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Abstract

The method of Laplace is used to approximate posterior probabilities for a collection of polynomial
regression models when the errors follow a process with a noninvertible moving average component. These
results are useful in the problem of period-change analysis of variable stars and in assessing the posterior
probability that a time series with trend has been overdifferenced. The nonstandard covariance structure
induced by a noninvertible moving average process can invalidate the standard Laplace method. A number
of analytical tools is used to produce corrected Laplace approximations. These tools include viewing the
covariance matrix of the observations as tending to a differential operator. The use of such an operator and
its Green’s function provides a convenient and systematic method of asymptotically inverting the covariance
matrix.

In certain cases there are two different Laplace approximations, and the appropriate one to use depends
upon unknown parameters. This problem is dealt with by using a weighted geometric mean of the candidate
approximations, where the weights are completely data-based and such that, asymptotically, the correct
approximation is used. The new methodology is applied to an analysis of the prototypical long-period
variable star known as Mira.
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1. Introduction

This paper develops Laplace approximations to the posterior probabilities of polynomial re-
gression models with errors equal to the sum of independent processes, one of which is stationary
autoregressive and the other a noninvertible moving average. This error structure finds applica-
tion in at least two problems of scientific importance. First of all, it arises in the problem of
period change analysis of variable stars, where it was essentially proposed by Eddington and
Plakidis [1] and Sterne [23], and refined by Lombard [14]. In this context, the autoregressive
part of the model corresponds to random variation intrinsic to times between successive max-
imum (or minimum) brightnesses of a star, and the noninvertible moving average arises from
differences between errors made in recording times of maximum (or minimum) brightness. The
application of statistical methods to testing for period changes in variable stars has a long his-
tory in the astronomy literature; see, for example, Sterne and Campbell [24], Isles and Saw
[4], Lombard [14], Percy and Colivas [18], Koen and Lombard [11,12] and Hart et al. [3]. To
our knowledge, only frequentist-type tests have been used to detect period changes in variable
stars. Results in the current paper provide an apparatus for performing Bayesian tests of period
change.

The current method of choice for approximating posterior probabilities in analytically in-
tractable Bayesian models is Markov chain Monte Carlo (MCMC). However, the setting of Koen
and Lombard [12] and Hart et al. [3] provides an example of when an alternative method, such
as that of Laplace, is desirable. In these papers, a period change test is applied to each of over
375 variable stars. Using MCMC methods in such a setting would be extremely time consuming.
Typically, some human intervention is required to insure that the MCMC output is mixing ade-
quately and/or that adequate burn-in time has been achieved (Gilks et al., [2]). Carrying out this
exercise for hundreds of different data sets is impractical at best.

A Bayesian test of no systematic change in periods may be conducted by determining if the
posterior probability of models with polynomial degree higher than 0 is sufficiently large. As such,
our results have implications on regression model selection when the errors have a noninvertible
moving average component. A widely used criterion, first proposed by Schwarz [22], for model
selection is BIC. Schwarz [22] showed that for certain exponential family models his criterion
approximates the log of the posterior probability of each model. Therefore, BIC approximately
corresponds to the Bayesian procedure of selecting the model with highest posterior probability.
BIC has been extended and studied by a number of authors. Kashyap [7] noted that Schwarz’s
approximation to a posterior probability can be viewed as a special case of Laplace’s method
and gives a more accurate approximation by including more terms in the expansion. Kass and
Wasserman [10] point out that BIC is more directly related to the log of the Bayes factor than to
the log of the posterior probabilities. They showed that for a particular class of reference priors
the log of the Bayes factor is approximated by BIC with error of order Op(n−1/2) instead of the
more typical Op(1).

Laplace’s [13] method provides an analytical approximation to integrals that take a particular
form. A recent review of asymptotic expansion of integrals including Laplace’s method is given by
Olver [16]. Practitioners often provide no justification for the validity of Laplace’s approximation
to a posterior integral. Moreover, the necessary regularity conditions, such as those derived in Kass
et al. [8] and Johnson [6], are typically derived for i.i.d. observations. The data of our model are
neither independent nor identically distributed, and hence the validity of the usual approximation
is in question. We will show that BIC and the usual first order Laplace approximation [9,20] do
not always provide a good approximation to the log of the Bayes factor for our models. In those
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cases where the usual approximation breaks down, we develop a modified Laplace approximation
that is asymptotically more accurate.

A second setting where noninvertible moving averages arise is in time series analysis when
a series has been over-differenced. Data differencing has long been a tool in econometrics for
inducing stationarity of an error series [19,21]. Suppose that the errors of an observed time series
follow an ARIMA process with nonseasonal differencing order d, which may be unknown. If the
data are differenced d + 1 times, i.e., they are overdifferenced, the resulting error series has a
noninvertible moving average component. Tsay [25] provides two other reasons why noninvertible
moving averages are important, and proposes frequentist tests of the hypothesis that the data have
a noninvertible component. The results in this paper provide a general and computationally simple
Bayesian alternative to such tests.

The remainder of the paper proceeds as follows. In Section 2 our model is defined and the
problem of interest stated. Section 3 is devoted to an analysis of the likelihood for this model
and the development of Laplace approximations to posterior probabilities. An important part of
this section is analyzing the asymptotic behavior of information matrices as the sample size tends
to infinity. This involves viewing these matrices as tending to differential operators. The use of
differential operators and their Green’s functions provides a convenient and systematic method
to asymptotically invert information matrices. We also describe in Section 3 how our results can
be used to assess the probability of overdifferencing. In Section 4 we present an analysis of data
from the long-period variable star Mira, which is one of the 392 data sets of Koen and Lombard
[12]. It is shown that our modified Laplace approximation is superior to a BIC approximation of
posterior probabilities.

2. Model formulation and definitions

Given observations Y1, . . . , Yn at evenly spaced time points 1, . . . , n, consider the model

Yj = �m(j) + Ij + εj − εj−1, j = 1, . . . , n, (2.1)

where �m is an mth degree polynomial accounting for systematic variation in the observations,
and {Ij : j = 1, . . . , n} and {εj : j = 0, . . . , n} are independent, mean 0 error processes. It is
assumed that the Ij ’s follow a first order autoregressive, AR(1), process, i.e.,

Ij = �Ij−1 + Zj , j = 2, . . . , n,

where |�| < 1 and Z2, . . . , Zn are i.i.d. normal random variables with mean 0 and finite variance
�2

Z . The variance of Ij is denoted �2
I and equals �2

Z/(1 − �2).
The εj ’s are assumed to be independent normal random variables with mean 0 and finite

variance, and are allowed to be heteroscedastic in the following way:

Var(εj ) = v
(
xj ; �

) = exp[2(�0 + �1xj )], j = 1, . . . , n, (2.2)

where � = (�0, �1) and xj = j/n, j = 1, . . . , n.
Remarks about model (2.1):

1. The most general version of model (2.1) is motivated by the period-change problem discussed in
Section 1. In that setting, each Yj is the observed length of time between successive maximum
brightnesses of a given variable star, �m accounts for systematic variation in these times,
I1, . . . , In are errors intrinsic to the star, and ε0, . . . , εn are errors made in measuring the times
of maximum brightness. Of interest is testing whether or not there is systematic variation in



28 S. Pokta, J.D. Hart / Journal of Multivariate Analysis 99 (2008) 25–49

the times between maximum brightness, which is equivalent to testing whether or not the
polynomial degree m is 0.

