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a b s t r a c t

Pair-copula constructions (PCCs) offer great flexibility in modeling multivariate depen-
dence. For inference purposes, however, conditional pair-copulas are often assumed to de-
pend on the conditioning variables only indirectly through the conditional margins. The
authors show here that this assumption can be misleading. To assess its validity in trivari-
ate PCCs, they propose a visual tool based on a local likelihood estimator of the conditional
copula parameter which does not rely on the simplifying assumption. They establish the
consistency of the estimator and assess its performance in finite samples via Monte Carlo
simulations. They also provide a real data application.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the past two decades, dependence modeling via copulas has evolved considerably and has found applications
in areas as diverse as actuarial science, biostatistics, finance, hydrology, and machine learning. In the bivariate case,
many parametric copula families have been proposed that can represent a broad range of dependence patterns. In higher
dimensions, however, parametric copula families are harder to construct and their tractability often comes at the cost of
flexibility. For example, meta-elliptical copulas are somewhat of a straightjacket, if only because all lower-dimensional
margins belong to the same class. In many applications, this property is too restrictive as pairs of variables may exhibit very
different dependence patterns.

A more flexible way to model multivariate dependences is offered by pair-copula constructions (PCCs), also known as
vine copulas [7,15,16]. Vines are graphical models that provide a systematic way to decompose a multivariate copula into
a cascade of bivariate copulas, some of which are conditional. A simple example of a PCC in the trivariate case consists of
writing the joint density c of a random vector (U1,U2,U3) with uniform margins on (0, 1) in the form

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2; u2). (1)

Here, c12 and c23 are the copula densities of the pairs (U1,U2) and (U2,U3), respectively. Furthermore, c13|2 is the conditional
copula density of the pair (U1,U3) given U2 = u2, evaluated at uk|2 = Pr(Uk ≤ uk|U2 = u2) for k = 1, 3. Any choice of c12,
c13 and c13|2 leads to a valid trivariate copula density. More generally, using different bivariate copulas as building blocks in
a d-variate PCC, one can construct highly flexible multivariate copula models.

Inference for a given PCC is typically carried out by specifying a parametric copula for each building block. Copula
parameters are then estimated sequentially starting with the unconditional pair-copulas and moving up the hierarchy [1].
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In the above example, this amounts to estimating the parameters of c12 and c23 first, and those of c13|2 in the second step. A
standard assumption is that the conditional pair-copulas of the PCC depend on the conditioning variable(s) only through the
conditional margins. In (1), this is equivalent to assuming that the conditional copula c13|2 of the pair (U1,U3) given U2 = u2
is the same for all values of u2 ∈ (0, 1).

This simplifying assumption seems to have been made mainly for convenience at a time when inference tools for
conditional copulas were still under development [20]. Through examples, it is shown in [14] that simplified PCCs can
provide a good approximation in some cases. This paper revisits this issue and introduces a nonparametric smoothing
methodology that relaxes this simplifying assumption for trivariate PCCs.

After a brief summary of vine copula constructions in the trivariate case in Section 2, estimation for simplified three-
dimensional PCCs is described in Section 3. Through simulations, it is then shown in Section 4 that inference based
on simplified PCCs can be misleading and may even conduce the belief that some pairs of variables are conditionally
independent when in fact they are not. The newmethodology, which derives from recent work [4], is described in Section 5.
This approach is seen to perform well in simulations and in a data application, as detailed in Sections 6 and 8, respectively.
The consistency of the proposed method is presented in Section 7 and Section 9 concludes with a short discussion.

The following notation is used throughout the paper. Vectors in R3 are denoted by bold letters, e.g., x = (x1, x2, x3) ∈ R3.
If A ⊂ {1, 2, 3} is non-empty, xA stands for an |A|-dimensional vector with components xk, k ∈ A. If X is a random vector
with distribution function F and density f , then for arbitrary disjoint index sets A and B, the symbols FA|B and fA|B denote the
conditional distribution function and density of XA given XB = xB, respectively.

2. Trivariate PCCs

Let X1, X2, X3 be random variables with joint distribution function F and continuous margins F1, F2, F3, respectively.
Sklar’s Representation Theorem [22] states that, for all x1, x2, x3 ∈ R,

F(x1, x2, x3) = C{F1(x1), F2(x2), F3(x3)},

where C is a copula, i.e., a distribution function with margins that are uniform on (0, 1). If F is absolutely continuous, its
density can be written in terms of the density c of C as

f (x1, x2, x3) = c{F1(x1), F2(x2), F3(x3)}
3

k=1

fk(xk),

where, for each k ∈ {1, 2, 3}, fk is the density of Fk.
A PCC is based on the fact that f can be decomposed as

f (x1, x2, x3) = f3(x3) × f2|3(x2|x3) × f1|23(x1|x2, x3). (2)

Note that this factorization is unique up to relabeling. For any index set A ⊂ {1, 2, 3} and k ∈ A, let A − k = A \ {k}. Using
Sklar’s Representation Theorem, one can then write, for arbitrary j ∉ A,

fj|A = cjk|A−k(Fj|A−k, Fk|A−k)fj|A−k. (3)

Repeated applications of relation (3) in (2) make it possible to express f as

f (x1, x2, x3) = f1(x1)f2(x2)f3(x3) × c12{F1(x1), F2(x2)} × c23{F2(x2), F3(x3)}
× c13|2{F1|2(x1|x2), F3|2(x3|x2); x2}, (4)

which reduces to (1) if the margins of F are uniform. The univariate conditional distributions featuring in (4) are given by

Fj|k(xj|xk) = hjk{Fj(xj), Fk(xk)},

where, for all u, v ∈ (0, 1),

hjk(u, v) =
∂

∂v
Cjk(u, v). (5)

3. Inference for simplified PCCs

Now suppose the density f of (X1, X2, X3) follows a simplified PCC model, i.e., f is of the form (4), where the conditional
copula density c13|2 does not depend on the conditioning variable. The last term in (4) thus reduces to

c13|2{F1|2(x1|x2), F3|2(x3|x2)}.

