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a b s t r a c t

A test of modality of rotationally symmetric distributions on hyperspheres is proposed.
The test is based on a modified multivariate kurtosis defined for directional data on Sd.
We first reveal a relationship between the multivariate kurtosis and the types of modal-
ity for Euclidean data. In particular, the kurtosis of a rotationally symmetric distribution
with decreasing sectional density is greater than the kurtosis of the uniform distribution,
while the kurtosis of that with increasing sectional density is less. For directional data,
we show an asymptotic normality of the modified spherical kurtosis, based on which a
large-sample test is proposed. The proposed test of modality is applied to the problem
of preventing overfitting in non-geodesic dimension reduction of directional data. The
proposed test is superior than existing options in terms of computation times, accuracy
and preventing overfitting. This is highlighted by a simulation study and two real data
examples.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Directional statistics concern data on the hypersphere Sd
= {x ∈ Rd+1

: x⊤x = 1}, and have gained much attention
recently. Data on hyperspheres or on spaces relevant to hyperspheres include dihedral angles of protein structures on
S1

×S1, directions of astrophysical events on S2, pre-shapes of landmark-based object shapes on Sd, skeletally-represented
objects on Sd1 × (S2)d2 , and standardized multivariate data on Sd−1. We refer to [26] for an overview of the field.

We focus on rotationally symmetric distributions on Sd, and investigate the modality patterns. Modality refers to the
shape of a distribution related to its modes. In doing so, we first contemplate on the types of modality for rotationally
symmetric distributions on Rd, the Euclidean multivariate case. A distribution on Rd with the density function f is
rotationally symmetric about µ ∈ Rd if f (x) = f {R(x − µ) + µ} for any orthogonal matrix R. Similarly, a distribution on
the hypersphere Sd with the density f is rotationally symmetric about µ ∈ Sd if f (x) = f (Rx) for any orthogonal matrix
R satisfying Rµ = µ. Inference problems for the location parameter µ of rotationally symmetric directional distributions
have gained much attention recently [22,29,30]. An optimal test for rotational symmetry is studied in [11].

We categorize the modality of rotationally symmetric distributions into three typical types: a unique mode at the
mean, mode everywhere on the support, and a circular modal ridge. In Fig. 1, the toy data on the top row exhibit the first
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Fig. 1. Data examples on S2 , sampled from von Mises–Fisher (a), a tangent-normal (a1), a tangent uniform (a2), a spherical ball uniform (a3), small
sphere distributions [17] (b) and (d), and Bingham–Mardia distributions [4] (c) and (e). See Sections 3.1 and 4.1.

two types of modality. On the other hand, samples in (c) and (e) show a clear circular ridge of modes. Samples in (b) and
(d) are not rotationally symmetric and are discussed later. Our goal is to discriminate rotationally symmetric distributions
with circular modal ridges from those with a unique mode.

Starting with the simpler Euclidean case, we propose to utilize and modify the multivariate kurtosis [25] in order to
delineate different types of modalities. Write κ(f ) for the multivariate kurtosis of the distribution with density f . We
show that if f is rotationally symmetric with a unique and single mode, then κ(f ) > κ(Ud), where Ud is the uniform
distribution on any rotationally symmetric and convex support in Rd. In a class of alternative settings, we show that
κ(f ) ≤ κ(Ud). Heuristically, the alternative settings include densities f with a ring-like ridge of modes. These facts,
discussed in Section 2.1, justify converting hypotheses on the types of modality to hypotheses on κ(f ), provided that
f is rotationally symmetric. A test procedure for modality is then built on the asymptotic normality of a sample kurtosis,
modified for rotationally symmetric distributions.

For directional data, we use the tangent-space approximation to define and compute spherical kurtosis. The rotational
symmetry of spherical distributions is preserved when the Exponential map is used for the approximation. See Section 3.2
for the definition of tangent space and Exponential map. It is argued that the spherical kurtosis is indicative of the types
of modality for rotationally symmetric directional data. Using the fact that the infimum spherical kurtosis of unimodal
distributions on Sd is again κ(Ud), we propose a test based on the asymptotic normality of a modified spherical kurtosis,
and show that the test is consistent.

This work is motivated by a backward dimension reduction method for directional data on Sd, proposed in [15,16],
and analyzed and applied in various contexts [8,9,14,32,34,38]. To facilitate our discussion, Fig. 1 collects some typical
data situations on S2. In [15], the dimension of data on S2 is reduced via a fitted curve, among the parametrized curves
that are either great circles (geodesics, analogous to lines in R2) or small circles (a class of non-geodesic curves). In Fig. 1,
cases (b) and (c) calls for geodesic dimension reduction, while a small circle fitting has an advantage for cases (d) and
(e). In the cases (a)–(a3) in the top row, fitting a small circle for such a data is an overfit. (An example of overfitted small
circle is shown in the right panel of Fig. 4.) We apply the proposed test of modality in preventing the overfit. This new
method performs superior and is computationally faster than existing options.

On technical sides, we believe that our results in Theorem 1 and Lemma 4 are nontrivial, and deserve separate attention.
First, Theorem 1 relates the shape of a density with the kurtosis. While there is some literature on whether univariate
kurtosis is indicative of the shape of a density, the literature on the meaning of multivariate kurtosis is relatively thin;
see [18,21,37] for instance. Our work closes this gap. In particular, our proof utilizing the properties of Hausdorff and
Stieltjes moment sequences suggests that the kurtosis of a distribution should be compared with that of the uniform
distribution. Second, the result in Lemma 4 formalizes tangent-space approximated inference procedures, which have
been used quite informally in the field of directional statistics.
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The rest of paper is organized as follows. In Section 2, we formally connect Mardia’s multivariate kurtosis with modality
types, and propose a kurtosis test of modality for Euclidean rotationally symmetric multivariate data. The Euclidean notion
of multivariate kurtosis and related arguments are extended to directional data in Section 3. In Section 4, we demonstrate
that the proposed test, when applied to the overfitting problem of spherical dimension reduction, performs well. This is
further highlighted in a dimension reduction for 3D models of human hippocampi and in an analysis of real astronomical
data, in Section 5. Remarks on multivariate kurtosis and related discussions are contained in Section 6. Nearly all proofs
are contained in Section 7.

