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Symmetric Gaussian mixture distributions with GGC scales

Stergios B. Fotopoulos∗

Department of Finance and Management Science, Carson College of Business, Washington State University, Pullman, WA, USA

Abstract

The aim of this study is to unify and extend hyperbolic distributions when scalars are generated from the GGC family.
Such distributions play an important role for modeling asset prices. Explicit expressions of multivariate densities are
presented in terms of either the Laplace transform or the density of the scalar. When scalars are members of the GGC
family, then the representations are articulated with respect to the Thorin measure. Several examples are provided.

Keywords: Conditional densities, Dirichlet distributions, generalized inverse Gaussian variables, Laplace transform,
Spherical vectors, subordinators

1. Introduction

The main focus of this article is to develop densities from scale mixtures of Gaussian vectors. Such random
variables can play an important role in understanding uncertainty driven by stock market dynamics. The inability of
the normal law to explain certain empirical properties of asset returns and options prices has led to the development
of a variety of models, such as stable laws, Lévy laws and various derivatives of Lévy variables that include mixtures
of normal distributions; see [16, 25, 26, 31].

More specifically, the objective here is to focus on unifying various properties of multivariate elliptical contoured
vectors with those of scale mixtures of Gaussian vectors and to provide a common ground where tractable density
expressions can be generated. For, it is important to know the density forms when one deals with applications.

Normal mixtures have received widespread attention for over half a century. A great deal of effort has been spent
on the characterization of their densities and their moments. The literature includes [1–4, 6, 10–14, 21–23], and [25].
A more complete list can be found in [16]. The laws generated from this family can possess heavy tails relative
to normal laws, and yet finite moments for at least the lower power of asset prices. They also have multivariate
distributions with hyperbolic form which supports the validity of the capital asset pricing model; see, e.g., [27, 28].

Adopting a few ideas from the work of Samorodnitsky and Taqqu [31], who characterized stable random vectors
with respect to spectral measures of stable vectors, we extend these characterizations to scale mixtures of Gaussian
vectors. The reason for this change in direction to scale mixtures is because of the one-to-one relationship between
densities and characteristic functions, combined with the functional form of the scale mixture of Gaussian vectors. In
particular, the characteristic function of mixtures of Gaussian vectors has a more tractable form, and thus it is used as
a tool to develop densities. In the context of general scales, special cases are also examined to gain more insight into
how the scales are allied with the Gaussian vectors. This permits easy computational procedures as can be seen from
their expressions.

To understand further the computing context, an essential general subfamily of scales is introduced here: the
generalized gamma convolution (GGC). A subfamily of GGC is the generalized inverse Gaussian (GIG) that has been
of interest in many applications in applied and mathematical finance. The stability condition for the existence of the
density under the scale mixture of Gaussian is stated only via the Laplace transform of the scale. However, when the
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scale is a member of the generalized gamma convolutions, then the stability condition is expressed in terms of the
Thorin measure of the scale. The work here is limited to symmetric vectors, e.g., when vectors Y − µ and −(Y − µ)
are identically distributed. But this does not suggest that this work cannot be extended to skewed or other forms. It is
also assumed that the vectors are nonsingular, i.e., their variance-covariance matrices are positive definite.

Assuming the vectors are generated from mixtures of Gaussian distributions, we next investigate their marginal
and conditional distributions, which play an important role in both theory and practice. We show that under weaker
stability conditions, the theory of establishing unambiguous multivariate densities is carried on to marginal and con-
ditional mixtures of Gaussian vectors. In particular, the conditional distributions are represented as a ratio of two
expected functionals of the scale or as a ratio of two Laplace transforms. To illustrate this, two examples are consid-
ered. The first one is expressed as a ratio of two independent gammas and the second as a power of a gamma. Both
examples demonstrate how the method is utilized to identify identities for conditional vectors.

In summary, the goals here are twofold: First, we recap some important properties of scale mixtures taking a
different approach and show their utility. Second, we show how the general hyperbolic family can be embedded into
a wider general class of mixtures with the GGC family. These methods not only provide better insight, but also lead
to a simple and efficient line of approach to obtain tractable identities.

The organization of this paper is as follows. Section 2 introduces general mixtures and describes symmetric
elliptical contoured vectors and mixtures of normal vectors as examples. Section 3 is focused on the properties
and description of the scalars and their mixtures. Finally, Section 4 continues with properties of the marginal and
conditional distributions when the joint distribution is obtained from a GGC scalar mixed with normal laws.

