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a b s t r a c t

The paper is devoted to an extension of the multivariate Matsumoto–Yor (MY) indepen-
dence property with respect to a tree with p vertices to the case where random variables
corresponding to the vertices of the tree are replaced by random matrices. The converse
of the p-variate MY property, which characterizes the product of one gamma and p − 1
generalized inverse Gaussian distributions, is extended to characterize the product of the
Wishart and p − 1 matrix generalized inverse Gaussian distributions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Vn be the Euclidean space of n × n real symmetric matrices equipped with the inner product ⟨a, b⟩ = trace(ab). Let
dx denote the Lebesgue measure on Vn assigning the unit mass to the unit cube. Let V+

n denote the cone of positive definite
matrices in Vn and let V

+

n denote its closure. For x ∈ Vn let |x| denote the determinant of x.
Let c ∈ V+

n and q ∈ Λn = {0, 1
2 ,

2
2 , . . . ,

n−1
2 } ∪ ( n−1

2 ,∞). The random matrix Y taking its values in V
+

n is said to follow
the WishartWn(q, c) distribution if its Laplace transform is given by

LY (θ) =
|c|q

|c − θ |q
, c − θ ∈ V+

n ,

see Casalis and Letac [4] and references given therein. When q > n−1
2 , that is when Y takes its values in V+

n , this distribution
has density of the form

fY (y) =
|c|q

0n(q)
|y|q−

n+1
2 exp (− ⟨c, y⟩) 1V+

n
(y),

where 0n denotes the multivariate gamma function, see Muirhead [19]. When q ∈ Λn and q ≤
n−1
2 the distribution is

singular and is concentrated on the boundary of V̄+
n . In the special case q = 0, it is the Dirac measure concentrated at the

zero matrix.
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A random matrix X , taking its values in V+
n , is said to follow the matrix generalized inverse Gaussian distribution,

MGIGn(−p, a, b), if it has density of the form

fX (x) =
1

K (n)p (a, b)
|x|−p− n+1

2 exp

− ⟨a, x⟩ −


b, x−1 1V+

n
(x), (1.1)

where K (n)p is the matrix variate modified Bessel function of the third kind, see Herz [6].
Letac [12] has observed that theMGIGn(−p, a, b) is well defined iff p, a, b satisfy one of the following three conditions:

1. a, b ∈ V+
n and p ∈ R,

2. a ∈ V̄+
n with rank(a) = m ∈ {0, 1, . . . , n − 1}, b ∈ V+

n and p > n−m−1
2 ,

3. a ∈ V+
n , b ∈ V̄+

n with rank(b) = m ∈ {0, 1, . . . , n − 1} and p < −
n−m−1

2 .

This extends earlier definitions of the matrix variate GIG as given in Bardorff-Nielsen et al. [1] or Butler [3].
TheMGIG distribution has the following property, which will be used later on

if X ∼ MGIGn(−p, a, b) then X−1
∼ MGIGn(p, b, a). (1.2)

There are several connections between theWishart andMGIG distributions considered in the literature, see e.g. Bardorff-
Nielsen and Koudou [2], Butler [3], Koudou [7,8], Koudou and Ley [9], Koudou and Vallois [10,11], Seshadri and
Wesołowski [20]. Here we are interested in those which are extensions of the Matsumoto–Yor (MY) property of the
univariate gamma and generalized inverse Gaussian distributions. The gamma γ (p, a) and the generalized inverse Gaussian
GIG(q, b, c) distributions are defined by the densities

f (y) ∝ yp−1e−ayI(0,+∞)(y)

and

g(x) ∝ xq−1e−bx−c/xI(0,+∞)(x),

respectively, where p, a, b, c are positive numbers and q is real.
Matsumoto and Yor [17,18] considered the transformation ψ that takes (x, y) ∈ (0,+∞)2 into (0,+∞)2, where

ψ(x, y) =

(x + y)−1 , x−1

− (x + y)−1 .
They observed that if two random variables X and Y are independent and follow the GIG(−q, a, b) and γ (q, a) distributions,
respectively, then the two random variables U and V defined as (U, V ) = ψ(X, Y ) are also independent and follow the
GIG(−q, b, a) and γ (q, b) distributions, respectively. Letac and Wesołowski [14] proved the converse to the MY property,
that is the following characterization: if X and Y are independent and U and V are also independent, where (U, V ) =

ψ(X, Y ), then (X, Y ) ∼ GIG(−q, a, b)⊗ γ (q, a). In the same paper it was shown that this result holds true also for matrix
variates, namely the authors considered the transformation ψ for X and Y positive definite random matrices and proved
both the direct MY property and its converse in this case (under certain smoothness conditions, weakened later on in
Wesołowski [21]): if X and Y are independent r×r positive definitematrices andU = (X + Y )−1 and V = X−1

−(X + Y )−1

are also independent then X and Y follow a matrix variate GIG and Wishart distribution, respectively.
For any s × r real matrix z of full rank, denote by P(z) the linear mapping

x ∈ Vr → P(z)x = zxzt ∈ Vs,

(zt denotes the transpose of thematrix z).MassamandWesołowski [16] extended theMYproperty tomore general situation,
where matrix variates have different dimensions: X and Y are independent positive definite matrices of dimensions r × r
and s × s, respectively. They considered the transformation ψz defined as follows

ψz(x, y) =

(P(z)x + y)−1, x−1

− P(zt)(P(z)x + y)−1 ,
where z is a given constant s× r matrix of full rank and obtained the following characterization (under certain smoothness
conditions): if X and Y are independent and U and V are also independent, where (U, V ) = ψz(X, Y ), then X and Y follow
a matrix variate GIG and Wishart distribution, respectively.