We write X ∼ f when the density of the random vector X = (X1, . . . , Xd)⊤ is f , and ∥x∥ for the usual 2-norm of a
vector x. We assume that the distribution is absolutely continuous.

2. Method for Euclidean multivariate data

2.1. Multivariate kurtosis as a modality indicator

The kurtosis of a random variable X ∼ f is defined as the fourth standard moment κ(f ) = E{(X − µ)4/σ 4
}, where

µ = E(X), σ 2
= Var(X). Generalizing the univariate notion of kurtosis to multivariate distributions, Mardia [25] defined

the multivariate kurtosis κ(f ), for X ∼ fX,

κ(fX) = E{(X − µ)⊤Σ−1(X − µ)}2, (1)

where µ = E(X) and Σ = Cov(X). It is straightforward to check that the multivariate kurtosis is invariant under
nonsingular affine transformations of the random vector X. Thus, for the standardized random vector Z = Σ−1/2(X−µ) ∼

fZ, we have κ(fX) = κ(fZ) for any fX, and κ(fZ) = E(Z⊤Z)2 = E∥Z∥
4. (We write E∥Z∥

p for E(∥Z∥
p).) In words, the multivariate

kurtosis is the fourth moment of the distance of the standardized data points from the mean. The sample kurtosis will
be discussed in Section 2.2.

In the following we argue that the multivariate kurtosis is indicative of the modality of the rotationally symmetric
distribution. The mode of a distribution with the density function fX is the location x0 ∈ Rd such that fX(x0) ≥ fX(x), for
any x ∈ Rd. We list a few properties of rotationally symmetric distributions.

Lemma 1. Let X ∼ fX be rotationally symmetric about the origin in Rd. Then

(i) E(X) = 0 and Cov(X) = σ 2Id, for some σ 2 > 0.
(ii) If x0 is a mode of fX, then for any orthogonal matrix R, Rx0 is also a mode of fX.
(iii) If x0 ∈ Rd is the unique mode of fX, then x0 = 0.

The proof of Lemma 1 is omitted. It is clear from Lemma 1(ii) and (iii) that there are no rotationally symmetric
distributions having two or more (countable) number of modes. There are either one or infinitely many modes. To
investigate the relation of the kurtosis to the modality of rotationally symmetric distributions, we take three typical
modalities:

I. A unique mode at the center of the distribution. For example, the standard multivariate normal distribution.
II. Mode everywhere on the distribution’s support. For example, the uniform distribution on a ball.
III. Modal-ridge along a circle. For example, the uniform distribution on a ring; see Example 1.

While the list is not exhaustive, the three types of modalities, referred to as Type I, II and III modalities, are most
relevant to our discussion. In particular, the shape of the density function along any ray from the origin has only one
peak, or one connected set of peaks, for these three types of modality. Let fX be the density function of the rotationally
symmetric distribution about the origin and suppose X = (X1, . . . , Xd)⊤ ∼ fX. Then the section of fX along any ray from
the origin is proportional to the conditional density function of X1 given (X2, . . . , Xp) = 0. That is, for any v ∈ Rd with
∥v∥ = 1,

f (x1 | (X2, . . . , Xd) = 0) ∝ fX(x1v) = fX((x1, 0, . . . , 0)). (2)

Define g(r) = fX((r, 0, . . . , 0)) for r ≥ 0. It can be shown that g(r) is proportional to fR(r)/rd−1, where fR is the probability
density function of R = ∥X∥. We have then

fR(r) =
1

cg (d − 1)
rd−1g(r),

where cg (p) is defined later in Lemma 2.
We write fX = fg as fX is completely determined by g , given that fX is rotationally symmetric. Any function g : [0, ∞) →

[0, ∞) proportional to the radial section of fX completely determines the type of modality. If g(r) is strictly decreasing,
then there is the unique mode at the origin. If g(r) is constant on [0, θ ), then X is uniform on the θ-ball centered at 0.
More generally, if g(r) is non-increasing, then the mode of f is either (uniquely) at 0 or at everywhere on the θg-ball
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centered at 0. Here, θg = supr{r ≥ 0 : g(r) = g(0)}. The condition of non-increasing g corresponds to Type I and II of the
modalities, where the special case of constant g corresponds to Type II.

Alternatively, if, for a constant c > 0, g is non-decreasing on [0, c) and non-increasing on [c, ∞), then f has modes at
a ring, {x ∈ Rd

: ∥x∥ ∈ [θ1, θ2]} where θ1 ≤ c ≤ θ2. This condition corresponds to Type III modality.
All other cases of modalities can be obtained by altering the shape of g . For example, if the curve has a number of

risings and fallings, then fX may have many rings of modes. We shall not consider these atypical cases.
A referee pointed out that in the literature of elliptical distributions the density generator gU has been routinely used in

analysis [19]. The density generator for the case of rotationally symmetric distribution is the density function of U = ∥X∥
2,

and it does not render a simple connection to the types of modalities as the sectional density g does.
The multivariate kurtosis is easily computed from g:

Lemma 2. For any rotationally symmetric density fX on Rd, let g(r) = fX((r, 0, . . . , 0)) and cg (p) =
∫

∞

0 rpg(r)dr for p ≥ 0.
Then,

κ(fX) = d2
cg (d + 3)cg (d − 1)

[cg (d + 1)]2
. (3)

Proof of Lemma 2. Suppose X ∼ fX. By Lemma 1(i), Cov(X) = Σ = σ 2Id for σ 2
= d−1trace(Cov(X)) = d−1E∥X∥

2. Then
κ(fX) = E(X⊤Σ−1X)2 = d2E∥X∥

4/(E∥X∥
2)2. Note that for any m ≥ 0, E∥X∥

m
= ERm, for R ∼ fR. Plugging in

ERm
=

∫
∞

0
rmfR(r)dr =

∫
∞

0

1
cg (d − 1)

rm+d−1g(r)dr =
cg (d − 1 + m)

cg (d − 1)

and rearranging give the result. □

Example 1. For reference, we compute κ(fX) for a few examples. The multivariate kurtosis of the d-variate standard
normal distribution is d(d + 2). There is only one family of distributions exhibiting Type II modality, which is the ball
uniform distribution on Rd. The kurtosis of the ball uniform distribution is

κ(Ud) :=
d(d + 2)2

d + 4
. (4)

For Type III modality, we consider a simple family of distributions. For 0 ≤ θ1 < θ2 < ∞, let fθ1,θ2 be the density function
of the uniform distribution on the ring {x ∈ Rd

: θ1 ≤ ∥x∥ ≤ θ2}. Then the sectional density of fθ1,θ2 is proportional to
g(r) = 1θ1≤r≤θ2 . The multivariate kurtosis of fθ1,θ2 depends only on the parameter η = θ1/θ2, and is

κ(fθ1,θ2 ) =
d(d + 2)2

d + 4
(1 − ηd+4)(1 − ηd)

(1 − ηd+2)2
.