2. Background and scale mixtures

Throughout this article we denote by FX the distribution of the random vector X ∈ Rd. If random vectors X and Y
have the same distribution, we write X =D Y . Let P(Rd), d ≥ 1, denote the set of all probability measures on Rd and
let P[0,∞) = P+ be the set of probability measures on [0,∞). For each a ∈ R and µ ∈ P(Rd), the rescaling operator
Ta : P(Rd)→ P(Rd) is defined, for every Borel set B ∈ B(Rd), by

Taµ(A) =

{
µ(B/a) for a , 0,
δ0(B) for a = 0,

where δ0 is the usual Kronecker delta function. Equivalently, Taµ denotes the distribution of the random vector aX if
µ is the distribution of the vector X.

The scale mixture Eλ{µ(B/·)} = µ ◦ λ(B), B ∈ B(Rd), of a measure µ ∈ P(Rd) with respect to the measure λ ∈ P+

is then defined by

µ ◦ λ(B) = Eλ{µ(B/·)} =

∫

[0,∞)
µ(B/s)λ(ds) =

∫

[0,∞)
Tsµ(B)λ(ds). (1)

When X is independent of the random variable R, µ ◦ λ denotes the distribution of the random vector Y =D RX,
wherein µ = FX and λ = FR. In this case, the characteristic function of Y is given, for all t ∈ Rd, by

Êλ(µ)(t) =

∫

[0,∞)
µ̂(st)λ(ds). (2)

Note that when X is symmetrically distributed, the random vector Y =D RX ∈ Rd is also symmetric. In what follows
we describe three well-known multivariate families that apply to definitions (1) and/or (2).

Example 1. When Y ∈ Rd is spherically distributed, then from Theorem 2.1 in [16] and [9], the characteristic function
of Y is formed as f̂Y (t) = ϕ(‖t‖2), where ‖t‖2 = 〈t, t〉, t ∈ Rd, denotes the Euclidean distance and 〈·, ·〉 is the usual inner
product. Some of these results can be found in [30]. To build a similar equation for Y , as in (2), one introduces U(d)

to be a random vector with uniform distribution µ = ωd on the unit sphere S d−1 = {u ∈ Rd : ‖u‖ = 1} ⊂ Rd. Then,
following (10), the characteristic function of Y is given, for all t ∈ Rd, by

f̂Y (t) =

∫

[0,∞)
ω̂d(rt)F(dr),
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where ω̂d(t) = ω̂(‖t‖2), with

ω̂(‖t‖2) =
1
sd

∫

x∈S d

ei〈t,x〉dx

and sd = 2πd/2/Γ(d/2) denotes the surface of the unit sphere in Rd. Thus, Y can be written as a scale mixture of µ = ωd

in terms of λ = F ∈ P+. For instance, the random vector Y is now stated as a scale mixture of U(d) independently
of a nonnegative random variable R by Y =D RU(d). To relate the distribution of Y with the general definition (1),
let Y possess a density fY (if it exists). As in the characteristic function, the density of Y also satisfies the form
fY (x) = f (〈x, x〉), x ∈ Rd, for some nonnegative function f , termed the density generator. In this case, when F ∈ P+

and Pr(R = 0) = 0, it can be shown that Y is absolutely continuous. In other words, the density of Y satisfies
∫

Rd
fY (x)dx =

2πd/2

Γ(d/2)

∫ ∞

0
rd/2−1 f (r)dr = 1

as would be expected. To further clarify the absolute continuity property of Y , it can be seen from Theorem 2.9 in
[15] that Y possesses a density generator f if and only if R is absolutely continuous with density

fR(r) =
2πd/2

Γ(d/2)
rd−1 f (r2)1(r > 0).

To avoid technical issues at zero, we further assume that Pr(R = 0) = 0. Thus, as in (1),

Pr(Y ∈ B) =

∫

[0,∞)
Pr(U(d) ∈ B/s) f (s)ds.

For more information we also refer to [9, 16].

Example 2. Natural extensions to spherically distributed random vectors are the elliptically contoured vectors. In this
case, Y ∈ Rd is assumed to have location and scale parameters µ ∈ Rd, and Σ, a d × d positive definite symmetric
matrix (again, for convenience), respectively. Thus, definition (2) is now formed, for all t ∈ Rd, as

ϕY−µ(t) = E{ei〈(Y−µ),t〉} =

∫

(0,∞)
ω̂d,Σ(st) f (s)ds,

where ω̂d,Σ(st) = ω̂(s‖t‖2
Σ
) , ‖t‖2

Σ
= 〈t,Σt〉, t ∈ Rd and s ∈ (0,∞), is the characteristic function of the vector A>U(d),

with A chosen such that A>A = Σ. For simplicity, Σ is considered to be of full rank, in which case we may write
conveniently Σ1/2Σ1/2 = Σ. Thus, the stochastic representation of Y ∈ Rd is given by

Y =D µ + RA>U(d). (3)

Applying definition (1), the distribution of Y in (3) is then obtained, for all B ∈ B(Rd), by

Pr(Y ∈ B) =

∫

[0,∞)
Pr(A>U(d) ∈ B/s − µ) f (s)ds.