To ease the presentation, assume that all copulas appearing in (4) are parametrized by scalar parameters θ12, θ23, θ13|2 that
are indexed in the same way as the corresponding copula.
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Suppose that {(X11, X21, X31), . . . , (X1n, X2n, X3n)} is a random sample from (X1, X2, X3). If the margins F1, F2, F3
of the latter random vector are known, then a random sample from the underlying copula is given by U =

{(U11,U21,U31), . . . , (U1n,U2n,U3n)}, where, for each i ∈ {1, . . . , n},
(U1i,U2i,U3i) = (F1(X1i), F2(X2i), F3(X3i)).

Inference for the unknown parameter θ = (θ12, θ23, θ13|2) can thus be based on the log-likelihood function given by

L(θ) =

n
i=1


ln c12(U1i,U2i; θ12) + ln c23(U2i,U3i; θ23) + ln c13|2(U(1|2)i,U(3|2)i; θ13|2)


≡ L12(θ12) + L23(θ23) + L13|2(θ12, θ23, θ13|2), (6)

where
U(1|2)i = h12(U1i,U2i; θ12) and U(3|2)i = h32(U3i,U2i; θ23).

Given that θ12 and θ23 appear in U(k|2)i for k = 1, 3 and i ∈ {1, . . . , n}, the last term L13|2 of the log-likelihood function
depends on all parameters. Therefore, (6) has to be maximized jointly. As this can be computationally demanding, a
sequential estimation approach suggested in [1] is often used.

In this approach, the stepwise estimates θ̌12 and θ̌23 are obtained first by maximizing L12(θ12) and L23(θ23), respectively.
Next, pseudo observations are constructed by letting, for every i ∈ {1, . . . , n},

U∗

(1|2)i = h12(U1i,U2i; θ̌12), U∗

(3|2)i = h32(U3i,U2i; θ̌23). (7)

An estimator θ̌13|2 can then be obtained through the maximization of

L∗

13|2(θ13|2) =

n
i=1

ln c13|2(U∗

(1|2)i,U
∗

(3|2)i; θ13|2).

Note that the stepwise estimates θ̌12, θ̌23, θ̌13|2 do not maximize (6), but nonetheless provide a good approximation of the
joint estimate of θ.

When the margins are unknown, the sample U is no longer available. However, the margins can be estimated
nonparametrically by the corresponding empirical distribution functions defined here, for all k ∈ {1, 2, 3} and x ∈ R,
by

Fkn(x) =
1

n + 1

n
i=1

1(Xki ≤ x),

where division by n + 1 instead of n is chosen to avoid boundary problems. Setting, for each i ∈ {1, . . . , n},
(U1i,U2i,U3i) = (F1n(X1i), F2n(X2i), F3n(X3i)),

one obtains the pseudo sample U = {(U11,U21,U31), . . . , (U1n,U2n,U3n)} that can be used to make inference on the
dependence parameters. Specifically, to estimate θ, one can replace U by U in (6) and maximize jointly the resulting
pseudo log-likelihood functionL(θ). This estimator, denoted by θ̃, is consistent and asymptotically Normal under regularity
conditions given in [11,21,23].

As an alternative, the sequential estimation procedure proposed in [1] can be adapted. In the first step, parameter values
θ̂12 and θ̂23 are found that maximizeL12(θ12) andL23(θ23), respectively. In the second step, the estimate θ̂13|2 is obtained by
maximizing

L∗

13|2(θ13|2) =

n
i=1

ln c13|2(U∗

(1|2)i,
U∗

(3|2)i; θ13|2),

where, for each i ∈ {1, . . . , n},U∗

(1|2)i = h12(U1i,U2i; θ̂12), U∗

(3|2)i = h32(U3i,U2i; θ̂23). (8)

Consistency and asymptotic normality of the stepwise semiparametric estimator θ̂ = (θ̂12, θ̂23, θ̂13|2) are established in [12].
Simulation studies in [12,13] further reveal that θ̂ is asymptotically slightly less efficient than the estimator θ̃ obtained
through joint maximization. In general, θ̃ and θ̂ are in close agreement. However, θ̂ is often the only feasible solution,
especially in high dimensions where a joint maximization is too computationally intensive.

4. A critical look at the simplifying assumption

The estimation techniques presented in Section 3 rely critically on the assumption that the conditional copula C13|2 in
model (4) does not depend on the conditioning variable. It is argued in [14] that this simplification is not only required for
fast, flexible, and robust inference, but that it provides ‘‘a rather good approximation, evenwhen the simplifying assumption
is far from being fulfilled by the actual model’’. It will be shown below that this view is too optimistic.
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Table 1
Parameter estimates for the data displayed in Fig. 1.

Model Known margins Unknown margins

γ = 0 θ̌12 = 1.300 θ̂12 = 1.252
θ̌23 = 2.964 θ̂23 = 2.973
θ̌13|2 = 0.047 θ̂13|2 = 0.037

γ = 1 θ̌12 = 1.249 θ̂12 = 1.203
θ̌23 = 2.737 θ̂23 = 2.699
θ̌13|2 = 0.215 θ̂13|2 = 0.262

To this end, assume for simplicity that (X1, X2, X3) = (U1,U2,U3) is a random vector with standard uniform margins.
Further suppose that

(a) C12 is a Clayton copula with parameter θ12 = 1.2;
(b) C23 is a Gumbel–Hougaard copula with parameter θ23 = 3;
(c) given U2 = u2, C13|2 is a Frank copula with parameter

θ13|2(u2) = γ (4u2 − 2)3,

where γ ∈ {0, 1}. When γ = 0, the variables U1 and U3 are conditionally independent given U2, and hence the simplifying
assumption is satisfied. When γ = 1, however, the conditional copula C13|2 depends on the value of U2 and the resulting
model is not a simplified PCC.

The algorithm below describes how to simulate from the above model.

Algorithm 1. To generate the random triple (U1,U2,U3), proceed as follows.

1. Simulate independent standard uniform variatesW1,W2,W3.
2. Set U1 = W1.
3. Set U2 = h−1

21 (W2,U1; θ12).
4. (a) If γ = 0, set U3 = h−1

32 (W3,U2; θ23).
(b) If γ = 1, set

U3 = h−1
32


h−1
31|2{W3, h12(U1,U2; θ12); θ13|2(U2)},U2; θ23


.