On the other hand, Massam and Wesołowski [15], interpreted the original MY property as a bivariate property with
respect to the simple treewith twovertices and one edge and extended it to a p-variate propertywith respect to any treewith
p vertices. Moreover, they proved the converse of this extended version of the MY property, obtaining the characterization
of the product of one gamma and p − 1 generalized inverse Gaussian distributions. To this end they considered certain
transformations induced by leaves of such a tree.

In this paper we extend the multivariate version of the MY property on trees considered in [15] to the case where the
components of a random vector corresponding to the vertices of the tree are replaced by random matrices of different
dimensions. We prove this generalized MY property and its counter-part being a joint characterization of one Wishart and
p − 1 matrix generalized inverse Gaussian distributions.

The proof of our characterization is given under the assumption of strict positivity and differentiability of the densities.
Here we do not use Laplace transforms to identify theWishart variables (the Laplace transform approachwas used in [15] to
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work out the gamma distributions in the proof of the converse of the MY property on trees). Instead our approach is based
on certain independence property (given in Lemma 4.1 in Section 4) and Theorem 4.1 from [16].

In the next section, we will prove some lemmas (which are just extensions of the ones given in [15] to the case of ma-
trices) that we will use to obtain our main results. Section 3 is devoted to the statement and the proof of the matrix variate
version of the MY property on trees. We also define there a matrix variate analogue of the W c

G distribution defined in [15].
In Section 4 we formulate and prove the converse of the MY property, that is, the characterization of the product of one
Wishart and p − 1 MGIG distributions. The section starts with the lemma describing an independence property induced
by the transformations related to the matrix variate version of the MY property on trees. This lemma enables us to use the
results of [16] in our proof of the characterization.

2. Preliminaries

Let T = (V , E) be an undirected tree of size p, where V = {1, . . . , p} is the set of its vertices and E is the set of its edges
(a set of unordered pairs (i, j) such that the distinct vertices i and j are linked in T ). Let L ⊂ V denote the set of leaves of T
(a set of vertices with only one neighbour).

Let us choose integers n1, . . . , np and for 1 ≤ i < j ≤ p let us fix arbitrary rectangular matrices kij with ni rows and nj
columns with the only restriction that kij = 0 when (i, j) ∉ E. Let us call KT this fixed set (kij)1≤i<j≤p and define kji = ktij
when 1 ≤ i < j ≤ p, where ktij denotes the transpose of the matrix kij.

Finally, let M(T , KT ) be the set of (k1, . . . , kp) such that ki = kii is positive definite of order ni and such that the bloc
matrix K = (kij)1≤,i,j≤p is positive definite.

Thus we have

M(T , KT ) =

k =

k1, . . . , kp


∈ Vn1 × · · · × Vnp : K =

 k1 k12 · · · k1p
k21 k2 · · · k2p
. . . · · · · · · · · ·

kp1 kp2 kp

 ∈ V+
p

i=1
ni
, kij ∈ KT , i ≠ j

 .
We can direct an undirected tree T by choosing any vertex r ∈ V as a single root and directing all edges towards it. In

a tree T directed in this way, we say that a vertex j is a child of a vertex i if there is a directed edge from i to j in T and a
vertex k is a parent of a vertex i if there is a directed edge from k to i in T . Let cr(i) denote the set of children of i and let pr(i)
denote the set of parents of i in the directed tree T with root r . Note that each vertex has at most one child (if i is a root then
ci(i) = ∅) and each vertex may have several parents (if i is a leaf then pr(i) = ∅).

For a given root r ∈ V and a leaf l ∈ L, l ≠ r , we define T−l
= (V−l, E−l), where V−l

= V \ {l}, E−l
= E \ {(l, cr(l))}. Let

KT−l be a given set of off-diagonal blocks obtained from KT by discarding kcr (l)l ≠ 0 and kil = 0, i ∈ V \ {l, cr(l)}.
Now we will prove some properties of the set M(T , KT ). The following lemmas are the matrix variate analogues of

Lemmas 2.1–2.5 obtained by [15]. Note that the second equality in Lemma 2.2 in [15] does not hold for j = cr(l) (but
this small lapse does not influence the proof of the main result of [15]).

Lemma 2.1. Let k =

k1, . . . , kp


∈ M(T , KT ). For any root r ∈ V and leaf l ∈ L (l ≠ r), define k−l

=

k−l
i , i ∈ V \ {l}


(of

p − 1 components) by

k−l
i = ki, i ∈ V \ {l, cr(l)} , (2.1)

k−l
cr (l) = kcr (l) − P(kcr (l)l)k

−1
l .

Then k−l
∈ M(T−l, KT−l).

Furthermore, for any k−l
∈ M(T−l, KT−l) and any kl ∈ V+

nl we have
k−l
1 , . . . , k

−l
cr (l)−1, k

−l
cr (l) + P(kcr (l)l)k

−1
l , kl


∈ M(T , KT ). (2.2)

Proof. Without loss of generality we can assume that r = 1, l = p and cr(l) = p − 1. Then K can be partitioned as

K =


A B
C D


,

where

A =


k1 k12 · · · k1cr (l)−1 k1cr (l)
k21 k2 · · · k2cr (l)−1 k2cr (l)
. . . · · · · · · · · ·

kcr (l)−11 kcr (l)−12 · · · kcr (l)−1 kcr (l)−1cr (l)
kcr (l)1 kcr (l)2 · · · kcr (l)cr (l)−1 kcr (l)

 ,
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B =


0
0
. . .
0

kcr (l)l

 , C =

0 0 · · · 0 klcr (l) kl


, D = kl.