As in the spherical case, the density of the scalar random variable R when Y is elliptically contoured is given by

fR(‖x − µ‖Σ−1 ) =
Γ(d/2)
2πd/2 Σ−1‖x − µ‖d−1

Σ−1 f (‖x − µ‖2
Σ−1 ).

Example 3. Let Y ∈ Rd be nonsingular, which is equivalent to Σ being strictly positive definite, or for every u , 0,
〈u,Σu〉 > 0. Let X ∼ N(0,Σ) be a d-dimensional multivariate normal random vector and R be an independent
univariate strictly positive random variable. Then, the stochastic representation of Y is given, for µ ∈ Rd, by

Y =D µ + RX, (4)
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where Y has characteristic function given, for all t ∈ Rd, by

f̂Y−µ(t) =

∫

(0,∞)
f̂X(st) fR(s)ds =

∫

(0,∞)
exp(−s‖t‖2Σ/2) fR(s)ds.

Applying definition (1), one has, for all B ∈ B(Rd),

Pr(Y ∈ B) =

∫

[0,∞)
Pr(X ∈ B/s − µ) fR(s)ds. (5)

Note that Y is isotropic radially symmetric when Σ is a multiple of the identity matrix.
It can be seen that a normal vector X ∼ N(0,Σ) can be expressed as X =D (χ2

d)1/2Σ1/2U(d), where χ2
d is independent

of U(d). In this case, the stochastic representation in (4) can now be viewed in terms of the uniform vector U(d) scaled
by the positive random variable R(χ2

d)1/2. In modeling applications, scale mixtures of univariate or multivariate normal
distributions are introduced to simply alter the tail behavior of the distribution while leaving the resultant distribution
symmetric. Classical examples include the multivariate t, Laplace or double exponential distribution, etc.

In many situations the density of R can be unattractive (stable case) resulting in an integral equation (5) almost
impossible to compute. To bypass this and other potential difficulties, one could use the inversion theorem of the
characteristic function (the Laplace transform of certain positive stable variables is easier to compute, see below).
This method may then provide an easier way to compute the density of Y − µ instead of computing directly from (5).
In particular, when the random vector Y satisfies (4), the characteristic function of Y − µ satisfies, for all t ∈ Rd,

f̂Y−µ(t) = E(ei〈Y−µ,t〉) = E(eiR〈X,t〉) = E(e−R2〈t,Σt〉/2) = LR2 (‖t‖2Σ/2). (6)

Setting s = Σ1/2t, s, t ∈ Rd, and then applying polar coordinates, the following holds,
∫

Rd
LR2 (‖t‖2Σ/2)dt = |Σ|1/2

∫

Rd
LR2 (‖s‖2/2)ds = c

∫

(0,∞)
rd−1LR2 (r2/2)dr

= c
∫

(0,∞)
ud−2/1LR2 (u)dr < ∞,

(7)

where c is a positive constant. For the existence property, we assume that (7) is bounded.

In light of (7), a general representation for the density of the random vector Y − µ with respect to the Laplace
transform of R2 can then be developed as follows.

Theorem 1. If the Laplace transform LR2 of R2 satisfies (7), then the density of Y−µ =D RX ∈ Rd, where X ∼ N(0,Σ)
is independent of the scale random variable R, has the following representation

fY−µ(x) =
(σ2/2)−1/2

2π

∫

(0,∞)
LR2 (r2) cos(

√
2 r|x − µ|/σ)dr, x ∈ R, d = 1

fY−µ(x) =
|Σ|−1/2 √πΓ{(d − 1)/2}√

2 (2π)d(‖x − µ‖2
Σ−1/2)d−2/4

∫

(0,∞)
rd/2LR2 (r2)J(d−2)/2(

√
2‖x − µ‖Σ−1 )dr, x ∈ Rd, d > 1

where Jν is the Bessel function of the first kind with ν > 0.

