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On Edgeworth Expansion and Moving Block
Bootstrap for Studentized M-Estimators in
Multiple Linear Regression Models*

SOUMENDRA NATH LAHIRI

Iowa State University

This paper considers the multiple linear regression model Y, =x'f+¢;, i=1i, .., n,
where x,’s are known p x 1 vectors, ff is a p x 1 vector of parameters, and ¢,, &, ...
are stationary, strongly mixing random variables. Let §, denote an M-estimator of
S corresponding to some score function ¥. Under some conditions on ¥, x;’s and
&g;’s, a two-term Edgeworth expansion for Studentized multivariate M-estimator is
proved. Furthermore, it is shown that the moving block bootstrap is second-order
correct for some suitable bootstrap analog of Studentized f5,. © 1996 Academic Press, Inc.

1. INTRODUCTION

Consider the linear regression model
Y,=x'f+e,, i=1,.,n nx=1 (1.1)

where Y, ..., Y, are the observations, x,’s are known p x 1 design vectors,
B is a px1 vector of regression parameters and ¢, ¢,, ... is a stationary
sequence of random variables (r.v.’s) defined on some probability space
(2, #, P). The design vectors x,, ..., x,, at the nth stage are allowed to
depend on n, but we suppress that for notational simplicity.

The classical estimator of /8 is the least square estimator (LSE) f3,, which
is defined as a solution of the equation (in ¢ € R”)

Y x(Y;—xt)=0. (1.2)
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It is well known that the ﬁn is very sensitive to the outliers. A class of
robust estimators of f is given by the so-called M-estimators (cf. Huber
[13]). Let y: R— R be a Borel measurable function satisfying

E(e,) =0. (1.3)

Then, an M-estimator /3, of § corresponding to  is defined as a solution
to the following robustified version of Eq. (1.2):

Y oxap(Y,—x;t)=0. (1.4)

When ¢,’s are independent and identically distributed (i.i.d.), the
asymptotic behaviour of Efron’s [ 7] bootstrap method for Studentized /3,
(and ﬁn) has been investigated by several authors. See Freedman [8],
Shorack [22], Bickel and Freedman [ 5], Qumsiyeh [21], Lahiri [ 16, 177,
Tiro [24], and the references therein. For dependent ¢,’s, however, the i.i.d.
resampling scheme of Efron [7] is not appropriate (cf. Remark 2.1 of
Singh [23]). A more effective resampling scheme (viz., the moving block
bootstrap or the MBB, in short) for dealing with weakly dependent obser-
vations has been recently formulated by Kiinsch [ 14] and Liu and Singh
[20]. For normalized statistics that are smooth functions of sample means
of stationary, strongly mixing r.v.’s, the MBB is known to outperform the
classical normal approximations. (cf. [ 12, 18]). The major objective of this
paper is to establish the second-order correctness of the MBB for Studentized
multivariate M-estimator of f under model (1.1).

For studying second-order properties of the MBB, in Section 2, we
establish a two-term Edgeworth expansion for Studentized f,. Unlike the
independent case, under dependence of ¢;’s, we have to contend with a
major technical difficulty, which does not show up in the i.i.d. case. Let
D,=(Y"_,x,x;)""* and d,=D,x;, 1 <i<n. Let I, denote the identity
matrix of order r>1. When ¢,’s are weakly dependent, the asymptotic
covariance of D !(f,—f) matrix is given by COV,=(Ey'(g;)) >x
Yh—o LinEW(ey) Y(ey 4 1), where Ly, =1,and L, = 7:_11( (did} i+ d; i d)),
I1<k<n—1. Thus, to Studentize (f,—f), one needs to estimate a
progressively increasing number, say, /, of the lagged covariances Ey(e;) X
V(e 1), 0<k<I[ such that /- oo as n— co. Since the number / of
estimated lagged covariances tends to infinity, the well-known Edgeworth
expansion techniques of Bhattacharya and Ghosh [3] and Bhattacharya
[2] do not apply to this case.

In Sections 3 and 4, we develop necessary machinery for dealing with
this issue. The key steps require some of the ideas developed by Bickel,
Gotze, and Van Zwet [ 6], Gotze [ 10], and Gotze and Hipp [ 11] (hereafter
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referred to as [ GH]). Using the Edgeworth expansions for Studentized S,
and its bootstrap version, it is then shown in Theorem 2.2 that the MBB
outperforms the normal approximation.

The rest of the paper is organized as follows. Section 2 gives the assump-
tions and the main results of the paper. Some auxiliary lemmas are proved
in Section 3. Sections 4 and 5 give the proofs of the main results for the
unbootstrapped and the bootstrapped M-estimators, respectively.

