0.54
Functional principal direction basis
pa |4 097 023 3 019 330 4 026 3.07
pvy |5 095 033 5 081 094 5 083 0.90
psp |4 095 033 4 089 057 5 0.89 0.56

Table 1:MISE and mean over replications 0f = pcr xxciean (@1, é)l) for different contamination settings, when using the Pearson
correlationoc, the association measysg,, defined in (2) and the normalized Spearmartitoientpsy given in (3). The median of
the dimensiorp dbtained by cross—validation is also reported. The consitisieve bases are the cuBiespline and the estimated
functional principal directions bases.

We also study the performance of the two methods proposeddtidd 5 to detect influential observations. For
each detection method, Tables 3 and 4 report the averagédgnand specificity over the 1000 replications. Recall
that sensitivity is the proportion of actual atypical tictfiies that are correctly flagged as such, while specifisitiye
proportion of non—atypical curves correctly identified as$ atypical. An ideal method will simultaneously maintain
high sensitivity and specificity. As described in Sectioh®, detection rule based on prediction flags as outliers the
observations with indices in the s@g, Gy or Gx U Gy defined therein, leading to the detection methods denejed
ary andarxoy respectively in Table 3. On the other hand, the cross—piedimethod defines three sets of indiggs
Gy andGx,vy based on the skewed—adjusted boxplot of the cross—pradiasiduals norms. Any observation with
index in the setgx, Gy, Gx U Gy Or Gx.y IS considered as a potential atypical data, leading to thecten rules
labelled byary, ary, arxoy @andarx,y respectively in Table 4.

As shown in Tables 3 and 4, all detection rules have high fpiegilevels under all scenarios, even though the
rules based onryoy identify more data as atypical, resulting in a slightly lovepecificity but a higher sensitivity.
This behaviour is more clearly observed in Figures S.1 a@dShe supplementary file.
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Co C C,

Mean 10xMSE Mean 16xMSE Mean 16xMSE

e |P| A p1 | p1 p1|P| P p1 P1 p1|P| pu p1 P1 p1
B-splines
pcL | 31073 0.69 34 33 3 091 090 437 4{5|5 0.89 087 373 |306
pvy | 310.74 0.69 45 36 4 086 082 288 1yl |5 0.82 0.75 177 |57
psp |410.75 0.68 53 4% 4 0.80 0.76 124 63 |5 0.79 072 104 | 42
Functional principal direction basis

pc. | 4]0.73 0.68 36 40 3 091 090 435 419 |4 0.89 (0.87 356 (321
pvy | 51 0.74 0.68 48 4% % 0.86 0.1 287 146 |5 0.82 0.74 167 | 57
pse | 41 0.75 0.67| 55 62 4 079 013 116 52 |5 0.78 071 92 |43

Table 2: Mean and mean square error (multiplied by*J16f the maximum canonical association estimatersaidp; = pp1

for different contamination settings, when using the Pearsonlaborepc,, the association measupe,, defined in (2) and the
normalized Spearman cieient psp given in (3). The median of the dimensignobtained by cross—validation is also reported.
The considered sieve bases are the c@bispline and the estimated functional principal directioasds.

p Co Cio1 Cao1
Specificity Specificity Sensitivity Specificity Sensitiyit
ATy ATy  ATxoy | ATy ATy  ATxoy | ATYX ATy  ATxoy | ATYX ATy  ATxoy | ATYX ATy  ATxoy
B-splines
pvy | 0991 0.991 0.982 0.998 0.998 0.997 0.887 0.888 0917 0.999900.998 0.933 0.929 0.966
psp | 0.990 0.991 0.981 0.999 0.999 0.998 0.964 0.978 0/994 0.99¥H900.998 0.984 0.978 0.997
Functional principal direction basis

pvy | 0.990 0.991 0.982 0.999 0.999 0.998 0.887 0.884 0920 0.99¥9900.998 0.914 0.911 0.953

psp | 0.991 0.991 0.982 0.999 0.999 0.998 0.949 0.956 0/973 0.9¥H900.998 0.980 0.976 0.995
Table 3: Specificity and sensitivity for the detection rule based lum prediction errors squared nofg; = X - X|i2, or

R\Zf,i = ||Yi(°) - \?i(°)||3{2. The estimators are obtained using the association meagyréefined in (2) or the normalized Spearman
codficientpgp given in (3) combined with two possible sieve bases: theaBbispline basis and the basis of estimated functional
principal directions.