Proof. The proof follows the same lines as [10]. Set B = Σ1/2/
√

2 and y = Bt, t ∈ Rd. It can be seen that
〈t,Σt〉/2 = 〈y, y〉 = ‖y‖2. From (6) and since condition (7) is satisfied, we have from the inversion of the Fourier
transform that

fY−µ(x) =
1

(2π)d

∫

Rd
e−i〈t,x−µ〉LR2 (‖t‖2Σ/2)dx =

|B|−1

(2π)d

∫

Rd
e−i〈x−µ,B−1y〉LR2 (‖y‖2)dx.
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Then, using polar coordinates, set y = rs, r > 0, with s ∈ S d. Let γd be a surface measure of S d. We have

fY−µ(x) =
(|Σ|/2)−1/2

(2π)d

∫

(0,∞)
rd−1LR2 (r2)dr

∫

Sd

e−i〈x−µ,B−1y〉γd(ds).

Set y = r(Σ/2)−1/2(x − µ). Thus, ‖y‖2 = 2r2‖x − µ‖2
Σ−1 . In this case, we have respectively

∫

Sd

e−i〈x−µ,B−1y〉γd(ds) = cos(|y|), d = 1

and ∫

Sd

e−i〈x−µ,B−1y〉γd(ds) =

∫ π

0
e−i‖y‖ cos(θ)sind−2(θ)dθ =

π1/2Γ{(d − 1)/2}
(‖y‖/2)(d−2)/2 J(d−2)/2(‖y‖), d > 1.

Finally, substituting ‖y‖2 = 2r2‖x − µ‖2
Σ−1 the result follows immediately. �

Example 4. To illustrate the practicality of Theorem 1, assume that R2 ∼ G(1, ν + 1) = Gν+1, ν > −1. We then have
LR2 (r2) = (1 + r2)−ν−1. From Eq. (6.565.4) in [19], a density representation for Y − µ is then given by

fY−µ(x) =
|Σ|−1/2 √πΓ{(d − 1)/2}√

2(2π)d(‖x − µ‖2
Σ−1/2)(d−2)/4

∫

(0,∞)
rd/2J(d−2)/2(

√
2 r‖x − µ‖Σ−1 )

dr
(1 + r2)ν+1

=
Γ{(d − 1)/2}|Σ|−1/2(‖x − µ‖2

Σ−1 ){ν−(d−2)/2}/2

2{ν+(3d−2)/2}/2πd−1/2 K(d−2)/2(
√

2 ‖x − µ‖Σ−1 ), d ≤ 4ν + 1

and ν > 0, where Kν is the Bessel function of the second kind with ν > 0.

3. GGC distributions

In this section we focus on the positive scalar random variable R by identifying specific families of distributions
for R that may play or have played an important role in modeling applications. Specifically, with the aim of modeling
key stylized features of observational series from finance and turbulence, [2] and [3] have considered R to possess a
GIG distribution. For example, Barndorff-Nielsen [2] considered mixtures of the form

Y =D µ + mR2 + RX, (8)

where X ∼ N(0,Σ) is independent of R, µ ∈ Rd and m = βΣ with β ∈ Rd. This family of multivariate normal mixtures
generates asymmetric shapes with the asymmetry being caused by the term m = βΣ. Clearly, in the absence of m = βΣ,
the symmetry is recovered. In modeling (8) the scalar R is specified to follow a GIG distribution with density given by

fR(x) =
(ψ/χ)λ

2Kλ(
√
χψ)

xλ−1e−(x+ψx)/21(x > 0), (9)

where Kν is a Bessel function of the second kind with ν > 0, and the range of parameters is as follows: χ ≥ 0, ψ > 0,
λ > 0; χ > 0, ψ > 0, λ = 0; χ > 0, ψ ≥ 0, λ < 0. Under these circumstances, Barndorff-Nielsen and Halgreen [3]
have shown that Y has a d-dimensional generalized hyperbolic distribution with index λ denoted by Hd(λ, α, β, δ, µ,Σ).
Here, the parameters are defined as: χ = δ2, ψ = ξ2 and α2 = ξ2 +〈β,Σβ〉. The hyperbolic distribution was also studied
by [6], when λ = 1. If χ = 0, ψ = 2 and α2 = 2+〈β,Σβ〉, one obtains the well-known asymmetric multivariate Laplace
distributions.

With these areas of applications in mind, particularly those in finance, we investigate scalar distributions that may
be more general than the GIG family. We are limited only to model (4) and interested in families of distributions of R
that are generated from the GGC. This family does overlap with the members of the GIG but GGC is more extensive
and a very general family. It can be also seen that GGC ⊃ GIG.

To introduce the GGC family, write R2 = W with distribution function FW . Then the random variable W is said to
be a GGC, when FW satisfies the following three properties:
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(a) The probability distribution FW is concentrated on [0,∞).

