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a b s t r a c t

We deal with nonparametric estimation in a nonlinear cointegration model whose regres-
sor and error term can be contemporaneously correlated. The asymptotic properties of the
Nadaraya–Watson estimator are already examined in the literature. In this paper, we con-
sider nonparametric least absolute deviation (LAD) regression and derive the asymptotic
distributions of the local constant and local linear estimators by appealing to the local time
approach. We also present the results of a small simulation study.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

There have been a lot of papers applying nonparametric regression techniques to time series data. Nonparametric regres-
sion techniques are flexible and robust to model misspecifications. The techniques are also useful for specification testing of
parametric models. See Fan and Yao [6], Gao [7], and Li and Racine [17] and the references therein for recent developments
of nonparametric estimation for stationary time series data.

Recently, Karlsen and Tjøstheim [14], Karlsen et al. [13], and Wang and Phillips [22–24] have successfully applied non-
parametric regression estimation to nonlinear cointegration models and investigated the asymptotic properties of the es-
timators. Since Granger [9] and Engle and Granger [5], cointegration models have been one of most popular models for
nonstationary time series data. However, most studies were limited to linear models until [14,13], and [22–24]. [14,13,20]
are based on the theory of null recurrent Markov chains and [22–24] exploited the theory of local time of nonstationary
processes. See [2,3,8,25] for specification testing and semiparametric models of nonstationary time series.

Chen et al. [4] considered robust nonparametric regression in the setup of [22] and derived the asymptotic distribution
of the estimator. In [4], the regressor and the error term are assumed to be mutually independent as in Theorem 3.1 of [22].
Their robust nonparametric regression estimators include nonparametric quantile regression estimators. However, there
are some mistakes in [4]. The details are given after Theorem 1 in Section 2. Lin et al. [18] deal with robust nonparametric
regression by using the null recurrent Markov chain approach andwe cannot apply their approach to the setup of this paper
because {Xi} is not a Markov chain and Xi and ui are correlated in this paper.

In this paper, we consider least absolute deviation (LAD) regression in the setup of [23] where the regressor and depen-
dent variable can be contemporaneously correlated. We examine the asymptotic properties of the local constant estimator
(LCE) and local linear estimator (LLE). The proof of ourmain result crucially depends on the results in [22,23]. Our results can
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be easily extended to general q-th quantile regression andwe also give a comment on how to deal with robust nonparamet-
ric estimators in Remark 4 in Section 4. We also carried out a small simulation study. In the simulation study, we compared
the nonparametric LAD estimator and the nonparametric least squares estimator and investigated the effects of bandwidths.

Our nonlinear cointegration model is given by

Yi = g(Xi) + vi, i = 1, . . . , n, (1)

where vi = v(Xi, ui), {Xi} is a near-integrated or integrated process, {ui} is a stationary process. We estimate g(x0) for a
fixed x0 under Assumptions V and G.

Assumption G. g(x) is twice continuously differentiable in a neighborhood of x0.

We present the assumption on v(Xi, ui) here. We specify {Xi} and {ui} and give the other assumptions later in Section 2.

Assumption V. v(x, u) is monotone increasing in u for any x and v(x,mu) = 0 for any x, where mu is the median of ui. In
addition, v(x, u) is continuously differentiable in a neighborhood of (x0,mu) and ∂v

∂u (x0,mu) ≠ 0. When we deal with the
local constant estimator (LCE), v(x, u) is twice continuously differentiable in a neighborhood of (x0,mu).

Notice that sign(vi) = sign(ui − mu) under Assumption V and an example of v(x, u) is σ(x)(u − mu). Hence we have
E{sign(vi)} = 0, where sign(v) = −1, v < 0, = 1, v ≥ 0, andwe estimate g(x0) by using nonparametric LAD regression. In
[23], the error term in (1) is ui with E{ui} = 0 and g(x0) is estimated by nonparametric mean regression estimators such as
the Nadaraya–Watson estimator. In [23] and this paper, contemporaneous correlation between the regressor and the error
term is allowed.

There has been a lot of interest in quantile regression since Koenker and Basset [16]. This is because quantile regression is
robust to outliers and offers more information on data than mean regression. See Koenker [15] for more details on quantile
regression. There are a lot of papers which deal with nonparametric quantile regression for time series data, to name only a
few, Honda [11,12], Cai [1], Hall et al. [10]. Xiao [26] considers quantile regression in linear and time-varying cointegration
models.

The rest of this paper is organized as follows. We state assumptions, define the nonparametric estimators, and present
the main result Theorem 1 in Section 2. We rather focus on the local linear estimator (LLE) in this paper. We present the
results of a simulation study in Section 3. The proof of Theorem 1 and the propositions for the proof of Theorem 1 are given
in Section 4. The proofs of the propositions are relegated to Section 5.

We denote convergence in distribution and in probability by
d
−→ and

p
−→, respectively and C is a generic positive constant

whose value varies from place to place. When X has a normal distribution with mean µ and covariance matrix Σ , we write
X ∼ N(µ, Σ). For a vector v, vT is the transpose of v.Wewrite [a] for the largest integer less than or equal to a.We introduce
two i.i.d. processes {ϵi| − ∞ < i < ∞} and {λi| − ∞ < i < ∞} later in Section 2. For notational simplicity, we write {ϵi}
and {λi} for them, respectively. In addition we omit almost surely or a.s. when we consider conditional expectations or it is
clear from the context. This is for notational simplicity.