2. MAIN RESULTS

The following notation is used throughout the paper. Let {Z;:
—o0 <j< 0} be a given sequence of sub-o-fields of # with Z_ =9, =
{¢,Q2}. For any —o0 <a<b< o0, let 2"=0{Z;:a<j<b). For a matrix
A, write A’ for the transpose of A. Define M, =max{|x;||: 1 <i<n} and
do=(p+11)~". For a function g: R— R, let g’ and g” denote the first and
the second derivatives of g. Write ||g| ., for the supremum norm of a func-
tion g from a set X into R. Let &= Y,—x}f, denote the ith residual,
1 <i<n. Define

a(k) = Ey(e,) Y& 4 1), k=0 T=EY'(¢,),

n—k
Gk)=(n—=k)"" Y Y(E) (g ),  O0<k<sn—1, t,=n""% Y'(s)

j=1 j=1

For any set AeR”, let 04= the boundary of 4, and A”={xeR”
|x —y| <n for some ye A}, n>0. Also, for any countable set B, write |B|
for the number of elements in B. Let I(-) denote the indicator function.
Write @ and ¢ for the distribution and the Lebesgue density of N(0, 7,)-
distribution on R?, respectively. For any real number x, let [ x] denote the
largest integer not exceeding x. In the following C, C(-) will denote generic
constants, depending only on their arguments, if any. Whenever it is
obvious, the dependence of C(-) on p, p and on the finite moments of y(¢;),
V'(g;), and y"(¢;) will be suppressed for notational simplicity. Unless
otherwise stated, limits in order symbols are taken as n — oo.
Now we are ready to state the assumptions.

Assumptions. (A.1) (1) ¢ is twice differentiable, and " satisfies a
Lipschitz condition of order J, >0,
(1) y, ', " are bounded.
(A2) (1) EY(e,) =0, t=EY'(¢,) #0,
(i) 0. =a(0)=237, lo(k)|>0.
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(A.3) There exists p >0 such that

3
(i) sup{|P(AnB)—P(A)P(B)|: A" Begr n=1} <
(

— 0 n+mo
pLexp(—pm) for all m>1,

(ii) for alln>1, and all m> p ', there exists a 2" ”-measurable
random variable &, ,, such that E |, —&, .| <p ' exp(—pm),

(iii) for all n,m,q=p~"' and AeP.*?, E|P(A|Z:j+#n)—

n—q°
P(A|Z;:0<|j—n|<g+m)|<p~"exp(—pm), and
(iv) foralln=p~', m<nandallzt, ,,..t,, R with |t,|>p,
E|E(exp(y/ — 1 X725, ;Y() |22 j #n)| <exp(—p).
(A4) Max{|x;|:1<i<n}=0(1) and liminf

n— oo

where 4, denotes the smallest eigenvalue of (37_, x;x7).

n=1'2,=i>0,

A few comments about the assumptions are in order. Assumption
(A.1)(ii) has been assumed mainly to simplify the proofs of the theorems.
(A.1)(ii) can be replaced by suitable moment conditions on (¢;), ¥'(&,),
and y/"(&;), at the cost of considerably lengthier proofs. Since a robust
M-estimator of f under model (1.1) necessarily corresponds to a bounded
Y (cf. [13]), this may not be as serious a restriction in applications as it
appears at first sight. Similarly, Assumption (A.4) is used to simplify the
proofs. For results on f, that allow unbounded x,’s, see Lahiri [15].
Assumption (A.2)(ii) is needed here to ensure that Cov(X.7_, d;y(e;)) is
nonsingular for n large. It is easy to construct examples (with suitable
choice of x,’s), where (A.2)(ii) fails and S, is not asymptotically normal on
R” with any Studentization.

Assumption (A.3) has been used crucially to establish the validity of
Edgeworth expansions for Studentized £, and its bootstrap version. Except
for (A.3)(iv), the other conditions are comparable to the conditions
introduced in the significant work of [GH]. (A.3)(iv) is stronger than the
conditional Cramér conditions used by [ GH ]. Here the stronger version of
the Cramér condition is needed to deal with the triangular array {d;y(¢,):
1<j<n; n>1}, as compared to a fixed sequence of random vectors in
[GH]. In the special case, where ¢;’s are m-dependent and the conditional
distribution of Y(e, ) given {g:1<;<2m+1,j#m+1} has an
absolutely continuous component with respect to the Lebesgue measure on
R, then (A.3)(i)—(iv) hold.