(b) The measure ν is concentrated on (0,∞) and
∫

(0,1]
|ln(x)|ν(dx) < ∞,

∫

[1,∞)

ν(dx)
x

< ∞

(c) Let the Laplace Transform of FW , E(e−sW ) =
∫

[0,∞) e−swFW (dw), be written as

E(e−sW ) = exp
{
−

∫

(0,∞)
ln(1 + s/w)ν(dw)

}
, Re(s) ≥ 0. (10)

The measure ν is known as the Thorin measure whenever the total mass c = ν(0,∞) < ∞. Then, [7] have shown
in Theorems 4.1.1 and 4.1.4 that W has the representation given by

W=DGcD, (11)

where Gc is a gamma random variable independent of a positive random variable D. In this case, W is absolutely
continuous with density given by

fW (x) =
xc−1

Γ(c)
E

{
exp(−x/D)

Dc

}
.

To explore further the GGC family, the recent survey of [18] on beta variables is of importance. To see how much
further (11) can be characterized, the following remarks are relevant.

For a, b > 0, let Ba,b (of the first kind) represent a beta variable with parameters a, b, defined, for all x ∈ (0, 1), by

Pr(Ba,b ∈ dx) =
1

B(a, b)
xa−1(1−x)b−1,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b). Note that Ba,b =D 1−Bb,a. Setting x = u/(1 + u) in the above expression, the beta
variable is termed the beta density of the second kind, defined as follows for all u > 0,

Pr(B(2)
a,b ∈ dx) =

1
B(a, b)

ua−1(1 + u)−(a+b).

Note that B(2)
a,b =D Ba,b/(1 − Ba,b). Also, the following relations are repetitively used below

{Bu,c−u : 0 ≤ u ≤ c} =D
{

Gu

Gc
: 0 ≤ u ≤ c

}
=D

{
Gu

Gu + (Gc − Gu)
: 0 ≤ u ≤ c

}
.

In what follows, the Thorin measure is chosen so that ν(dx) = cFG(dx), ν(0,∞) = c < ∞, satisfying E{ln+(1/G)} <
∞, where FG is a distribution function of a positive random variable G. Following [18], it turns out that (11) can also
be formulated as

WG,c =

∫ c

0
1/F−1

G (u/c)dGu =D Gc

∫ c

0
1/F−1(u/c)dBu,c−u = GcDG,c.

Note that GGC members with D =
∫ c

0 h(u)dBu,c−u are known to belong to the Bondesson family, B; see, e.g., [7].
Some similar results can also be found in [32].

Throughout the following, E{|ln(G)|} < ∞ is equivalent to E{ln+(G)} < ∞ and/or E{ln+(1/G)} < ∞. Continuing the
exploration even deeper, the duality theorem of [18] is significant. It shows relationships among the variables WG,c,
W1/.G,c, DG,c, D1/.G,c, and Laplace exponents ψG and ψ1/.G. These are vital in linking algebraic equalities between
functionals of beta-gamma random variables. The duality theorem in [18] is then utilized in obtaining Theorems 2
and 3 below.

It should be noted that a key sub-family of B that is of importance in many applications (including financial data)
is the GIG with density function given in (9). For more information on the GIG family, we also refer to [12]. To stress
the importance of GGC scalars, recent applications in [11] incorporate GGC as scalars that are not members of GIG.
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Next, the attention of our investigation is to characterize mixtures of the multivariate normal with members of the
GGC family. Let X ∼ N(0,Σ) be a normally distributed random vector with mean zero and a full ranked covariance
matrix Σ ∈ Rd×d. Suppose that WG,c and X are independent. Define the d-dimensional random vector Y =D

√
WG,cX.

Then, applying Theorem 30.1 in [28], we have

E{exp(i〈√WG,cX, t〉)} = exp
[−ψ[ln { f̂X(t)}]] = exp

{
−c

∫ ∞

0
(1 − e−‖t‖

2
Σ

x/.2)
E(e−xG)

x
dx

}

= exp
−cE


∫ ∞

0
ln

1 +
‖t‖2

Σ
/2

G



 ,

where f̂X(t) = E(ei〈X,t〉) = exp(−‖t‖2
Σ
/2), t ∈ Rd, is the characteristic function of X. On the other hand, since WG,c =D

GcDG,c we equivalently have

E{exp(i〈√WG,cX, t〉)} = E{E(ei〈GcDG,cX,t〉)|GcDG,c.} = E{E(e−GcDG,c‖t‖2Σ/.2)|DG,c.} = E{(1 + DG,c‖t‖2Σ/2)−c}. (12)

Remark 1. Since WG,c=
DGcDG,c=

DGc1 DG,c1 +Gc2 DG,c2 , for c1 +c2 = c, with Gc1 DG,c1 and Gc2 DG,c2 being independent,
we have from (12) that

E{exp(i〈√WG,cX, t〉)} = E{(1 + DG,c‖t‖2Σ/2)
−c} = E{(1 + DG,c1‖t‖2Σ/2)

−c1 }E{(1 + DG,c2‖t‖2Σ/2)
−c2 },

which implies that the vector Y can be decomposed as

Y =
√

WG,cX =D
√

WG,c1 X +
√

WG,c2 X.