2. The heteroscedastic error model (2.2) is motivated by the analysis in Hart et al. [3], where
it is noted that residual variance for most stars tends to decrease monotonically over time.
This is consistent with the fact that methods of measuring times of maximum brightness have
improved over the time period in which the data have been observed.

3. The connection of model (2.1) to the overdifferencing problem may be described as follows.
Suppose one observes a time series Uj = r(j) + �j , j = 1, . . . , n + d + 1, where r is
a polynomial of degree m + d + 1 and {�j : j = 1, 2, . . .} is a Gaussian ARIMA(0, d, 0)

process [15]. If the data U1, . . . , Un+d+1 are differenced d + 1 times, the result is a series
of n observations identical in distribution to those of model (2.1) with �2

I = 0 and �1 = 0.
If the Uj ’s are differenced d times, the resulting errors are i.i.d. Gaussian. As will be shown
in Section 3.7, these two facts entail that our methodology can be used to approximate the
posterior probability that a series with ARIMA(0, d, 0) errors has been overdifferenced.

Application of our results to the overdifferencing problem will be discussed in Section 3.7. Until
that point, all our discussion pertains to Laplace approximations in the period-change context of
Remark 1.

In the period-change problem, the case �2
I = 0 is of crucial importance since it necessitates

modified Laplace approximations. Deciding whether the error term Ij is present or absent will be
a part of the model selection process. A model will be described by a pair M = (m, h) where m
is the degree of the fitted polynomial and h is a binary variable such that

h =
{

0 if �2
I is assumed to be 0,

1 if �2
I is assumed to be positive.

The observations Y1, . . . , Yn are distributed multivariate normal with means

E(Yj ) = �0 + �1
j

n
+ · · · + �m

(
j

n

)m

, j = 1, . . . , n. (2.3)

We will consider models for which 0�m�mmax. Let �m denote the parameter space of �m =
(�0, . . . , �m) for the degree m model. The covariance matrix � of Y1, . . . , Yn is given by

Cov(Yi, Yj ) =

⎧⎪⎪⎨
⎪⎪⎩

�2
Z/(1 − �2) + v(xj ; �) + v(xj−1; �), i = j,

��2
Z/(1 − �2) − v(min(xi, xj ); �), |i − j | = 1,

�|i−j |�2
Z/(1 − �2), |i − j | > 1,

(2.4)

where the function v is defined by (2.2). Let � denote the covariance parameters for the model,
i.e., � = � if h = 0 and � = (�2

I , �, �) if h = 1. Let �h denote the parameter space for � when
the model indicator is h. For brevity we will omit the subscript h whenever it is clear from the
context.

The likelihood is

f (y|μm, �) = 1

(2�)n/2
(det(�))−1/2 exp

(
−1

2
(y − μm)′�−1(y − μm)

)
,

where the elements of μm = μm(�m) are defined by (2.3) and of � by (2.4).
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Let 	M denote the prior probability of model M. We assume that the mean parameters �m and
the covariance parameters � are a priori independent. Then the prior has the form

�(�m, �|M) = �m(�m)�h(�).

Let Z(y) be the marginal density of Y. The posterior probability of model M given the data is then

�(M|y) = 	M

Z(y)

∫
�h

∫
�m

f (y|μm, �)�m(�m)�h(�) d�m d�.

In general, it is not possible to evaluate this integral exactly, and hence we consider a Laplace
approximation in the next section.

3. Approximation of posterior probabilities using Laplace’s method

Throughout Section 3 it is assumed that the model, (m, h), whose posterior probability we
are computing is such that m�m0, where m0 is the polynomial degree of the true model. This
case will suffice since, as argued by Kass and Vaidyanathan [9], the posterior probability of a
model with m < m0 is exponentially small (asymptotically) in comparison to ones with m�m0.
It follows that any of the approximations we consider will be extremely small for m < m0.

We may express μm as X�m, where X is an n× (m+ 1) design matrix and we have suppressed
the dependence of X on m and n. The posterior probability of model M given the data is

�(M|y) = 	M

Z(y)(2�)n/2

∫
�h

(det(�))−1/2�h(�)

×
∫
�m

exp

(
−1

2
(y − X�m)′�−1(y − X�m)

)
�m(�m) d�m d�.

Since our data Y are normally distributed, the parameters �m which only influence the mean of
Y and the parameters � which only influence the covariance matrix of Y are orthogonal. Let �̂, �̂

and �̂m denote the MLEs for these quantities for model M. Note that

�̂m = (X′�̂−1X)−1X′�̂−1Y,

which is also a generalized least-squares estimator of �m. The information matrices for � and �m

are, respectively,

I�,� =
(

1

2
tr

(
�−1 ��

�
i

�−1 ��

�
j

))

and

I�,� = X′�−1X.

If the hypotheses necessary for the Laplace approximation hold, then the resulting approximation
to Z(y)�(M|y) is

	M

(2�)n/2

(
det �̂

)−1/2
exp

(
−1

2
(y − X�̂m)′�̂−1(y − X�̂m)

)

×�m(�̂m)�h(�̂)(2�)(m+3+2h)/2 (det I�̂,�̂

)−1/2
(

det I
�̂,�̂

)−1/2 (
1 + Op(1/n)

)
. (3.1)
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We note that Z(y) is the actual marginal distribution of Y, which depends upon the integrals
that we are approximating. Once we compute our approximations to Z(y)�(M|y), they may be
summed over M to obtain Ẑ(y), an approximation to Z(y).

There are technical conditions which must be met for the Laplace approximation in (3.1) to be
valid. In particular, it is necessary that the eigenvalues of I�,� and I�,� tend to infinity as n tends
to infinity. It will be seen that the asymptotic formulas for the posterior probability will depend
on the asymptotic form of these matrices.

Laplace’s method was recently applied to variance component models by Pauler et al. [17].
Their work dealt with the situation that causes difficulties in our model, namely that a variance
component can be 0. However, we are unable to apply their technique to our model since we
cannot assume that the cubic term in our asymptotic expansion is negligible at the boundary.

3.1. Information matrix of �

To study the asymptotic behavior of I�,�, we take the following approach. Any vector v =
(v1, v2, . . . , vn), such as a column of the design matrix X, can be viewed as a step function on
(0, 1] by identifying v with the function fv(t) = vi for (i − 1)/n < t � i/n, i = 1, . . . , n. The
dot product of two vectors is then interpreted as integration via the formula

v · w = n

∫ 1

0
fv(t)fw(t) dt.

This interpretation makes it possible to identify the limit of a sequence of vectors of length n as n
tends to infinity with a function on [0, 1]. For example, for our design matrix X the ith column is
Xi = ((1/n)i, (2/n)i, . . . , ((n−1)/n)i, (n/n)i)′ and limn→∞ fXi

(t) = t i . For piecewise smooth
regression models, including polynomials and Fourier series, the columns of the design matrix
have a nice limiting behavior.