Since ∂κ(fθ1,θ2 )/∂η < 0 for η ∈ (0, 1), the multivariate kurtosis of the ring uniform distribution decreases as it moves
away from the ball uniform. In particular, for η = 0, the corresponding density f0,θ2 is that of the θ2-ball uniform and
κ(f0,θ2 ) = κ(Ud). As η → 1, κ(fηθ2,θ2 ) → d2.

We now formally connect the multivariate kurtosis with the three types of modalities. Theorem 1 provides a sharp
distinction of κ(fg ) based on the shape of the sectional density function g .

Theorem 1. Let X ∼ fg , where the rotationally symmetric fg is defined through a sectional density g. Assume that supr g(r) <
∞.

(i) If g is non-increasing, then

κ(fg ) ≥
d(d + 2)2

d + 4
. (5)

(ii) If for a fixed c > 0, g is non-decreasing on [0, c], and g(r) = 0 for r > c, then

κ(fg ) ≤
d(d + 2)2

d + 4
. (6)

In both cases, the equality holds if and only if fg is the density of a ball uniform distribution.

In our proof of Theorem 1(i), we use the fact that the sequence of Stieltjes moments is logarithmically convex. Here,
Stieltjes moments are of the form bk =

∫
∞

0 xkdµ(x), for any nonnegative measure µ. For the condition (ii), we use the
well-known result that the sequence of Hausdorff moments, a special case of Stieltjes moments, is not only logarithmically
convex, but also completely monotonic. Hausdorff moments are of the form ck =

∫ 1
0 xkdF (x) for any probability measure

F on the unit interval [36]. The condition of monotone g is essential for creating such measures. Decreasing densities on
the positive real line have been studied for some time; see [2,33].
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Fig. 2. Gamma densities as the sectional density g . Left panels show the shape of g . Right panels show the surface of fg . While Gamma(2, 1)
has a modal ridge, the overall shape of the distribution looks close to a rotationally symmetric unimodal distribution. The multivariate kurtosis
κ(Gamma(a, b)) is compared with κ(U2) = 5.3.

Remark 1. The condition supr g(r) < ∞ in Theorem 1 may be relaxed to allow limr↘0 g(r) = ∞. A proof for such a case
involves an approximation argument as used in [2]. However, in the interest of space and clarity, we prove our result
only under the more restrictive assumption that we have stated.

Theorem 1 characterizes the three types of modalities via the multivariate kurtosis. In particular, the distribution with
Type I modality, characterized by decreasing g , has κ(fg ) greater than the kurtosis of the ball uniform. On the other hand,
the distribution with increasing g (with a finite support), exhibiting Type III modality, has κ(fg ) smaller than the kurtosis
of the ball uniform. On the boundary is the ball uniform. This observation motivates our test procedure in Section 2.3.

We note that the shapes of g covered in the theorem are not exhaustive enough to cover all cases of Type III
modality. A potentially more general family for Type III-exhibiting g includes the increasing-then-decreasing functions,
as discussed earlier. One may wish that (6) holds under such an assumption. Unfortunately, it is not always true. As
observed by [12] for the univariate case, distributions with a modal-ridge can have large kurtosis, which occurs when
the modes of g are close to E∥X∥

2. An example of such a case is given by the g proportional to the gamma density with
the shape parameter α > 1. With the scale parameter β = 1, the resulting fg has a modal-ridge with radius α − 1, but
κ(fg ) = d2(d + 2 + α)(d + 1 + α)/{(d + α)(d − 1 + α)} > κ(Ud) for small α. (Note that κ(fg ) < κ(Ud) for large enough
α.) This example tells us that even when the modal-ridge is present, if the modes are close to the center (or equivalently
there exist excessively large masses at the tail), then the multivariate kurtosis is larger than that of the ball uniform. In
Fig. 2, we show such an example; see the top panels. One may view such a modal-ridge distribution ‘‘close’’ to have a
unimodality. On the other hand, when the basin at the center is wide enough (see, e.g., the bottom panels of Fig. 2), the
corresponding kurtosis is smaller than κ(Ud).

To formalize the discussion above, we characterize the types of modality, precisely in this case, in terms of the
coefficient of variation of the squared distance ∥X∥

2.

Theorem 2. Suppose X ∼ fX, and fX is rotationally symmetric about 0. Then κ(fX) < κ(Ud) if and only if

cv(∥X∥
2) :=

sd(∥X∥
2)

E∥X∥2 <
2

√
d(d + 4)

.

The statement is true when both inequalities are flipped, or converted to the equality.
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Proof of Theorem 2. The result is easily derived from observing d−2κ(fX) = E∥X∥
4/(E∥X∥

2)2 = Var(∥X∥
2)/(E∥X∥

2)2 +

1. □

The coefficient of variation is small when the mass of ∥X∥
2 is concentrated around its (nonzero) mean, which

corresponds to a clear Type III modality of fX, which in turn, characterized by the smaller-than-uniform multivariate
kurtosis.

There are mainly two causes for large values of cv(∥X∥
2). First and foremost, Theorem 1(i) shows that a monotone

decreasing g leads to cv(∥X∥
2) > 2{d(d+ 4)}−1/2, as desired. Second, heavy tails of ∥X∥ (thus even heavier tails for ∥X∥

2)
often lead to large cv(∥X∥

2). In view of this observation, the finite support condition of Theorem 1(ii) can be understood
as one way of preventing heavy tails.