Observing that
A B
C D

 
I1 0

−D−1C I2


=


A − BD−1C B

0 D


we get

|K| =

A B
C D

 =
A − BD−1C

 |D|.

Hence

|K| = |kl|
K−l

 , (2.3)

where

K−l
=

A − BD−1C


=


k1 k12 · · · k1cr (l)−1 k1cr (l)
k21 k2 · · · k2cr (l)−1 k2cr (l)
. . . · · · · · · · · ·

kcr (l)−11 kcr (l)−12 · · · kcr (l)−1 kcr (l)−1cr (l)

kcr (l)1 kcr (l)2 · · · kcr (l)cr (l)−1 kcr (l) − P(kcr (l)l)k
−1
l

 . (2.4)

Note that all principal minors of K−l except the last one are the same as in the matrix K. Therefore they are positive. Since
|K| > 0 and kl ∈ V+

nl , by (2.3)
K−l

 > 0 and we have

k−l
=

k1, . . . , kcr (l)−1, kcr (l) − P(kcr (l)l)k

−1
l


∈ M(T−l, KT−l).

To show that for any k−l
∈ M(T−l, KT−l) and any kl ∈ V+

nl (2.2) holds true it suffices to observe that all principal minors
of the matrix K are positive. It is obvious for the first cr(l)− 1 minors. To see that this is so for the cr(l)th principal minor of
K observe that this minor is the determinant of the matrix which all entries are equal to the respective ones of K−l except
for the element with index (cr(l), cr(l))which is equal to

kcr (l) =

K−l

cr (l) cr (l)
+ P(kcr (l)l)k

−1
l .

Since K−l and P(kcr (l)l)k
−1
l are positive definite, the cr(l)th principal minor of K is positive. From (2.3) it follows that the lth

principal minor of K is also positive. �

For a root r ∈ V in the directed tree T we define the mapping ψr : M(T , KT ) → V+
n1 × · · · × V+

np by

ψr

k1, . . . , kp


=

k1,(r), . . . , kp,(r)


, (2.5)

ki,(r) =


ki if i ∈ L \ {r},

ki −

j∈pr (i)

P(kij)k−1
j,(r) otherwise. (2.6)

Remark 2.2. For a root r ∈ V in the directed tree T there exists the unique

k1,(r), . . . , kp,(r)


such that (2.6) holds. It can be

easily proved by reversed induction on the distance d = d(r, i) between the root r and a vertex i ∈ V = 1, . . . , p of the tree
T = (V , E): If all the kj,(r) are known for d(r, j) = d + 1 then ki,(r) can be defined by (2.6).

Let us illustrate the definition of the mapping ψr with the following example.

Example 2.3. Let T be the tree of size p = 6 with V = {1, 2, 3, 4, 5, 6}, E = {(1, 2), (2, 3), (2, 4), (4, 5), (4, 6)} and
KT = {k12, k23, k24, k45, k46}. Let us choose r = 1 as the root of T .
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1 2

3

4

5

6

The mapping ψ1 is of the form

ψ1 (k1, . . . , k6) =

k1,(1), . . . , k6,(1)


,

where k6,(1) = k6, k5,(1) = k5, k3,(1) = k3, k4,(1) = k4 − P(k45)k−1
5,(1) − P(k46)k−1

6,(1), k2,(1) = k2 − P(k23)k−1
3,(1) − P(k24)k−1

4,(1),
k1,(1) = k1 − P(k12)k−1

2,(1).

Lemma 2.4. For any root r ∈ L and leaf l ∈ L, l ≠ r, we have

k−l
j,(r) = kj,(r) for j ∈ V−l and k−l

j,(cr (l)) = kj,(l) for j ∈ V−l
\ {cr(l)}.

Proof. Let Plr ⊂ V denote the unique path in T linking l and r . Since for j ∉ Plr , kj,(r) does not depend on kl, we have
k−l
j,(r) = kj,(r). On the other hand, for any j ∈ Plr \ {l} , kj,(r) depends on kl only through k−l

cr (l) = kcr (l) − P(kcr (l)l)k
−1
l and thus

we also have k−l
j,(r) = kj,(r) for such j.

To prove the second equality observe first that kj,(cr (l)) = kj,(l) for j ≠ l, cr(l). Now let us consider a tree T−l directed by
choosing a vertex cr(l) as a root. This gives k−l

j,(cr (l)) = kj,(l) for j ∈ V−l
\ {cr(l)}. �

Lemma 2.5. For any root r ∈ V , the mapping ψr : M(T , KT ) → V+
n1 × · · · × V+

np defined by (2.5) and (2.6) is a bijection and
its Jacobian is equal to one.

Proof. It is obvious that the mapping ψr is into V+
n1 × · · · × V+

np . To prove that ψr is onto we proceed by induction on the
size p of the tree T .

For p = 2, let r = 1 and l = 2. Then

ψ1 (k1, k2) =

k1,(1), k2,(1)


=

k1 − P(k12)k−1

2 , k2


=

k−l
1 , k2


.

By Lemma 2.1,

k−l
1 , k2


∈ M(T , KT ). Hence


k1 − P(k12)k−1

2 , k2


∈ V+
n1 × V+

n2 and we have K =


k1 k12
k21 k2


∈ V+

n1+n2since

K =


k1 k12
k21 k2


=


I1 k12k−1

2
0 I2

 
k1 − P(k12)k−1

2 0
0 k2

 
I1 0

k−1
2 k12 I2


and thus xtKx > 0 for all x ∈ Rn1+n2 , x ≠ 0.

