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a b s t r a c t

Estimating the number of spikes in a spiked model is an important problem in many areas
such as signal processing. Most of the classical approaches assume a large sample size n
whereas the dimension p of the observations is kept small. In this paper, we consider the
case of high dimension, where p is large compared to n. The approach is based on recent
results of random matrix theory. We extend our previous results to a more difficult situ-
ation where some spikes are equal, and compare our algorithm to an existing benchmark
method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The spiked population model has been introduced in [10], and appears in many scientific fields. In wireless
communications, a signal emitted by a source is modulated and received by an array of antennas, and the reconstruction of
the original signal is directly linked to the inference of ‘‘spikes’’. In psychology literature, the strict factormodel is equivalent
to the spiked population model, and the number of factors has a primary importance [1]. Similar models can be found in
physics of mixture [11,16] or population genetics. More precisely, we consider the following spiked population model for
the observed signals x(t):

x(t) =

q0
k=1

fk(t)ak + σn(t) = Af (t) + σn(t), (1)

where f (t) = (f1(t), . . . , fq0(t))
∗

∈ Rq0 are q0 independent random signals (q0 < p) with mean zero and unit variance;
A = (a1, . . . , aq0) is a p × q0 full rank matrix (mixing weights); and σ ∈ R is the unknown noise level, n(t) ∼ N (0, Ip) is a
p-dimensional Gaussian white noise independent of f (t).

The population covariance matrix Σ of x(t) equals AA∗
+ σ 2Ip and has the spectral decomposition

W∗ΣW = σ 2Ip + diag(α1, . . . , αq0 , 0, . . . , 0)
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where W is an unknown basis of Rp and α1 ≥ α2 ≥ · · · ≥ αq0 > 0. As in [19], we rewrite the spectral decomposition of Σ

as

W∗ΣW = σ 2diag(α′

1, . . . , α
′

q0 , 1, . . . , 1),

with α′

i = αi/σ
2
+ 1.

Notice that Model (1) is called a strict factor model in [1]. It should not be confused with those factor models widely used
in econometric and finance which have generally a more complex structure. For instance, the term strict factor model is used
in these fields to refer to a noise with a general diagonal covariance, while in the so-called approximate factor model or the
dynamic factormodel (see e.g. [5] and [8]), the noise is cross-sectionally correlated unlike thewhite noise structure assumed
in (1), and the factors f (t) could be a time-series unlike the i.i.d. structure assumed in (1). In sum, these factor models have
a much more complex structure than the spiked population model (1) considered in this paper.

A fundamental inference problem in Model (1) is the determination of the number of spikes q0. Many methods have
been developed, mostly based on information theoretic criteria, such as the minimum description length (MDL) estimator,
Bayesian model selection or Bayesian Information Criteria (BIC) estimators, see [22] for a review. Nevertheless, these
methods are based on asymptotic expansions for large sample size and may not perform well when the dimension of the
data p is large compared to the sample size n. To our knowledge, this problem in the context of high-dimension appears for
the first time in [6]. Recent advances have been made using the random matrix theory by [9] or Onatski [18] in economics,
and Kritchman & Nadler [11] in chemometric literature.

Several studies have also appeared in the area of signal processing from high-dimensional data. Everson & Roberts [7]
proposed a method using both randommatrix theory (RMT) and Bayesian inference, while Ulfarsson & Solo combined RMT
and Stein’s unbiased risk estimator (SURE) in [21]. In [15] and [17], the authors proposed some estimators using information
theoretic criteria. Finally in [12], Kritchman & Nadler constructed an estimator based on the distribution of the largest
eigenvalue (hereafter referred as the KN estimator). In [19], we have also introduced a newmethod based on recent results
of [3] and [20] in randommatrix theory. It is worth mentioning that for high-dimensional time series, an empirical method
for the estimation of the spike number has been recently proposed in [14] and [13].