This, in turn, shows that the divisibility property is satisfied for normal GGC mixtures.
Specializing Theorem 1, in what follows below, Theorem 2 provides an equivalent formula for the density of the

vector
Y =D µ +

√
WG,cX, (13)

when X ∼ N(0,Σ), µ ∈ Rd, WG,c =D GcDG,c, and WG,c is independent of X. Also, Gc is independent of DG,c. The
following theorem is a result of definition (1).

Theorem 2. Let WG,c be such that the total mass is c, and G be a positive random variable such that E{ln+(1/G)} < ∞.
Then, the density of Y =D µ +

√
WG,cX, for X ∼ N(0,Σ) with µ ∈ Rd, WG,c = GcDG,c and WG,c being independent of

X, is given, for all x ∈ Rd, by

fY (x) =
|Σ|−1/.2ecE{ln(G)}

2(2π)d/2Γ(c)
E




2D1/G,c

‖x − µ‖2
Σ−1


(d/2−c)/2

Kd/2−c(
√

2‖x − µ‖Σ−1

√
D1G,c/2)

 .

Proof. From the duality theorem in [18], the density of WG,c is given by

fWG,c (x) =
xc−1

Γ(c)
ecE{ln(G)}E(e−xD1/G,c )1{x ∈ (0,∞)}. (14)

Applying (6) or Theorem 3.1 in [29], and from (13), we have that for X ∼ N(0,Σ) the density of Y is formed as

fY (x) =
|Σ|−1/2

(2π)d/2Γ(c)

∫ ∞

0
sc−d/2−1e−‖x−µ‖

2
Σ−1 /2sE(e−sD1/G,c )

for all x ∈ Rd. Also, from (15) below (Eq. 8.43, [19]),

Kδ(xs) =
x
2

δ
∫ ∞

0
t−δ−1e−s(t+x2/t)/2dt, (15)

7



and hence the representation of the Y density immediately follows. �

When W ∈ GGC is just a gamma density, then the density can be directly computed through (1). Thus, to illustrate
Theorem 2 two members of GGC ⊂ P+ are considered.

Example 5. We assume model (13), where X ∼ N(0,Σ), µ ∈ Rd, and Wc,m = Gc/Gm, m > 0, c ∈ (0, 1) has a beta
density of second kind, independent of X. Let Gc and Gm be independent. Simple algebra then shows that

Pr(Wc,m ∈ dx) =
1

B(c,m)
xc−1(1 + x)−(c+m)1{x ∈ (0,∞)}dx =

1
B(c,m)

xc−1E(e−xGc+m )1{x ∈ (0,∞)}dx. (16)

It can be seen that E{ln+(1/Gc)} < ∞, c ∈ (0, 1). Also, because Wc,m =D GcDc,m =D Gc/Gm, with Dc,m = 1/Gm, it
follows from the duality theorem in [18] that

E(D−c
c,m) = exp[cE{ln(1/Gm)}] = Γ(c + m)/Γ(m) and D1/.Bc,m = Gc+m. (17)

Applying Theorem 2, (14), (16) and (17), we have, for all x ∈ Rd,

fY (x) =
|Σ|−1/.2

2(2π)d/2B(c,m)
E




2Gc+m

‖x − µ‖2
Σ−1


(d/2−c)/2

Kd/2−c(
√

2 ‖x − µ‖Σ−1

√
Gc+m/2)

 .

Remark 2. Note that when c ∈ (0, 1), Wc,1−c = Gc/G1−c =D |Ca|a, a = 1/c, the Cauchy density

Pr(Ca ∈ dx) =
sin(π/a)

2π/a
1

1 + |x|a 1(x ∈ R),

can be found in [32]. When a = 2, it is of course the standard Cauchy density.