To define the Studentized version of f,, note that the asymptotic
covariance matrix of D, (5, — f) is given by

5 =Cov < 5 d,.lp(g,.)> - é; L, (k).

i=1
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Therefore, a natural estimator of X, is
. !
Zn: z L/cnd-n(k)a
k=0

where 1</=/,<n—1 is an integer. If /- oo “slowly” with n, then
12, -2, = 0,(1). By (A.2)(ii), X, is non singular with high probability for
n large, and can be inverted to define the Studentized statistic.

In contrast to the univariate case, where one uses the unique square root
of X, to Studentize D '(f,— f), in the multivariate case the choice of the
Studentizing matrix is not unique and requires some special treatments. Let
A denote the set of all pxp positive definite (p.d.) matrices (on R) and let
A, be the set of all p xp nonsingular matrices (on R). Then # can be
identified with an open subset ¢ of R?', where ¢, =p(p + 1)/2. Furthermore,
there exists a matrix valued function /: # — #, such that for all 4 e #,

(i) h(A) h(A)=A"", and (ii) if 4=((4;)), and A= (4, ..., 41,
Ayay s Aapi i Ayp)'s then the elements of h(A), considered as
functions of ¢,-variables, are infinitely differentiable on €. (2.1)

Indeed, there exist more than one function from # into # which satisfies
requirements (i) and (ii) of (2.1). Roughly speaking, each such function
defines a version of A4~ for A € #. The most common choices of / come
from the spectral decomposition and the Kholesky decomposition of a p.d.
matrix. (cf. [19]). However, for the rest of this paper, it is not assumed that
h is of a specific form. Fix any function /4 satisfying (2.1) , and define the
Studentized M-estimator T, by

T,=h(Z,) D, (B,—p).

The following result is useful for deriving Edgeworth expansions for 7.

PropoSITION 2.1.  Assume that (A.1), (A.2), (A.3)(1), (i), and (A.4) hold.
Then, there exists a sequence of statistics {f,} such that

P(B, satisfies (1.4) and |D (B, —pB)|>°<Clogn)=1—o0(n""?). (2.2)
Thus if (1.4) has a unique solution f,, then [D '(B,—p)|=

0,((log n)"?). The next result asserts the validity of a two-term Edgeworth
expansion for T,.

THEOREM 2.1.  Assume that Assumptions (A.1)~(A.4) hold and that {j,}
is a sequence of measurable solutions of (1.4) satisfying (2.2). Suppose that
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n’l~'=0(1) and 1= O(n"* ="*) for some 6 >0, and k >max{p+3,5} - ,.
Then, there exist polynomials p,(-) on R? such that

Sup |P(T, € B)— | (14p,(x)) dd(x)| =o(n~"?)

Be#
for every class A of Borel subsets of R” satisfying

Sup &((0B)") = 0(n) as 70. (2.3)

Be#

Here ||p,d|l,=0m""), and the coefficients of p,(-) are continuous
Sfunctions of cross-product moments of (¢;), ¥'(¢;), and " (g;).

An exact expression for the Fourier transform of the expansion for T, is
given by relation (4.10) in Section 4. Even under the stationarity assump-
tion on ¢;’s, the form of the expansion is utterly complicated, making the
empirical Edgeworth expansion for T, unfit for practical applications. As a
result, the question of second-order correctness of the bootstrap
approximation for 7, becomes more important in this case than in the i.i.d.
error case.

To define the bootstrap version of 7, first form the “observed” blocks of
residuals of length /as ;= (¢, ..., &, 1), 1 <j<b, where b=n—1+1 and
&=Y;,—x;pB,, 1 <j<n. Nextdraw ¢}, .., ¢} randomly, with replacement
from &, .., &,, where ky=[n/l]. Note that each &} has / components.
Denote the ith component of &* by &, 1 <i</ Also, set &f=ef_ | .
1<i</, 1 <k<k,, and define the bootstrap pseudo-observations

Yi*zx;ﬂ_n_i_gi*ﬂ lglgnla

where n, = k,/. Adapting Shorack’s [ 22] approach, define the bootstrapped
M-estimator f* as a solution of the equation in 7€ R?,

> XY F—xi) —4,) =0, (24)

where f4,=1""E{y(e¥)+ --- +y(¢f)}, and E, denotes the conditional
expectation under the MBB resampling scheme, given ¢,, ..., ¢,. Centering
Y by fi,, makes the estimating equation (2.4) conditionally unbiased at
t=/3, and ensures the bootstrap analog of (1.3).