In all the cited references above, spikes are assumed to be distinct. However, we observe that when some of these spikes
are close to each other, the estimation problem becomes more difficult and these algorithms need to be modified. We refer
this new situation as the case with possibly equal spikes and its precise formulation will be given in Section 2.2. The aim of
this work is to extend our method [19] to this new situation and to compare it with the KN estimator, that is known in the
literature as one of the best estimation methods.

The rest of the paper is organized as follows. In Section 2, the estimation problem of the number of possibly equal spikes
is introduced, and our estimator is then proposed with a proof for its asymptotic consistency. Section 3 provides simulation
experiments to assess the finite-sample quality of our estimator. In Section 4, we analyze the influence of a tuning parameter
C used in our procedure and propose an automatic calibration method of the parameter. Next, we carry out simulation
experiments in Section 5 to compare ourmethod to the benchmark KN estimator. Conclusions then follow and the Appendix
collects all the proofs.

2. Main results

The sample covariance matrix of the np-dimensional i.i.d. vectors considered at each time t , (xi = x(ti))1≤i≤n is

Sn =
1
n

n
i=1

xix
∗

i .

Denote by λn,1 ≥ λn,2 ≥ · · · ≥ λn,p its eigenvalues. Our aim is to estimate q0 on the basis of Sn. We first recall our previous
result of [19] in the case of different spikes. Next, we propose an extension of the algorithm to the case with possibly equal
spikes. The consistency of the extended algorithm is established.

2.1. Previous work: estimation with different spikes

We consider the case where the (αi)1≤i≤q0 are all different, so there are q0 distinct spikes. It is assumed in the sequel
that p and n are related so that when n → +∞, p/n → c > 0. Therefore, p can be large compared to the sample size n
(high-dimensional case).

Moreover, we assumed that α′

1 > · · · > α′
q0 > 1+

√
c for all i ∈ {1, . . . , q0}; i.e all the spikes αi’s are greater than σ 2√c.

For α ≠ 1, we define the function

φ(α) = α +
cα

α − 1
.

Baik and Silverstein [2] proved that, under a moment condition on x, for each k ∈ {1, . . . , q0} and almost surely,

λn,k −→ σ 2φ(α′

k).
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They also proved that for all 1 ≤ i ≤ L with a prefixed range L and almost surely,

λn,q0+i → b = σ 2(1 +
√
c)2.

The estimation method of q0 in [19] is based on a close inspection of differences between consecutive eigenvalues

δn,j = λn,j − λn,j+1, j ≥ 1.

Indeed, the results quoted above imply that a.s. δn,j → 0, for j ≥ q0 whereas for j < q0, δn,j tends to a positive limit. Thus it
becomes possible to estimate q0 from index-numbers j where δn,j become small. More precisely, the estimator is

q̂n = min{j ∈ {1, . . . , s} : δn,j+1 < dn}, (2)

where s > q0 is a fixed number big enough, and dn is a threshold to be defined. In practice, the integer s should be thought as
a preliminary bound on the number of possible spikes. In [19], we proved the consistency of q̂n providing that the threshold
satisfies dn → 0, n2/3dn → +∞ and under the following assumption on the entries of x.

Assumption 1. The entries xi of the random vector x have a symmetric law and a sub-exponential decay, that means there
exists positive constants D, D′ such that, for all t ≥ D′,

P(|xi| ≥ tD) ≤ e−t .

2.2. Estimation with possibly equal spikes

As said in the Introduction, when some spikes are close to each other, estimation algorithms need to be modified. More
precisely, we adopt the following theoretical model with K different spike strengths α1, . . . , αK , each of them can appear
nk times (equal spikes), respectively. In other words,

spec(Σ) = (α1, . . . , α1  
n1

, . . . , αK , . . . , αK  
nK

, 0, . . . , 0  
p−q0

) + σ 2(1, . . . , 1  
p

)

= σ 2(α′

1, . . . , α
′

1  
n1

, . . . , α′

K , . . . , α′

K  
nK

, 1, . . . , 1  
p−q0

)

with n1 + · · · + nK = q0. When all the spikes are unequal, differences between sample spike eigenvalues tend to a
positive constant, whereas with two equal spikes, such difference will tend to zero. This fact creates an ambiguity with
those differences corresponding to the noise eigenvalues which also tend to zero. However, the convergence of the δn,i’s, for
i > q0 (noise) is faster (in OP(n−2/3)) than that of the δn,i from equal spikes (in OP(n−1/2)) as a consequence of Theorem 3.1
of Bai & Yao [3]. This is the key feature we use to adapt the estimator (2) to the current situation with a new threshold dn.
The precise asymptotic consistency is as follows.