Example 6. Using model (14) we again assume X ∼ N(0,Σ), µ ∈ Rd, and Wc = G1/c, c ∈ (0, 1), to be a power of an
exponential independent of X. Thus, the density of Wc can be computed by

Pr(Wc ∈ dx) = cxc−1e−xc
1{x ∈ (0,∞)}dx = cxc−1E(e−xCc )1{x ∈ (0,∞)}dx,

where Cc represents a positive stable random variable with index c. Note that E(e−λWc ) = e−λ
c
. Thus, as in Example 5,

we can compute the density of Y to be, for all x ∈ Rd,

fY (x) =
c|Σ|−1/2

2(2π)d/2 E




2Cc

‖x − µ‖2
Σ−1


(d/2−c)/2

Kd/2−c(
√

2 ‖x − µ‖Σ−1

√
Cc/2)

 .

4. Marginal and conditional distributions of Gaussian GGC mixtures

To obtain marginals and conditional distributions of Y ∈ Rd, where Y might be elliptical contoured or a scale
mixture of a Gaussian vector, we first partition the vector Y = (Y1,Y2)> with Y1 to be a d1−dimensional sub-vector of
Y for 1 ≤ d1 < d. Note that when X ∼ N(0,Σ) ∈ Rd is a multivariate normal vector, we have

Y =

(
Y1
Y2

)
, X ∼ N(µ,Σ) =

(
X1
X2

)
, µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
. (18)

When Y = (Y1,Y2)> ∼ ECd(0, I, φ), we have that Y =D RX, where X ∼ N(0, I) ∈ Rd. Then, following [10], it can
be seen that Y has the same law as

(
Y1
Y2

)
=D R ×

( √
Bd1/2,(d−d1)/2U(d1)

√
1 − Bd1/2,(d−d1)/2U(d−d1)

)
.
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In this case, R is independent of Bd1/2,(d−d1)/2, U(d1) and U(d−d1). Further, upon R being absolutely continuous, the
density of Rd1 =D

√
Bd1/2,(d−d1)/2R exists and can be represented by

fd1 (r) =
2rd1−1gd1

(r2)

Γ(d1/2)
1{r ∈ (0,∞)}.

As in [9], we have that

gd1 (u) = s−1
d sd1

∫ ∞

r
s−(d−2)(r2 − s2)d1/2−1 fd(r)dr 1{s ∈ (0,∞)} = sd1

∫ ∞

r
rd1−1gd(u + r2)dr 1{u ∈ (0,∞)}.

When d = 1, g1(u) = Pr(|Y1| ≤ r) = Pr(R1 ≤ r) = FX(r) − F(−r), in which case, f1(r) = 2 fX1 (x). Thus, Y
is any continuous variable that has symmetric distribution. In this case, the density of the sub-vector Y1 is gd1 (‖x‖),
x ∈ Rd1 . Further, when Y = (Y1,Y2)> ∼ ECd(0, I, φ) ⊂ P(Rd), the conditional density of Y1 given Y2, Y2|Y1. say, can
be computed, for all x2 ∈ Rd−d1 , through

fY2 |Y1.(x2 : x1) =
gd(‖x2‖ + ‖x1‖)

gd1 (‖x1‖) . (19)

When Y ∼ ECd(0, I, φ), provided the Y2|Y1. = x1 exists, Y2|Y1. = x1 is spherically distributed with stochastic repre-
sentation as

Y2|Y1. = x1 =D R‖x1‖U
(d−d1),

where U(d−d1) is uniformly distributed on S d−d1 , i.e., independent of R‖x1‖ . The distribution of R‖x1‖ is computed using

R‖x1‖ =D
√

R2 − ‖x1‖2|(R2Bd1/2,(d−d1)/2 = ‖x1‖2).

We then extend the spherical vectors to elliptical by letting Y ∼ ECd(µ,Σ, φ). We next define the conditional location
parameter, conditional scale matrix and quadratic form above as follows,

µ2.1 = µ2 + Σ21Σ−1
11 (x1 − µ1), Σ22.1 = Σ22 − Σ21Σ−1

11 Σ12 = Σ
1/2
22.1Σ

1/2
22.1

and
q1(x) = ‖x1 − µ1‖2Σ−1

11
= 〈x1 − µ1,Σ

−1
11 (x1 − µ1)〉, x1 − µ1 ∈ Rd1 .

In this case, the marginal and conditional random vectors have the following stochastic representations

Y1 =D µ1 + RBd1/2,(d−d1)/2U(d1)Σ
1/2
11 , Y2|(Y1 = x1). =D µ2.1 + R‖x1‖U

(d−d1)Σ
1/2
22.1.