Here, h12, h21, and h32 are defined as in (5) but their dependence on parameters is made explicit for additional clarity.
Similarly,

h31|2(u, v) =
∂

∂v
C31|2(u, v)

but its dependence on θ13|2(u2) is emphasized. Finally, h−1(u, v) generally refers to the inverse of themap u → h(u, v)with
fixed v ∈ (0, 1).

Fig. 1 shows pairwise scatter plots derived from random samples of size n = 500 from (U1,U2,U3) generated using
Algorithm 1 when γ = 0 (top panel) and γ = 1 (bottom panel), respectively. As can be seen, these samples look fairly
similar. For pairs (U1,U2) and (U2,U3), this similarity is entirely expected as by construction, each of these two pairs has
exactly the same distribution whether γ = 0 or 1. For this reason, the estimates of θ12 and θ23 are equal within sampling
variation, as can be seen in Table 1.

While it is not possible to tell whether γ = 0 or 1 from Fig. 1, one could hope to distinguish between these two models
by looking at scatter plots of the pairs of pseudo observations (U∗

1|2,U
∗

3|2) or (U∗

1|2,
U∗

3|2), depending on whether the margins
are known or not. Assuming that copulas C12 and C23 are known, one can construct these pairs using the estimates of θ12 and
θ23 given in Table 1; the relevant equation is (7) when margins are known and (8) when they are not. The resulting scatter
plots are displayed in Fig. 2. The four graphs are very similar and suggest that under both models, the variables U1 and U2
are conditionally independent, given U2.

Now suppose that a simplified PCC model is fitted in which the conditional copula C13|2 belongs to the Frank family. One
is then led to the estimates θ̌13|2 and θ̂13|2 reported in Table 1. All of them seem close to zero, in line with Fig. 2. To test
whether this conclusion is statistically significant, the experiment was repeated 1000 times. Displayed in Fig. 3 are boxplots
showing the dispersion of the estimates θ̌13|2 and θ̂13|2. These pictures confirm that whether the margins are known or not,
one cannot reject the hypothesis of conditional independence, which corresponds to θ13|2 = 0.

While this conclusion is valid when γ = 0, it is clearly mistaken when γ = 1. The problem is that when the simplifying
assumption is unwarranted, as in the case γ = 1, the pairs (U∗

1|2,U
∗

3|2) or (U∗

1|2,
U∗

3|2) are misinterpreted as a pseudo sample
from a single copula C13|2 that does not actually exist. It will be shown in the following section how this issue can be resolved
using local likelihood techniques.
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Fig. 1. Pairwise scatter plots of variables derived from a random sample of size n = 500 from (U1,U2,U3) generated by Algorithm 1 when γ = 0 (top)
and γ = 1 (bottom).

5. Inference for general PCCs

As illustrated in Section 4, the assumption that conditional copulas do not depend on the conditioning variables should
not bemade blindly. Because it may have undesirable consequences, its validity should be assessed, at least graphically. One
such technique is presented below, based on the assumption that the conditional copula C13|2 has the same parametric form
for all values of the corresponding conditioning variable X2.
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Fig. 2. Scatter plots of the pairs of pseudo conditional marginal distributions obtained using known margins (left panel) and rank-based margins (right
panel).

Fig. 3. Boxplots of estimates θ̌13|2 (left) and θ̂13|2 (right) obtained from 1000 Monte Carlo samples of size n = 500.

In such a case, nonparametric local likelihood methods can be used to estimate θ13|2 as a function of x2. To avoid
complications that occur when the set of values taken by θ13|2 is restricted, introduce a reparametrization

η13|2(x2) = g{θ13|2(x2)},

where g is any convenient link function ensuring that η13|2(x2) can take potentially any value in R as x2 varies over
its domain. The choice of g is entirely arbitrary and does not affect inference. When C13|2 belongs to Frank’s family, g
can be the identity; when C13|2 is a Clayton copula with unspecified positive association, g(x) = ln(x) is a convenient
choice.
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Fig. 4. Plots of τ(X1, X3|X2 = x2) as a function of x2 assuming a Frank copula for C13|2 , as derived from θ̂13|2 (dashed) and θ̌13|2 (dotted) for the data of Fig. 1
when γ = 0 (left) and γ = 1 (right). In both graphs, the true function is shown as a solid curve.

Following [4], suppose that η13|2 is twice continuously differentiable at any interior point x in the support of F2. For any
observation X2i in a neighborhood of such an x, one can then write

η13|2(X2i) ≈ η13|2(x) + η′

13|2(x)(X2i − x) ≡ β0x + β1x(X2i − x).

In principle, a higher order polynomial could also be used in the local approximation, though at the cost of estimating more
parameters. As a local linear fit often suffices to represent the underlying function [10], this is the approach taken here.

An estimate of βx = (β0x, β1x), and hence of η13|2(x) = β0x, can be obtained by maximizing a local version of the log-
likelihood function in which the contribution of the ith observation is weighted by its proximity to x. To be specific, let K
be a smooth kernel function and for arbitrary t ∈ R, define Kλn(t) = K(t/λn)/λn, where λn > 0 is a bandwidth parameter
controlling the size of the neighborhood around x. When the marginal distributions are known, a kernel-weighted local
log-likelihood function is then given by

L∗(βx, x) =

n
i=1

Kλn(X2i − x) ln c13|2

U∗

(1|2)i,U
∗

(3|2)i; g
−1

{β0x + β1x(X2i − x)}

.

When the margins are unknown, a rank-based equivalent is given by

L∗(βx, x) =

n
i=1

Kλn(X2i − x) ln c13|2
U∗

(1|2)i,
U∗

(3|2)i; g
−1

{β0x + β1x(X2i − x)}

.