Theorem 1. Let (xi)(1≤i≤n) be n copies i.i.d. of x which follows the model (1) and satisfies Assumption 1. Suppose that the
population covariance matrix Σ has K non null and non unit eigenvalues α1 > · · · > αK > σ 2√c with respective multiplicity
(nk)1≤k≤K (n1 + · · · + nK = q0), and p − q0 unit eigenvalues. Assume that p

n → c > 0 when n → +∞. Let (dn)n≥0 be a real
sequence such that dn = o(n−1/2) and n2/3dn → +∞. Then the estimator q̂n is consistent; i.eqn → q0 in probability when
n → +∞.

Compared to the previous situation, the only modification of our estimator is a new condition dn = o(n−1/2) on the
convergence rate of dn. The proof of Theorem 1 is postponed to Appendix.

There is a variation of the estimator defined as follows. Instead of making a decision once one difference δk is below
the threshold dn (see (2)), one may decide once two consecutive differences δk and δk+1 are both below dn, i.e. define the
estimator to be

q̂∗

n = min{j ∈ {1, . . . , s} : δn,j+1 < dn and δn,j+2 < dn}. (3)

It can be easily checked that the proof for the consistency of q̂n applies equally to q̂∗
n under the same conditions as in

Theorem 1. This version of the estimator will be used in all the simulation experiments below. Intuitively, q̂∗
n should be

more robust than q̂n. We notice that eventually more than two consecutive differences could be used in (3). However, our
simulation experiments have shown that using more consecutive differences does not improve significantly. So we limit
ourselves the simulation study to two consecutive differences.
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Table 1
Summary of parameters used in the simulation experiments. (L: left, R: right).

Fig. No. Mod. No. Spike values Fixed parameters Var. par.
p, n c σ 2 C

1 (α) (200, 800) 1/4 Given 5.5
α

(2000, 500) 4 9

2 A (α, α, 5) (200, 800) 1/4 Given 6
αB (α, α, 15) (2000, 500) 4 9.9

3L D (6, 5) 10 Given 11 and auto nE (6, 5, 5)

3R F (10, 5) 1 Given 5 and auto nG (10, 5, 5)

4L H (1.5) 1 Given 5 and auto nI (1.5, 1.5)

4R J (2.5, 1.5) 1 Given 5 and auto nK (2.5, 1.5, 1.5)

5L D (6, 5) 10 Estimated Auto n
5R J (2.5, 1.5) 1 Estimated Auto n
6L E (6, 5, 5) 10 Estimated Auto n
6R K (2.5, 1.5, 1.5) 1 Estimated Auto n

7 L No spike 1 Estimated Auto n10

3. Implementation issues and overview of simulation experiments

The practical implementation of the estimator q̂∗
n depend on two unknown parameters, namely the noise variance σ 2

and the threshold sequence dn. As for an estimate of σ 2, we used in [19] an algorithm based on the maximum likelihood
estimate

σ 2
=

1
p − q0

p
i=q0+1

λn,i.

As explained in [11] and [12], this estimator has a negative bias. Hence the authors developed an improved estimator with
a smaller bias. We will use this improved estimator of the noise level when it is unknown.

It remains to choose a threshold sequence dn. As argued in [19], we use a sequence dn of the form Cn−2/3√2 log log n,
where C is a ‘‘tuning’’ parameter to be adjusted. In ourMonte-Carlo experiments, we shall consider two choices of C: the first
one ismanually tuned and used to assess some theoretical properties of the estimator q̂∗

n; and the second one is a data-driven
and automatically chosen value that is used in real-life applications. This automatic choice is introduced in Section 4.