2.2. Modified sample kurtosis

Let X1, . . . ,Xn ∈ Rd be a random sample from the density fX. The sample multivariate kurtosis is defined as
k̂(X1, . . . ,Xn) = n−1 ∑n

i=1{(Xi − X̄)⊤S−1(Xi − X̄)}2, where X̄ and S are the sample mean vector and covariance matrix
computed from the sample [25]. When rotational symmetry is assumed, the covariance matrix is a scaled identity, and
we replace S with the pooled sample variance s2 =

∑n
i=1(Xi − X̄)⊤(Xi − X̄)/d(n−1) and define a modified sample kurtosis

k̃n = k̃(X1, . . . ,Xn) =

∑n
i=1 ∥Xi − X̄∥

4/n{∑n
i=1 ∥Xi − X̄∥2/d(n − 1)

}2 . (7)

Under the rotational symmetry assumption, the modified sample kurtosis is consistent with the population kurtosis.
In the following, we write µk = E∥X∥

k, σks = Cov(∥X∥
k, ∥X∥

s), k, s = 1, . . . , 4, for X ∼ fX.

Theorem 3. Let X1, . . . ,Xn ∈ Rd be a random sample from the rotationally symmetric density fX. Suppose that the eighth
moments of Xi are all finite. If Var(X1) = σ 2Id for some σ 2 > 0, then k̃n → κ(fX) in probability as n → ∞, and

√
n(k̃n − κ(fX)) → N (0, τ 2

fX )

in distribution as n → ∞, where

τ 2
fX = d4

(
σ44

µ4
2

−
4µ4σ24

µ5
2

+
4µ2

4σ22

µ6
2

)
. (8)

Proof of Theorem 3. Without loss of generality, assume EX1 = 0. The generous moment condition leads that ∥X̄∥
k

=

Op(n−k/2) and n−1
∥Xi∥

k
= Op(1), for k = 1, . . . , 4. Thus, by expanding the numerator and denominator of k̃ separately, it

can be shown that

k̃ =
n−1 ∑n

i=1 ∥Xi∥
4
+ Op(n−1)

d−2
(
n−1

∑n
i=1 ∥Xi∥

2
)2

+ Op(n−1)
=

d2R4

(R2)2
+ Op(n−1),

where Rk = n−1 ∑n
i=1 ∥Xi∥

k. Again by the moment condition, k̃ converges in probability to κ(fX) = d2E∥X∥
4/(E∥X∥

2)2 as
n → ∞. The asymptotic normality is obtained by the central limit theorem and multivariate delta method. □

Note that the covariance condition of Theorem 3 is satisfied for any rotationally symmetric distribution. The moment
condition might be more generous than needed. However, in our applications to directional data, all moments exist as
the support of the distribution is bounded. See Section 3.

2.3. Test of modality

Our aim is to create a test of modality for rotationally symmetric multivariate distributions. In Section 2.1 we have
observed that when the sectional density g is decreasing, Type I modality occurs, in which case κ(fX) > κ(Ud). Thus our
hypotheses H0 : ‘‘fX exhibits Type I modality’’ versus H1 : ‘‘fX exhibits Type III modality’’ transform into

H0 : κ(fX) ≥ κ(Ud) vs H1 : κ(fX) < κ(Ud). (9)

Note that the infimum of the kurtosis over non-increasing g is κ(Ud). So the kurtosis of a ball uniform is included in the
null hypothesis.

For a significance level α > 0, Theorem 3 provides an asymptotic level-α test procedure to test (9). In particular, to
test a slightly general hypothesis H ′

0 : κ(fX) ≥ κ(f0), for a prescribed f0, using a random sample of size n, we reject H ′

0
when k̃n ≤ κ(f0) + zατf0/

√
n, where zα = Φ−1(α), and Φ(·) is the standard normal distribution function.

For the test of modality, we take f0 as a ball uniform. Then κ(f0) = κ(Ud) = d(d + 2)2/(d + 4) and τ 2
Ud

=

128d(d + 2)4/(d + 4)3(d + 6)(d + 8). The critical region of the modality test for hypotheses (9) is then

RU := {k : k ≤ κ(Ud) + zατUd/
√
n}. (10)
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The power function βn(f ) = Pf (k̃ ∈ RU ) is approximately

βn(fX) ≈ Φ

(
κ(Ud) − κ(fX) + zατUd/

√
n

τfX/
√
n

)
.

Thus, when fX exhibits Type I modality, κ(fX) > κ(Ud) and the size of the test is approximately less than α. When fX
exhibits Type II modality (i.e. a ball uniform), then βn(fX) ≈ α. It can be shown that the test is consistent as n → ∞,
i.e., limn→∞ βn(fX) = 0, α, or 1 when κ(fX) is greater than, equal to, or less than κ(Ud), respectively.

3. Method for directional data

3.1. Modalities of directional data

For d ≥ 2, let X ∈ Sd be a random direction whose distribution is given by the probability density function
f : Sd

→ [0, ∞) with respect to the Lebesgue measure on Sd. Many parametric distributions on Sd are rotationally
symmetric with respect to a location µ ∈ Sd. As long as fX depends only on µ⊤x, it is rotationally symmetric. Examples
include the von Mises–Fisher, Watson, and Bingham–Mardia distributions; see [26] and references therein. The von Mises–
Fisher distribution, whose density is proportional to exp(cµ⊤x), is a normal-like distribution on Sd with the unique mode
at µ, corresponding to Type I modality; see Fig. 1(a). On the other hand, the Bingham–Mardia distribution has a density
proportional to exp{c(µ⊤x − ν)2}, and exhibits a modal ridge along a circle, that is, Type III modality; see Fig. 1(c) and
(e).

For a distribution exhibiting Type II modality, we define a ball uniform distribution on Sd. For τ ∈ (0, π], let
Bτ (µ) = {x ∈ Sd

: x⊤µ ≥ cos(τ )} be the geodesic ball of angular radius τ , centered at µ ∈ Sd. We will say that X
has the spherical τ -ball uniform distribution if its density function fX is proportional to 1x∈Bτ (µ). To distinguish, we will
refer to the usual ball uniform distribution on Rd as Euclidean ball uniform.

While it is tempting to consider the multivariate kurtosis κ(fX) as an indicator of the modality types, it is only defined
for distributions on Rd. Moreover, it is not clear what would be a generalization of the quadratic form (x−µ)Σ−1(x−µ)
for directions. One may argue that Sd is indeed embedded in Rd+1, but the random direction is no longer rotationally
symmetric in Rd+1 when it is so on Sd. Furthermore, the density function is not even defined with respect to the Lebesgue
measure on Rd+1. To circumvent these issues, we use the tangent space approximation.