Co
Specificity

ATY

Ci01 Cz01

Specificity

ATY

Sensitivity

ATY

Specificity

ATY

Sensitiyit

ATX ATXoY ATX+Y | ATX ATXoY ATX+Y | ATX ATXoY ATX+Y ATY

B-splines

ATX ATXoY ATX+Y | ATX ATXoY ATX+Y

0.992
0.992

PVm
Psp

0.992 0.984 0.99
0.992 0.984 0.99

1 0.999 0.999 0.998 0,
1 0.999 0.999 0.998 O,

999 0.812 0.886900.883
999 0.931 0.932500.979

0.999 0.999 0.998 0.9
0.999 0.999 0.998 0.9

99 0.834 0.814 0.907 (
99 0.858 0.862 0.942 (

Functional principal direction

basis

0.992
0.991

PV
Psp

0.992 0.983 0.98
0.991 0.983 0.99

9 0.998 0.998 0.997 0|

998 0.748 0.783100.821

0 0.999 0.999 0.997 0|

999 0.870 0.893900.919

0.999 0.999 0.998 0.9

99 0.890 0.883 0.943 (

0.999 0.999 0.998 0.9

99 0.959 0.957 0.988 (

912
.953

.942
.989

Table 4:Specificity and sensitivity for the detection rule basedt@ndross—prediction errors squared nmﬁgp: ||xi(°) - 2;_i||§p and
rii = ||yi(°) - ¥:.12,. The estimators are obtained using the association meagyreefined in (2) or the normalized Spearman
codficientpsp given in (3) combined with two possible sieve bases: theaBbispline basis and the basis of estimated functional
principal directions.

For the method based on prediction, the detection4iyg, seems to be the one with the best performance, since
the decrease in specificity with respect to those labeligdbr ary is small compared to the increase in sensitivity
obtained. Analogous results are observed in the methodilmaseross—predictions when using the detection rules
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arx+y @ndarxey. IN almost all cases, the detection rulg,y corresponding to the method based on prediction overcome
in sensitivity the rules based on cross—prediction.

For the scenarios considered here, the detectionaiydly based on prediction, using the functional principal
direction basis and the transformed Spearman correlagi@as! to specificity results similar to those obtained with
B-splines with only a slightly smaller sensitivity. Takingt@naccount that the functional principal direction basis
is adaptive, the practitioner may prefer to use as a diagniost! the rulearxoy based on prediction, the association
measurepg, and the functional principal direction basis, when congidga real data set. However, taking into
account the better overall performance of the detectiambiabed of—splines and the fact that th-spline basis is
sufficiently rich to represent most data sets, we still recomnussiit this basis for diagnostic purposes.

7. Example: The writing data set

To illustrate the performance of the proposed first canddicactions estimators and of the atypical data detection
rules, we consider the writing data set described in th@thiction. We only analyse the 186 data related to the speed
of the pen on the horizontal and vertical axis when writing ltter “e” denotedK(t) andY(t) respectively.