In the remaining of the paper, we conduct extensive simulation experiments to assess the quality of the estimator q̂∗
n

including a detailed comparison with a benchmark detector from the literature.
In all experiments, data are generated with the assigned noise level σ 2

= 1 and empirical values are calculated using
500 independent replications. Table 1 gives a summary of the parameters in the experiments. One should notice that both
the given value of σ 2

= 1 and the estimated one, as well as the manually tuned and the automatic chosen values of C
are used in different scenarios. There are in total three sets of experiments. The first set (Figs. 1–2 and Models A, B), given
in this section, illustrates the convergence of our estimator in the situation of equal spikes. The second set of experiments
(Figs. 3–4 andModels D–K) addresses the performance of the automatic tuned C and they are reported in Section 4. The last
set of experiments (Figs. 5–6–7), reported in Section 5, are designed for a comparison with the benchmark detector KN.

3.1. Comparison between the case of equal spikes and different spikes

In Fig. 1, we consider the case of a single spike α and analyze the probability of misestimation as a function of the value
of α, for (p, n) = (200, 800), c = 0.25 and (p, n) = (2000, 500), c = 4. We set C = 5.5 for the first case and C = 9 for the
second case (all manually tuned). The noise level σ 2

= 1 is given. The estimator performs well: we recover the threshold
fromwhich the behavior of the spike eigenvalues differ from the noise ones (

√
c = 0.5 for the first case, and 2 for the second).

Next we keep the same parameters while adding some equal spikes. In Fig. 2, we consider Model A: (α1, α2, α3) =

(α, α, 5), 0 ≤ α ≤ 2.5 and Model B: (α1, α2, α3) = (α, α, 15), 0 ≤ α ≤ 8. The dimensions are (p, n) = (200, 800) and
C = 6 for Model A, and (p, n) = (2000, 500) and C = 9.9 for Model B.

There is no particular difference with the previous situation: when spikes are close or even equal, or near to the
critical value, the estimator remains consistent although the convergence rate becomes slower. Overall, these experiments
demonstrate that the proposed estimator is able to find the number of spikes.
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Fig. 1. Misestimation rates as a function of spike strength for (p, n) = (200, 800) and (p, n) = (2000, 500).

Fig. 2. Misestimation rates as a function of spike strength for (p, n) = (200, 800), Model A and (p, n) = (2000, 500), Model B.

Table 2
Approximation of the threshold s such that P(λ̃1 − λ̃2 ≤ s) = 0.98.

(p, n) (200, 200) (400, 400) (600, 600) (2000, 200) (4000, 400) (7000, 700)

Value of s 0.340 0.223 0.170 0.593 0.415 0.306C 6.367 6.398 6.277 11.106 11.906 12.44

4. On the choice of C : an automatic calibration procedure

In the previous experiments, the tuning parameter C has been selected manually on a case by case basis. This is however
untenable in a real-life situation.We nowprovide an automatic calibration of this parameter. The idea is to use the difference
of the two largest eigenvalues of a Wishart matrix (which correspond to the case of no spike): indeed, our algorithm should
stop once two consecutive eigenvalues are below the threshold dn corresponding to a noise eigenvalue. As we do not know
precisely the distribution of the difference between eigenvalues of aWishart matrix, we approximate the distribution of the
difference between the two largest eigenvalues λ̃1 − λ̃2 by simulation under 500 independent replications. We then take
the mean s of the 10th and the 11th largest spacings, so s has the empirical probability P(λ̃1 − λ̃2 ≤ s) = 0.98: this value
will give reasonable results. We calculate aC by multiplying this threshold by n2/3/

√
2 × log log(n). The result for various

(p, n), with c = 1 and c = 10 are displayed in Table 2.
The values ofC are quite close to the values we would have chosen in similar settings (For instance, C = 5 for c = 1

and C = 9.9 or 11 for c = 10), although they are slightly higher. Therefore, this automatic calibration ofC can be used in
practice for any data and sample dimensions p and n.