3.2. Spherical kurtosis for directional distributions

We first provide necessary notions. The tangent space Tµ(Sd) = {z ∈ Rd+1
: z⊤µ = 0} at µ ∈ Sd is the

d-dimensional subspace of Rd+1 whose elements are orthogonal to µ. We represent Tµ(Sd) by Tµ
∼= Rd, where x ∈ Tµ

corresponds to Eµx ∈ Tµ(Sd). Here, the columns of the (d + 1) × d matrix Eµ are the basis of the null space of
µ ∈ Rd+1. The tangent space at µ is used as a linear approximation of small neighbors of µ on Sd. Without loss of
generality, assume that µ = e1 := (1, 0, . . . , 0)⊤ ∈ Sd. The Exponential map at µ, Expµ : Tµ → Sd, is defined as
Expµ(y) = (cos ∥y∥, (sin ∥y∥/∥y∥)y⊤)⊤ for any y ∈ Tµ. The inverse of Exponential map, called Log map for short, is
defined on Sd, minus the antipodal point of µ, and is Logµ : Sd

\ {−µ} → Tµ,

Logµ((x1, . . . , xd+1)⊤) =
∥x∥

sin ∥x∥
(x2, . . . , xd+1)⊤.

The Exponential and Log maps preserve the distances to and angles at the point of tangency, and has been used to
approximate the (empirical) distributions on Sd and on general manifolds; see, e.g., Ch. 13 of [26]. Finally, for X ∼ fX
on Sd, the Fréchet mean of X is defined as the minimizer of the Fréchet function: µfX = argminµ∈Sd Eρ2(X, µ), where
ρ(x, µ) = cos−1(x⊤µ) is the geodesic (or intrinsic) distance function on Sd. The Fréchet mean, sometimes called the
geodesic mean, always exists on Sd but may not be unique.

We define the kurtosis of a directional distribution as the multivariate kurtosis of the Log-mapped distribution.

Definition 1 (Spherical Kurtosis of Directional Distributions).

(i) Suppose that X ∼ f on Sd has a unique Fréchet mean at µ ∈ Sd. The kurtosis of fX is defined as κ(fX) := E(Y⊤Σ−1Y)2,
where Y = Logµ(X) and Σ = E(YY⊤).

(ii) Suppose that a sample {x1, . . . , xn} ⊂ Sd has a unique solution µ̂ of the empirical Fréchet problem
minµ∈Sd

∑n
i=1 ρ2(xi, µ). The sample kurtosis of the sample {x1, . . . , xn} is defined as k̂ :=

∑n
i=1(y

⊤

i S
−1yi)2/n, where

yi = Logµ̂(xi) and S is the sample covariance matrix computed from yi’s.

In the above definition, the mean of Y is 0, due to the fact that the Fréchet mean is the point of tangency.
The necessary and sufficient condition for the density fX being rotationally symmetric about µ is that there is a function

gS such that fX(x) = gS{cos−1(x⊤µ)}. We write fX = fgS for such a case. Moreover, the Fréchet mean of fX, if it is unique,
is always µ.
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Fig. 3. The inflation factor κ(Sτ )/κ(Ud) measures the degree of inflation of the spherical kurtosis of spherical ball uniform in Sd , compared with the
multivariate kurtosis of Euclidean ball uniform.

The function gS on [0, π] has the same role as the sectional density g in the real vector space. The three types
of modality described for the Euclidean case apply to directional distributions as well. That is, a non-increasing gS
leads to Type I or II modality. For instances, the unimodal von Mises distribution has a decreasing sectional density
log gS(r) ∝ cos(r), while for the spherical ball uniform, gS(r) ∝ 1r≤τ is non-increasing. An increasing-then-decreasing
shape of gS corresponds to Type III. The Bingham–Mardia distribution has a circular mode and log gS(r) ∝ (cos(r) − ν)2.

Lemma 3. Suppose that X ∼ fX on Sd is rotationally symmetric about µ and gS : [0, π] → [0, ∞) satisfies fX(x) =

gS(cos−1(x⊤µ)) for all x ∈ Sd. Let C(m, d; gS) =
∫ π

0 gS(φ)φm(sinφ)d−1dφ for m, d ∈ {0, 1, . . .}. Then

(i) the density function of Y = Logµ(X) is

fY(y) = gS(∥y∥)
(
sin ∥y∥

∥y∥

)d−1

, for y : ∥y∥ ≤ π;

(ii) The density function of ∥Y∥ is

f∥Y∥(r) =
gS(r) sind−1(r)
C(0, d; gS)

, r ∈ (0, π];

(iii) The spherical kurtosis of fX is

κ(fX) = d2
C(4, d; gS)C(0, d; dS)

[C(2, d; gS)]2
.

Lemma 3 paves a way to convert the problem of modality (through the sectional density gS) into a problem of spherical
kurtosis. However, unfortunately, a constant gS(r), corresponding to the spherical τ -ball uniform and Type II modality,
does not lead to a constant fY(y). Moreover, the kurtosis of the spherical ball uniform depends on τ , as opposed to the
transformation invariant κ(Ud) in the Euclidean case. This issue is demonstrated in the next example.

Example 2. Denoting the spherical τ -ball uniform distribution as Sτ , the kurtosis κ(Sτ ) is given by Lemma 3(iii) with
gS(r) = 1{r ≤ τ } and C(m, d; gS) =

∫ τ

0 xm(sin x)d−1dx.
The precise closed form of κ(Sτ ) is not so informative, but an approximation of κ(Sτ ) sheds some light on the

dependence of κ(Sτ ) on τ . In particular, the second-order polynomial approximation is

κ̆(Sτ ) = κ(Ud)
(
1 + cdτ 2)

≈ κ(Sτ ), cd =
8(d − 1)

3(d + 2)(d + 4)(d + 6)
.

This approximation is more accurate if τ is close to 0. It can be checked that κ̆(S0) = limτ→0 κ(Sτ ) = κ(Ud), and, as τ

increases, κ̆(Sτ ) increases but at a slow rate cd. As shown in Fig. 3, the inflation of kurtosis, compared to κ(Ud), is not
substantial.
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Fig. 4. Two sets of directions, called spoke directions, from the control group of skeletally represented hippocampus shape data. Top row shows the
raw data (black dots) with the fitted small circle C(ĉ, r̂). The symbol ‘*’ represents the center of the circle, ĉ. Bottom rows display the randomly-rotated
data Oixi , that are now rotationally symmetric about ĉ.