Now assume thatψr is onto for any tree Tp−1 of size p− 1, any set KTp−1 and any k ∈ M(Tp−1, KTp−1). Choose an arbitrary
root r ∈ V and leaf l ∈ L, l ≠ r . Without loss of generality we can assume that r = 1, l = p and cr(l) = p − 1.
By Lemma 2.1, k−l

=

k−l
1 , . . . , k

−l
p−1


=

k1, . . . , kcr (l)−1, kcr (l) − P(kcr (l)l)k

−1
l


∈ M(T−l, KT−l). Hence, to prove that ψr

is onto, it suffices to show that if K−l
∈ V+p−1

i=1 ni
then K ∈ V+p

i=1 ni
, where K−l is defined by (2.4). But, from Lemma 2.1,

k−l
1 , . . . , k

−l
cr (l)−1, k

−l
cr (l) + P(kcr (l)l)k

−1
l , kl


∈ M(T , KT ), so the result follows.

Thus the mapping ψr is a bijection. From (2.5) and (2.6) it follows that the Jacobian of ψr is of the form

J = Det

idVn1
∗ ∗

0 · · · ∗

0 0 idVnp

 ,
where Det denotes the determinant of operators acting on Vn1 × · · · × Vnp and ∗ denotes the part that is not needed in
calculations of the Jacobian. Hence the Jacobian of ψr is equal to one. �

Lemma 2.6. For any root r ∈ V , we have

|K| =


i∈V

|ki,(r)|. (2.7)
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Proof. We proceed by induction on the size p of the tree T .
For p = 2 the result follows from the expression for the determinant of a partitioned matrix in terms of its submatrices:

K =

 k1 k12
k21 k2


=
k1 − P(k12)k−1

2

 |k2| = |k1,(1)| |k2,(1)|

= |k1|
k2 − P(k21)k−1

1

 = |k1,(2)| |k2,(2)|.

Now assume that (2.7) is true for any tree Tp−1 of size p − 1, any set KTp−1 and any k ∈ M(Tp−1, KTp−1). Choose an arbitrary
root r ∈ V and a leaf l ∈ L, l ≠ r . Without loss of generality we can assume that r = 1, l = p and cr(l) = p − 1. Then, as in
the proof of Lemma 2.1, we get

|K| = |kl|
K−l

 =
kl,(r) K−l

 ,
where K−l is defined by (2.4). Since, by Lemma 2.1, k−l

=

k−l
1 , . . . , k

−l
p−1


=

k1, . . . , kcr (l)−1, kcr (l) − P(kcr (l)l)k

−1
l


∈

M(T−l, KT−l), the induction assumption implies

|K−l
| =


i∈V−l

|k−l
i,(r)|.

Hence, by Lemma 2.4,

|K| =
kl,(r) 

i∈V−l

|k−l
i,(r)| =

kl,(r) 
i∈V\{l}

|ki,(r)| =


i∈V

|ki,(r)|. �

Lemma 2.7. For any root r ∈ V and for any a =

a1, . . . , ap


∈ Vn1 × · · · × Vnp , we have

⟨a, k⟩ =


i∈V

⟨ai, ki⟩ =


i∈V


ai, ki,(r)


+


P(kicr (i))acr (i), k

−1
i,(r)


.

Proof. From the definition of the inner product and (2.6) we obtain

⟨a, k⟩ =


i∈V

⟨ai, ki⟩ =


i∈V


ai, ki,(r) +


j∈pr (i)

P(kij)k−1
j,(r)



=


i∈V


ai, ki,(r)


+


i∈V


ai,


j∈pr (i)

P(kij)k−1
j,(r)


=


i∈V


ai, ki,(r)


+


i∈V


j∈pr (i)


P(kji)ai, k−1

j,(r)


.

Since each i ∈ V \ {r} has only one child, changing the order of summation in the last expression yields

⟨a, k⟩ =


i∈V


ai, ki,(r)


+


P(kicr (i))acr (i), k

−1
i,(r)


. �

3. The matrix variate Matsumoto–Yor property

Let T = (V , E) be a tree of size p and let KT be a fixed set.
Let us define a probability distributionW c

T (q, KT , a) onM(T , KT ) by the density

f (k) ∝ |K|
q exp (− ⟨a, k⟩) IM(T ,KT )(k), (3.1)

where a =

a1, . . . , ap


∈ V+

n1 × · · · × V+
np and q > −1 is a scalar. It will be proved in Theorem 3.1 that the right-hand side

of (3.1) is the density of a finite measure. This distribution can be viewed as a generalization of the p-variateW c
G distribution

defined in Section 3 of [15].
Note that for p = 2 the distribution given by the density (3.1) corresponds to the one given by Seshadri and We-

sołowski [20]: they defined a distributionWr,s(q, c, a, b) to rephrase theMYproperty and related characterization formatrix
variates having dimensions r × r and s × s, originally stated and proved in [16]. Moreover, when p = 2 and n1 = n2 = 1,
i.e. when K is a matrix valued in V+

2 , (3.1) is the density of the conditional distribution of the diagonal elements of K given
its off-diagonal elements in the case when the distribution of K is quasi-Wishart, see Geiger and Heckerman [5], Letac and
Massam [13].

The directMatsumoto–Yor property on trees formatrices of different dimensions is established by the following theorem.
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Theorem 3.1. Let T = (V , E) be a tree of size p (p ≥ 2). Let K = (K1, . . . , Kp) ∼ W c
T (q, KT , a). Define Xr = ψr(K), r ∈ V .