Similarly if A = (ai,j ) is an n × n matrix, then we can interpret A as a piecewise constant
function a(s, t) on (0, 1] × (0, 1] by setting a(s, t) = ai,j for (i − 1)/n < s� i/n and (j −
1)/n < t �j/n. Hence, matrix multiplication becomes integration as well. Specifically, if the
matrix A corresponds to the function a(s, t), the matrix B corresponds to b(s, t), and the vector
v corresponds to the function fv(t), then the vector Av corresponds to

fAv(s) = n

∫ 1

0
a(s, t)fv(t) dt

and the matrix AB to the function

n

∫ 1

0
a(s, �)b(�, t) d�.

Unfortunately, for most of the covariance matrices we are interested in, taking this limit will require
rescaling by a power of n and interpreting the limit as a distribution on [0, 1]× [0, 1] rather than a
function. For example, the n×n identity matrix In corresponds to the function in(s, t) which is 1 if
s, t ∈ ((i − 1)/n, i/n] for some i and zero otherwise. Hence, limn→∞ nin(s, t) = �(s − t) where
� denotes the Kronecker delta function. This will be abbreviated to In = �(s − t)/n + O(n−2).

The covariance matrix � = A + B can be broken into the two parts A and B. Here A and
B represent the parts of � coming from the εj ’s and Ij ’s, respectively. Specifically, we have
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A = (ai,j ) where

ai,j =

⎧⎪⎪⎨
⎪⎪⎩

v(xj ; �) + v(xj−1; �), i = j,

−v(min(xi, xj ); �), |i − j | = 1,

0, |i − j | > 1.

(3.2)

The elements (A−1)i,j of A−1 are given explicitly by

e�1/n−2�0

e�1/n − e−�1/n
× e2(1+1/n−max(xi ,xj ))�1 − e2(1+1/n−xi−xj )�1 − 1 + e−2 min(xi ,xj )�1

e2(1+1/n)�1 − 1
.

A correct expression for this quantity when �1 = 0 can be obtained by using L’Hôpital’s rule.
The parameter �0 that determines the variance of the first measurement error ε0, should not

depend on the number of observations n. Furthermore, �1 is assumed not to depend on n since
otherwise the variances would change dramatically between the first and last observations and
hence only a small fraction of the data would actually contribute to our parameter estimates. This
scaling seems to be borne out by the data.

It is easily shown that as n → ∞, (1/n)A−1 converges to the function

g(s, t) = e−2�0

2b(e2b − 1)

(
e2b(1−max(s,t)) − e2b(1−s−t) − 1 + e−2b min(s,t)

)
. (3.3)

Alternatively, (3.3) can be derived without explicitly inverting A using techniques that would be
helpful for a large number of covariance structures. Consider multiplying the matrices A by a
sequence of vectors v which converge to the smooth function fv(t). Then, ignoring boundary
effects or assuming fv(0) = fv(1) = 0, we compute

lim
n→∞ n2fAv(t) = −e2�0

d

dt

(
e2bt dfv(t)

dt

)
. (3.4)

Thus limn→∞ n2A can be interpreted as a differential operator. The inverse to a differential
operator is the corresponding Green’s function. Specifically, suppose we have a sequence of
vectors w converging to fw(t). Since (1/n)A−1 converges to g(s, t), (1/n2)A−1w converges to

h(t) =
∫ 1

0
g(t, �)fw(�) d�. (3.5)

Hence by the identification of A with a differential operator in (3.4), we see thatn2A(1/n2)A−1w =
w will converge to

− e2�0
d

dt

(
e2bt dh(t)

dt

)
= fw(t). (3.6)

Combining (3.5) and (3.6) gives

−e2�0
�
�s

(
e2bs �g(s, t)

�s

)
= �(s − t).

Thus, g(s, t) is Green’s function for the differential operator corresponding to n2A. Conversely
we could have used this method to find the asymptotic behavior of A−1. We first identify n2A



32 S. Pokta, J.D. Hart / Journal of Multivariate Analysis 99 (2008) 25–49

with the differential operator using (3.4), then directly compute Green’s function g(s, t) for this
differential operator on [0, 1] with the boundary conditions g(0, t) = g(1, t) = 0. Thus it follows
that (1/n)A−1 converges to this Green’s function.

The second part B = (bi,j ) of the covariance matrix � is given by

bi,j = �2
I�

|i−j |.

Based on the observed data it appears most reasonable to assume that � does not vary with n,
and therefore the absolute values of entries of B decrease rapidly as they move away from the
diagonal. For vectors that tend to smooth functions (the only type we need to consider), entries
near the diagonal have almost the same effect as diagonal entries (with errors of order n−1).
Ignoring boundary effects that are also O(1/n), the row sums of B are

∞∑
j=−∞

�|j | = 1 + �

1 − �
.

Suppose the vector v represents a smooth function f in the sense that v′ = (f (1/n), f (2/n), . . . ,

f (1)). Then we have∥∥∥∥
(

B − �2
I

1 + �

1 − �
In

)
v

∥∥∥∥ �O(‖v‖/n),

which will be abbreviated as

B = �2
I

1 + �

1 − �
In(1 + O(1/n)). (3.7)

Hence if �2
I > 0,

B−1 = �−2
I

1 − �

1 + �
In(1 + O(1/n)). (3.8)

When considering I�,� = X′�−1X, a natural measure of the size of a matrix A is the matrix
norm max{v:‖v‖�=0} ‖Av‖/‖v‖, where the maximum is taken over vectors v which represent smooth
functions. Thus the matrix A of (3.2) has size O(n−2), A−1 has size O(n2), and provided �2

I > 0,
B and B−1 have size O(1). Thus if �2

I > 0, A is much smaller than B and � ≈ B = O(1), but
if �2

I = 0, then � = A = O(n−2). This difference in scales results in differences in the Laplace
approximations.

First suppose �2
I > 0. The columns of the X matrix converge to functions on [0, 1]; therefore

X converges to a row vector of functions:

lim
n→∞ X = (f0(t) f1(t) · · · fm(t)).

Since

� = B + O(n−2) = �2
I

1 + �

1 − �
In(1 + O(1/n)),

we have

lim
n→∞ n�−1 = �−2

I

1 − �

1 + �
�(s − t)
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and hence for 0� i, j �m

(X′�−1X)i,j ∼ n2
∫ 1

0

∫ 1

0
fi(s)n

−1�−2
I

1 − �

1 + �
�(s − t)fj (t) ds dt

= n�−2
I

1 − �

1 + �

∫ 1

0
fi(t)fj (t) dt. (3.9)

If the functions fi are linearly independent on [0, 1], as they are in any nonredundant regression
model, then the matrix with (i, j) entry

∫ 1
0 fi(t)fj (t)dt is positive definite. It follows from (3.9)

that all the eigenvalues of I�,� = X′�−1X will be large for large n, as required. Furthermore,

log det(I�,�) = (m + 1) log(n) + O(1),

which is consistent with the standard BIC formula. For our specific case of fi(t) = t i , we have

(X′�−1X)i,j ∼ n�−2
I

1 − �

1 + �
· 1

i + j + 1

and hence

det(I�,�)
−1/2 ≈ n−(m+1)/2

(
�2

I (1 + �)

1 − �

)(m+1)/2 m∏
i=1

(2i + 1)1/2

(
2i

i

)
.