2. Estimators and asymptotic distributions

First we follow [23] to define {Xi} and describe the limiting process Jκ(t), 0 ≤ t ≤ 1, of X[nt]/
√
n, 0 ≤ t ≤ 1. Next we

specify {ui} as in [23]. We borrow a lot of notation from [23] in the definitions and specifications. Then we define the LCE
and LLE and present the asymptotic distributions in Theorem 1, whose proof crucially depends on the results in [22,23] and
is postponed to Section 4.

We specify {Xi} in Assumption X below and the assumption is Assumption 1 of [23]

Assumption X. With X0 = 0 and ρ = 1 + κ/n for some constant κ , we define Xi by Xi = ρXi−1 + ξi. {ξi} is a linear
process given by ξi =


∞

k=0 φkϵi−k, where


∞

k=0 |φk| < ∞, 0 <


∞

k=0 φk = φ, and {ϵi} is an i.i.d. process. Besides,
E{ϵi} = 0,Var{ϵi} = 1, and the characteristic function of ϵi is integrable.

Suppose that Assumption X holds throughout this paper. Then X[nt]/
√
n, 0 ≤ t ≤ 1, converges in distribution to

Jκ(t) = φ


W (t) + κ

 t

0
e(t−s)κW (s)ds


, 0 ≤ t ≤ 1, (2)

in the Skorokhod topology on D[0, 1], where W (s), 0 ≤ s ≤ 1, is a standard Brownian motion. See Proposition 7.1 of [23]
for the proof. The local time process L(s, a) of Jκ(t), 0 ≤ t ≤ 1 is defined as in (3.10) of [23]. Note that Jκ(t) in (2) is Jκ(t) in
(3.9) of [23] multiplied by φ.

Next we define {ui} in Assumption U1 below, which is essentially Assumption 2 of [23]. In the setup, Xi and ui can be
correlated.

Assumption U1. Letting {λi} be another i.i.d. process independent of {ϵi}, we have ui = u(ϵi, . . . , ϵi−m0 , λi, . . . , λi−m0),
where m0 is a positive integer.
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We do not need any assumptions on moments of ui. Instead we have to impose another assumption on the conditional
density of ui to deal with nonparametric LAD regression. Wewrite E and E i

i−m0
for the σ -field generated by {ϵi} and {ϵi, . . . ,

ϵi−m0}, respectively. If ui has the conditional density given E , then we can denote it by fui(u|E
i
i−m0

) due to Assumption U1.
Recall that we denote the unconditional median of ui bymu.

Assumption U2. There is a fixed and nonstochastic neighborhood of mu. In the neighborhood, the conditional distribution
of ui given E has the density function. Besides fui(u|E

i
i−m0

) is uniformly bounded in (ϵi, . . . , ϵi−m0) and continuously differ-
entiable and the derivative f ′

ui(u|E
i
i−m0

) is uniformly bounded in the neighborhood. We also have fu(mu) > 0, where fu(u) is
the marginal density function of ui.

We assume that Assumptions U1 and U2 hold throughout this paper. Denoting the conditional density of vi given E by
fvi(v|E), we have a representation of fvi(0|E) in (3).

fvi(0|E) = fui(mu|E
i
i−m0

)


∂v

∂u
(Xi,mu)

−1

. (3)

Here we introduce another notation fv(v|x) for the density function of v(x, ui) with x fixed. Since Xi and ui are not
independent, the density function is not the conditional density function of v(Xi, ui) given Xi = x. We slightly abuse the
standard notation for conditional density functions since it plays almost the same role as the conditional density function
in the cases of stationary processes. As for the density function of v(x, ui)fv(v|x), we have

fv(0|x0) = fu(mu)


∂v

∂u
(x0,mu)

−1

. (4)

We state assumptions on the kernel function K(s) and the bandwidth h. We define the Fourier transform of f (x) by
f̂ (t) = (2π)−1/2


eitxf (x)dx, where f (x) is an integrable function and i is the imaginary unit.

Assumption K. K(s) is a nonnegative bounded continuous functionwith compact support and K̂(t) is integrable. In addition,
the Fourier transforms of sK(s), s2K(s), and s3K(s) are also integrable.

Assumption K above is Assumption 3 of [23] plus the last line of Assumption K. Assumption 3 is not restrictive as asserted
in [23] and the last line of Assumption K is not restrictive, either because

dj

dt j
K̂(t) =

ij
√
2π


eitssjK(s)dx.

We introduce some notation related to the kernel function here.

Ki = K((Xi − x0)/h) and ηi = (1, (Xi − x0)/h)T (5)

κj =


sjK(s)ds and νj =


sjK 2(s)ds. (6)

Assumption H. nh2
→ ∞ and nh10

= O(1).

Assumption H is a verymild condition. It is easy to see from Theorem 1 below that the asymptotically optimal bandwidth
has the form of h = C0n−1/10, where C0 depends on the definition of the optimality and maybe a random variable.

We define the LLE β̂ = (β̂1, β̂2)
T of (g(x0), hg ′(x0))T by

β̂ = argmin
β∈R2

n
i=1

Ki|Yi − ηT
i β|. (7)

The convergence rate of β̂ is (nh2)−1/4 and we set

τn = (nh2)1/4.