To assess the quality of the automatic calibration procedure, we run some simulation experiments using bothC and the
manually tuned C . We consider in Fig. 3 the case c = 10. On the left panel we consider Model D (α = (6, 5)) and Model E
(α = (6, 5, 5)) (upper curve). On the right panel we haveModel F (α = (10, 5)) andModel G (α = (10, 5, 5)) (upper curve).
The dotted lines are the results with C manually tuned.
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Fig. 3. Misestimation rates as a function of n for Models D, E (left) and Models F, G (right).

Fig. 4. Misestimation rates as a function of n for Models H, I (left) and Models J, K (right).

Using the automatic value C̃ causes only a slight deterioration of the estimation performance. We observe significantly
higher error rates in the case of equal spikes for moderate sample sizes.

The case c = 1 is considered in Fig. 4 with Models H (α = 1.5) and I (α = (1.5, 1.5)) (upper curve) on the left andModel
J (α = (2.5, 1.5)) and K (α = (2.5, 1.5, 1.5)) (upper curve) on the right.

Compared to the previous situation of c = 10, using the automatic valueC affects a bit more our estimator (up to 20%
of degradation). Nevertheless, the estimator remains consistent. Furthermore, we have to keep in mind that our simulation
experiments have considered critical caseswhere spikes eigenvalues are close: inmanyof practical applications, these spikes
are more separated so that the influence of C will be less important.

5. Method of Kritchman & Nadler and comparison

5.1. Algorithm of Kritchman & Nadler

In their papers [11] and [12], Kritchman & Nadler develop a different method to estimate the number of spikes. In this
section we compare by simulation our estimator (PY) with this method (KN). Notice that these authors have compared their
estimator KN with existing estimators in the signal processing literature, based on the minimum description length (MDL),
Bayesian information criterion (BIC) and Akaike information criterion (AIC) [22]. In most of the studied cases, the estimator
KN performs better. Furthermore in [17], this estimator is compared to an improved AIC estimator and it still has a better
performance. Thus we decide to consider only this estimator KN for the comparison here.

In the absence of spikes, nSn follows aWishart distributionwith parameters n, p. In this case, Johnstone [10] has provided
the asymptotic distribution of the largest eigenvalue of Sn.
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Proposition 1. Let Sn be the sample covariance matrix of n vectors distributed as N (0, σ 2Ip), and λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be
its eigenvalues. Then, when n → +∞, such that p

n → c > 0

P


λn,1

σ 2
<

βn,p

n2/3
s + b


→ F1(s), s > 0

where b = (1 +
√
c)2, βn,p =


1 +


p
n

 
1 +


n
p

 1
3
and F1 is the Tracy–Widom distribution of order 1.

Assume the variance σ 2 is known. To distinguish a spike eigenvalue λ from a noise one at an asymptotic significance
level γ , their idea is to check whether

λn,k > σ 2


βn,p−k

n2/3
s(γ ) + b


(4)

where s(γ ) verifies F1(s(γ )) = 1 − γ and can be found by inverting the Tracy–Widom distribution. This distribution has
no explicit expression, but can be computed from a solution of a second order Painlevé ordinary differential equation. The
estimator KN is based on a sequence of nested hypothesis tests of the following form: for k = 1, 2, . . . ,min(p, n) − 1,

H
(k)
0 : q0 ≤ k − 1 vs. H

(k)
1 : q0 ≥ k.

For each value of k, if (4) is satisfied, H (k)
0 is rejected and k is increased by one. The procedure stops once an instance of H (k)

0
is accepted and the number of spikes is then estimated to be q̃n = k − 1. Formally, their estimator is defined by

q̃n = argmin
k


λn,k < σ 2


βn,p−k

n2/3
s(γ ) + b


− 1.

Hereσ is some estimator of the noise level (as discussed in Section 3). The authors proved the strong consistency of their
estimator as n → +∞ with fixed p, by replacing the fixed confidence level γ with a sample-size dependent one γn, where
γn → 0 sufficiently slow as n → +∞. They also proved that limp,n→+∞ P


q̃n ≥ q0


= 1.