Next suppose �2
I = 0, in which case � = A. The X matrix is exactly as in the previous case but

�−1 = A−1 ∼ ng(s, t),

where Green’s function g(s, t) is given in (3.3). Hence for 0� i, j �m we have

(X′�−1X)i,j ∼ n3
∫ 1

0

∫ 1

0
fi(s)g(s, t)fj (t) ds dt.

The matrices Lm = (�i,j )0� i,j �m with

�i,j =
∫ 1

0

∫ 1

0
sig(s, t)tj ds dt

are positive definite. To see this, let p(t) be a nonzero polynomial and let q(t) = ∫ 1
0 g(s, t)p(s) ds

be the unique solution to −e2�0 d
dt

(e2btq ′(t)) = p(t) with q(0) = q(1) = 0. Then q(t) is not
constant and hence∫ 1

0

∫ 1

0
p(s)g(s, t)p(t) ds dt =

∫ 1

0
q(t)p(t) dt

= −e2�0

∫ 1

0
q(t)

d

dt
e2btq ′(t) dt

= e2�0

∫ 1

0
e2bt (q ′(t))2 dt > 0.

It follows that all the eigenvalues of I�,� tend to infinity (but like n3) as n tends to infinity. Hence

log det(I�,�) = 3(m + 1) log n + log det(Lm) + O(1/n).
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Importantly, this differs from the standard BIC formula. Because of the negative correlation
between adjacent observations, the data contain more information about the regression coefficients
�m than one might naively expect.

3.2. Information matrix of �

Next we consider the asymptotic behavior of I�,�. When the covariance matrix � of a multivari-
ate normal distribution depends on parameters � = (
1, . . . , 
k), the (i, j) entry of the information
matrix is

I
i ,
j
= 1

2
tr

(
�−1 ��

�
i

�−1 ��

�
j

)
= −1

2
tr

(
��−1

�
i

��

�
j

)
. (3.10)

Consider the case where �2
I = 0, i.e., h = 0. In calculating the posterior probability of an

h = 1 model, we need the full 4 × 4 information matrix even though the truth is h = 0. The
development in Section 3.1 must be applied with care to this situation. The earlier discussion
was for A and B or their inverses applied to vectors v which tend to a smooth function fv. The
columns of �−1 = A−1 after rescaling tend to continuously differentiable functions, but not twice
differentiable functions. Thus we cannot expect to treat A as a second order differential operator.
But the asymptotic behavior of B only requires the function fv to be Lipschitz continuous, and
therefore the discussion of Section 3.1 still applies.

From (3.7), to leading order the contribution of B depends only on �2 = �2
I (1 + �)/(1 − �).

We therefore use (�2, �, �0, �1) as our parameters, in which case

��

��2
= 1 − �

1 + �
(�|i−j |) = In + O(1/n), (3.11)

and

��

��
= −�2 2

(1 + �)2
(�|i−j |) + �2 1 − �

1 + �
(|i − j |�|i−j |−1). (3.12)

Away from the boundaries (which are O(1/n) corrections), the row sums of the matrix ��/��
tend to zero. Hence, when applied to a sequence of vectors v which tend to a differentiable function
fv(t) we have

��

��
v = O(�2/n). (3.13)

For the parameter �0

��

��0
= 2A = 2�. (3.14)

Since A is tridiagonal, so is ��
��1

= �A
��1

and

1

2

(
��

��1

)
i,i

= xi−1v(xi−1; �) + xiv(xi; �) (3.15)
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and (
��

��1

)
i,i+1

=
(

��

��1

)
i+1,i

= −2xiv(xi; �). (3.16)

Also note the useful identity

A−1
i,i − 2A−1

i,i+1 + A−1
i+1,i+1 = 1

v(xi; �)
− (1 − e2�1/n)e−2�0+2(1−2xi )�1

e2(1+1/n)�1 − 1

which follows by direct computation.
If �2

I = 0, then �2 = 0, ��/�� = 0 and all entries of the information matrix corresponding to
� are of course zero. However, we will want to apply this discussion to the case where �2

I , and
hence �2, is small but positive. We thus need to compute the magnitude of the (�, �) entry in this
case, though we will not need the off-diagonal � entries. Plugging formulas (3.11)–(3.16) into
(3.10) leads to the following:

I�2,�2 ∼ n4

2

(
e4b + e−4b − 16e2b − 16e−2b + 30 + 48b2

192b4(e2b − 1)2

)
, (3.17)

I�2,�0
∼ n2

(
e2b − e−2b − 4b

8b2(e2b − 1)

)
, (3.18)

I�2,b ∼ n2

2

(
e6b − (4b2 + b + 1)e4b − e2b + 1 + b

4b3e2b(e2b − 1)2

)
, (3.19)

I�,� = O(n2�4), I�0,�0
= 2n, (3.20)

I�0,�1
= n + e2(n+1)�1 + 1

e2(n+1)�1 − 1
− 2(e2n�1 − 1)

n(e2(n+1)�1 − 1)(1 − e−2�1)

= n + O(1), (3.21)

and

I�1,�1
= −e2�0

n2

{
ne2n�1

�A−1
n,n

�b
+

n−1∑
i=1

�
�b

(
A−1

i,i − 2A−1
i,i+1 + A−1

i+1,i+1

)
ie2i�1

}

= 2n

3
+ O(1). (3.22)

Formulas (3.17)–(3.19) are indeterminate if �1 = 0 since then both numerator and denominator
are zero. This apparent singularity is removed by use of L’Hôpital’s rule.

3.3. Posterior probability that �2
I = 0 when in fact �2

I is 0

Suppose the true model is an h = 0 model and that we wish to calculate the posterior probability
of an h = 0 model. Then formulas (3.20)–(3.22) show that the information matrix for � is

I�,� = n

(
2 1

1 2/3

)
+ O(1).
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All the eigenvalues of this matrix are large as n tends to infinity and therefore the likelihood will
be sharply peaked about the MLEs with the dominant contribution to the posterior probability
coming from � with ‖� − �̂‖ = O(n−1/2). Since

E

(
�3 log L(�|Y )

�
3
i

)
= −3

2
tr

(
�−1 ��

�
i

�−1 �2�

�
2
i

)
+ 2tr

((
�−1 ��

�
i

)3
)

and similarly for mixed partials, it is straightforward to show that these expected values are also
O(n). Thus the cubic term in the Taylor expansion of the log-likelihood is of order n‖� − �̂‖3.
Thus in the relevant range ‖� − �̂‖ = O(n−1/2), the cubic correction is O(n−1/2) and hence
negligible. Laplace’s method thus applies and we obtain

�(M|y) = 	M

Z(y)(2�)n/2
(det �̂)−1/2 exp

(
−1

2
(y − X�̂m)′�̂−1(y − X�̂m)

)

×�m(�̂m)�h(�̂)(2�)(m+3+2h)/2(det I�,�)
−1/2(det I�,�)