We use both τn and (nh2)1/4 in this paper. By normalizing β̂ as

θ̂ = τn(β̂1 − g(x0), β̂2 − hg ′(x0))T ,

we have another definition of θ̂ from (7)

θ̂ = argmin
θ∈R2

n
i=1

Ki(|v
∗

i − τ−1
n ηT

i θ | − |v∗

i |), (8)
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where

v∗

i = vi +
1
2


Xi − x0

h

2

h2g ′′(X̄i) (9)

and X̄i is defined in the second order Taylor expansion of g(x) at x0. For the LCE, we can define θ̂ in (8) by removing ηi and
replacing v∗

i with v∗∗

i below.

v∗∗

i = vi + (Xi − x0)g ′(x0) +
1
2


Xi − x0

h

2

h2g ′′(X̄i). (10)

Here we state Theorem 1, which is the main result of this paper and will be proved in Section 4. The theorem says we
can estimate g(x0) without any instrumental variables as in [23]. We also give a remark on the extension to nonparametric
robust regression at the end of Section 4.

Theorem 1. Suppose that Assumptions V , X,U1,U2, K and H hold. Then we have for the LLE,

θ̂ − B1n
d
−→

1
2
(fv(0|x0)L1/2(1, 0))−1


κ0 κ1
κ1 κ2

−1 
Z1
Z2


,

where

B1n = (nh2)1/4
h2

2


κ0 κ1
κ1 κ2

−1 
κ2
κ3


g ′′(x0) + Op


1

(nh6)1/4


,

Z1
Z2


∼ N


0
0


,


ν0 ν1
ν1 ν2


,

Note that (Z1, Z2)T above is independent of L(1, 0).
For the LCE, we also assume that κ1 = 0. Then we have

θ̂ − B2n
d
−→

1
2
(fv(0|x0)L1/2(1, 0))−1κ−1

0 Z1,

where Z1 is defined above,

B2n = (nh2)1/4
h2

2
κ2

κ0


(fv(0|x0))−1


g ′′(x0)fv(0|x0) + 2g ′(x0)

∂ fv
∂x

(0|x0) − (g ′(x0))2
∂ fv
∂v

(0|x0)


+ Op


1

(nh8)1/4


,

∂ fv
∂v

(0|x0) =


∂v

∂u
(x0,mu)

−2

f ′

u(mu) + fu(mu)
∂

∂u


∂v

∂u
(x0,mu)

−1


.

Note that Op(1/(nh6)1/4) and Op(1/(nh8)1/4) may affect the forms of the bias terms. However, they do not affect the
asymptotic distributions since (nh2)1/4h2/(nh6)1/4 → 0 and (nh2)1/4h2/(nh8)1/4 → 0. The bias terms B1n and B2n are
negligible when nh10

= o(1). When C1 < nh10 < C2 for some positive constants C1 and C2,Op(1/(nh6)1/4) in B1n and
Op(1/(nh8)1/4) in B2n are negligible.

We give an expression of the objective function and decompose the estimator to the stochastic part and the bias part
in the proof of Theorem 1. We deal with the stochastic part by using the results in [23] and Theorem 1 allows for some
endogeneity since the results in [23] do. The bias part is considered in Propositions 3 and 5.

The asymptotic distribution of the LLE will be the same as that of the Nadaraya–Watson estimator in (3.12) of [23] if
(2fv(0|x0))−1 is replaced with σu. (3.12) of [23] is derived under some restrictive assumptions. However, a careful reading
of the proof of (3.12) implies that (9.1) and (9.2) there immediately follows from (3.8) there and that the bias part (9.4) is
free from {ut}. This means that we have (3.2) without the independence between {xt} and {ut} or the martingale difference
assumption {ut}.

There are some mistakes in Lemma A.1 of [4]. In Theorem 3.2 of [4], the limiting distribution is c(L(1, 0))1/2ξ , where
ξ is the standard normal variable independent of L(1, 0) and c is some constant. They considered the LCE in the case of
undersmoothing. They should replace φ(0) in Lemma A.1 with c0L(1, 0), where c0 is an appropriate constant. Then their
limiting distribution of Theorem 3.2 will coincide with that of Theorem 1 here. See Remark 2 in Section 4 about the proof of
the uniformity in θ .

The bias term of the LCE is much more complicated than that of the LLE and that of the Nadaraya–Watson estimator in
[23,24]. The complicated form is due to Proposition 5. The LCE also requires more technical assumptions. Thus we
recommend that we should use the LLE for nonparametric quantile regression with integrated covariates.
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Table 1
LAD for N(0, 1).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias 0.006 0.008 0.016 0.019 0.028 0.036 0.044
MSE 0.353 0.360 0.271 0.242 0.207 0.163 0.126
SE1 0.050 0.062 0.047 0.047 0.037 0.031 0.009
N2 1874 1294 1023 850 738 677 624
N1 1263 871 672 569 508 467 428
MISE 0.163 0.143 0.125 0.102 0.100 0.093 0.086
SE2 0.005 0.007 0.006 0.004 0.006 0.004 0.003
NU 3587 2415 1817 1519 1288 1154 1066

x = 5

Bias 0.026 0.023 0.025 0.033 0.036 0.042 0.052
MSE 0.415 0.368 0.264 0.258 0.229 0.230 0.222
SE1 0.063 0.080 0.024 0.022 0.016 0.017 0.016
N2 2663 2121 1852 1690 1577 1503 1458
N1 2075 1714 1512 1407 1337 1287 1241
MISE 0.173 0.157 0.122 0.104 0.209 0.097 0.087
SE2 0.006 0.009 0.004 0.003 0.082 0.005 0.003
NU 4329 3237 2687 2377 2185 2057 1972

x = 10

Bias 0.034 0.042 0.053 0.054 0.050 0.057 0.069
MSE 0.527 0.474 0.403 0.428 0.778 0.503 0.517
SE1 0.055 0.040 0.026 0.036 0.263 0.080 0.054
N2 3629 3109 2850 2674 2575 2517 2477
N1 3072 2707 2537 2416 2348 2302 2273
MISE 0.192 0.175 0.278 0.119 0.149 0.134 0.141
SE2 0.015 0.030 0.151 0.008 0.031 0.028 0.029
NU 5218 4194 3673 3374 3177 3038 2947