The following result shows that conclusions similar to Proposition 2.1
hold for f* as well.
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PROPOSITION 2.2.  Assume that the conditions of Theorem 2.1 hold. Then,
there exists a sequence of random vectors { B} satisfying

P, (B satisfies (2.4) and | D, (¥ —B,)|>< Clogn)=1—o0p(n~"7?), (2.5)
where P,, denotes the probability under E,,.

To define the bootstrap version of T, note that by the independence
of the resampled blocks, X *=the conditional covariance matrix of

lfld,‘p( ¥) is given by X¥=37", COVn(Z,—l (kfl)/t/lp( *)):
ST LSS DR o, ), where D—(1-2 I(j=0))(D%,+ D),
lej_d(kfl)/+ld(k71)l+l+j’ ax(i,j)= 7122H71 (Sk)lﬁ(gkﬂ) and Y=
lﬁ(')_:u/‘n'

Since / is small compared to b and 1<i</, (i, j)’s are uniformly
(in 7) close to o*(1,j) for all 0<j</ Hence, by the independence of
{&F: k=1, .., k,}, a natural “estimator” of o*(1, j)’s is given by

ORGSR YD WL SRR E G A

where & =Y * —x;f* is the ith bootstrap residual, 1 <i<n,. Let

where 1, =[1"?]. Then, the bootstrap version T * of T, is given by

Tx=hE¥) D, (Br—B)/Er (2.7)
and we have the following result.
THEOREM 2.2. Assume that the conditions of Theorem 2.1 hold. Suppose

that T* is defined by (2.7) for some measurable sequence { ¥} satisfying
(2.5). Then

Sup |P(TeB)—P(T,eB)|=0p(n""?) (2.8)

Be#

for any class % of Borel subsets of R” satisfying (2.3).

Remark 2.1. The conclusion of Theorem 2.2 continues to hold for the
MBB with a different block size /, as long as n°l;'=o0(1) and [/, =
O(n'' =% for some d >0 and x >, max{p +3, 5}.

Theorem 2.2 shows that the MBB indeed provides more accurate
approximation for Studentized multivariate M-estimator of the regression
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parameter vector f§ than the normal approximation. It may be noted that,
except in some special cases (e.g., p-population sample means from p
independent populations), the important issue of Studentization for multi-
variate estimators itself has received very little attention in the literature, let
alone their asymptotic properties. Consequently, Theorem 2.2 should prove
particularly useful for constructing second-order correct multivariate
inference procedures (e.g., tests and confidence regions) for f under model

(L.1).

3. LEMMAS

We need to introduce some more notation. Let my=[logn
loglog 3+4+n)], v,,=n""*(logn)"? v,=n""2, v,,=v,(logn)~!, and
V3, =V,(logn) =¥ For any two real numbers u, v let u A v=min{u, v} and
uvv=max{u,v}. Let Z, ={0,1,..}. For a=(ay,..,a,) €(Z,)? and
x=(x,..,x,) R, g=>1, define x*=T[¢_, x¥, |a|=a,+ --- +«,, and
ol =[T_, («;!). For a function g: R’ —» R, let D;g denote the jth partial
derivative of g. For ae(Z, )% set D°¢=D7 ---Dyg. Let

:D;l(ﬁ_n_ﬂ)’ 91”2 z diZlia

i=1

Z;=Y(ey), =y'(e,) — Zy=Y" (&) — EY" (&), 3
Zy(k)=y(e) (e, 1) —alk),
Zsi(k)=v'(e) Y(e; 1) — EY'(e1) Y(&1 1)

Zs(k)=v(e) W' (e; ) —E(e) Y'(er 40, 121, k20

Similarly, with £ = jth component of £, 1 <k <k,, and V(=) —4,,
let Z%, = ,—1d 71)/+jl/j(ékj) and Z% = j—ld(kfl)lJrjd(kfl)lJrjlp(ékj))
1<k <k, Also, write 3 ,(-)=3%_, (-), f(y)=exp(y/ —1Y), yeR, and
2U)=(—=1)"*D,---DEf(t'U)|,_, for a random vector U in R

Lemma 3.1. Let Wy, ..., W, be random variables defined on a probability
space (@, 7, P) with EW,=0, |W,|<a,,. For | <m<n—1, let &,(m)=
Sup{|P(AnB)—P(A) P(B)|: Ae 71, BEZZM], 1<qg<n—m}, where
F =0a{W;a<i<b). Then, for any integer r=>1 and 1 <m<C(r)n,
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(@) E(W,+ --- +W,)”<C(r)-af,[n'm* +n*d,(m)], and
(b) if mai,<n, and max{EW?: 1<1<n} <aj, then
E(W,+ - + W) < C(r)-n”ai,&,(m) + C(r, a)[n" +a;, (n/a,,)*].