−1/2 (1 + Op(1/n)
)

=
√

3 	Mn−(3m+5)/2

Z(y)(2�)(n−m−3)/2
(det �̂)−1/2�m(�̂m)�h(�̂) det(Lm)−1/2

×exp

(
−1

2
(y − X�̂m)′�̂−1(y − X�̂m)

) (
1 + Op(1/n)

)
. (3.23)

3.4. Posterior probability that �2
I > 0 when �2

I = 0

If the truth is h = 0 and we are computing the posterior probability of an h = 1 model, then
the Laplace approximation breaks down in a number of ways. First as we see from (3.12), the �
pieces of the information matrix are zero. Physically this corresponds to the fact that if �2

I = 0,
then � does not affect the likelihood and we get no information about �. Thus the � part of the
integral cannot be approximated using the Laplace method. Less obvious is that the �2 part of the
integration cannot be done using the Laplace approximation either. Formula (3.17) shows that
�̂2 = O(n−2) and the dominant range for the integration will be |�2 − �̂2| = O(n−2). Thus the
dominant range of the integral will reach the boundary and boundary effects will be significant.
If this were the only problem, then it could be handled using the results of Pauler et al. [17].
However, there is a further problem. In this range the coefficient of the cubic term in the Taylor
expansion is

E

(
�3 log L(�|Y )

(��2)3

)
= 2 tr

(
A−3

)
+ O(n4)

= 2n6
∫ 1

0

∫ 1

0

∫ 1

0
g(t1, t2)g(t2, t3)g(t3, t1) dt1 dt2 dt3 + O(n4)

= O(n6).

In the dominant range, this means that the cubic term is O(1) and not negligible, and so
naive application of Laplace’s method will give an inaccurate approximation to the posterior
probability.
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To obtain an accurate approximation in this case a little more care is needed. Since the (�, �)
term of the information scales like n4 and the (�0, �0) and (�1, �1) terms scale like n, we would
expect the off-diagonal terms (�, �0) and (�, �1) to scale like n2.5. Since these entries actually
scale like n2, � and (�0, �1) are asymptotically orthogonal. Thus we can split off the integration
over �0 and �1 and perform it first. Further, the dominant contribution comes from �2 = O(n−2)

and hence I�,� = O(n−2). So, there is actually no information about � over the entire range of
integration. We may thus ignore the dependence of the likelihood on � in this range, and the �
integral is almost trivial.

Let �2 = 
2/n2. If v is a sequence of vectors which converges to a smooth function fv(t) as n
tends to infinity, then

n2�v = n2(A + B)v → −e2�0
d

dt

(
e2bt dfv(t)

dt

)
+ 
2fv(t).

Thus �−1 will be asymptotic to ng̃(s, t) where g̃ is Green’s function for this differential operator
with boundary conditions g̃(s, 0) = g̃(s, 1) = 0. The differential equation

−e2�0
d

dt

(
e2bt dy

dt

)
+ 
2y = 0

has solutions

y(t) = e−btK1

(

e−�0−bt

b

)
and e−btK2

(

e−�0−bt

b

)
,

where K1 and K2 are modified Bessel functions. Defining � = 
e−�0/�1, the Green’s function
is given by

g̃(s, t) = e−2�0
e−�1(s+t)

�1
[
K1(�)K2(�e−�1) − K2(�)K1(�e−�1)

]
×
[
K1(�e−�1 max(s,t))K2(�e−�1) − K2(�e−�1 max(s,t))K1(�e−�1)

]

×
[
K1(�)K2(�e−�1 min(s,t)) − K2(�)K1(�e−�1 min(s,t))

]
.

Then, as for the case �2
I = 0, we have

(X′�−1X)i,j ∼ n3
∫ 1

0

∫ 1

0
si g̃(s, t)tj ds dt = n3�̃i,j .

Define L̃m = (�̃i,j )0� i,j �m and let �h be the marginal prior for (�2, �0, �1). Integrating out �,
�0, �1, and �, and substituting �2 = 
2/n2 gives

�(M|y) ≈
√

3	M�m(�̂m)�h(�̂
2
, �̂0, �̂1)

Z(y)(2�)(n−m−3)/2n(3m+9)/2

∫ ∞

0

(
det(L̃m) det(�)

)−1/2

×exp

(
−1

2
(y − X�̂m)′�−1(y − X�̂m)

)
d
2. (3.24)

In this integral all parameters other than 
2 are to be replaced by their MLEs; � should not
contribute and may be set to zero. Note that in this case there is no penalty for the parameter �
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but the penalty for �2
I , i.e., �2, more than compensates. The approximation is further complicated

by the fact that the last integral is not Gaussian and cannot be done in closed form.

3.5. Posterior probabilities in the case where �2
I > 0

Now suppose the true model is such that �2
I > 0, implying that both the εj and Ij sources of

variation are present. In this case any h = 0 model is incorrect and gives exponentially small
values for the likelihood, the posterior probability and BIC. Kass and Vaidyanathan [9] argue
that it is not necessary to approximate the posterior probability in this case. Nonetheless, it is not
difficult to see that the appropriate expansion here takes precisely the same form as it does in
the case where the truth is h = 0 and we are computing the posterior probability that h = 0. Of
course, the asymptotic behavior of the MLEs is different since they no longer converge to the true
parameter values, but the correct approximation to the posterior probability is still (3.23).

We turn now to the case where we wish to compute the posterior probability that h = 1 when
the truth is h = 1. Let

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

denote the n × n cyclic shift matrix. Note that S−1 = ST = Sn−1 is the cyclic shift in the other
direction. Cyclic matrices are polynomials in S. Since cyclic matrices commute, they form a
convenient subalgebra of all n × n matrices. If there were no heteroscedasticity in the model,
i.e., if �1 = 0, then except for negligible boundary effects, the variance components A and B and
hence their sum � would be cyclic matrices. Explicitly

B ≈ �2
I

(
In + �(S + S−1) + �2(S2 + S−2) + · · ·

)

= (1 − �2)�2
I

[
(1 + �2)In − �(S + S−1)

]−1
,

and

A ≈ e2�0(2In − S − S−1).

If �1 �= 0, then A is not quite so simple. However, even in this case A is still a tridiagonal matrix
and can be related to cyclic matrices.

Let D = (di,j ) be the n × n diagonal matrix with diagonal entries di,i = exp(2xi�1). The
matrices S and D do not commute, but since the entries of D are slowly varying we have SkD ≈
DSk for |k|>n. Since A, B and � are all concentrated near the diagonal only small powers of S
will contribute in the formulas below and this will suffice. Thus we may carry out our calculations
as though D and S commute. With this definition we have

A ≈ e2�0 D
(

2In − S − S−1
)
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and

� ≈ e2�0 D
(

2In − S − S−1
)

+(1 − �2)�2
I

[
(1 + �2)In − �(S + S−1)

]−1
. (3.25)

Defining U = S + S−1, it follows that

�−1 ≈
(
(1 + �2)In − �U

)

×
[
(1 − �2)�2

I In + 2(1 + �2)e2�0 D − (1 + �)2e2�0 DU + �e2�0 DU2
]−1

=
(
(1 + �2)In − �U

)

×
[(

(1 − �2)�2
I In + 2(1 + �2)e2�0 D

)
(In − R+U)(In − R−U)

]−1
,

where R± are the diagonal matrices given by

R± =
(

(1 + �)2e2�0 D ±
√

(1 − �)4e4�0 D2 − 4�(1 − �2)�2
I e

2�0 D
)

×
[
2((1 − �2)�2

I In + 2(1 + �2)e2�0 D)
]−1

.