It is important to notice here that the construction of the KN estimator differs form ours, essentially because of the fixed
alarm rate γ . We will discuss the issue of the false alarm rate in the last section.

5.2. Comparison with our method

In order to follow a real-life situation, we assume that σ 2
= 1 is unknown and we estimate it for both methods.

Furthermore, we use the automatic calibration procedure to choose the constant C in our method. We give a value of
γ = 0.5% to the false alarm rate of the estimator KN, as suggested in [12] and use their algorithm available at the author’s
homepage.

We consider in Fig. 5 Model D: (α1, α2) = (6, 5) and Model J: (α1, α2) = (2.5, 1.5).
For both Model D and J, the performances of the two estimator are close. However the estimator PY is slightly better

for moderate values of n (n ≤ 400) while the estimator KN has a slightly better performance for larger n. The difference
between the two estimators are more important for Model J (up to 5% improvement).

Fig. 5. Misestimation rates as a function of n for Model D (left) and Model J (right).
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Fig. 6. Misestimation rates as a function of n for Model E (left) and Model K (right).

Fig. 7. False-alarm rates as a function of n for c = 1 (left) and c = 10 (right).

Next we consider in Fig. 6 Model E: (α1, α2, α2) = (6, 5, 5) and Model K: (α1, α2, α2) = (2.5, 1.5, 1.5), two models
analogous to Model D and J but with two equal spikes.

For Model E, the estimator PY shows superior performance for n ≤ 500 (up to 20% less error): adding an equal spike
affects more the performance of the estimator KN. The difference between the two algorithms for Model K is higher than in
the previous cases; the estimator PY performs better in all cases, up to 10%.

In Fig. 7 we examine a special case with no spike at all (Model L). The estimation rates become the so-called false-alarm
rate, a concept widely used in signal processing literature. The cases of c = 1 and c = 10 with σ 2

= 1 given are considered.
In both situations, the false-alarm rates of two estimators are quite low (less than 4%), and the KN one has a better

performance.
In summary, in most of situations reported here, our algorithm compares favorably to an existing benchmark method

(the KN estimator). It is also important to notice a fundamental difference between these two estimators: the KN estimator is
designed to keep the false alarm rate at a very low level while our estimator attempts to minimize an overall misestimation
rate. We develop more in details these issues in next section.

5.3. Influence of C on the misestimation and false alarm rate

In the previous simulation experiments, we have chosen to report the misestimation rates. However, to have a fair
comparison to either the KN estimator or any other method of the number of spikes, the different methods should have
comparable false alarm probabilities. This section is devoted to an analysis of possible relationship between the constant C
and the implied false alarm rate. Following [12], the false alarm rate γ of such an algorithm can be viewed as the type I error
of the following test

H0: q0 = 0 vs. H1: q0 > 0,
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Table 3
False alarm rates in case of c = 1 and c = 10.

(p, n) (150, 150) (300, 300) (500, 500) (700, 700)

PY 0.056 0.028 0.022 0.016
KN 0.008 0.002 0.001 0.000

(p, n) (1500, 150) (3000, 300) (5000, 500) (7000, 700)

PY 0.03 0.08 0.026 0.016
KN 0.004 0.006 0.004 0.006

that is the probability of overestimation in the white noise case. Recall the step k of the algorithm KN tests

H
(k)
0 : q0 ≤ k − 1 vs. H

(k)
1 : q0 ≥ k.

In [12], the authors argue that their threshold is determined such that

P(reject H
(k)
0 |H

(k)
0 ) ≈ γ .

More precisely, they give an asymptotic bound of the overestimation probability: they show that for n = 500 and p > 10,
this probability is close to γ .

Since for our method, we do not know explicitly the corresponding false alarm rate, we recall in Table 3 the results from
Fig. 7, which were for the cases c = 1 and c = 10, with the automatic value C̃ , under 500 independent replications.