Then for each r ∈ V the components of Xr =

X1,(r), . . . , Xp,(r)


are independent. Moreover,

Xr,(r) ∼ Wnr (qr , ar)

and

Xj,(r) ∼ MGIGnj(qj, aj, P(kjcr (j))acr (j)) j ∈ V \ {r} ,

where qi −
ni+1
2 = q, i ∈ V .

Proof. Choose any r ∈ V . We know from Lemma 2.5 that the mapping ψr : M(T , KT ) → V+
n1 × · · · × V+

np is a bijection and
its Jacobian is equal to one. Hence, by Lemmas 2.6 and 2.7, we can rewrite the density (3.1) of K as

f (k) ∝ |K|
q exp (− ⟨a, k⟩) IM(T ,KT )(k)

=


i∈V

|ki,(r)|qi−
ni+1
2 exp


−


i∈V


ai, ki,(r)


+


P(kicr (i))acr (i), k

−1
i,(r)


IV+

ni
(ki,(r))

= |kr,(r)|qr−
nr+1

2 exp

−

ar , kr,(r)


IV+

nr
(kr,(r))

×


i∈V\{r}

|ki,(r)|qi−
ni+1
2 exp


−


i∈V


ai, ki,(r)


+


P(kicr (i))acr (i), k

−1
i,(r)


IV+

ni
(ki,(r)).

Therefore we obtain the product of one Wishart and p − 1 matrix GIG distributions. �

4. The characterization of the Wishart and MGIG distributions

In this section we will prove a characterization of one Wishart and p − 1 matrix GIG distributions, that is the converse
to the Matsumoto–Yor property on trees for matrix variates of different dimensions. The essential part of the proof of this
characterization is the following observation.

Lemma 4.1. Let T = (V , E) be a tree of size p (p ≥ 2). Let L ⊂ V be its set of leaves. Let the set KT be given and let K =

(K1, . . . , Kp) be a vector of block randommatrices taking its values inM(T , KT ). Let Xr = ψr(K), r = l1, l2 ∈ L. If the components
of Xl1 = (X1,(l1), . . . , Xp,(l1)) are jointly independent, then the random matrices Xl2,(l1) and Xs2,(l1) − P(ks2cl1 (s2))X

−1
cl1 (s2),(l2)

are
independent, where s2 = cl1(l2).

Proof. We have

ψr (K) =

X1,(r), . . . , Xp,(r)


, (4.1)

where

Xi,(r) =


Ki if i ∈ L \ {r},

Ki −

j∈pr (i)

P(kij)X−1
j,(r) if i ∈ V \ L, (4.2)

r = l1, l2. Since we assume that the components of Xl1 = (X1,(l1), . . . , Xp,(l1)) are jointly independent, it suffices to show
that Xcl1 (s2),(l2)

can be written in terms of some Xj,(l1)’s, except for Xl2,(l1).
Obviously, each Xi,(r) is a function of K . From (4.1) and (4.2) it follows that Xcl1 (s2),(l2)

depends on K only through the
components Kj such that j ∈ V \ {s2, l2}. It is therefore of interest to look how each Kj can be written in terms of Xj,(l1)’s.
Observe that for j ∈ V \{s2, l2}, each Kj can bewritten in terms of some Xj,(l1)’s, except for Xl2,(l1). Thus Xcl1 (s2),(l2)

is a function
of some Xj,(l1)’s where j ≠ l2. Hence Xl2,(l1) and Xs2,(l1) − P(ks2cl1 (s2))X

−1
cl1 (s2),(l2)

are independent. �

Our characterization of one Wishart and p − 1 matrix GIG distributions will be given under the assumption of strict
positivity and differentiability of the densities. These technical conditions are due to the fact that we will use the following
result (Theorem 4.1) from the paper of Massam and Wesołowski [16]:

Theorem 4.2. Let X and Y be two independent random matrices taking their values in V+
r and V+

s respectively. Assume that X
and Y have strictly positive differentiable densities with respect to the Lebesgue measure. Let

ψz(x, y) =

(P(z)x + y)−1, x−1

− P(zt)(P(z)x + y)−1 ,
where z is a given constant s × r matrix of full rank. Let (U, V ) = ψz(X, Y ).
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If U and V are independent, then there exist (a, b) ∈ V+
r × V+

s and scalars p and q satisfying p − q =
r−s
2 , p > r−1

2 , such
that X and Y are independent GIG and Wishart with

(X, Y ) ∼ MGIGr(−p, P(zt)a, b)⊗ Ws(q, a).

It also follows immediately that U and V are independent GIG and Wishart with

(U, V ) ∼ MGIGs(−q, P(z)b, a)⊗ Ws(p, b).

Wewill need Lemma4.1 and Theorem4.2 to identify thematriceswithWishart distributions. To obtain further thematrix
GIG distributions, we will use the induction argument, similar to the one used in [15] in the proof of the characterization
of the product of one gamma and p − 1 GIG laws (Theorem 4.1). It is worth noting that the proof in [15] was split into two
parts. In the first part by applying Laplace transforms (which was an adaptation of the method used in Theorem 4.1 in Letac
and Wesołowski [14]) the gamma distributions were identified. Then the induction argument gave GIG’s variables.

Here we do not use Laplace transforms to work out the Wishart variables. Instead our approach is based on the inde-
pendence property observed in Lemma 4.1 and on Theorem 4.2. To get the matrix GIG variables we adopt the induction
approach from [15] to the matrix variate situation.