Theorem1 implies that the asymptotically optimal bandwidthmay depend on g ′′(x0), L(1, 0), and fv(0|x0) and that larger
bandwidths will be preferable. It might be difficult to estimate fv(0|x0) from regression residuals. We will need another
paper to establish the consistency even if we are able to estimate fv(0|x0) by standard kernel conditional density estimators.
A cross-validation method as in [4] may be a promising candidate for bandwidth selection.

3. Simulation study

We carried out a small simulation study by using R to compare LAD and least squares (LS) estimators and examine the
effects of bandwidths. The results are given in Tables 1–6. In the simulation study, we partly followed Section 4 of [23] and
set

Yi = Xi + X2
i + vi and Xi = Xi−1 + ϵi,

where ϵi ∼ N(0, 1) and X0 = 0, and

vi = 0.8(λi + 0.4ϵi)/

1 + (0.4)2,

where λi ∼ N(0, 1), t(3)/
√
3, and t(2)/

√
3 in Tables 1–2, 3–4, and 5–6, respectively. Note that t(j) means a t-distribution

with d.f. j.
We estimated g(x) by the local linear LAD estimator and the local linear LS estimator and denote the estimate by ĝ(x). The

results for the LAD estimator and for the LS estimator are presented in Tables 1, 3 and 5 and in Tables 2, 4 and 6, respectively.
The Epanechnikov kernel was used and we employed the quantreg package for LAD regression. See [15] for the details of
the quantreg package.

We took x = 0, 5, 10 and h = n−1/γ , γ = 4, . . . , 10 in the simulation study. The sample size was 1600 and the entries in
the tableswere based on 10000 replications. In the tables, Bias andMSE stand for the simulated bias and the simulatedmean
squared error of the estimators, respectively and SE1means the standard error of the simulatedMSE.We also computed the
approximate integrated squared error

1
L + 1

L
l=0

(ĝ(x + δl) − g(x + δl))2 (11)

with L = 10 and δ = 0.1. We denote the simulated MISE by MISE and SE2 means the standard error of the simulated MISE.
We have to be very careful in the simulation study of nonparametric regression for nonstationary time series since there

are no or only a few observations to estimate g(x) in some replications.
We used the LCE or the Nadaraya–Watson estimator to compute the estimates for numerical stability when we had only

two observations on (x− h, x+ h). We employed the weightedMedian function in the aroma.light package of R for the LCE.
The entries in the N2 rows are the numbers of the replications in which there are less than 3 observations on (x− h, x+ h).
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Table 2
LS for N(0, 1).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias 0.009 0.012 0.025 0.035 0.048 0.059 0.071
MSE 0.252 0.241 0.165 0.123 0.113 0.109 0.081
SE1 0.054 0.055 0.049 0.028 0.023 0.023 0.007
N2 1874 1294 1023 850 738 677 624
N1 1263 871 672 569 508 467 428
MISE 0.090 0.080 0.070 0.058 0.058 0.053 0.051
SE2 0.004 0.005 0.005 0.003 0.004 0.002 0.002
NU 3587 2415 1817 1519 1288 1154 1066

x = 5

Bias 0.025 0.032 0.038 0.051 0.058 0.071 0.081
MSE 0.276 0.187 0.195 0.194 0.172 0.168 0.179
SE1 0.033 0.017 0.018 0.015 0.013 0.013 0.014
N2 2663 2121 1852 1690 1577 1503 1458
N1 2075 1714 1512 1407 1337 1287 1241
MISE 0.095 0.081 0.067 0.059 0.058 0.056 0.055
SE2 0.004 0.004 0.003 0.002 0.002 0.002 0.002
NU 4329 3237 2687 2377 2185 2057 1972

x = 10

Bias 0.040 0.045 0.057 0.061 0.070 0.075 0.095
MSE 0.360 0.397 0.351 0.356 0.425 0.423 0.441
SE1 0.032 0.041 0.027 0.030 0.067 0.069 0.046
N2 3629 3109 2850 2674 2575 2517 2477
N1 3072 2707 2537 2416 2348 2302 2273
MISE 0.096 0.115 0.070 0.068 0.089 0.091 0.092
SE2 0.004 0.035 0.003 0.004 0.028 0.028 0.028
NU 5218 4194 3673 3374 3177 3038 2947