Let C± be the diagonal matrices

C± =
(
(1 + �2)R± − �In

) [
R± − R∓

]−1

and F± = In − 4R2±. Some algebraic manipulations and expansion of each of In − R±U as a
geometric series yields

�−1 ≈
(
(1 − �2)�2

I In + 2(1 + �2)e2�0 D
)−1

×
(

C+[In − R+U]−1 + C−[In − R−U]−1
)

=
(
(1 − �2)�2

I In + 2(1 + �2)e2�0 D
)−1

×
∞∑

k=−∞

{
C+F−1/2

+
(

2R+
[
In +√F+

]−1
)|k|

+ C−F−1/2
−

(
2R−

[
In +√F−

]−1
)|k|}

Sk. (3.26)

Dropping the ± subscripts, the diagonal entries ri,i of R+ and R− are the two roots of the quadratic
equation(

(1 − �2)�2
I + 2(1 + �2)e2�0di,i

)
r2
i,i − (1 + �)2e2�0di,iri,i + �e2�0di,i = 0. (3.27)
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If the roots of this polynomial are complex conjugates, then their squared modulus is

|ri,i |2 = �e2�0di,i

(1 − �2)�2
I + 2(1 + �2)e2�0di,i

.

For �2
I (1 − �2) > 0, we conclude

|ri,i |2 <
�

2(1 + �2)
<

1

4
.

If the roots are real, then rearranging (3.27) gives

(2ri,i − 1)((1 + �2)ri,i − �) = − (1 − �2)�2
I r

2
i,i

e2�0di,i

.

For �2
I (1−�2) > 0, the right-hand side of this equation is negative. Therefore, ri,i must lie strictly

between the two roots of the quadratic on the left. Since − 1
2 < �/(1 +�2) < 1

2 , we conclude that
− 1

2 < ri,i < 1
2 . Combining these two cases, we see that every entry of the diagonal matrices R±

has magnitude strictly less than 1
2 . Therefore, the series in (3.26) all converge and the coefficients

of Sk decay exponentially as |k| tends to ∞. This justifies our claim above that �−1 is concentrated
near the diagonal and hence our use of the approximation SkD ≈ DSk is legitimate. Since the
coefficients decay exponentially, the coefficient of Sn = In and powers of higher multiples of n
are negligible and we can ignore them below.

In the limit as n tends to infinity, the diagonal matrices D, R±, and C± should be interpreted
as converging to functions on [0, 1]. The diagonal matrix D converges to the function d(t) =
exp(2bt). Let r±(t) be the limiting functions for R±. Then

r± =
(1 + �)2e2�0+2bt ±

√
(1 − �)4e4�0+4bt − 4�(1 − �2)�2

I e
2�0+2bt

2((1 − �2)�2
I + 2(1 + �2)e2�0+2bt )

.

The formulas (3.25) and (3.26) give

� ∼
∞∑

k=−∞
FkSk →

∞∑
k=−∞

fk(t)Sk

and

�−1 ∼
∞∑

k=−∞
GkSk →

∞∑
k=−∞

gk(t)Sk

for diagonal matrices Fk and Gk and limiting functions fk and gk:

fk(t) =

⎧⎪⎪⎨
⎪⎪⎩

�2
I + 2e2�0+2bt , k = 0,

��2
I − e2�0+2bt , |k| = 1,

�|k|�2
I , |k| > 1,
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gk(t) = 1√
(1 − �)4e4�0+4bt − 4�(1 − �2)�2

I e
2�0+2bt

×

⎧⎪⎨
⎪⎩

((1 + �2)r+(t) − �)√
1 − 4r2+(t)

⎛
⎜⎝ 2r+(t)

1 +
√

1 − 4r2+(t)

⎞
⎟⎠

|k|

+ ((1 + �2)r−(t) − �)√
1 − 4r2−(t)

⎛
⎜⎝ 2r−(t)

1 +
√

1 − 4r2−(t)

⎞
⎟⎠

|k|⎫⎪⎬
⎪⎭ .

Since f−k = fk and g−k = gk

I
i ,
j
= −1

2
tr

(
��−1

�
i

��

�
j

)

∼ −1

2
tr

( ∞∑
k=−∞

�Gk

�
i

Sk
∞∑

�=−∞

�F�

�
j

S�

)

∼ −1

2

∞∑
k=−∞

∞∑
�=−∞

tr

(
�Gk

�
i

[
Sk �F�

�
j

S−k

]
Sk+�

)
.

We will see below that this sum converges exponentially, therefore we need only consider terms

with |k|, |�|>n. Hence Sk and �F�

�
j

approximately commute.

Since S is a cyclic shift matrix, Sk+� has only zero entries on the diagonal unless k + � is a
multiple of n. Since |k|, |�|>n, the only case we need to consider is when k + � = 0. Plugging
in these two observations gives

I
i ,
j
∼ −1

2

∞∑
k=−∞

tr

(
�Gk

�
i

�F−k

�
j

)

∼ −n

2

∞∑
k=−∞

∫ 1

0

(
�gk(t)

�
i

�fk(t)

�
j

)
dt.

The functions gk and fk decay exponentially as |k| tends to infinity. Hence this sum converges
rapidly and we see that

I�,� = nK(�) + O(1)

for some calculable 4 × 4 matrix K(�). In particular all eigenvalues of the information matrix
tend to infinity as n tends to infinity. Thus the integral representing the posterior probability of
model M is peaked and the dominant contribution comes from � with ‖� − �̂‖ = O(n−1/2).
Similar arguments show that the cubic and higher order coefficients in the Taylor expansion of
the log-likelihood are also O(n). Thus they are negligible for � in the dominant range. Hence the
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standard Laplace approximation applies in this case and we obtain

�(M|y) = 	M�m(�̂m)�h(�̂)

n(m+5)/2Z(y)(2�)(n−m−5)/2

m∏
i=1

(2i + 1)1/2

(
2i

i

)

×exp

(
−1

2
(y − X�̂m)′�̂−1(y − X�̂m)

)
(det �̂ det K(�̂))−1/2

×
(

�̂2
I (1 + �̂)

1 − �̂

)(m+1)/2 (
1 + Op(1/n)

)
. (3.28)

3.6. Choice of an approximation

In practice it is not known whether or not �2
I,0 = 0, and hence it is not clear which approximation

of �((m, h)|y) is “correct”. To deal with this problem we propose using a weighted geometric
mean of approximations that are appropriate for the model under consideration. Define hm,0
by

hm,0 =
{

1 if the true degree-m model has an intrinsic component,

0 otherwise.