Theorem 4.3. Let T = (V , E) be a tree of size p (p ≥ 2). Let L ⊂ V be its set of leaves. Let the set KT be given and let
K = (K1, . . . , Kp) be a vector of p randommatrices ni ×ni (i = 1, . . . , p) taking its values in M(T , KT ). Let Xr = ψr(K), r ∈ V .
If, for any root r ∈ L, the components of Xr = (X1,(r), . . . , Xp,(r)) aremutually independent and have strictly positive differentiable
densities with respect to the Lebesgue measure then there exist aj ∈ V+

nj , j ∈ V and scalars qj satisfying

qj −
nj

2
= qi −

ni

2
> −

1
2
, i, j ∈ V ,

such that

Xr,(r) ∼ Wnr (qr , ar)

and

Xj,(r) ∼ MGIGnj(qj, aj, P(kjcr (j))acr (j)) j ∈ V \ {r} .

Proof. Let us consider two leaves l1, l2 ∈ L. Let Pl1 l2 ⊂ V denote a unique path in T linking l1 and l2. By choosing l1 as a
root and then by choosing l2 as a root we obtain two different directions of T . Consider two mappings ψl1 and ψl2 defined
by (2.5) and (2.6), corresponding to these two directions of T and let Xr = ψr(K), r = l1, l2. We have

ψr

K1, . . . , Kp


=

X1,(r), . . . , Xp,(r)


, (4.3)

where

Xi,(r) =


Ki if i ∈ L \ {r},

Ki −

j∈pr (i)

P(kij)X−1
j,(r) if i ∈ V \ L, (4.4)

r = l1, l2 and we know that for r = l1, l2 the components of (X1,(r), . . . , Xp,(r)) are mutually independent.
We begin by proving that the distributions of Xr,(r), r = l1, l2, are Wisharts.
Note that for i ∉ Pl1 l2 , the ith component of ψl1(K) is equal to the ith component of ψl2(K):

Xi,(l1) = Xi,(l2).

Let si denote the only neighbour of li, i = 1, 2. From (4.3) and (4.4) it follows that

Xl2,(l1) = Kl2 , (4.5)

Xs2,(l1) = Ks2 − P(ks2 l2)K
−1
l2

−


j∈pl1 (s2)\Pl1 l2

P(ks2j)X
−1
j,(l1)

, (4.6)

and since {cl1(s2)} = pl2(s2) ∩ Pl1 l2 we obtain

Xs2,(l2) = Ks2 − P(ks2cl1 (s2))X
−1
cl1 (s2),(l2)

−


j∈pl2 (s2)\Pl1 l2

P(ks2j)X
−1
j,(l2)

, (4.7)

Xl2,(l2) = Kl2 − P(kl2s2)X
−1
s2,(l2)

. (4.8)
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From (4.5) and (4.6) we have

Kl2 = Xl2,(l1), (4.9)

Ks2 = Xs2,(l1) + P(ks2 l2)X
−1
l2,(l1)

+


j∈pl1 (s2)\Pl1 l2

P(ks2j)X
−1
j,(l1)

. (4.10)

Plugging (4.10) into (4.7) and using the fact that pl1(s2) \ Pl1 l2 = pl2(s2) \ Pl1 l2 and for j ∉ Pl1 l2 we have Xj,(l1) = Xj,(l2), we
obtain

Xs2,(l2) = Xs2,(l1) + P(ks2 l2)X
−1
l2,(l1)

− P(ks2cl1 (s2))X
−1
cl1 (s2),(l2)

. (4.11)

Inserting (4.9) and (4.11) into (4.8) we get

Xl2,(l2) = Xl2,(l1) − P(kl2s2)

Xs2,(l1) + P(ks2 l2)X

−1
l2,(l1)

− P(ks2cl1 (s2))X
−1
cl1 (s2),(l2)

−1
. (4.12)

Let

X = X−1
l2,(l1)

and

Y = Xs2,(l1) − P(ks2cl1 (s2))X
−1
cl1 (s2),(l2)

.

By Lemma 4.1, X and Y are independent.
Now define

U = X−1
s2,(l2)

and

V = Xl2,(l2).

From the assumption that the components of (X1,(l2), . . . , Xp,(l2)) are mutually independent it follows that U and V are
independent. Moreover, using (4.11) and (4.12), we can rewrite U and V in terms of X and Y as follows

U =

Y + P(ks2 l2)X

−1

and

V = X−1
− P(kl2s2)


Y + P(ks2 l2)X

−1
.

Thus, from Theorem 4.2 and from (1.2), we get that there exist al2 ∈ V+
nl2
, as2 ∈ V+

ns2
and scalars ql2 , qs2 satisfying

ql2 −
nl2

2
= qs2 −

ns2

2
> −

1
2

such that

Xl2,(l2) = V ∼ Wnl2
(ql2 , al2), (4.13)

Xl2,(l1) = X−1
∼ MGIGnl2

(ql2 , al2 , P(kl2s2)as2),

Xs2,(l2) = U−1
∼ MGIGns2

(qs2 , as2 , P(ks2 l2)al2)

and

Y ∼ Wns2
(qs2 , as2).

Similarly, swapping the roles of l1 and l2 we have that there exist al1 ∈ V+
nl1
, as1 ∈ V+

ns1
and scalars ql1 , qs1 satisfying

ql1 −
nl1

2
= qs1 −

ns1

2
> −

1
2

such that

Xl1,(l1) = Ṽ ∼ Wnl1
(ql1 , al1), (4.14)

Xl1,(l2) = X̃−1
∼ MGIGnl1

(ql1 , al1 , P(kl1s1)as1),

Xs1,(l1) = Ũ−1
∼ MGIGns1

(qs1 , as1 , P(ks1 l1)al1)
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and

Ỹ ∼ Wns1
(qs1 , as1).