Table 3
LAD for t(3).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias −0.009 0.006 0.022 0.027 0.035 0.047 0.047
MSE 0.800 0.276 0.261 0.188 0.163 0.271 0.150
SE1 0.463 0.080 0.089 0.071 0.069 0.112 0.069
N2 1796 1274 984 812 734 657 618
N1 1215 846 670 565 490 440 408
MISE 0.204 0.168 0.079 0.070 0.061 0.064 0.065
SE2 0.059 0.070 0.004 0.004 0.004 0.009 0.010
NU 3537 2403 1853 1491 1302 1162 1069

x = 5

Bias 0.019 0.036 0.035 0.042 0.044 0.049 0.054
MSE 0.316 0.593 0.201 0.205 0.169 0.210 0.233
SE1 0.038 0.317 0.018 0.020 0.010 0.020 0.033
N2 2671 2175 1894 1748 1644 1555 1489
N1 2148 1720 1550 1438 1368 1303 1267
MISE 0.133 0.165 0.076 0.074 0.078 0.070 0.143
SE2 0.017 0.050 0.003 0.007 0.007 0.006 0.076
NU 4379 3298 2758 2459 2259 2110 1991

x = 10

Bias 0.009 0.024 0.031 0.016 0.023 0.041 0.052
MSE 0.363 0.402 0.401 3.104 0.554 0.648 0.725
SE1 0.021 0.031 0.031 2.700 0.129 0.163 0.179
N2 3625 3106 2860 2690 2601 2518 2460
N1 3061 2711 2532 2430 2353 2311 2268
MISE 0.156 0.105 0.085 0.070 0.088 0.084 0.079
SE2 0.021 0.006 0.005 0.002 0.018 0.017 0.012
NU 5250 4197 3692 3382 3184 3065 2973

The entries in the N1 rows are the numbers of the replications in which there is no or only one observation on (x−h, x+h).
Note that we excluded the replications with no or only one observation from the computation of theMSE.Whenwe have no
observation around x, we cannot compute ĝ(x). In addition, the simulation results were very badly affected by replications
with only one observation. The numbers in the N1 rows are included in the ones in the N2 rows.

Whenwe computed the values in theMISE rows, we used only replications which had at least three observations at each
grid point of (11). The numbers in the NU rows are the numbers of replications not used for computation of MISE’s.

Tables 1–6 give us the following implications.

1. When we look at MISE’s, the LS estimator performs better when vi has finite variance. On the other hand, the LAD
estimator performs better in Tables 5 and 6.
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Table 4
LS for t(3).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias −0.003 0.013 0.029 0.041 0.049 0.061 0.071
MSE 0.576 0.161 0.201 0.165 0.148 0.144 0.143
SE1 0.389 0.026 0.079 0.075 0.074 0.074 0.074
N2 1796 1274 984 812 734 657 618
N1 1215 846 670 565 490 440 408
MISE 0.141 0.073 0.062 0.055 0.051 0.055 0.051
SE2 0.048 0.005 0.003 0.003 0.003 0.008 0.005
NU 3537 2403 1853 1491 1302 1162 1069

x = 5

Bias 0.019 0.034 0.040 0.054 0.062 0.070 0.083
MSE 0.279 0.258 0.179 0.153 0.152 0.184 0.192
SE1 0.039 0.055 0.020 0.010 0.009 0.022 0.023
N2 2671 2175 1894 1748 1644 1555 1489
N1 2148 1720 1550 1438 1368 1303 1267
MISE 0.093 0.128 0.065 0.057 0.066 0.061 0.117
SE2 0.005 0.050 0.003 0.002 0.007 0.006 0.062
NU 4379 3298 2758 2459 2259 2110 1991

x = 10

Bias 0.019 0.031 0.036 0.055 0.047 0.063 0.080
MSE 0.295 0.317 0.351 0.367 0.457 0.616 0.630
SE1 0.016 0.021 0.027 0.031 0.064 0.151 0.146
N2 3625 3106 2860 2690 2601 2518 2460
N1 3061 2711 2532 2430 2353 2311 2268
MISE 0.111 0.077 0.061 0.056 0.064 0.065 0.062
SE2 0.012 0.006 0.002 0.002 0.008 0.008 0.006
NU 5250 4197 3692 3382 3184 3065 2973

Table 5
LAD for t(2).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias 0.009 0.002 0.013 0.022 0.030 0.033 0.043
MSE 0.972 0.391 0.273 0.231 0.229 0.209 0.179
SE1 0.326 0.075 0.042 0.033 0.035 0.028 0.024
N2 1882 1325 1033 861 758 687 632
N1 1273 882 683 577 508 453 413
MISE 0.411 0.364 0.126 0.107 0.090 0.072 0.076
SE2 0.131 0.109 0.013 0.012 0.010 0.004 0.005
NU 3588 2433 1847 1504 1326 1185 1099

x = 5

Bias 0.010 0.014 0.029 0.026 0.042 0.049 0.057
MSE 0.962 0.940 0.675 3.003 0.736 0.670 0.638
SE1 0.315 0.341 0.258 2.039 0.280 0.264 0.263
N2 2741 2236 1958 1804 1693 1626 1561
N1 2172 1817 1631 1511 1443 1381 1341
MISE 0.279 0.169 0.167 0.155 0.155 0.162 0.152
SE2 0.070 0.019 0.038 0.040 0.041 0.053 0.046
NU 4399 3317 2790 2477 2274 2125 2043

x = 10

Bias 0.030 0.003 0.018 0.028 0.037 0.044 0.048
MSE 2.172 2.986 1.155 0.676 0.975 0.472 0.483
SE1 1.109 1.746 0.315 0.111 0.437 0.045 0.047
N2 3656 3121 2870 2685 2565 2507 2455
N1 3077 2702 2532 2411 2354 2308 2271
MISE 0.348 0.213 0.190 0.111 0.121 0.106 0.097
SE2 0.095 0.060 0.055 0.010 0.026 0.013 0.009
NU 5180 4189 3684 3370 3174 3040 2939

2. Larger bandwidths tend to give smaller MISE’s. This means that the effects of fewer observations for ĝ(x) are muchmore
serious than the biases caused by larger bandwidths.