Proof. For part (a), see Lemma 3.1 in Lahiri [ 18]. The second part can
be proved using similar arguments. The details are omitted. ||

LEmMMA 3.2.  Under the conditions of Proposition 2.1,

(a) P(IX7_, dip(e)l > Clogn)'?)=o(v,),
(b) for any integer r =1,
> di(e)

Sup {E
iel

Proof. Under Assumptions (A.1), (A.3)(i)—(iii), and (A4), the
arguments in the proofs of Lemma 3.16, 3.17, 3.20, and 3.33 of [ GH] yield

‘D“{Ef<t’h(2n) 5 d,»w(e») —exp(—1122)(1 + E(/=17h(Z,) 6@%!)}

iel

2r

Is{l, ...,n}}< C(r).

< (o, O)[n(nM,)* +mi M1+ (2] °* ) exp(—C(p) I11])  (3.2)

uniformly in 7<{1,..,n} with |I|>n—m3 and in ae(Z,)” for some
0<d<d,/4, provided [|t]| < C(a, §) %% Lemma 3.2(a) can now be proved
using the arguments in the proofs of Theorems 2.10 and 2.11 of [GH].

Next, by (3.13) and (3.14) of [ GH], for any integer r >3 and any a e R”
with |jal| =1,

.. /(a)| = [the rth cumulant of < Y a d,l//(e,-)>
iel
=1

<C0) X etz e ) (11 16,1 )

Jj=1

<C(r) Y M[-i""'M;,+ O(exp(— C(p) ms)),

0<i<my

where 3V extends over all iy, ..., i, e I with maximal gap i. Part (b) follows
from this. ||

LeMMmA 3.3 Assume that the conditions of Theorem 2.1 hold.

(a) For any integer r =1, and for N=1 or [n'?~%],

(n—k)

E ZI‘,Lkn(n_k)il Y Zu(k)
k=0

i=N

2r

<CH)n~ (1 +n=1h.
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! n—k
3 (=k) Ly (d,-zs,-(k>+d,-+kzé,-(k>)H >Cvn(logn>2>

i=1

(b) P<
=0(v,).

Proof. Lemma 3.3 can be proved using Markov’s inequality and
Lemma 3.1. See Lahiri [15] for details. |

LEMMA 34 Let L={jp+1,..(j+1)p}, j=0,1,.., [n/p]—1, and for
c>01let A,(c)={1 <]< [n/p]: 1nf{zle,, X} l) It =1} > cp}. If Assump-
tion (A.4) holds then for all 0 <c<c,, 2(c)=liminf, ,  n='|A4,(c)| >0,
where ¢,=2""-min{4, limsup, _, , M,}.

Proof. Follows from (A.4) and the inequality 1,<M,p |A4,(c)|+
([n/p]1—=1—14,(c)]) ecp+pM,. 1
Since x;’s are assumed to depend on n (by a reindexing, if necessary),

from now on, w.lg. assume that 4,(c)={0, 1, .., |4,(c)|—1} for all n>1.

LemMmA 3.5. Suppose that the conditions of Theorem 2.1 hold. Let N=N,,
be an integer satisfying n'?> =< N<|A4,(c,)|-p. Then, for teR”,

‘EBIH(Z) B2nf<t’ % diZli)

i=1

<exp(—C(c,, K, 2) - Njmy) - 1([[]|> > Zpn)
+exp(—Cle,, K, X) [[t]I> Nn~'m3 ") - 1([|¢]]* < Zpn)
+exp( — C(K) m;),

where B, (t)=T11/_ N+1H;i=l(1+a;jZi))f(l’diZI[) and anzl_[/ (I
ay,Z ), for some la; <1, KeZ,, 1<i,.., ig<N, and 377_ ., 1<K,
andz (lea Z2l9 Z3I)'

Proof. Define I ={1<i<N—mj:|i—i,|>m;, 1<k<K}, L={1<
iISN—my:li—i| >my+p, 1 <k<K}, L=[{(N—m3)—(2m;+2p+1)K}
(7m3+2p)*1] it=Inf{iciel,}, and i/, =Inf{iel,:i>i"+Tm;+2p},
r=1,..,1. LetAk—H{fth DA Zy) | j—i|<ms, jel}, k=1,.., 1.
Then using the arguments in the proof of Lemma 3.43 of [ GH], one gets

‘EBln(t) Ban<l,h(2n) g dlef>

j=1

ph
<CK) [ E|EA, | 9 j#iol +exp(—C(K)ms).  (33)

k=1
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Also, in Lemma 3.2 of [GH], for any m>1, i=p ', and ¢, ..., t5,,,, €R
Wlth |tm+l|<pa

2

2m+1
EE<f< > thI,i+j>‘%5j¢i+m+1>

j=1
2>

<1—47"(1 —exp(—C(p))) <exp(—C(p) 15,1 1); (34)

2m+1
<1—4’<1—E‘E<f<2" Y zjz,,,.+j> ’ @,:j;ei+m+1>

j=1

where r is such that 2" |¢,,,,|>p>2"""|t,,. . Lemma 3.5 now follows
from (3.3) and (3.4) for |¢|| > Apn and from Lemma 3.4 for |7|>< ipn.