For i, j = 0, 1, let �ij denote the appropriate approximation to the quantity �((m, i)|y)Z(y)
when hm,0 = j , where for simplicity we suppress dependence of the approximations on m. From
Sections 3.3–3.5, �00, �01, �10, �11 are defined by (3.23), (3.23), (3.24) and (3.28), respectively.
We consider approximations of the form

�̂((m, i)|y) = �p̂0
i0 · �1−p̂0

i1 /Ẑ(y), i = 0, 1, (3.29)

where p̂0 approximates P(h = 0|m, y) and Ẑ(y) is the appropriate normalizing constant.
In principle, it seems that P(h = 0|m, y) would be just as difficult to approximate as �̂((m, 0)|y).

However, it turns out that a simple BIC approximation of P(h = 0|m, y) suffices. This is because
two models, namely (m, 0) and (m, 1), are being compared that have the same value of m. Sections
3.3–3.5 suggest the following two versions of BIC for the respective cases hm,0 = 0 and 1:

BIC(m, h) =
{

2 log L̂m,h − (3m + 5) log n, h = 0,

2 log L̂m,h − (3m + 9) log n, h = 1,
(3.30)

and

BIC(m, h) =
{

2 log L̂m,h − (m + 3) log n, h = 0,

2 log L̂m,h − (m + 5) log n, h = 1,
(3.31)

where L̂m,h denotes maximized likelihood. The second of these is just ordinary BIC, while the
former takes into account how the exponents of n in (3.23) and (3.24) differ from the classical
setting.
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A BIC approximation of P(h = 0|m, y) is

exp (BIC(m, 0)/2)

exp (BIC(m, 0)/2) + exp (BIC(m, 1)/2)
,

which takes the form

p̂0i = 1

1 + n−2+i L̂m,1/L̂m,0
, i = 0, 1,

depending on whether one uses (3.30) or (3.31), respectively. Of these two, we prefer p̂00, for
reasons that will become clear momentarily.

If hm,0 = 0, then 2 log L̂m,1/L̂m,0 converges in distribution to a random variable having a �2
2

distribution. In this case it follows that p̂00 = 1 + Op(n−2), whereas p̂01 = 1 + Op(n−1). If
hm,1 = 1, then

p̂0i = Op(n2−i exp(−Cn)),

for some positive constant C, in which case p̂0i converges to 0 exceptionally quickly whether
i = 0 or 1. The preceding facts together lead us to propose p̂00 for use in practice.

3.7. Assessing the posterior probability of overdifferencing

Let us now suppose we are in the setting of Remark 3. The data have been differenced a given
number of times, and we wish to compute the posterior probability of two possibilities for the
error model. One possibility is that the errors ε1, . . . , εn are i.i.d., meaning that the data have been
differenced the correct number of times. In the other case the errors are ε1 −ε0, . . . , εn−εn−1, i.e.,
the data have been overdifferenced. (We assume that the data have not been underdifferenced, a
condition which is usually easy to identify.) In either of these two cases, there is only one unknown
error parameter, Var(εi ) = exp(2�0).

We wish to approximate the posterior probabilities of the events E0 and E1, which denote
that the errors are i.i.d. and that the data have been overdifferenced, respectively. This is done in
much the same way as were the previous approximations in this section, with the main difference
being that now the information matrices are simpler in form. Let �((m, E)|y) denote the posterior
probability that m is the correct polynomial degree and E is the truth, E = E0, E1. Approximating
�((m, E1)|y) is virtually the same as approximating the posterior probability of an h = 0 model
as in Sections 3.3 and 3.5. The only difference is that in the present case the errors are assumed
to be homoscedastic. Whether or not E1 is the truth, an appropriate Laplace approximation is

�̂((m, E1)|y) = 	(m, E1)n
−(3m+4)/2

√
2 Ẑ(y)(2�)(n−m−2)/2

�m(�̂m)�(�̂0) det(Lm)−1/2

×(det �̂)−1/2 exp

(
−1

2
(y − X�̂m)′�̂−1

(y − X�̂m)

)
,

where 	(m, E1) is the prior probability of (m, E1), � is the prior density of �0, � ≡ A with
�1 = 0, and Lm is defined as in Section 3.1 with �1 = 0.

Approximating �((m, E0)|y) will usually be straightforward since E0 corresponds to i.i.d. er-
rors. Using a conjugate prior will actually allow exact determination of the requisite integral.
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Writing � = exp(�0), a reasonable approximation for a more general prior is

�̂((m, E0)|y) = 	(m, E0)n
−(m+1)/2

Ẑ(y)(2�)(n−m−1)/2
(det R)−1/2�m(�̃m)

×
∫ ∞

0
exp

(
−n�̂2

2�2

)
�−(n−m)�(log �) d�, (3.32)

where �̃m is the least-squares estimate of �m, �̂2 = n−1(y − X�̃m)′(y − X�̃m), and R is the
(m + 1) × (m + 1) matrix with (i, j) element equal to (i + j − 1)−1. This approximation results
from using a Laplace approximation for the integral with respect to �m in the expression that
defines �((m, E0)|y). If need be, numerical integration can be used to approximate the integral in
(3.32).

Having obtained �̂((m, E1)|y) for each m, an approximation of the posterior probability of
overdifferencing may be obtained by summing �̂((m, E1)|y) over all m.

4. An analysis of variable star data

We now apply the approximations developed in Section 3 to data from the prototypical long-
period variable star known as Mira. The first step in this comparison is to choose explicit priors.
First, consider the prior probabilities 	(m,h) on the models. There seems no a priori reason to
prefer one covariance structure over the other. Therefore, we took the priors to be independent of
h. We wish to use model (2.1) to test whether or not there is systematic variation, i.e., a trend, in
the Yj s. Therefore, we assigned a combined prior of 1

2 (or 1
4 each) to the two no-trend (m = 0)

models. For the remaining polynomial degrees, we took mmax = 15 and chose a prior proportional
to 1/m, which is Jeffreys’ noninformative prior for an integer parameter [5]. Normalizing these
gives

	(m,h) =
{

1/4 if m = 0,

0.0753413946/m if m = 1, . . . , 15.

For the priors on the model parameters, we assume the mean parameters �m are a priori
independent of the covariance parameters �, and use a multivariate normal prior for �m. The
choice of mean and covariance of this normal prior will be discussed below. Use of a normal prior
for �m was in part motivated by the fact that it allows the computation of the posterior probability
integral over �m to be done in closed form.

The covariance parameters �0 and �1 are determined by measurement error, whereas the pa-
rameters � and �2

Z are determined by intrinsic variation due to the star. Therefore we assumed that
(�0, �1) and (�, �2

Z) were a priori independent. For (�0, �1) we chose a bivariate normal prior,
i.e., (�0, b) ∼ N2(�, V).

The parameter � is taken to be a priori uniformly distributed on [−1, 1]. In the AR(1) model,
we have

Ij = �Ij−1 + Zj , j = 2, . . . , n,

where Z2, . . . , Zn are i.i.d. N(0, �2
Z). Here � represents the carry-over from the previous obser-

vation and Zj a new random effect, and hence we chose to have � and �2
Z be a priori independent.
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Fig. 1. Histogram of observed �̂2
Z and fitted density.