3. MSE’s are larger than MISE’s. Some results omitted here imply that this is partly due to replications with only two
observations around x. Recall that we used such replications only for MSE’s. We may need at least three observations
to estimate g(x). The values in the N2, N1, and NU rows and the differences betweenMSE’s andMISE’s imply that wewill
need a very large sample size to carry out nonparametric regression for nonstationary time series.

4. Biases are small in spite of the endogeneity.
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Table 6
LS for t(2).

h n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10

x = 0

Bias 0.004 0.009 0.022 0.039 0.049 0.058 0.069
MSE 0.579 0.384 0.290 0.232 0.206 0.194 0.177
SE1 0.089 0.052 0.030 0.022 0.018 0.017 0.016
N2 1882 1325 1033 861 758 687 632
N1 1273 882 683 577 508 453 413
MISE 0.487 0.424 0.209 0.183 0.153 0.146 0.133
SE2 0.119 0.101 0.027 0.022 0.016 0.016 0.012
NU 3588 2433 1847 1504 1326 1185 1099

x = 5

Bias 0.012 0.017 0.035 0.042 0.060 0.066 0.083
MSE 0.669 0.912 0.694 0.695 0.645 0.593 0.348
SE1 0.188 0.336 0.261 0.258 0.239 0.226 0.037
N2 2741 2236 1958 1804 1693 1626 1561
N1 2172 1817 1631 1511 1443 1381 1341
MISE 0.337 0.213 0.218 0.187 0.179 0.181 0.147
SE2 0.068 0.018 0.040 0.037 0.037 0.039 0.018
NU 4399 3317 2790 2477 2274 2125 2043

x = 10

Bias 0.025 0.006 0.027 0.045 0.061 0.066 0.070
MSE 1.217 2.277 0.943 0.710 0.704 0.686 0.806
SE1 0.381 1.251 0.210 0.105 0.149 0.148 0.187
N2 3656 3121 2870 2685 2565 2507 2455
N1 3077 2702 2532 2411 2354 2308 2271
MISE 0.376 0.378 0.231 0.200 0.194 0.192 0.212
SE2 0.060 0.099 0.026 0.023 0.021 0.023 0.036
NU 5180 4189 3684 3370 3174 3040 2939

4. Proof of Theorem 1

We give Propositions 1–5 before we prove Theorem 1. The proofs of the propositions are postponed to Section 5.
Proposition 1 is essentially (3.8) of [23] combined with Proposition 7.2 of [23] and the first two elements of the random

vector in Proposition 1 are related to the stochastic part of the nonparametric LAD regression estimators. Recall that
τn = (nh2)1/4.

Proposition 1. Suppose that Assumptions X,U1,U2 and K hold and that nh2
→ ∞ and h → 0. Then we have
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−→ (L1/2(1, 0)Z1, L1/2(1, 0)Z2, κ0L(1, 0), κ0fu(mu)L(1, 0), κ1fu(mu)L(1, 0), κ2fu(mu)L(1, 0), κ3fu(mu)L(1, 0))T ,

where (Z1, Z2)T is defined as in Theorem 1 and independent of L(1, 0).

Weneed to apply the almost sure representation theorem in Remark 1 to the result in Proposition 1 for technical reasons.

Remark 1. Let Ω be a σ -field generated by {ϵi} and {λi}. Addendum 1.10.5 of [21] implies that there exists a σ -field Ω̃

satisfies

1. Ω̃ virtually contains Ω ,
2. (Z1, Z2)T and L(1, 0) can be defined on Ω̃ ,
3. We can replace convergence in distribution with almost sure convergence in Proposition 1.

Hence we will assume that the sequence of random vectors in Proposition 1 also converges almost surely in Proposition 4
below and the proof of Theorem 1.

Proposition 2 gives the expansion of the objective function for θ̂ . Note that θ is fixed in Proposition 2 and we consider
the uniformity in θ in Proposition 4 by exploiting Proposition 2 and the convexity of the objective function.
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Proposition 2. Suppose that Assumptions V , X,U1,U2 and K hold and that nh2
→ ∞ and h → 0. Then for any θ ∈ R2, we
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Remark 2. From Proposition 1, we have
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and L(1, 0) is a random variable. In the cases of stationary observations, we usually obtain the uniformity in θ from the
pointwise convergence such as in Proposition 2 by employing the convexity lemma for random functions given in [19].
However, we cannot apply the convexity lemma in [19] as it is due to the above convergence in distribution to a random
variable. Thus we need the almost sure representation in Remark 1 to obtain the uniformity in θ in Proposition 4 below.

Proposition 3 is about the bias term of the LLE.

Proposition 3. Suppose that Assumptions V , X,U1,U2, K and H hold. Then we have
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Proposition 4 is a version of the convexity lemma in Pollard [19] adapted to the setup of this paper. In Proposition 4, we
use the almost sure representation of the convergence in distribution in Proposition 1. See Remark 2 above. Note that the
convergence in probability in Proposition 4 is from the almost sure representation and is correct.