Let β̌x and β̂x be parameter values maximizing L∗(βx, x) and L∗(βx, x), respectively. Typically, the choice of kernel has
little influence on these estimates; in the current study, computations were based on the Epanechnikov kernel defined,
for all t ∈ R, by K(t) = 0.75max(0, 1 − t2). However, the local linear estimates β̌x and β̂x are sensitive to the choice of
bandwidth λn. The data-driven procedure of [4] can be used to make a suitable selection.

Once β̌x or β̂x has been obtained, an estimate of θ13|2(x) is given by

θ̌13|2(x) = g−1(β̌0x) or θ̂13|2(x) = g−1(β̂0x),

respectively. Repeating this procedure for a large number of values of x over the range of X2, an estimate of θ13|2 is obtained
as a function of x2. By plotting this function, one can develop a sense of whether θ13|2 is functionally dependent on X2, i.e.,
whether the simplifying assumption is reasonable.

This is illustrated in Fig. 4 for the data from Section 4. Displayed there are the plots of τ(X1, X3|X2 = x2) as a function of
x2, where τ denotes the value of Kendall’s tau, obtained from either θ̌13|2 or θ̂13|2, according as themargins are known or not.
The left and right panels correspond to γ = 0 and γ = 1, respectively. In both cases, the estimate reproduces quite closely
the true curve (solid), regardless of whether the margins are known or not. The flat curves in the left panel are in line with
the simplifying assumption for the case γ = 0, while the nonlinear pattern in the right panel indicates that the simplifying
assumption may not be reasonable for the case γ = 1.

To obtain Fig. 4, a local linear estimation was performed at each observed value of the conditioning variable X2 under
the (correct) assumption that the conditional copula C13|2 belongs to Frank’s family. The bandwidths used were λn = 1 and
0.17 when γ = 0 and 1, respectively. These bandwidths were selected among six pilot bandwidth values ranging from 0.05
to 1, equally spaced on a logarithmic scale.
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Fig. 5. Plots of τ(X1, X3|X2 = x2) as a function of x2 assuming a Plackett copula for C13|2 , as derived from θ̂13|2 (dashed) and θ̌13|2 (dotted) for the data of
Fig. 1 when γ = 0 (left) and 1 (right). In both graphs, the true function is shown as a solid curve.

The bandwidth selection was based on the cross-validated likelihood criterion described in [4]. As it happens, this data-
driven procedure led to the same choice whether the margins are known or estimated through standardized ranks. When
γ = 0, the bandwidth value λn = 1 corresponds to a global fit, as might have been expected from the fact that C13|2 does
not depend on X2. When γ = 1, however, the selected bandwidth turned out to bemuch smaller to reflect the local features
of the underlying dependence function.

The estimates in Fig. 4 are obtained under the true Frank copula. Onemaywonder whethermisspecifying the conditional
copula would lead to a different conclusion. To investigate the performance of the local linear estimator under copula
misspecification, the exercise was repeated assuming Plackett copulas, which share some – but not all – properties of Frank
copulas; for example, Plackett and Frank copulas are both symmetric and exhibit no tail dependence. However, Frank copulas
are Archimedean whereas Plackett copulas are characterized by a constant odds ratio relationship; see, e.g., [19]. As Fig. 5
shows, the copula misspecification had a negligible effect on the estimates, at least in this case.

6. Simulation results

In order to assess the sampling performance of the local linear estimators θ̂13|2 and θ̌13|2, a Monte Carlo experiment was
conducted using themodel from Section 4. More specifically, Algorithm 1was used to generate 100 samples of size n = 500,
both when γ = 0 and 1. For eachMonte Carlo sample, the conditional copula parameter θ13|2 was estimated both under the
assumption of a simplified PCC and under the more general hypothesis that the parameter θ13|2 depends on x2, as described
in Section 5.

Table 2 presents the results in terms of Integrated Square Bias (ISB), Variance (IVAR), and Mean Square Error (IMSE), as
measured upon conversion of the parameter estimates to Kendall’s tau scale. When working with ranks, for instance, these
are defined by

ISB(τ̂13|2) =


X

[E{τ̂13|2(x)} − τ13|2(x)]2 dx,

IVAR(τ̂13|2) =


X

E([τ̂13|2(x) − E{τ̂13|2(x)}]2) dx,

and
IMSE(τ̂13|2) = ISB(τ̂13|2) + IVAR(τ̂13|2).

In these expressions, the expectations were replaced by averages over the 100 Monte Carlo samples and the integrals were
approximated by taking a sum over 19 equally spaced grid points from 0.05 to 0.95, inclusively.

Based on Table 2, the following observations can be made:
(a) Whether in the simplified or general PCC framework, the rank-based estimator τ̂13|2 seems to perform at least as well

as the estimator τ̌13|2 designed for the case when the margins are known.
(b) When the simplifying assumption holds (γ = 0), the local linear estimator performsworse than the likelihood estimator,

especially in terms of variance.
(c) When the simplifying assumption is violated (γ = 1), the likelihood estimator is severely biased while the local linear

estimator performs well, despite its slightly higher variance.

In support of the above conclusions, a graphical summary of the local linear estimates on Kendall’s tau scale is given in
Fig. 6. Regardless of whether γ = 0 or 1, the local linear estimator is close to τ13|2 both when the margins are known and
estimated. To assess the variability of local linear estimates across the range of X2, 90% pointwise Monte Carlo confidence
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Table 2
Integrated square bias, variance, and mean square error (×100) of two estimators of τ13|2 in the model of
Section 4 with γ = 0 or 1. The last column shows the average λ̄n of the data-driven bandwidths.

Simplified PCC General PCC
γ ISB IVAR IMSE ISB IVAR IMSE λ̄n

0 τ̌13|2 0.000 0.083 0.084 0.006 0.394 0.400 0.768
τ̂13|2 0.000 0.086 0.086 0.005 0.365 0.370 0.796

1 τ̌13|2 5.718 0.102 5.819 0.029 0.511 0.540 0.206
τ̂13|2 5.718 0.098 5.816 0.035 0.482 0.517 0.224

Fig. 6. Plots of τ13|2 and its estimates τ̌13|2 (left) and τ̂13|2 (right) as a function of x2 when γ = 0 (top) and 1 (bottom). In each panel, the true function
is shown as a solid curve, the average of the estimates taken over 100 Monte Carlo samples is displayed by the dashed curve and the 90% Monte Carlo
confidence intervals are given by dotted curves.

intervals are provided. As can be seen in Fig. 6, the true functional form of τ13|2 falls within the confidence intervals both
when γ = 0 and 1. Overall, these results suggest that θ̌12|3 and θ̂12|3 are consistent estimates of the conditional copula
parameter θ13|2.