3.3. Modified sample kurtosis

Suppose that for a random sample X1, . . . ,Xn ∼ f on Sd, the sample Fréchet mean µ̂ = argminµ∈Sd
∑n

i=1 ρ2(Xi, µ) is
unique. If, in addition, fX is rotationally symmetric about µ, then a modified sample kurtosis is defined as

k̃n = k̃(X1, . . . ,Xn) =

∑n
i=1 ∥Logµ̂Xi∥

4/n{∑n
i=1 ∥Logµ̂Xi∥

2/d(n − 1)
}2 . (11)

We show in Theorem 4 that k̃n is a consistent estimator of κ(fX) and exhibits an asymptotic normality, under the
following conditions:

Assumption 1. The sample Fréchet mean µ̂ is unique for all n > N for some N < ∞.

Assumption 2. ρ(µ, µ̂) = Op(n−1/2).
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These assumptions are not restrictive. Assumption 1 is satisfied if the support of the distribution is small enough or with
a high probability if the population Fréchet mean is unique, which is true for most rotationally symmetric distributions.
Assumption 2 is satisfied when µ̂ is

√
n-consistent. For example, Theorem 2.1 of [3] states that

√
nLogµµ̂ converges

to a non-degenerate mean-zero normal distribution, under regularity conditions. Assumption 2 is then satisfied since
ρ(µ, µ̂) = ∥Logµµ̂∥.

Theorem 4. Let X1, . . . ,Xn ∈ Sd are i.i.d. with density fX. Suppose that fX is rotationally symmetric about µ ∈ Sd and its Fréchet
mean is µ, and Assumptions 1 and 2 are satisfied. Then, k̃n → κ(fX) in probability as n → ∞, and

√
n(k̃n−κ(fX)) → N(0, τ 2

fX
)

in distribution as n → ∞, where τ 2
fX

is given in (8), with µk = E∥Y∥
k, σks = Cov(∥Y∥

k, ∥Y∥
s), k, s ∈ {1, . . . , 4}, for Y = LogµX,

X ∼ fX.

A key step in verifying Theorem 4 is to replace the sample Fréchet mean in k̃n with the population Fréchet mean, for
which the following lemma is instrumental.

Lemma 4. Let X1, . . . ,Xn ∈ Sd are i.i.d. with fX. Suppose that Assumptions 1 and 2 are satisfied. Then ∥LogµX − Logµ̂X∥ =

O(n−1/2). Here, X may or may not be independent of µ̂.

While it is natural to expect the conclusion of Lemma 4, it is quite tricky to verify. For example, when x is close to the
antipodal point of µ, then even if ρ(µ, µ̂) < ϵ, the tangent vectors Logµx and Logµ̂x may point opposite directions.
For example, let µ = (1, 0, 0)⊤, µ̂ = (cos(t), − sin(t), 0)⊤ and x = (− cos(t/2), sin(t/2), 0)⊤ on S2. As t → 0,
ρ(µ, µ̂) = t → 0, but ∥Logµx − Logµ̂x∥ → π . In our proof of Lemma 4, the assumption of absolute continuity of
the random variable ρ(µ,X) is used to bound the probability of non-degenerating ∥LogµX − Logµ̂X∥.

Proof of Theorem 4. The proof is similar to the proof of Theorem 3. By Lemma 4, we get ∥LogµXi−Logµ̂Xi∥
k
= Op(n−k/2).

By expanding the numerator and denominator of k̃n (11) separately, we get

k̃n = d2
n−1 ∑n

i=1 ∥LogµXi∥
4
+ Op(n−1)(

n−1
∑n

i=1 ∥LogµXi∥
2
)2

+ Op(n−1)
=

d2R4

(R2)2
+ Op(n−1),

where Rk = n−1 ∑n
i=1 ∥Yi∥

k. The rest of proof is identical to Theorem 3, with Xi replaced by Yi. □

3.4. Test of modality

As done for the Euclidean case in Section 2.3, Type I and II modalities are characterized by the non-increasing sectional
density gS for the directional distributions. Write fgS for the corresponding rotationally symmetric density function on Sd.
If gS is non-increasing, then g(r) = (sin r/r)d−1gS(r) is strictly decreasing for d ≥ 2, and by Theorem 1, κ(fgS ) > κ(Ud). This
strict inequality is true for fgS being the density of a spherical ball uniform, for d ≥ 2. To represent the null hypothesis of
unimodality as the form of κ(fX) ≥ κ◦, we set κ◦ as the infimum kurtosis over the set of distributions with non-increasing
gS . In fact,

κ(Ud) = inf
gS∈G−

κ(fgS ),

where G− is the set of all non-increasing functions on [0, π ).
Thus, in the unimodality test for rotationally symmetric directional distributions against Type III modality, the

hypotheses are exactly the same as in (9). The test procedure at level α is exactly the same as in Section 2.3, except
that the test statistic k̃n is computed by (11). The theoretical properties of the modality test, shown in Section 2.3, apply
here as well due to Theorem 4.

4. Application to dimension reduction of directional data

4.1. Overfit of principal nested spheres

The analysis of principal nested spheres (PNS) [15] is a principal component analysis analog for directional data on Sd.
It is an example of backward dimension reduction [5]: A (p − 1)-dimensional submanifold, containing the largest total
variance, is fitted in Sp, successively for decreasing p ∈ {d, d − 1, . . . , 2}. We restrict our attention to S2 for clarity, but
our discussion applies to higher dimensions.

For data on S2, Jung et al. [15] chose to use circles as candidates for the 1-dimensional submanifold. A circle C(c, r) =

{x ∈ S2
: ρ(x, c) = r} with spherical radius r = π/2 corresponds to a geodesic dimension reduction while a choice of

r < π/2 leads to a non-geodesic dimension reduction, analogous to linear or non-linear dimension reduction in Euclidean
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spaces. Here, the circle C(c, r) can be thought of as an analog to the dimension-1 subspace spanned by the first principal
component direction in R2. Jung et al. proposed to solve the least-square problem of minimizing

n∑
i=1

{ρ(c, xi) − r}2. (12)

An important question is whether it is advantageous to allow the non-geodesic submanifold fitting, given by r < π/2.
Sometimes, a non-geodesic dimension reduction results in a severe overfitting of the data. For example, fitting C(c, r) by
(12) to the data examples in Fig. 1(a)—(a3) results in a small circle with unnecessarily small r , an overfit of the data. The
problem of overfitting resides also for the data examples in Fig. 1(b) and (c), where the fitted radius r̂ , solving (12), is less
than π/2 with probability 1. A non-geodesic dimension reduction is appropriate for cases (d) and (e).