Proposition 4. Suppose that Assumptions V , X,U1,U2, K and H hold. Then for any compact subset K of R2, we have
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Proposition 5 is necessary to examine the bias term of the LCE. Recall the definition of v∗∗

i in (10).

Proposition 5. Suppose that Assumptions V , X,U1,U2, K and H hold. Then we have
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Remark 3. It is easy to see that Proposition 2 holds for any θ ∈ R with v∗

i replaced by v∗∗

i and without ηi. Proposition 4 is
also true with the same changes.

We prove Theorem 1 only for the LLE by exploiting Propositions 1–4. We can deal with the LCE similarly by employing
Proposition 5 instead of Proposition 3.

Proof of Theorem 1. We consider all the random variables on Ω̃ given in Remark 1. Taking a compact subset K of R2, we
have from Propositions 1 and 4 that uniformly in θ on K ,
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We evaluate the first term of the RHS of (12) by combining Propositions 1 and 3 and get
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Since L(1, 0) is a random variable, we have to modify the standard argument about quantile regression.
We fix a small positive δ1 and take a sufficiently small δ2 s.t. P(δ2 < L(1, 0) < 1/δ2) > 1 − δ1. Then setting Ω̃δ2 =

{δ2 < L(1, 0) < 1/δ2}, we temporarily consider the conditional probability given Ω̃δ2 .
Here we define ΘM for a positive M by {θ ∈ R2

| θ T θ = M2
}. Notice that we have (12) uniformly on ΘM and inside

ΘM . By (13), the second term of the RHS of (12) is dominant on ΘM with conditional probability arbitrarily close to 1 on Ω̃δ2

when we take a sufficiently large M . Hence the convexity of the objective function implies that θ̂ must be inside ΘM with
conditional probability arbitrarily close to 1 on Ω̃δ2 .

As in [10,12], we can take any large M and minimize (12) inside ΘM . Then from the uniformity of (12) and the second
equation of (13), we have that given Ω̃δ2 ,
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Since we can choose an arbitrarily small positive δ1, we also have (14) on Ω̃ . Hence the proof of Theorem 1 is complete. �

In Remark 4 below, we describe how to deal with a robust local linear estimator defined by a convex loss function.

Remark 4. Suppose that we define the LLE by using a convex loss function ρ(v) instead of |v|. We assume that ρ(0) = 0
and ρ(v) ≥ 0 and that ρ(v) is differentiable except at the origin. In addition, we have E{ρ ′(vi)} = 0. Then we have to make
some changes to Propositions 2 and 3. Let ξ and δ be a generic random variable with density fξ (ξ) and a constant tending
to 0, respectively.

In Proposition 2, we deal with ρ(ξ − δ) − ρ(ξ) + δρ ′(ξ) and we need (15) and (16) below to establish the proposition.

E{|ρ(ξ − δ) − ρ(ξ) + δρ ′(ξ)|2} = o(δ2) (15)

E{ρ(ξ − δ) − ρ(ξ) + δρ ′(ξ)} = δ2s1(fξ ) + o(δ2), (16)

where s1(fξ ) is a functional of a density function and satisfies the regularity conditions necessary in the proof of Proposition 2
given in Section 5.

In Proposition 3, we consider ρ ′(ξ + δ) − ρ ′(ξ) and we need (17) and (18) below to establish the proposition.

E{|ρ ′(ξ + δ) − ρ ′(ξ)|2} = O(δ) (17)

E{ρ ′(ξ + δ) − ρ ′(ξ)} = δs2(fξ ) + o(δ), (18)

where s2(fξ ) is a functional of a density function and satisfies the regularity conditions necessary in the proof of Proposition 3
given in Section 5.

When we have (15)–(18) for ρ(v), we can establish the same result as in Theorem 1. However, fξ (ξ) is fvi(v|E) in the
propositions and fvi(v|E) depends on Xi and E i

i−m0
in a complicatedway. Thereforewe have to imposemuchmore restrictive
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assumptions on fvi(v|E) or fui(u|E
i
i−m0

) to obtain the same results for a general ρ(v) than for a specific ρ(v) such as |v|. Thus
we decided to focus on LAD regression in this paper.

When ρ(v) = |v|
q for some 1 < q < 2, it is easy to verify (15) and (17). We also have
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with some conditions on fξ (ξ). We will also need some assumptions on fvi(v|E) or fui(u|E
i
i−m0

) to get the same results as in
Propositions 2 and 3 and those assumptions will depend on q.

5. Proofs of propositions

In this section, we give the proofs of Propositions 1–5. Details of (23), (25), (27), (33) and (34) are given in the online
supplementary material or available on http://www.econ.hit-u.ac.jp/~honda/index.html.

Proof of Proposition 1. First note the Fourier transforms of sjK(s), j = 1, 2, 3, are integrable from Assumption K. Besides,
fui(mu|E

i
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) satisfies Assumption 2 of [23] and we obtain the same result as in Proposition 7.2 of [23] for {(Xi −

x0)/h}jKifui(mu|E
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), j = 0, 1, 2, 3.
Applying the arguments on pp.1922–1924 and Proposition 7.2 of [23] at the same time to
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respectively. Note that Z in (20) has the standard normal distribution and is independent of L(1, 0). Since a and b are arbitrary
constants, the desired result follows from the Cramér–Wold device. Hence the proof of Proposition 1 is complete. �

Proof of Proposition 2. Set

B2i(θ) = |v∗

i − τ−1
n ηT

i θ | − |v∗

i | + τ−1
n ηT

i θsign(v∗

i ) (21)

and notice

|B2i(θ)| ≤ Cτ−1
n |ηT

i θ |I(|v∗

i | ≤ Cτ−1
n |ηT

i θ |). (22)

We also set

D2i(θ) = B2i(θ) − E{B2i(θ)|E}.