7. Consistency of the estimators

The purpose of this section is to establish the consistency of the local linear estimator of θ13|2 defined in Section 5. When
the margins F1, F2, F3 and the parameters θ12, θ23 are known, the proposed procedure reduces to the estimator considered
in [3,4]. It is shown in [3] that the latter estimator is asymptotically Normal. Furthermore, expressions for its limiting bias
and variance are given in [4].

When the parameters θ12 and θ23 are unknown, as in the present context, the results in [3,4] are not directly applicable.
It is shown below that the local linear estimator remains consistent, both when the margins F1, F2, F3 are known and
unknown. The proof is detailed here in the most realistic case, i.e., when the margins are unknown. The argument is
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similar to the proof given elsewhere in this Special Issue [2] for the case where nonparametric estimates of F1|2 and F3|2 are
used.

Recall that to obtain the local linear estimator θ̂13|2, the distribution functions of X1 and X3 given X2 = x2 are first
estimated byF1|2(x1|x2) = h12{F1n(x1), F2n(x2); θ̂12},F3|2(x3|x2) = h32{F3n(x1), F2n(x2); θ̂23},

respectively. Here, hk2 is defined as in (5) for k = 1, 3. For i ∈ {1, . . . , n}, denote the linear approximation of η13|2(X2i) by

η̄13|2(x, X2i) = β0x + β1x(X2i − x) = β0x + β1xn


X2i − x

λn


,

where β1xn = λnβ1x. Further write

ℓ(η, u, v) = ln c13|2{u, v; g−1(η)}

and for arbitrary integers r, s, t , let

ℓrst(η, u, v) =
∂ r+s+t

∂ηr ∂us ∂vt
ℓ(η, u, v).

The reparametrization βxn = (β0xn, β1xn) = (β0x, β1xn) then leads to the local log-likelihood function given by

L∗

λn
(βxn, x) =

n
i=1

Kλn(X2i − x)ℓ

η̄13|2(x, X2i),F1|2(X1i|X2i),F3|2(X3i|X2i)


.

Now assume that ℓ is sufficiently smooth that it can be expanded in Taylor series with respect to its first argument. Precise
conditions are spelled out in Appendix A. If b = (b0, b1) is sufficiently close to βxn, one can then write

1
n
{L∗

λn
(b, x) − L∗

λn
(βxn, x)} = Ŝ1n(x) + Ŝ2n(x) + Ŝ3n(x)

in terms of

Ŝ1n(x) =

1
r=0

Ârn(x)(br − βrxn),

Ŝ2n(x) =
1
2

1
r=0

1
s=0

B̂rsn(x)(br − βrxn)(bs − βsxn),

Ŝ3n(x) =
1
6

1
r=0

1
s=0

1
t=0

Ĉrstn(x)(br − βrxn)(bs − βsxn)(bt − βtxn),

where

Ârn(x) =
1
n

n
i=1


X2i − x

λn

r

Kλn(X2i − x)ℓ100{η̄13|2(x, X2i),F1|2(X1i|X2i),F3|2(X3i|X2i)},

B̂rsn(x) =
1
n

n
i=1


X2i − x

λn

r+s

Kλn(X2i − x)ℓ200{η̄13|2(x, X2i),F1|2(X1i|X2i),F3|2(X3i|X2i)},

Ĉrstn(x) =
1
n

n
i=1


X2i − x

λn

r+s+t

Kλn(X2i − x)ℓ300{η
∗(x, X2i),F1|2(X1i|X2i),F3|2(X3i|X2i)},

and, for i ∈ {1, . . . , n}, η∗(x, X2i) lies between η̄13|2(x, X2i) and b0 + b1(X2i − x)/λn.
The following result constitutes the first step in establishing the consistency of θ̂13|2. Its proof is detailed in Appendix B.

Lemma 1. Assume that regularity conditions (A1)–(A3), (C1)–(C3) and (D) listed in Appendix A hold. If x is in the interior X2
of the support of F2, then, as n → ∞,

|Ârn(x) − Arn(x)|
p

→ 0, |B̂rsn(x) − Brsn(x)|
p

→ 0, |Ĉrstn(x) − Crstn(x)|
p

→ 0
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for all r, s, t ∈ {0, 1}, where

Arn(x) =
1
n

n
i=1


X2i − x

λn

r

Kλn(X2i − x)ℓ100{η13|2(X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)},

Brsn(x) =
1
n

n
i=1


X2i − x

λn

r+s

Kλn(X2i − x)ℓ200{η13|2(X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)},

Crstn(x) =
1
n

n
i=1


X2i − x

λn

r+s+t

Kλn(X2i − x)ℓ300{η
∗(x, X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)}.

Thus for arbitrary r, s, t ∈ {0, 1}, Ârn, B̂rsn, Ĉrstn behave asymptotically as Arn, Brsn, Crstn, respectively. The limiting behavior
of the latter quantities is stated below and proved in Appendix B. In what follows,

I(x) = E

ℓ2
100


g{θ13|2(x)}, F1|2(X1|x), F3|2(X3|x)|X2 = x


= −E


ℓ200


g{θ13|2(x)}, F1|2(X1|x), F3|2(X3|x)|X2 = x


denotes the Fisher Information for g{θ13|2(x)} at any possible x.

Lemma 2. Assume that regularity conditions (A1)–(A3), (B1)–(B2), (C1)–(C3) and (D) listed in Appendix A hold. If x is in the
interior X2 of the support of F2, then, as n → ∞,

(a) |A0n(x)|
p

→ 0 and |A1n(x)|
p

→ 0;
(b) |B01n(x)|

p
→ 0 and |B10n(x)|

p
→ 0, while

B00n(x)
p

→ −I(x)f2(x) and B11n(x)
p

→ −I(x)f2(x)µ11,

where µ11 =

t2K(t) dt;

(c)


r,s,t |Crstn(x)| < Mx in probability for some constant Mx > 0.