To identify potential atypical observations, we use asdgie rules those that turn out to be the mo$eetive
ones in the simulation study described in Section 6. Tabépbnts the indices corresponding to observations detected
as outliergnfluential by the prediction and cross—prediction methosisig the detection rules labellegk,y and
Atx+y respectively. The estimates of the first canonical weighgsewcomputed as described in Section 6.1, using
the normalized Spearman dfieientpg, defined in (3) combined witlB—splines and with the functional principal
direction basis. The dimension of the approximating spaaes selected by the cross-validation criterion given in
(A3)withR = {(p, p), 3 < p < 11}, when usingB-splines anR = {(p, p), 1 < p < 11} for the functional principal
direction basis. When the maximum was attained at 11, thsilpesvalues ofp were enlarged up to 20. For the
B-spline basis, the pair satisfying (13) has coordingtes 8, while for the functional principal direction basis the
maximum is attained gt = 5. It is worth noticing that for th&-spline basis, when § p < 8, the values oRCV, ;)
are very close to the maximuRCV p) (see Figure S.3 in the supplementary file available on-limejrder to show
that, forB—splines, with a smaller dimension of the approximating sgage can also obtain reliable results, Table 5
reports the results corresponding to dimengioa 5. Observations 33, 38, 139 and 175 are detected as atypical o
influential curves for all bases and detection methods. @other hand, when using the functional principal direction
basis, the detection rule based on predictions detectypisatsome additional observations.

B-splines

p Detection rule Index of the detected observation
5 Prediction methodryey 33, 38, 139, 175

5 | Cross—prediction methody,y 33, 38,139, 175

Functional principal direction basis

p Detection rule Index of the detected observation
5 Prediction methodryey 7,33, 38, 113, 139, 154, 175, 137, 140
5 | Cross—prediction methody,y 33, 38, 139, 175

Table 5: Atypical observations detected by the prediction and eqoegliction methods using normalized Spearmarficoent
combined with the cubiB-spline basis or the basis of estimated functional prinaifi@ctions. The dimension of the approxi-
mating subspaces is also reported.

In order to evaluate the influence of the potential atypiedhan the estimators based on the Pearson correlation,
the classical estimates of the canonical weights were ctedpafter removing the detected atypical observations.
More precisely, when usinB-splines, the observations with indiceslin = {33, 38,139 175} are excluded from the
analysis. On the other hand, when projecting on the funatiprincipal direction basis, taking into account that the
observations if; are also detected by the cross—prediction method, we catipeiestimators based on the data set
without the observations ifi; and those obtained omitting the trajectories with indiecesJ = {7, 33, 38, 113, 139,
154, 175, 137, 140 We denote a@;i‘l the classical first canonical weight estimator in ¥iepace obtained after
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removing the observations indexedi, while ®,, 1 or Oy, stand for the estimators computed with the whole data
set using the Pearson correlation or the normalized Speacowficient respectively. The results for the maximal
canonical association are reported in the supplementaryihile the results obtained for the first canonical weight
associated t& are omitted, since they are similar to those corresponaiixg t

Table 6 gives some summary measures that illustrate thevioeinaof the first canonical directions estimates
of X. To compare the performance of the classical estimatots thise obtained using the normalized Spearman
codficient, we report the absolute cosine of the angle betweenothiest and the classical first canonical weight
estimates. As mentioned above, the estimators based orettred? correlation are computed with the complete
sample and after removing the observations detected aalyj/e denote asy; ., the absolute cosine of the angle
betweendg,; andd,, 1 and a4l that of the angle betweeds, 1 andé)i I, Itis worth noticing that we cannot
compute the measugg, xxxa defined in Section 6.3, since the abnormal data were notcatifi introduced but
detected by our diagnostic rules. For that reason, takitegaocount that the Spearman fiagent provides a reliable
measure when atypical data arise in the sample, we repoentipirical normalized Spearman correlation between
the robust and classical canonical variables correspgridiauch canonical directions. More precisely, we repat th

valueSogp oL = Psp(Pn[«i)sp,l, X), <&)CL,1, XD andﬁs;,IciL = PSP(Pn[<(i)SP,1s X), <(i);LIJl, X)D.

B-splines
Psecr Pends R
071 1.00 0.09 0.99

Functional principal direction basis

~ N-T1  ~-Ip A Gy -1y
PspcL Psper Psper || Gsper Cgpor CopcL

095 097 097 079 086 0.85

Table 6: Association between canonical variables and absoluteeadithe angle between the robust and classical first caalonic
weight estimates computed wi-splines or with the functional principal direction basisngsthe Pearson correlation and the
transformed Spearman dieient. We label as-7; the results obtained when the classical estimator is ccgdpafter removing
the observations indexed ify with 7, = {33,38,139 175 and7, = {7,33,38,113 139 154 175 137, 140,.