Since the norm expressions are unusually large, set

‖x2 : x1‖2(2) = ‖x1 − µ1‖2Σ−1
11

+ ‖x2 − µ2.1‖2Σ−1
22.1

and ‖x1‖2(1) = ‖x1 − µ1‖2Σ−1
11

. Then, applying (30), the conditional density can be expressed as

fY2 |Y1.(x2 : x1) =
|Σ22.1|−1/2

(
√

2π)d−d1

∫
(0,∞) s−d/2 exp(−‖x2 : x1‖2(2)/2s)FR2 (ds)
∫

(0,∞) s−d1/2 exp(−‖x1‖2(1)/2s)FR2 (ds)
. (20)

When the Laplace transform of the amplitude R2 is available instead of the density of R2, one can incorporate (20)
and Theorem 1 to obtain the following result.

Theorem 3. Let the Laplace transform of R2, LR2 , satisfy (7). Assume that Y − µ = RX, where X ∼ N(0,Σ) and the
scale variable R and the vector X are independent. Then, the conditional distribution of Y2|Y1. = x1 has the following
representation in terms of the Bessel function Jν of the first kind with ν > 0:

fY2 |Y1. (x2 : x1) =
|Σ22.1|−1/2Γ{(d − 1)/2}
(2π)d−d1Γ{(d1 − 1)/2}

∫
(0,∞) rd/2LR2∞ (r2)J(2)

(d−2)/2(
√

2r ‖x2 : x1‖(2))dr
∫

(0,∞) rd1/2LR2∞ (r2)J(1)
(d1−2)/2(

√
2r ‖x1‖(1))dr

.
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Proof. We have that the conditional density of Y2|Y1. = x1 is given by

fY2 |Y1.(x2 : x1) = fY1,Y2 (x1, x2)/.fY1 (x1) a.e.

Now, since condition (7) is satisfied, one applies the inversion theorem of the Fourier transform for both numerator
and denominator to obtain the following

fY2 |Y1.(x2 : x1) =

|B|−1

(2π)d

∫
Rd e−i〈x−µ,B−1y〉LR2 (‖y‖2)dx

|B1 |−1

(2π)d1

∫
Rd1

e−i〈x1−µ1,B−1
1 y1〉LR2 (‖y1‖2)dx

a.e.,

where B = Σ1/2/
√

2, y = Bt, B1 = Σ
1/2
11 /
√

2 and y1 = B1t1. Then as in Theorem 1, using polar coordinates, set y = rs,
r > 0, where s ∈ S d and y1 = rs1, r > 0, where s1 ∈ S d1 and let γd and γd1 be surface measures of S d and S d1 ,
respectively. From (20) and applying Theorem 1, the result immediately follows. �

If R2 is a member of the GGC family, then the above results can be further specialized as follows.

Corollary 1. Let Y ∈ Rd be such that Y = µ+RX, where X ∼ N(0,Σ) with Σ being positive definite and R2 =D WG,c as
defined in (13). Let Y, µ and Σ be partitioned as in (18), where Y1 ∈ Rd1 , 1 ≤ d1 < d. Then the conditional distribution
of Y2|Y1. = x1 is computed from

fY2 |Y1. (x2 : x1) =
|Σ22.1|−1/2ecE{ln(G)}

2(
√

2π)d−d1Γ(c)

E
{(

2D1/G,c

‖x2:x1‖2(2)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x1‖2(1)

√
D1/G,c/2)Kd/2−c(

√
2 ‖x2 : x1‖2(2)

√
D1/G,c/2)

}

E
{(

2D1/G,c

‖x1‖2(1)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x1‖2(1)

√
D1/G,c/2)

} .

To illustrate the applicability of Corollary 1, we set R2
∞ =D WG,c =D Gc/Gm. Then the conditional density for

x2 ∈ Rd−d1 and x1 ∈ Rd1 can be obtained a.e., viz.

fY2 |Y1. (x2 : x1) =
|Σ22.1|−1/2

2(
√

2π)d−d1 B(c,m)

E
{(

2Gc+m

‖x2:x1‖2(2)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x2 : x1‖2(2)

√
Gc+m/2)

}

E
{(

2Gc+m

‖x1‖2(1)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x1‖2(1)

√
Gc+m/2)

} .

Finally, when R2
∞ =D WG,c =D G1/.c

1 , c ∈ (0, 1), then again the conditional density is computed a.e. through

fY2 |Y1. (x2 : x1) =
c|Σ22.1|−1/2

2(
√

2π)d−d1

E
{(

2Cc

‖x2:x1‖2(2)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x2 : x1‖2(2)

√
C2/2)

}

E
{(

2Cc

‖x1‖2(1)

)(d/2−c)/2
Kd/2−c(

√
2 ‖x1‖2(1)

√
Cc/2)

} ,

where Cc is a positive stable random variable with index c ∈ (0, 1).
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