The following theorem establishes the consistency of the rank-based local linear likelihood estimator θ̂13|2. A similar
result holds for the estimator θ̌13|2 in the known-margin case.

Theorem 1. Assume that regularity conditions (A1)–(A3), (B1)–(B2), (C1)–(C3) and (D) listed in AppendixA hold. For arbitrary
x ∈ X2, there exist solutions β̂ = (β̂0x, β̂1x) to the local likelihood equations ∂ L∗(βx, x)/∂βx = 0 such that, as n → ∞,

β̂0x
p

→ β0x, λn(β̂1x − β1x)
p

→ 0.

Proof. For a given x ∈ X2, let

Qx =
1
2
f2(x)I(x)µ11

and fix ε ∈ (0, 3Qx/Mx), where µ11 and Mx > 0 are as in Lemma 2. Let also

Dε = {b ∈ R2
: |b0 − β0xn|

2
+ |b1 − β1xn|

2
= ε2

}.

It turns out that

lim
n→∞

Pr{L∗

λn
(b, x) < L∗

λn
(βxn, x) for all b ∈ Dε} = 1. (9)

To prove this claim, first observe that for arbitrary b ∈ Dε , one has

{L∗

λn
(b, x) ≥ L∗

λn
(βxn, x)} = {Ŝ1n(x) + Ŝ2n(x) + Ŝ3n(x) ≥ 0},

which is a subset of
Ŝ1n(x) + Ŝ2n(x) + Ŝ3n(x) +

1
2
f2(x)I(x){(b0 − β0xn)

2
+ (b1 − β1xn)

2µ11} ≥ Qxε
2


.

The latter event is further contained in

En =

ε|Â0n(x)| + ε|Â1n(x)| +
ε2

2
|B̂10n(x)| +

ε2

2
|B̂01n(x)|

+
ε2

2
|B̂00n(x) + f2(x)I(x)| +

ε2

2
|B̂11n(x) + f2(x)I(x)µ11| +

ε3

6


r,s,t

|Ĉrstn(x)| ≥ Qxε
2


.
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Because En does not depend on a particular choice of b ∈ Dε , one has

{L∗

λn
(b, x) ≥ L∗

λn
(βxn, x) for at least one b ∈ Dε} ⊆ En.

It remains to show that Pr(En) → 0 as n → ∞. To see this, write

Pr(En) ≤ Pr(E1n) + Pr(E2n),

where

E1n =


ε|Â0n(x)| + ε|Â1n(x)| +

ε2

2
|B̂10n(x)| +

ε2

2
|B̂01n(x)|

+
ε2

2
|B̂00n(x) + f2(x)I(x)| +

ε2

2
|B̂11n(x) + f2(x)I(x)µ11| ≥

ε2Qx

2


and

E2n =


r,s,t

|Ĉrstn(x)| ≥ Mx


.

Calling on Lemmas 1–2, one can deduce that both Pr(E1n) and Pr(E2n) go to zero as n → ∞. This establishes claim (9). The
latter implies that the probability of L∗

λn
having a local maximum in the ball Bε(βnx) with radius ε and centered at βxn tends

to 1 as n → ∞, and this for any ε sufficiently small. To complete the argument, one can then proceed as in [17]. For any
suitable ε > 0, there exists a sequence (β̂0x, β̂1x) of solutions to the local likelihood equations ∂ L∗(βx)/∂βx = 0 for which
one has simultaneously

Pr(|β̂0x − β0x| > ε) → 0, Pr(λn|β̂1x − β1x| > ε) → 0.

By choosing the root of the local likelihood equations closest to (β0x, β1x), one can thus obtain a sequence (β̂0x, β̂1x) of roots
independently of ε for which the statement of Theorem 1 holds. �

8. Data application

As a practical illustration of the local linear estimation in PCCs, the classical hydro-geochemical stream and sediment
reconnaissance data from [9] were revisited. They consist of the observed log-concentrations of seven chemicals in 655
water samples collected near Grand Junction, Colorado.

In particular, consider the pairwise scatter plots of the rank-transformed data shown in Fig. 7, which illustrate the
dependence between cobalt (Co), titanium (Ti) and scandium (Sc). These variables are positively associated, as confirmed
by the pairwise empirical values of Kendall’s tau, viz.

τn(Co, Ti) = 0.365, τn(Ti, Sc) = 0.436, τn(Co, Sc) = 0.535.

As argued in [8,9], the triplet (Co, Ti, Sc) can be jointly modeled neither by a meta-elliptical nor by an extreme-value copula.
Fig. 7 suggests that a Student-t copula may be suitable for the dependence between each pair.

Suppose that each pair (X1, X2) = (Co, Ti), (X2, X3) = (Ti, Sc) and (X1, X3) = (Co, Sc) is modeled by some Student-t
copula parameterized by θ = (ρ, ν) as in Example 5.3.3 of [18]; the maximum pseudo likelihood parameter estimates are
then (ρ̂12, ν̂12) = (0.53, 7), (ρ̂23, ν̂23) = (0.62, 6) and (ρ̂13, ν̂13) = (0.74, 8), respectively.

One may wonder whether or not the conditional dependence of the pair (X1, X3) given X2 = x2 can be modeled by a
copula that does not depend on x2. In other words, is the simplified PCC hypothesis justified in this case?

To address this issue, the pseudo observations U∗

1|2 and U∗

3|2 were first constructed as in (8). Their joint behavior
is illustrated in the left panel of Fig. 8. The clustering of observations in the upper right corner suggests that the
Gumbel–Hougaard copula family may be an appropriate model for C13|2. Under the simplifying assumption, the maximum
pseudo likelihood parameter estimate of C13|2 is θ̂13|2 = 1.65, which corresponds to τ̂13|2 = 0.39. The latter value is
represented by a solid line in the right panel of Fig. 8.