First we evaluate
n

i=1 KiD2i(θ). From (22) and Assumption U2, we have

E{D2
2i(θ)|E} ≤ Cτ−2

n E{I(|v∗

i | ≤ Cτ−1
n |ηT

i θ |)|E} ≤ Cτ−3
n . (23)

Assumption U1, (23), and (5.19) of [22] imply

E

 n
i=1

KiD2i(θ)

2
 ≤ E


n

i=1

K 2
i E{D

2
2i(θ)|E}


+ E

 
|i−i′|≤m0

KiKi′E{D2i(θ)D2i′(θ)|E}



≤ CE


τ−3
n

n
i=1

K 2
i


= O(τ−1

n ). (24)

Next we evaluate
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The desired result follows from (24), (25), Assumption V, and Proposition 1. Hence the proof of Proposition 2 is complete. �

http://www.econ.hit-u.ac.jp/~honda/index.html
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Proof of Proposition 3. We can establish Proposition 3 almost in the same way as Proposition 2. Set

B3i = sign(v∗

i ) − sign(vi) and D3i = B3i − E{B3i|E}.

Notice that
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The desired result follows from (26), (27), the continuity of g ′′(x) at x0, Assumption V, and Proposition 1. Hence the proof
of Proposition 3 is complete. �

Proof of Proposition 4. Weverify this proposition bymodifying the proof of the convex lemma in Pollard [19].We consider
all the random variables on Ω̃ in Remark 1. If we consider the random variables on the original probability space of {ϵi} and
{λi}, we do not have (28) or (29).

From Propositions 1 and 2, we have for any fixed θ ∈ K , n
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See (21) for the definition of B2i(θ). As in the proof of Theorem 1, choose a small positive δ3 and take δ4 s.t. P(δ4 < L(1, 0) <
1/δ4) > 1 − δ3. Then we set Ω̃δ4 = {δ4 < L(1, 0) < 1/δ4}.

On Ω̃δ4 , we can take δ-cubes on p.197 of [19] for any small positive ϵ. Then θ TAθ varies by less than ϵ in each of the
δ-cubes. Since we have δ-cubes, we can proceed exactly in the same way as on pp.197–198 of [19]. Thus from (28) and the
convexity of
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Since we can choose any small δ3, we have (29) on Ω̃ . Hence the proof of Proposition 4 is complete. �

Proof of Proposition 5. Set

δ∗∗

i = v∗∗

i − vi = (Xi − x0)g ′(x0) +
1
2


Xi − x0

h

2

h2g ′′(X̄i), (30)

B4i = sign(v∗∗

i ) − sign(vi), and D4i = B4i − E{B4i|E}.

Since

|B4i| ≤ CI(|vi| ≤ Ch),

we have

E{|D4i|
2
|E} ≤ Ch. (31)

From (31) and the same argument as in the proofs of Propositions 2 and 3, we obtain

h−2τ−2
n

n
i=1

KiD4i = Op((nh8)−1/4). (32)

Next we consider E{B4i|E}. By some calculation, we have uniformly in i,

h−2E{B4i|E} = 2h−2δ∗∗

i fvi(0|E) − h−2(δ∗∗

i )2f ′

vi
(0|E) + op(1). (33)
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We evaluate the first and second terms of the RHS of (33). By some calculation, we obtain

2h−2τ−2
n

n
i=1

Kiδ
∗∗

i fvi(0|E) = τ−2
n

n
i=1


Xi − x0

h

2

Kig ′′(x0)fui(mu|E
i
i−m0

)


∂v

∂u
(x0,mu)

−1

+ 2τ−2
n

n
i=1


Xi − x0

h

2

Kig ′(x0)fui(mu|E
i
i−m0

)
∂

∂x


∂v

∂u
(x0,mu)

−1

+ op(1). (34)

We used Theorem 2.1 of [24] to evaluate
n

i=1{(Xi − x0)/h}Ki here.
We give a representation of f ′

vi
(0|E) by Assumptions V and U2 and some calculation before we evaluate the second term

of (33).

f ′

vi
(0|E) =


∂v

∂u
(Xi,mu)

−2

f ′

ui(mu|E
i
i−m0

) + fui(mu|E
i
i−m0

)
∂

∂u


∂v

∂u
(Xi,mu)

−1


. (35)

From (30), (35), and Assumption V, we have

h−2τ−2
n

n
i=1

Ki(δ
∗∗

i )2f ′

vi
(0|E) = τ−2

n

n
i=1


Xi − x0

h

2

Ki


∂v

∂u
(x0,mu)

−2

×


f ′

ui(mu|E
i
i−m0

) + fui(mu|E
i
i−m0

)
∂

∂u


∂v

∂u
(x0,mu)

−1


+ op(1). (36)

Proposition 5 follows from (32), (33), (34), (36), and Proposition 1. Hence the proof of Proposition 5 is complete. �
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