The obtained results show that, when considering the estgmsed oB-splines and computed with the com-
plete data set, the robust and classical canonical weidimasrs are far from each other, since the association
measureg ¢, is far from 1 and the absolute cosiog is close to 0 implying that the directions are almost orthogo
nal. On the other hand, the canonical varia(@ep,l, X) and the classical one obtained when the potentiéliersare
removed(ﬁ);ﬁ, X), attain the largest possible empirical association andliselute cosinesfclL is also close to 1. It
is also worth noticing that, when the whole data set is carsidland the estimators are computed using the Pearson
codficient andB—splines, the maximum d®C\{, ) is attained ap = 16 with valueRCVp 5 = 0.94, while the values
of RCVpp for 5 < p < 10 are between.08 and 085, so a smaller dimension cannot be considered in this Case.
the other hand, after removing the data with indicegirthe maximum is attained @t= 5. Hence, the dimension of
the approximating space and the canonical weights compuitedhe Pearson correlation daeient after removing
the observations with indices ify are closer to the canonical weights computed with the Speacodticient using
the whole data set. Hence, as expected, the robust prodeddseto more reliable results without excluding atypical
data.

A different phenomenon is observed for the functional principalctdon basis. In this situation, the classical
and robust first canonical variates in the sp&gecomputed with the whole sample, are highly associatedesinc
pSP(Pn[(dADSP,l, X), <&)CL’1, X)]) = 0.95, while the angle between the robust and classical caalon&ights is close to
38°. After removing the potential atypical observations, thsioe of the angle slightly increases resulting in an angle
around 30. Again, as expected, the estimators based on the norma&igedrman cd&cient computed with the
complete data set give estimates close to those obtainedhétPearson correlation déeient after removing the
observations detected as atypical.
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To highlight the behaviour of the detected observatiorg e 4 gives a plot of the data trajectories. The thin grey
lines in the background correspond to the complete set adreagons, and they are included for visual reference,
while the potential atypical trajectories are given in kldioes. To help in visualizing both sets of atypical data,
Figure 4 shows the potential outliers with indiceginin black dashed lines, while those corresponding to indites
I, - I, are givenin solid black lines (recall thag c 7).

X(t)
Y@t

-2

Figure 4:Speed of the pen on the horizontal and vertical axes. Blasheathcurves correspond to atypical observations with @sdic
in 71, while the black solid curves to those with indices beloggimZ, — 7;.

Most of the trajectories with indices ih, — 7; correspond to individuals with a higher writing speed over t
interval [0.8, 1]. Itis clear from Figure 4 that the observations with irefidelonging td’; correspond to observations
far away from the bulk of the data due to their behaviour botehape and phase. More precisely, these trajectories
seem to have a temporal phase shift with respect to the butkeodlata. Hectively, the time when their maximum
(minimum) is reached is far from the time in which most of th&ectories reach their maximum (minimum). In
particular, two of the trajectories df;, corresponding to the observation labelled as 139 and T@&5ept a distinctly
different behaviour within the interval [ 1] (see Figures S.4 and S.5 in the supplementary file). Inttfoscases,
the pen moves slower than the majority on the vertical axigthermore, the individual corresponding to the data
labelled 175 has a handwriting of the character “e” slowantmost individuals when ending its writing. On the
other hand, the observation labelled 33 is atypical sinbasta high writing speed on the vertical axis and a low one
on the horizontal axis within the interval. ) 1]. Finally, the maximum oX(t) in the interval [90.5] corresponding
to observation 38 clearly exceeds the remaining trajeztorMoreover, this maximum is attained approximately at
t = 0.3, while for most of the data, the value where the maximumashed is close to.Q. As shown in Figure S.6
of the supplementary file, the robust proposal given in thjsgn was useful to identify potential atypical data which
affect the estimation of the first canonical directions. Thegpieal data correspond to individuals with a clearly
different handwriting of the character “e”.