LEMMA 3.6. Assume that the conditions of Theorem 2.1 hold. Then

(@) |4, =0,n""1).
(b) FO}’ any integer V> 19 Z;(V:l En HZTk H2r: Op(N(lmgMi)A‘)

Jor N=ky and N=[1""'n"" =227, where y =max{1, p—1} ,/4.

Proof. Part (a) is a consequence of (A.1) and (1.4). Part (b) follows
from Lemma 3.1(a), Proposition 2.1, and part (a) above. ||

LeMMmA 3.7. Assume that the conditions of Theorem 2.2 hold. Then,

(@) X E,Z% — Al =0,(v,m3),
(b) ni ' XL di(E" (&) — EY"(e))) = O,(v,(log n) ),
(©)  NELZi ZTZ1) — 2l = 0,(1).

Proof. ||E, Y Z% —A| is bounded above by CI|b'>’ | Z,|+
X0, didi =1, -[e| + Cb~" 37_ ||l 10,]| + Cn~'l, which is O,(n~"?m3),
by Lemma 3.1 and Proposition 2.1. This proves part (a). Proof of part (b)
is similar. Part (c) can be proved using (A.3)(i), (ii), Lemmas 3.1 and 3.6.

See Lahiri [15] for further details. |

4. PrROOFS OF PROPOSITION 2.1 AND THEOREM 2.1

Let e, .., ¢, denote the standard basis of R”. Write a=[n"'~>0"7],
and for 1<i<n, 0<k<l define y,=yu, =17 '[d,EY(e, ) ¥ () +
di i EY(e)) Y'(er 40 ]
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Proof of Proposition 2.1. Let A= D, '(t— ), te R?. Then, by Taylor’s
expansion, one can rewrite Eq. (1.4) as

S o] 4= ¥ die) +27 X did a2 ) R0, (1)

where |R (1) < CX7_, |Id;|*+° | 4]*T°, t e R”. Note that by Lemmas 3.1
z dp(e;)

and 3.2,
g
i=1

P(|4,—A| > Cn Ylogn) ?)=o0(n"1"?), (4.2)

g

for all 1 <j, k, m<p, where d; denotes the jth component of d;. The proof
of Proposition 2.1 can now be completed as in Bhattacharya and Ghosh

[31. 1

Proof of Theorem 2.1. Step (1): Stochastic Approximation for T,. Using
(4.1), (4.2), and Proposition 2.1, one can retrace the steps in Lahiri [16]
to show that

> C(log n)1/2> =o(n"'?),

Z dikdzjdimz3f

i=1

> Cn5/8> <Cn*

0,=(47"+77%(4~4,)) 0,,+(2) ! Z d(d;0,,)* EY"(e;) + Rs,, (4.3)

i=1

where P(||R,, | > C(c.,) v,,) =o0(v,). Next, note that by Taylor’s expansion,

t,—t=n"') Zy—(nt)"' Y di0,, - EY"(e)) + R,
i=1

i=1 i=

6,k —ak)=(n—k)"" Y Zu(k)

i=1
n—k
—(n—k)"" Y Y0+ Ryl(k),  0<k<], (4.4)
i=1
. / n—k
Z:;1_2:}1: Z (n_k)ilLkn z [Z4i(k)_y;k91n]+R5n

0 i=1

EZ\‘ln—i_lefon (SaY)
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for some intermediate remainder term R,,(-), where by (4.2), (4.3), and
(A3), P(|Rs,|>cvy,(logn)~")=0(v,) and P(|[Rs,|>cvs)=o0(v,). See
Lahiri [ 15] for details.