A histogram of MLEs of �2
Z for all 378 stars in the database is shown in Fig. 1. This histogram

motivated us to use the fitted exponential density in Fig. 1 as a prior for �2
Z .

The mean vectors and covariance matrices for the multivariate normal priors of �1, . . . , �15
were also determined empirically. For each of the 378 stars, we chose a model (m̂i, ĥi) by naive
application of BIC (which does not require specifying a prior) and computed the maximum
likelihood estimators of the parameters for the selected model. The prior mean �m and prior
covariance Wm for �m were chosen to be the sample mean and sample covariance of �̂m for all
stars having m̂ = m. Two exceptions to this rule were deemed necessary. The number of stars
with m̂ = 14 and 15 was too small to give a positive definite sample covariance Wm. Therefore
data for m̂ = 14 and 15 were pooled to give estimates for W14 and W15. Also one star with
only 32 observations had m̂ = 15. Such a large polynomial degree hardly seems warranted on
the basis of 32 observations, and hence this star was treated as an outlier and excluded from the
computations.

Similarly the prior mean � and prior covariance V for (�0, �1) were taken to be the sample
mean and sample covariance of (�̂0, �̂1) for all stars, excluding three outliers. A scatterplot of
maximum likelihood estimates of (�̂0, b̂) for all 378 stars in the database is shown in Fig. 2.

The integral with respect to �m in �(M|y)Z(y) can be done in closed form, since the integrand
is proportional to a multivariate normal density. The remaining 2- or 4-variate integral was ap-
proximated using importance sampling based on 10,000 i.i.d. observations from a multivariate
normal distribution with the same mode and Hessian at the mode as the integrand.

One approximation of �(M|y) we wish to consider is that provided by the standard BIC, i.e.,

�(M|y) ≈ eBICM/2∑
M ′ eBICM′/2

,

where

BICM = 2 log LM(�̂m, �̂|y) − (m + 3 + 2h) log n.
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Fig. 2. Scatterplot of b̂ vs. �̂0.

A second approximation of interest is a modified version of BIC with a corrected penalty term.
Define

mod-BICM = 2 log LM(�̂m, �̂|y) − kM log n,

where

kM =

⎧⎪⎪⎨
⎪⎪⎩

3m + 5 if h = 0,

m + 5 if h = 1 and �̂2
Z �0.001,

3m + 9 if h = 1 and �̂2
Z < 0.001.

These penalties have been chosen based on the powers of n in (3.23), (3.24), and (3.28). The
cutoff �̂2

Z < 0.001 for deciding when to use (3.24) is somewhat arbitrary. However, data sets with
�̂2

Z < 0.001 invariably had values of �̂2
Z much smaller than 0.001.

The third approximation is the standard Laplace approximation (3.1), where the information
matrices I�,� and I�,� are estimated as the negative of the Hessian of the log-likelihood at the
MLE. Finally, “Corrected Laplace” in Table 1 is an asymptotically correct version of the Laplace
approximation that uses the weighted geometric mean discussed in Section 3.6.

The “exact” posterior probabilities and the five approximations were computed for Mira. Plots
of the observed pseudo-periods and a sixth degree polynomial fit are shown in Fig. 3. “Exact”
posterior probabilities and the five approximates are given in Table 1. Plots of posterior probability
as a function of polynomial degree are given in Fig. 4.

The model with highest posterior probability is (m, h) = (6, 0) but models with nearby degrees
are nearly as likely. Standard BIC correctly selected the model with highest posterior probability,
but did not provide a good estimate of the posterior probabilities. This failure of Standard BIC is
in agreement with our theoretical results as derived in Section 3.

Modified BIC provided by far the poorest estimates of the posterior probabilities and is maxi-
mized at m = 0. An explanation of this performance is that the constant terms derived in Section
3 are not included in the Modified BIC. These constant terms are quite large. For example,
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Table 1
Posterior probabilities for Mira

m h “Exact” Standard Modified Standard Corrected
BIC BIC Laplace Laplace

4 0 0.0042 0.0016 0.0000 0.0039 0.0029
5 0 0.2445 0.3160 0.0000 0.2563 0.2257
6 0 0.2577 0.4831 0.0000 0.2864 0.2697
7 0 0.1373 0.0586 0.0000 0.1450 0.1429
8 0 0.2487 0.0936 0.0000 0.2037 0.2234
9 0 0.0173 0.0297 0.0000 0.0025 0.0030

10 0 0.0340 0.0036 0.0000 0.0016 0.0022
11 0 0.0077 0.0007 0.0000 0.0041 0.0012
12 0 0.0093 0.0001 0.0000 0.0077 0.0000
13 0 0.0004 0.0000 0.0000 0.0000 0.0000

0 1 0.0145 0.0000 0.6063 0.0784 0.0660
1 1 0.0000 0.0000 0.3486 0.0000 0.0000
2 1 0.0014 0.0000 0.0401 0.0079 0.0081
3 1 0.0008 0.0000 0.0049 0.0027 0.0029
4 1 0.0078 0.0000 0.0000 0.0000 0.0037
5 1 0.0024 0.0042 0.0000 0.0000 0.0174
6 1 0.0034 0.0064 0.0000 0.0000 0.0158
7 1 0.0018 0.0008 0.0000 0.0000 0.0083
8 1 0.0046 0.0012 0.0000 0.0000 0.0062
9 1 0.0005 0.0004 0.0000 0.0000 0.0001

10 1 0.0012 0.0000 0.0000 0.0000 0.0000
11 1 0.0002 0.0000 0.0000 0.0000 0.0001
12 1 0.0003 0.0000 0.0000 0.0000 0.0001

The various methods are explained in the text. Values of (m, h) for which each probability was 0.0000 have been
excluded from the table.
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Fig. 3. Data and sixth degree polynomial fit for Mira.

in (3.28) the constant term includes

m∏
i=1

(2i + 1)1/2

(
2i

i

)
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Fig. 4. Approximate posterior probabilities for Mira. The solid, dotted and dashed lines correspond to “exact,” corrected
Laplace and standard BIC, respectively.

which grows roughly like 2m2/2. Further, the Modified BIC has a much smaller penalty for h = 1
models with �̂2

Z > 0.001. As a result it is strongly biased towards the h = 1 models with low
polynomial degree. Obviously, correcting the usual BIC in this model is not a simple matter of
adjusting the penalty term.

The standard and corrected Laplace approximations gave comparable results, although cor-
rected Laplace was on average closer to the “exact” probabilities than was standard Laplace. Both
provided more accurate estimates of the posterior probabilities than their BIC counterparts.

The Standard and Modified BICs both provided poor estimates of the posterior probabilities
and hence their use for this purpose is not recommended. However, Standard BIC does seem to
provide a fairly good criterion for model selection. This justifies our method of estimating priors,
wherein we used parameter estimates corresponding to models that maximized BIC.

All the estimates of the posterior probabilities required dramatically less computation time than
the “exact” posterior probabilities. Computing “exact” posterior probabilities for all 378 variable
stars in the data would be a prohibitively lengthy calculation.
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