Now we will prove that all Xj,(r), where j ∈ V \ {r} , r = l1, l2, have matrix GIG distributions. We will apply induction
with respect to the size p of the tree G.

Observe first that the condition that for any root r ∈ L, the components of Xr = (X1,(r), . . . , Xp,(r)) are mutually
independent, can be rewritten as

fr,(r)(kr,(r))


i∈V\{r}

fi,(r)(ki,(r)) = h(k) (4.15)

a.s. with respect to the Lebesgue measure for k = (k1, . . . , kp) ∈ M(T , KT ), where fi,(r) is the density of Xi,(r), i ∈ V , r ∈

L, ki,(r) is the ith component of ψr(k) and h is a function independent of r . Moreover, fr,(r) is the density of the Wishart
distributionWnr (qr , ar).

We will prove that if for any tree Tp of size p ≥ 2, for any set of off-diagonal elements KTp and for any k ∈ M(Tp, KT ), Eq.
(4.15) holds under the assumption that fr,(r) is the density of the Wishart distribution Wnr (qr , ar), then there exist ai ∈ V+

ni
and scalars qi i ∈ V \ {r}, satisfying

qj −
nj

2
= qi −

ni

2
> −

1
2
, i, j ∈ V

such that the densities fi,(r), where i ≠ r , are the densities of the matrix GIG distributionsMGIGni(qi, ai, P(kicr (i))acr (i)).
For p = 2 the result follows directly from Theorem 4.2, since in this case T = {l1, l2} and we have that there exist

al1 ∈ V+
nl1
, al2 ∈ V+

nl2
and scalars ql1 , ql2 satisfying

ql1 −
nl1

2
= ql2 −

nl2

2
> −

1
2

such that

Xl1,(l1) ∼ Wnl1
(ql1 , al1), (4.16)

Xl2,(l1) ∼ MGIGnl2
(ql2 , al2 , P(kl2 l1)al1) = MGIGnl2

(ql2 , al2 , P(kl2cl1 (l2))acl1 (l2)),
Xl2,(l2) ∼ Wnl2

(ql2 , al2),

Xl1,(l2) ∼ MGIGns2
(ql1 , al1 , P(kl1 l2)al2) = MGIGns2

(ql1 , al1 , P(kl1cl2 (l1))acl2 (l1)).

Nowwe assume that the result holds for any tree Tp−1 of size p−1, for any set of off-diagonal elements KTp−1 and for any
k ∈ M(Tp−1, KTp−1).

From (4.15) it follows that

fl2,(l1)(kl2,(l1))fl1,(l1)(kl1,(l1))


i∈V\{l1,l2}

fi,(l1)(ki,(l1)) = fl2,(l2)(kl2,(l2))fs2,(l2)(ks2,(l2))


i∈V\{s2,l2}

fi,(l2)(ki,(l2)).

Using (4.7) and (4.8) and noting that kl2,(l1) = kl2 , we can rewrite the above equation as

fl2,(l1)(kl2)fl1,(l1)(kl1,(l1))


i∈V\{l1,l2}

fi,(l1)(ki,(l1)) = fl2,(l2)

kl2 − P(kl2s2)

ks2 −


j∈pl2 (s2)

P(ks2j)k
−1
j,(l2)

−1
× fs2,(l2)

ks2 −


j∈pl2 (s2)

P(ks2j)k
−1
j,(l2)

 
i∈V\{s2,l2}

fi,(l2)(ki,(l2)). (4.17)

Let now fix kl2 and consider k−l2 ∈ M(T−l2 , KT−l2 ), defined as in Lemma 2.1. By Lemma 2.4, we can rewrite (4.17) as

fl2,(l1)(kl2)fl1,(l1)(k
−l2
l1,(l1)

)


i∈V−l2 \{l1}

fi,(l1)(k
−l2
i,(l1)

)

= fl2,(l2)

kl2 − P(kl2s2)

k−l2
s2 + P(ks2 l2)k

−1
l2

−


j∈pl2 (s2)

P(ks2j)

k−l2
j,(l2)

−1

−1
× fs2,(l2)

k−l2
s2 + P(ks2 l2)k

−1
l2

−


j∈pl2 (s2)

P(ks2j)

k−l2
j,(l2)

−1

 
i∈V−l2 \{s2}

fi,(l2)(k
−l2
i,(s2)

) (4.18)
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and obtain the following equation

fl1,(l1)(k
−l2
l1,(l1)

)


i∈V−l2 \{l1}

fi,(l1)(k
−l2
i,(l1)

) = g (x)


i∈V−l2 \{s2}

fi,(l2)(k
−l2
i,(s2)

),

where

g (x) =

fl2,(l2)


kl2 − P(kl2s2)


x + P(ks2 l2)k

−1
l2

−1

fs2,(l2)


x + P(ks2 l2)k

−1
l2


fl2,(l1)(kl2)

and

x = k−l2
s2 −


j∈pl2 (s2)

P(ks2j)

k−l2
j,(l2)

−1
.

Since the set pl2(s2) in T is equal to the set ps2(s2) in T−l2 we get

x = k−l2
s2,(s2)

and our equation takes the form

fl1,(l1)(k
−l2
l1,(l1)

)


i∈V−l2 \{l1}

fi,(l1)(k
−l2
i,(l1)

) = g

k−l2
s2,(s2)

 
i∈V−l2 \{s2}

fi,(l2)(k
−l2
i,(s2)

). (4.19)

Note that we can always choose kl2 in such a way that (4.19) holds a.s. with respect to the Lebesgue measure for
k−l2 ∈ M(T−l2 , KT−l2 ) and that L−l2 ⊂ (L \ {l2}) ∪ {s2}. Moreover, (4.19) implies that g is also a density.