Under the more general assumption that C13|2 belongs to the Gumbel–Hougaard family whose parameter depends on
x2, θ13|2 can be estimated using the local likelihood technique presented in Section 5. Given that the parameter range of the
Gumbel–Hougaard copula is the interval [1, ∞), a convenient link function is g(t) = ln(t − 1). To select an appropriate
bandwidth for the local linear estimation, six pilot bandwidth values were considered. They were equally spaced on the
logarithmic scale, ranging from 0.30 to 1.52. Ultimately, the cross-validated likelihood criterion led to λn = 0.57. The
dashed curve in the right panel of Fig. 8 shows the estimate of τ13|2 corresponding to θ̂13|2 as a function of x2. To assess the
variation in θ13|2(X2), 90% pointwise confidence intervals at 31 equally spaced grid points in the range of x2 were obtained
by nonparametric bootstrapping of the original data with 100 bootstrap replicates. As the constant parameter estimate
is not entirely contained within the intervals, it appears that the simplifying assumption is not appropriate in this vine
construction.
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Fig. 7. Pairwise scatter plots of the empirical ranks of cobalt (Co), titanium (Ti) and scandium (Sc) in 655 water samples collected near Grand Junction,
Colorado.

Fig. 8. Scatter plot of the pseudo observations U∗

1|2 and U∗

3|2 (left) and plot of estimates τ̂13|2 of Kendall’s tau (right) obtained under the simplifying
assumption (solid) and using the local linear approach (dashed) as a function of X2 , along with the 90% bootstrap confidence intervals (dotted).

As a further illustration, the validity of the simplifying assumption was also investigated under an alternative vine
construction,where thepairs that have the strongest dependencedictate the unconditional copulas of the PCC; thismodeling
strategy is suggested in [1]. Displayed in Fig. 9 are the pseudo observationsU∗

1|3 andU∗

2|3 obtained from the fitted Student-t
copulas C13 and C23 and the estimates of τ12|3 assuming a Frank copula for C12|3, which can accommodate both positive and
negative association. The nonparametric estimates and the corresponding bootstrap confidence intervals show considerable
variation especially at small values of x3, which is possibly due to computational instability close to the boundaries. Even
excluding the latter, the constant parameter estimate θ̂12|3 = 0.72 (corresponding to τ̂12|3 = 0.08) does not fall in the
bootstrap confidence intervals. Thus the simplifying assumption does not seem to hold under this construction either.
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Fig. 9. Scatter plot of the pseudo observations U∗

1|3 and U∗

2|3 (left) and plot of estimates τ̂13|2 of Kendall’s tau (right) obtained under the simplifying
assumption (solid) and using the local linear approach (dashed) as a function of X3 , along with the 90% bootstrap confidence intervals (dotted).

9. Conclusion and discussion

While simplified pair-copula constructions are quickly gaining popularity in multivariate data modeling, it was shown
here that an uncritical use of the simplifying assumption may be misleading. As an alternative, this paper has presented a
kernel-based nonparametric method for the estimation of the dependence parameter of a conditional copula in a trivariate
PCC. This technique, which was proved to be consistent, makes it possible to assess the validity of the simplified PCC
assumption according to which the conditional copula component of the model does not depend on the conditioning
variable.

Although the proposed technique was introduced here as a visual tool, it could also be used to construct a formal test of
the simplifying assumption, e.g., by adapting the generalized likelihood ratio approach of [3,5]. To accomplish this, it would
be necessary to determine the asymptotic distribution of the local likelihood estimator within the PCC framework. Also of
interest is the generalization of this methodology to multidimensional vines in which conditional copulas at higher levels
of the hierarchy feature more than one conditioning variable. This will be the subject of future work.
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Appendix A

The following regularity conditions are required to establish the consistency of θ̂13|2.

(A1) F2 admits a differentiable density f2 on the interior X2 of its support.
(A2) There exists an open subset Θ0 of the parameter space Θ such that c13|2 is strictly positive and admits all partial

derivatives up to the order three on (0, 1) × (0, 1) × Θ0.
(A3) One has g−1

◦ η13|2(X2) ⊂ Θ0 and, for k ∈ {1, 2, 3}, the partial derivatives ℓk00 are Lipschitz on (0, 1) × (0, 1) ×

η13|2(X2).
(B1) There exists a constantMI > 0 such that, for all x ∈ X2,

I(x) = E

ℓ2
100


g{θ13|2(x)}, F1|2(X1|x), F3|2(X3|x)


|X2 = x


< MI .

(B2) For any k ∈ {1, 2, 3}, there exists a function Jk : (0, 1)2 → R such that for all u, v ∈ (0, 1) and θ ∈ Θ0,
|ℓk00{g(θ), u, v}| ≤ Jk(u, v) and Eθ {J2k (U1|2,U3|2)} < ∞ is uniformly bounded on Θ0. Here (U1|2,U3|2) is a random
pair distributed as C13|2(u, v; θ).

(C1) The functions η13|2 and g−1 are continuously differentiable up to the order two and three, respectively. Furthermore,
the second order derivative η

(2)
13|2 is bounded.

(C2) The kernel K is a symmetric bounded probability density function with compact support, which is assumed to be
[−1, 1] without loss of generality.

(C3) The bandwidth λn depends on n in such a way that as n → ∞, λn → 0 and nλ2+δ
n → ∞ for some δ > 0.

(D) For k ∈ {1, 3}, the function hk2(u, v, θ) is Lipschitz and Ck2 satisfies the standard regularity conditions for maximum
likelihood estimation; see, e.g., [17].
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Appendix B

This Appendix contains proofs of Lemmas 1 and 2.

Proof of Lemma 1. First call on the triangle inequality to write

|Ârn(x) − Arn(x)| ≤
1
n

n
i=1

X2i − x
λn

r Kλn(X2i − x)
ℓ100{η̄13|2(x, X2i),F1|2(X1i|X2i),F3|2(X3i|X2i)}

− ℓ100{η13|2(X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)}

 .
Given that ℓ100 is Lipschitz by condition (A3), a constantM1 > 0 can be found that allows one to bound the right-hand side
from above by

M1

n

n
i=1

X2i − x
λn

r Kλn(X2i − x){|η̄13|2(x, X2i) − η13|2(X2i)|

+ |F1|2(X1i|X2i) − F1|2(X1i|X2i)| + |F3|2(X3i|X2i) − F3|2(X3i|X2i)|}.