Note that for any 7€ R” with ||¢]| =1, by Cauchy-Schwartz inequality,
(2,02 0(0)—2 55 (S1, (1)) |o(k)] > 6(0) =2 X7, lo(k)] > 0, so
that X', is p.d. for all n> 1. Now, using (4.3), (4.4), and Taylor’s expansion,
after some lengthy algebra one gets

Tn=h<2n>[el,,+rlem< NS Zym ()1 (di0y) Ew”(en)

i=1 i=1

+17(4—4,)0,,+ (20" Z di(d;0,,)° Elﬁ”(el)}

i=1

+ Z (f1;1)ﬂDﬁh(2n) 01n+R6r19 (45)
Bl=1

where by (4.2), (4.3), (4.4), and Lemma 3.3, P(||R,,| > Cv,,) =0(v,). Note
that the stochastic approximation to T, can be expressed in the form
Tln = h(Zn) 01n~+25:1 g,lnAOrnglne +ZI~771 ~’2nA1rn01ner+Z\/ﬂ:1 (zln)/))
Ag,0,,, where Z,,=((A—A,):n"'Y! | Z,) and A, A, Ay, are
nonrandom matrices satisfying max{n'?(|A,,[l + [ 4,,,|l + |4,]: 1 <r<p,

Bl =1} =0(1).

Step (I1): Edgeworth expansion for T,,. Let 60,,=>7_ ,,d Zii
Asy = (X7 dydyZ5),y ps Zoy=((Ah,—EAL,):n ' 37 «Z2), 2=
Zk o(n— )71Lknz7 f [Z4z( )= 05,741, and T2n_h( W) 01, +
>r_05,4,05e,+3 Zh,Ay,,0,,e e+ 5 =1 (Zzn) Ap, 0,

Then, by (4.2), (4.10), Proposition 2.1, and Lemma 3.1,

PO Ty, = T, > Cvy,) = 0(v,). (4.6)

Let O,(t)=f({'T,,), t€ R”. By standard arguments, it is enough to show

max fr 1D*(Q,(1) = ¥,(1)] di = o(v,,), (4.7)

ol <p+1

where I',={teR”: |t| <v;,'} and ¥, is defined by (4.10) below. First,
consider the integral over |¢|| <m5. By Taylor’s expansion, for any ¢ e R”,
one gets

Qn(t) = E(l + it’ An) exp(il'h(Z,,) Hln) + Rll,n(l)a
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where 4,=T,,—h(2),) 0,,. By Lemmas 3.1-3.3 (cf. Lahiri [15]),
E |47 <Cr)[n~"T"(1+n""I"* Y+ M n'm?¥
ID*Ryy (DI < CL+[|2|*)LE (14,
X(L+E 04,12+ E 4,17+ 1*1]
C(L+|e)?)-n"*n° (4.8)

for all |a| <p+1 and some J > 0.
Next write ¢, =t'h(X ,,), and Zz,, ; for the ith summand in 22,1, 1<i<n

(SO that ZZn z, a ZZn z) Let L ( ) ZI/XI*I Z} =0 (Lkn) (I’l k)71
Yt Fyut' Ay, For 1<i, j<n, r=1, and I<{l, .., n}, define v,;(1)=
X (te) diAo,d;—diLy, (1) d; and 0,(r, 1) =3 Ide]ka where >F,
extends over all indices k€ {1, .., n} such that 3(r —1) m;<|i—k| <3rm;
for every ie I. Now, expanding f(#,,05(1, 1)) with suitable choices of I and
using Lemma 3.5, one can show (see Lahiri [15]) that for any |o| <p+1
and all |z] <mj;,

ID*[E(1+./—114,) f(1,0,)— P, (0] <Cla)n " -n=° (4.9)
for some 6 >0, where

exp([[1]%/2) ¥,(1)

=1+E(/—12,0,,)%3!
P
+\/ Z Z E|:Ull] ZIIZ +ZZn i < Z 1rn /> le:|

i=1 j=1

X[I_Z’GSn ls{l} 0371 17 {-]} ,t

VL L S(F -0 )

J=1 k=0 i=1 \|g|=1
X E{Zy(k) Z1;(1 = 1,05,(1, {i, k}) £,05,(1, {7}))}- (4.10)

Using (4.8) and Taylor’s expansion for mi; < |t|| <ms(n/a)"? and using

Lemma 3.5 and weak dependence of 4, and {Z,:1<k<a} for
ms(nfa)'? < |t <vs,},

| 1070, ()1 di=o(v,) (411)

for all |a| <p+1, where I';,={rel,: |t| >m;}. Combining (4.5)-(4.7),
(4.9), and (4.11), one can now complete the proof of Theorem 2.1.
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5. PROOFS OF PROPOSITION 2.2 AND THEOREM 2.2