8. Concluding remarks

In this paper, we introduce a family of robust estimatorstfar first canonical weights and the related maximal
association for functional data. Using robust associati@asures, our proposal adapts the projection—pursug idea
introduced in Alfons et al. [4], Branco et al. [10] and CrowndaFilzmoser [13] for multivariate samples with the
sieve approach considered in He et al. [27].

19



Among other contributions, we provide an extension of theiltegiven in Leurgans et al. [36], when a general
association measure and not only the Pearson correlatiget More precisely, we show that the natural extension
of the projection—pursuit multivariate estimators coes@l in Alfons et al. [4] to the functional scenario failg)s
directions can be found with empirical canonical assammgqual to one, motivating our robust proposal which
combines robust projection-pursuit with the method of sgeas a smoothing tool.

The robust estimators introduced for the first canonicalaions and the maximal association are consistent under
mild conditions on the association measure. As in the maritite case, the proposed estimators are Fisher—cortsisten
for elliptical or Gaussian processes for appropriate awaf the association measure.

Finally, our simulation study confirms the inadequate bahaof the classical estimators when atypical data arise
in the sample, while the robust procedures based on theiassaaneasure defined through kh-scatter matrix or
the normalized Spearman dheient lead to more reliable results. In particular, we regnd the procedure based
on the normalized Spearman ¢beent. As shown in our simulation study, the robust estimsatoe useful to detect
atypical data using the predicted canonical variates. Emefits of considering robust estimators is also illusttate
areal data set where the detection rules reveal the preséimfiential observations that would be missed otherwise.

The described procedure can be extended to robustly esttir@subsequent canonical correlations and directions.
More precisely, fork > 2, thek—th canonical directions related to the association megsunay be defined as
(Qk(P), Yk(P)) = (@« Pk) = argmay,eg, oxv(U,V), whereByx = {(u,v) € S1 X Sz © pxx(U, ®j) = pyv(Vv,¥j) =
0, forall 1 < j < k- 1}, while thek—th maximal canonical association equaléP) = p(P[(Dk, X)#,, (Pk, Y)31,])-

The sieves estimators for thketh canonical directions are defined @g(¥\) = argmay, s, ., °n (u,v), whereo,, is
givenin (10) andBk p, g, = {(U, V) € S1.p, X Saq, : P(Pal{U, X)gty5 (D@js X)34,]) = p(Prl¢V, Y, (), Y)as,]) = 0, for all
1< j <k-1}. Finally, thek-th maximal canonical association estimator equgls pn (d3k, ‘i’k). These estimators can
be computed using the alternatap algorithm as described in Section 3.4 for the first canordoaktion estimators.
Consistency results for the canonical directions and tatroms wherk > 2 are an interesting topic but beyond the
scope of this paper. The mainfliGulties arise by the side null-association conditip®[{u, X4, ((i),—, Xy, ]) =
P(Pal¢V, Vg, (‘P,-,Y)Wz]) =0, for1< j < k- 1. Itis worth noticing that, when dealing with the Euclidezase, Jin
and Cui [34] impose orthogonality conditions, i.éu,&),—)(ﬂ1 = (v, ‘i’m,z = 0 as in principal component analysis to
derive the consistency of the estimators loosing the deésitdl association property between the canonical variates
(éj, X)a,, 1 < j < k. These robust canonical direction estimators may be heipfabtain a resistant estimation
procedure for functional canonical regression generajitie approach considered in He et al. [28].

Functional discrimination has been extensively considlaral we refer to Cuevas et al. [16] and Hubert et al.[32]
for a depth approach, to Yao et al. [45] for an approach whetinpwith sparse data and to Baillo et al. [6] for
further discussions. The relation between canonical tadro@ and discriminant analysis has been widely described
in the multivariate setting and also extended to the funeiicase, see, for instance, Hastie et al. [24] and Ramsay
and Silverman [41]. Hence, the robust proposal consideréus paper may be useful to deal with robust functional
optimal scoring and discriminant analysis takivigs a dummy vector coding the group class.
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