Since (4.19) holds for any l1 ∈ L−l2 , we get an analogue of (4.15) for a tree of size p − 1: for any root r ∈ L−l2

f −l2
r,(r)(k

−l2
r,(r))


i∈V\{r}

f −l2
i,(r)(k

−l2
i,(r)) = h̃(k−l2) (4.20)

a.s. with respect to the Lebesgue measure for k−l2 ∈ M(T−l2 , KT−l2 ), where either s2 ∉ L−l2 and then f −l2
i,(r) = fi,(r) is the

density of X−l2
i,(r) = Xi,(r) for i ∈ V−l2 and r ∈ L−l2 or s2 ∈ L−l2 and then f −l2

i,(r) = fi,(r) is the density of X−l2
i,(r) = Xi,(r) for i ∈ V−l2

and r ∈ L−l2 \{s2}, f
−l2
i,(s2)

= fi,(l2) is the density of Xi,(l2) for i ∈ V−l2 \{s2}, f
−l2
s2,(s2)

= g is the density of X−l2
s2,(s2)

and h̃ is a function
independent of r .

Moreover, f −l2
r,(r) is the density of the Wishart distribution Wnr (qr , ar): either s2 ∉ L−l2 and then it follows from the fact

that fr,(r) in (4.15) is Wishart or s2 ∈ L−l2 and then (4.20) corresponds to the independence conditions analogous to the ones
defined by (4.3) and (4.4) but taken with respect to the tree with leaves in the set (L \ {l2}) ∪ {s2}. This, due to the first part
of the proof in which Wishart matrices were identified, implies that f −l2

s2,(s2)
is also the density of the Wishart distribution.

Thus from our induction assumption it follows that the functions fi,(l1), i ∈ V−l2 \ {l1}, on the left hand side of (4.19) are
densities of the matrix GIG distributions. More precisely, there exist ãj ∈ V+

nj , j ∈ V , and scalars q̃j satisfying

q̃i −
ni

2
= q̃j −

nj

2
> −

1
2

such that

X−l2
l1,(l1)

= Xl1,(l1) ∼ Wnl1
(q̃l1 , ãl1)

and

X−l2
j,(l1)

= Xj,(l1) ∼ MGIGnj(q̃j, ãj, P(kjcl1 (j))ãcl1 (j)) j ∈ V−l2 \ {l1} ,

X−l2
j,(s2)

= Xj,(s2) ∼ MGIGnj(q̃j, ãj, P(kjcs2 (j))ãcs2 (j)) j ∈ V−l2 \ {s2} .

Similarly, swapping the roles of l1 and l2 we have that there exist aj ∈ V+
nj , j ∈ V , and scalars qj satisfying

qi −
ni

2
= qj −

nj

2
> −

1
2

such that

X−l1
l2,(l2)

= Xl2,(l2) ∼ Wnl2
(ql2 , al2)
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and

X−l1
j,(l2)

= Xj,(l2) ∼ MGIGnj(qj, aj, P(kjcl2 (j))acl2 (j)) j ∈ V−l1 \ {l2} ,

X−l1
j,(s1)

= Xj,(s1) ∼ MGIGnj(qj, aj, P(kjcs1 (j))acs1 (j)) j ∈ V−l1 \ {s1} .

Hence we know the distributions of Xj,(r) for any j ∈ V and r = l1, l2 ∈ L (Xl1,(l2) and Xl2,(l1) were found earlier, see (4.13)
and (4.14)).

It remains to prove that the two sets of parameters, for r = l1 and r = l2, are identical, that is q̃j = qj and ãj = aj for any
j ∈ V . Adopting the notation from (4.16) we can define

q̃l1 = ql1 , q̃l2 = ql2 , ãl1 = al1 , ãl2 = al2 , ãcl1 (l2) = acl1 (l2) and ãcl2 (l1) = ãcl1 (l2).

Using our independence equation
i∈V

fi,(l1)(ki,(l1)) =


i∈V

fi,(l2)(ki,(l2)), (4.21)

and knowing that fi,(lj), j = l1, l2, i ∈ V , are densities of Wisharts and matrix GIG distributions identified above, we obtain
that the left-hand side of (4.21) is proportional to

i∈V

|ki,(l1)|
q̃i−

ni+1
2 exp


−

ãl1 , kl1,(l1)

 
i∈V\{l1}

exp

−

ãi, ki,(l1)


−


P(kicl1 (i))ãcl1 (i), k

−1
i,(l1)


.

Since q̃i −
ni
2 = q̃l1 −

nl1
2 for any i ∈ V , it follows from Lemmas 2.6 and 2.7 that the above expression may be rewritten in

the form

|K|
q̃l1−

nl1+1
2 exp


i∈V


ãi, ki


. (4.22)

Similarly, on the right-hand side of (4.21) we have

|K|
ql2−

nl2+1
2 exp


i∈V

⟨ai, ki⟩


. (4.23)

Taking logarithms of (4.22) and (4.23) we get, respectively,
q̃l1 −

nl1 + 1
2


log (|K|)+


i∈V


ãi, ki


(4.24)

and 
ql2 −

nl2 + 1
2


log (|K|)+


i∈V

⟨ai, ki⟩ . (4.25)

Comparing (4.24) and (4.25) and using linear independence of the functions log (|K|) and ⟨ai, ki⟩ as functions of ki, i ∈ V ,
we get

q̃i = qi and ai = ãi for any i ∈ V .

This completes the proof. �
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