Jung et al. [15] proposed to use a two-step procedure to decide a geodesic or non-geodesic fit:

Step 1. A goodness-of-fit test based on signed residuals, ρ(xi, ĉ) − r̂ , is applied. If the null hypothesis of r = π/2 is not
rejected, then a geodesic (r̂ = π/2) fit is chosen (corresponding to the cases (b) and (c) in Fig. 1), and Step 2 is
skipped. If the best fitting r is significantly smaller than π/2 (corresponding the cases (a), (d) and (e)), then Step
2 is applied.

Step 2. A parametric bootstrap test with the null hypothesis of von Mises–Fisher distribution is applied to further discern
the isotropic case (a) from (d) and (e).

While this procedure has been deemed useful [6,13,32,38], it comes with drawbacks. For a large sample size and high
dimensions, the computation cost is very high. Moreover, when the underlying distribution is a spherical ball uniform,
the parametric bootstrap test mistakenly suggests a non-geodesic fit.

4.2. Proposed method

We propose to replace the parametric bootstrap test in Step 2 by the test of modality developed in Section 3. The
goodness of fit test in Step 1 is still used to discern the cases where great circle fit is clearly advantageous from the
others. To better motivate our application of the kurtosis test, we use two sets of directions on S2 taken from real data,
further discussed in Section 5.1. The top row of Fig. 4 displays these two sets of data, with fitted small circles. The small
circle fit is deemed correct for the left, while it is an overfit for the right. Notice that the fitted circle C(ĉ, r̂) is desirable
when there is no mass near the center ĉ. On the other hand, it is overfitted when there are excess mass at ĉ.

Let Oi be independently sampled from the uniform distribution on the set of orthogonal matrices satisfying Oiĉ = ĉ.
For the raw data xi, define zi = Oixi. It can be checked that the distribution of zi is rotationally symmetric about ĉ, and
the distance to the center is preserved, i.e. ρ(ĉ, zi) = ρ(ĉ, xi). The latter implies that the mass of zi near ĉ is equal to that
of xi. The bottom row of Fig. 4 displays an example of rotated data. Type III modality is observed for the left, while Type
I modality is observed for the right.

The hypothesis that the given small circle is an overfit is thus equivalent to the hypothesis that zi has Type I modality,
which can be tested by the kurtosis test. In practice, since ∥Logĉzi∥ = ∥Logĉxi∥, there is no need to sample Oi. The test
statistic is

k̃n =

∑n
i=1 ∥Logĉzi∥4/n{∑n

i=1 ∥Logĉzi∥2/d(n − 1)
}2 =

∑n
i=1 ∥Logĉxi∥4/n{∑n

i=1 ∥Logĉxi∥2/d(n − 1)
}2 ,

and if k̃n ∈ RU (10), the null hypothesis of unimodality is rejected, and the small circle fit is used. Otherwise, the small
circle fit is discarded, and C(c, r) is fitted with the restriction r = π/2.

The proposed method works for Sd, d ≥ 2, as well.

4.3. Numerical comparison

We numerically compare the performance of the proposed procedure with the original procedure of [15] in Section 4.1.
In addition, the Bayesian information criterion (BIC)-based decision rule, also discussed in [15], and the test proposed
by [8] are compared. The likelihood ratio-based test of [8] assumes the folded normal distribution for residuals.
Furthermore, the folded normal test is also used to replace the bootstrap test in Step 2 of the original procedure.

We consider several data situations in S2. For the rotationally symmetric cases, we use (a) a von Mises–Fisher, (a1) a
tangent normal, Nd(0, σ 2Id) on TµS2, mapped to S2 by Exponential map, (a2) a Euclidean ball uniform on TµS2, mapped
to S2, and (a3) a spherical ball uniform. We prefer geodesic dimension reduction for these cases. The cases where there
is a clear mode of variation along a geodesic are represented by (b) a small sphere distribution of [17] with r = π/2 and
(c) a Bingham–Mardia distribution with r = π/2 [4]. For the case where non-geodesic dimension reduction is preferred,
we use (d) a small sphere distribution with r < π/2 and (e) a Bingham–Mardia with r < π/2. Fig. 1 displays example
data sampled from these distributions.

As a measure of performance of the competing methods, we compute the proportion of correct decisions among 1000
repetitions. The decision of geodesic fit is correct for cases (a) to (c), while it is not for (d) and (e). In Table 1 we collect
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Table 1
The proportion of correct decisions among geodesic and non-geodesic dimension reduction. The proposed method
shows an overall good performance across all cases. See text for description of the cases (a)—(e). Methods are (1) Jung
et al. [15], (2) folded normal test in [8], (3) the goodness of fit (Step 1) and Folded normal test (Step 2), sequentially
applied, and (4) our proposal.
n Method (a) (a1) (a2) (a3) (b) (c) (d) (e)

50

Original1 0.93 0.94 0.09 0.10 0.93 0.95 0.99 1.00
BIC1 0.00 0.00 0.00 0.00 0.93 0.95 0.99 1.00
FN2 1.00 1.00 0.79 0.82 0.00 0.00 1.00 1.00
GF + FN3 1.00 1.00 0.79 0.82 0.93 0.95 0.99 1.00
Kurtosis4 1.00 1.00 0.80 0.83 0.93 0.95 0.99 1.00

200

Original 0.94 0.89 0.00 0.00 0.94 0.95 1.00 1.00
BIC 0.00 0.00 0.00 0.00 0.97 0.98 1.00 1.00
FN 1.00 1.00 0.70 0.71 0.00 0.00 1.00 1.00
GF + FN 1.00 1.00 0.70 0.71 0.94 0.95 1.00 1.00
Kurtosis 1.00 1.00 0.89 0.92 0.94 0.95 1.00 1.00

Fig. 5. (a) Skeletal representation (s-rep) model of a hippocampus. (b) S-rep with interpolated boundary. (c) Aligned and overlaid s-reps of 56
hippocampi in the control group.

the proportions computed for the sample size n = 50, 200. Overall, the correct decision rates of the proposed method are
always among the highest, for all cases. The original method of [15] fails for uniform null distributions, in cases (a2)—(a3).
The BIC procedure always fits small circles for rotationally symmetric cases (a)—(a3). The method of [8] alone was not
successful at all for cases (b) and (c), but the modified procedure (GF+FN in Table 1), with the goodness-of-fit test, solves
the problem. For the ball uniform distributions, in cases (a2)—(a3), the folded normal test makes correct decisions for
about 70% of the time, while our method shows a significantly superior accuracy of about 90%, for n = 200.