As seen previously, the false alarm rates of our algorithm are much higher than the false alarm rate γ = 0.5% of the KN
estimator. Nevertheless, and contrary to the KN estimator, the overestimation rate of our estimatorwill be different from the
false alarm rate, andwill depend on the number of spikes and their values. Indeed,we use the gaps between two eigenvalues,
instead of each eigenvalue separately. Consequently, there is no justification to claim that the probability P(q̂n > q|q = q0),
for q0 > 1 will be close to P(q̂n > 0|q = 0). To illustrate this phenomenon, we use the settings of Model E and K (q0 = 3)
and we evaluate the overestimation rate using 500 independent replications (note that the corresponding false alarm rates
are those in Table 3). The results are displayed in Table 4.

Table 4
Empirical overestimation rates from Model E (α = (6, 5, 5), c = 10) and Model K
(α = (2.5, 1.5, 1.5), c = 1).

(p, n) (1500, 150) (3000, 300) (5000, 500) (7000, 700)

Model E PY 0.004 0.022 0.018 0.01
KN 0.000 0.000 0.000 0.000

(p, n) (150, 150) (300, 300) (500, 500) (700, 700)

Model K PY 0.006 0.002 0.002 0.006
KN 0.000 0.000 0.000 0.000

We observe that these overestimation rates are lower than the false alarm rates given in Table 2: this suggests that no
obvious relationship exists between the false alarm rate γ and the overestimation rates for our algorithm.

Furthermore, the overestimation rates of the KN estimator are 0 in all cases: it means that misestimation is mostly
underestimated.

In summary, if the goal is to keep overestimation rates at a constant and low level, one should employ the KN estimator
without hesitation (since by construction, the probability of overestimation is kept to a very low level). Otherwise, if the
goal is also to minimize the overall misestimation rates i.e. including underestimation errors, our algorithm can be a good
substitute to the KN estimator. One could think of choosing C in each case to have a probability of overestimation kept fixed
at a low level, but in this case the probability of underestimation would be high and the performance of the estimation
would be poor: our estimator is constructed to minimize the overall misestimation rate.

6. Concluding remarks

In this paper we have considered the problem of the estimation of the number of spikes in high-dimensional data.
When some spikes have close or even equal values, the estimation becomes harder and existing algorithm need to be re-
examined or corrected. In this spirit, we have proposed a new version of our previous algorithm. Its asymptotic consistency
is established. We compare our algorithm to an existing competitor proposed by Kritchman & Nadler (KN, [11,12]). From
our extensive simulation experiments in various scenarios, overall our estimator can have smaller misestimation rates,
especially in cases with close and relatively low spike values (Fig. 6) or more generally for almost all the cases provided that
the sample size n is moderately large (n ≤ 400 or 500). Nevertheless, if the primary aim is to fix the false alarm rate and the
overestimation rates at a very low level, the KN estimator is preferable.
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Our algorithmdepends on a tuning parameter C . By comparison, the KN estimator is remarkably robust and a single value
of γ = 0.5% was used in all the experiments. In Section 5 we have provided a first approach to an automatic calibration of
C which is quite satisfactory. More investigation is needed in the future for this calibration in order to further improve the
performance of our estimator.
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Appendix. Proof of Theorem 1

Without loss of generality we will assume that σ 2
= 1 (if it is not the case, we consider λn,j

σ 2 ). For the proof, we need the
following Propositions 2 and 3 from the literature. Proposition 2 is a result of Bai and Yao [3] which derives from a CLT for
the nk-packed eigenvalues

√
n[λn,j − φ(α′

k)], j ∈ Jk

where Jk = {sk−1 + 1, . . . , sk}, si = n1 + · · · + ni for 1 ≤ i ≤ K .

Proposition 2. Assume that the entries xi of x satisfy E(∥xi∥4) < +∞, α′

j > 1 +
√
c for all 1 ≤ j ≤ K and have multiplicity

n1, . . . , nK respectively. Then as p, n → +∞ so that p
n → c, the nk-dimensional real vector

√
n{λn,j − φ(α′

k), j ∈ Jk}

converges weakly to the distribution of the nk eigenvalues of a Gaussian random matrix whose covariance depends on α′

k and c.