Proof of Proposition 2.2. Using Corollary 4.2 of Fuk and Nagaev [9]
and Lemmas 3.6-3.7, one can show that

r.(

22

> C(log n)”2> =0,(v3,),

‘k (5.1)
Pn < Z (Z;kk_EnZ;kk) > Cvnll/2 lOg n> = Op(v3n)'
1k
Also, by Chebychev’s inequality,
/ 3
P(|2 2 (T diesrron e - Bt
e j=1 \r=1
> Cv,(logn) ~* for some 1 <i,, i,, is <p> =0,(v3,). (5.2)

The rest of the proof is similar to the proof of Proposition 2.1. |i

Proof of Theorem 22. Let 0*=D YB*—pf,), 0%=3, 2Z%,
A¥=X 1, Z%5, A, =E,A* % =n;' 3" '(e*), and £,,= E, t*,. Also, let
S S IR BN~ 0% ). By (5.1), (5.3). Propesition 2.2,
and Corollary 4.2 of Fuk and Nagaev [9], one has (cf. (5.3)-(5.14) of
[15]1)

T=T%+RE, (5.3)

where P,(||R%,| > Cv,,) = 0,(vs,) and the stochastic approximation T}, is
of the form

T% = * 4+ Z 0% Ay, 0%

)4
+Y Zx A,,,0% Z )P Ay, 0%, (5.4)

1 =

such that Z* = ((A,—A*): (t¥ —%,,)) is of dimension (p(p+1)/2)+1,
and A,,,, 4,,,, and 4, are random matrices such that by Lemmas 3.1, 3.3,
and 3.7,

max{\/;l HAAOrn_AOmH + H/’I\lrn_/llmH
+ | Ag, = Agll : 1<r<p, Bl =1} =0,(1). (5.5)
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Let a,=[/"'n"?77] with y=max{p—1,1} d,/4, 1%, =1 ¥ (&k),
Z;kn,k:((ZZk E Z;kk),: (T;kn,k_EnTZ(n,/()),’ and

Va(t) =

r

+the' X {i (L;kn)ﬁ(z4/<(j)_EnZ4k(j)) (t’/’i/in) VAR

[Bl=1Lj=0

(e )[ZH Ao Zt+ 23,

1

ZY—Z3LYE (1) Z%,

2n, j lrn

I DM~

for 1<, k <k, where L¥(1) =37 3 51 (L§)” y%(1'Ap,), and L% is the
p(p+1)/2- d1mens1ona1 vector corresponding to L% of Lemma 3. 7 Then,
the Fourier transform ¥ * of the Edgeworth expansmn for T,* is defined by
P x(t)exp(l|7]*/2)= Zu E, (\/ X ZE) B3 =/ =1 X, X E, V(1) -
(¥ Z3) - (¥ ZF) +/ =1 2w EL V(1) Note that 7%, is defined in terms
of lndependent Varlables Ex 1 <k <k Define 7%, by deleting all variables
based on &, 1 <k <a,, from all but the first term of T¥, (cf. the definition
of T,, and T, above). Now, adapting the techniques of Gotze [10] and
using the results of Bhattacharya and Ranga Rao [4], one can show that
for all o] <p+1,

| 10— wxn) di=0,(vs,). (5.7)
where I, ={t: |[7]|> <nl~'(logn) '’} and Q*(t)=E, f(#'T%,). For details
of the arguments involved, see (5.15) through (5.27) of [15]. Next, using

Lemma 3.1 and a discretizing argument as in the proof of Lemma 4.2 of
Babu and Singh [1], one can show that

Sup {

N L S ! (538)

Enf<t'ZTk>—Ef<z' S du 1)

Jj=1

Furthermore, from the proof of Lemma 3.2 of [ GH], it follows that for
any random vector X and any sub-g-field ¥ = 7, it there exist #,€(0, 1)
and 77, > 0 such that |E(f(#X) | €)| <1 —n, for n, <|t|| <2#,, then for all
el <2, [(S(£X) | %) <exp(—n,[1]?/(8n3)). Hence, by (A.3) (iv), (A4),
and (5.8),

[T{IE.ft¥Z¥) kel |J|za,—p—1,J={],..,a,}}

<exp(—C(p, (1 —o0,(1)) a, [t]*/n)
<exp(—C(p, A)(1—o,(1)(log n)*)
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for all n'21="*(logn) > < ||t|| < C(p, ) " So, by (5.8) and (A.3),

max L |D*Q (1) = O,(v3,),

la| <p+1 3

where I'5, =1 \I,,. This proves the validity of the Edgeworth expansion
for T*. Next, using Lemma 3.7 and similar arguments, and comparing
(4.10) and ¥'*, one gets (2.8). See Lahiri [ 15] for details.
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