In particular, therefore,

|Ârn(x) − Arn(x)| ≤ ∆2λ
2
n
M1

2n

n
i=1

X2i − x
λn

r+2

Kλn(X2i − x) + (∆1 + ∆3)
M1

n

n
i=1

X2i − x
λn

r Kλn(X2i − x),

where

∆2 = sup
x∈X2

|η′′

13|2(x)| < ∞

by condition (C1) and for k ∈ {1, 3},

∆k = sup
xk,x2∈R

|Fk|2(xk|x2) − Fk|2(xk|x2)|.

Using the Lipschitz condition (A3) and analogous arguments, one can find constantsM2 > 0 and M3 > 0 such that

|B̂rsn(x) − Brsn(x)| ≤ ∆2λ
2
n
M2

2n

n
i=1

X2i − x
λn

r+s+2

Kλn(X2i − x) + (∆1 + ∆3)
M2

n

n
i=1

X2i − x
λn

r+s

Kλn(X2i − x)

and

|Ĉrstn(x) − Crstn(x)| ≤ (∆1 + ∆3)
M3

n

n
i=1

X2i − x
λn

r+s+t

Kλn(X2i − x).

Now as n → ∞, condition (C2) guarantees that, for any w > 0,

1
n

n
i=1

X2i − x
λn

w Kλn(X2i − x) = Op(1).

Furthermore, let θk stand either for θ12 if k = 1 or for θ23 if k = 3. Then for k ∈ {1, 3},

∆k = sup
xk,x2∈R

|hk2{Fkn(xk), F2n(x2); θ̂k} − hk2{Fk(xk), F2(x2); θk}|.

Using condition (B1), one can find a constantM4 > 0 such that, for k = 1, 3,

∆k ≤ M4


|θ̂k − θ | + sup

xk∈R
|Fkn(xk) − Fk(xk)| + sup

x2∈R
|F2n(x2) − F2(x2)|


.

The consistency of the maximum pseudo likelihood estimator and the Glivenko–Cantelli Theorem together imply that for
k ∈ {1, 3}, ∆k = op(1). This shows that |Ĉrstn(x) − Crstn(x)| = op(1). Similarly, it follows from condition (C3) that

|Ârn(x) − Arn(x)| = Op(λ
2
n) + op(1) = op(1)

and

|B̂rsn(x) − Brsn(x)| = Op(λ
2
n) + op(1) = op(1). �
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Proof of Lemma 2. To establish statement (a), fix r ∈ {0, 1} and for each i ∈ {1, . . . , n}, let

Zin =


X2i − x

λn

r

Kλn(X2i − x) ℓ100{η13|2(X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)},

so that Arn = (Z1n + · · · + Znn)/n. In view of condition (B1), it is immediate that, for all i ∈ {1, . . . , n},

E(Zin) =

 
y − x
λn

r

Kλn( y − x)


ℓ100{η13|2( y), u, v} dC13|2{u, v; θ13|2( y)}

dF2( y)

vanishes. The same condition further implies that

1
n2

n
i=1

var(Zin) =
1
n

 
y − x
λn

2r

K 2
λn

( y − x) I( y) dF2( y)

≤
MI

n

 
y − x
λn

2r

K 2
λn

( y − x) dF2( y) = O


1
nλn


.

It follows from the Weak Law of Large Numbers (e.g., Theorem 10.2 in [6]) that, as n → ∞, Arn
p

→ 0 for r ∈ {0, 1}.
Turning to claim (b), fix r, s ∈ {0, 1} and, for each i ∈ {1, . . . , n}, redefine

Zin =


X2i − x

λn

r+s

Kλn(X2i − x) ℓ200{η13|2(X2i), F1|2(X1i|X2i), F3|2(X3i|X2i)},

so that Brsn = (Z1n + · · · + Znn)/n. In view of condition (B1), it is immediate that, for all i ∈ {1, . . . , n},

E(Zin) =

 
y − x
λn

r+s

Kλn( y − x)


ℓ200{η13|2( y), u, v} dC13|2{u, v; θ13|2( y)}

dF2( y)

= −

 
y − x
λn

r+s

Kλn( y − x)I( y)dF2( y)

= −


zr+sK(z)I(λnz + x)f2(λnz + x)dz.

Expanding the product function I × f2 in Taylor series around x, one finds

E(Zin) = −I(x)f2(x)µrs + O(λn),

where, for all r, s ∈ {0, 1}, µrs =

t r+sK(t) dt . Furthermore, it follows from condition (B2) that

1
n2

n
i=1

var(Zin) =
1
n

 
y − x
λn

2r+2s

K 2
λn

( y − x)


ℓ2
200{η13|2( y), u, v} dC13|2{u, v; θ13|2( y)}


dF2( y)

≤
M4

n

 
y − x
λn

2r+2s

K 2
λn

( y − x)dF2( y) = O


1
nλn


.

In particular, therefore, the Weak Law of Large Numbers implies that, for all r, s ∈ {0, 1}, as n → ∞,

Brsn
p

→ −I(x)f2(x)µrs.

Claim (b) then follows because µ00 = 1 and µ01 = µ10 = 0 by condition (C2).
Finally, to prove claim (c), use condition (B2) to see that, for each r, s, t ∈ {0, 1}, one has |Crstn(x)| ≤ Wrstn, where

Wrstn =
1
n

n
i=1

X2i − x
λn

r+s+t

Kλn(X2i − x)J3{F1|2(X1i|X2i), F3|2(X3i|X2i)}.

Proceeding as above, one can invoke the Weak Law of Large Numbers and condition (B2) to show that there exists M5 ≥ 0
such that


r,s,t Wrstn

p
→M5. Thus, as n → ∞,

Pr


r,s,t

|Crstn| ≤ Mx


→ 1

wheneverMx > M5. This completes the proof. �
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