Proposition 3 is a direct consequence of Proposition 5.8 from Benaych-Georges, Guionnet and Maida [4]:

Proposition 3. Assume that the entries xi of x have a symmetric law and a sub-exponential decay, thatmeans there exists positive
constants D, D′ such that, for all t ≥ D′, we have P(|xi| ≥ tD) ≤ e−t . Then, for all 1 ≤ i ≤ L with a prefixed range L,

n
2
3 (λn,q0+i − b) = OP(1).

We also need the following lemma:

Lemma 1. Let (Xn)n≥0 be a sequence of positive random variables which weakly converges to a probability distribution with a
continuous cumulative distribution function. Then for all real sequence (un)n≥0 which converges to 0,

P(Xn ≤ un) → 0.

Proof. As (Xn)n≥0 converges weakly, there exists a function G such that, for all v ≥ 0, P(Xn ≤ v) → G(v). Furthermore,
as un → 0, there exists N ∈ N such that for all n ≥ N , un ≤ v. So P(Xn ≤ un) ≤ P(Xn ≤ v), and limn→+∞ P(Xn ≤ un) ≤

limn→+∞ P(Xn ≤ v) = G(v). Now we can take v → 0: as (Xn)n≥0 is positive, G(v) → 0. Consequently, P(Xn ≤ un) → 0.
�

Proof of Theorem 1. The proof is essentially the same as Theorem 3.1 in [19], except when the spikes are equal. We have

{q̂n = q0} = {q0 = min{j : δn,j+1 < dn}}
= {∀ j ∈ {1, . . . , q0}, δn,j ≥ dn} ∩ {δn,q0+1 < dn}.

Therefore

P(q̂n = q0) = P

 
1≤j≤q0

{δn,j ≥ dn} ∩ {δn,q0+1 < dn}



= 1 − P

 
1≤j≤q0

{δn,j < dn} ∪ {δn,q0+1 ≥ dn}



≥ 1 −

q0
j=1

P(δn,j < dn) − P(δn,q0+1 ≥ dn).
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Case of j = q0 + 1. In this case, δn,q0+1 = λn,q0+1 − λn,q0+2 (noise eigenvalues). As dn → 0 such that, n2/3dn → +∞, and by
using Proposition 3 in the same manner as in the proof of Theorem 3.1 in [19], we have

P(δn,q0+1 ≥ dn) → 0.

Case of 1 ≤ j ≤ q0. These indexes correspond to the spike eigenvalues.

• Let I1 = {1 ≤ l ≤ q0|card(Jl) = 1} (simple spike) and I2 = {l− 1|l ∈ I1 and l− 1 > 1}. For all j ∈ I1 ∪ I2, δn,j corresponds
to a consecutive difference of λn,j issued from two different spikes, so we can still use Proposition 3 and the proof of
Theorem 3.1 in [19] to show that

P(δn,j < dn) → 0, ∀ j ∈ I1.

• Let I3 = {1 ≤ l ≤ q0 − 1|l ∉ (I1 ∪ I2)}. For all j ∈ I3, it exists k ∈ {1, . . . , K} such that j ∈ Jk.
• If j+ 1 ∈ Jk then, by Proposition 2, Xn =

√
nδn,j converges weakly to a limit which has a density function on R+. So by

using Lemma 1 and that dn = o(n−1/2), we have
P

δn,j < dn


= P

√
nδn,j <

√
ndn


→ 0;
• Otherwise, j + 1 ∉ Jk, so αj ≠ αj+1. Consequently, as previously, δn,j corresponds to a consecutive difference of λn,j

issued from two different spikes, so we can still use Proposition 2 and the proof of Theorem 3.1 in [19] to show that
P(δn,j < dn) → 0.

• The case of j = q0 is considered as in [19].

Conclusion. P(δn,q0+1 ≥ dn) → 0 and
q0

j=1 P(δn,j < dn) → 0, therefore

P(q̂n = q0) −→
n→+∞

1. �
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