The computation times of the proposed method are significantly shorter than the times needed for the methods of [15]
and [8].

5. Real data examples

5.1. Dimension reduction for hippocampus shapes

In medical imaging, it is of interest to characterize the major variation in 3D models of human brain. The PNS analysis
has been used for the purpose [32,34]. We compare the proposed procedure in Section 4.2 with the existing options
(described in Section 4.3) in PNS analysis of 3D shape representations of hippocampus in human brain.

The data consist of hippocampi from 221 patients with schizophrenia and 56 healthy controls [27,35]. For 3D modeling,
skeletal representations (s-reps) were fitted to the data as detailed in [34]. In particular, a discrete slabular s-rep, with
the 3 × 8 grid of skeletal positions pi ∈ R3, i ∈ {1, . . . , 24}, is fitted to each hippocampus. In Fig. 5, pi are shown as
yellow balls. At each skeletal position, spoke-like vectors from pi to the boundary of the hippocampus are fitted as well.
These spoke vectors are decomposed into the length r > 0 and the direction x ∈ S2. As a result, each s-rep is described
by a tuple s = (p1, . . . , p24, r1, . . . , r66, x1, . . . , x66) ∈ R72

× R66
+

× (S2)66. The shapes of skeletal positions (p1, . . . , p24)
are considered to lie in the preshape space, which is the hypersphere S72−4 [7]. The combined directional vector in S68 of
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Table 2
Performances of testing procedures in the dimension reduction of hippocampi s-reps, for control (n = 56) and
schizophrenic (n = 221) groups. The explained amount of variation and accuracy are shown for the number of
components m = 1, 5, 15. The mean (standard deviation) of computation times from 25 repetitions are shown. Testing
procedures are the same as in Table 1.
# components % of variance Approx. error Comp. time

1 5 15 1 5 15 (in s)

Controls

Original 32.71 75.57 93.60 30.81 18.28 8.93 185.72 (2.33)
BIC 27.70 66.13 86.47 34.70 21.97 14.48 5.91 (0.16)
FN 33.07 76.52 94.28 30.71 18.04 8.54 23.89 (0.23)
GF + FN 33.16 76.55 94.40 30.70 18.03 8.45 13.32 (0.03)
Kurtosis 33.16 76.55 94.40 30.70 18.03 8.45 5.40 (0.02)

Schizoph.

Original 40.07 76.95 92.89 64.19 39.39 20.88 496.84 (5.38)
BIC 30.45 63.95 81.73 72.11 50.85 35.32 7.56 (0.08)
FN 40.07 76.95 92.90 64.18 39.36 20.86 30.35 (0.05)
GF + FN 40.07 76.95 92.89 64.19 39.39 20.88 20.56 (0.03)
Kurtosis 40.07 76.95 92.89 64.19 39.39 20.88 7.66 (0.09)

Fig. 6. (left) The scatter of arrival directions of n = 12,877 cosmic events, shown in terms of right ascension (longitude) and declination (latitude).
(right) The scatter of yi = Logµxi , where µ is set to the north pole.

skeletal positions and the spoke directions in S2 are each analyzed by PNS, the results of which are combined as proposed
in [32]. As a result, we obtain a PCA-like decomposition of s-reps.

To compare the performance of the proposed method of preventing the overfit for this s-rep data, we computed the
cumulative sum of variances contained in the first m principal components, and the accuracy of reconstructed s-reps
from the first m components. The accuracy is measured by an approximation error,

∑n
i=1 ∥wi − w̃i(m)∥, where wi is the

boundary positions (end points of the spokes) of the ith original s-rep, and w̃i(m) is the boundary positions of the ith
reconstructed s-rep using the first m components. In addition, the computation times are recorded.

Results are reported in Table 2. The quality of dimension reduction using the proposed procedure is nearly identical
to other reasonable options, if not deemed better. To investigate the difference between the original method and our
proposal in the control group, we take two spoke directions in spoke #45 and #16; see Fig. 4. All testing procedures
result in the small circle fit for spoke #45, as desired. The original procedure recommends a small circle fit for spoke #16,
which is an overfit. The kurtosis test of modality does not reject the hypothesis of unimodality, resulting in a great circle
fit, and in turn, a better dimension reduction.

The proposed method clearly outperforms the other methods in terms of computation time. When comparing two or
more populations of s-reps, it is common to repeat the PNS analysis multiple times in, e.g., resampling-based comparisons.
The significant reduction of computation times is beneficial in such studies.

5.2. Arrival directions of cosmic events

In astrophysics, the locations of cosmic events are often recorded as arrival directions on the celestial sphere.
We use a record of muon neutrino candidate events recorded by the IceCube Neutrino Observatory in the 40 string
configuration, during April 2008 to May 2009 [1]. From the data set containing n = 12,877 cosmic events, available
at https://icecube.wisc.edu/science/data/ic40, we only keep the arrival directions, and demonstrate an application of the
proposed test of modality. Fig. 6 displays the raw data. Since the observations are scattered across the northern celestial
hemisphere, we assume that the data are rotationally symmetric about the north celestial pole. The Log-mapped data, at
the north pole, are also shown in Fig. 6.

Since the Fréchet mean is assumed to be known as the north pole, we compute the sample kurtosis by k̃ =

d2n
∑n

i=1 ∥Logµxi∥4/{
∑n

i=1 ∥Logµxi∥2
}
2

= 5.2703. This is quite close to κ(U2) = 5.3333 and κ(Sπ/2) = 5.5371. A
visual inspection of an estimate of the sectional density suggests that the arrival directions are uniformly distributed

https://icecube.wisc.edu/science/data/ic40
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on the hemisphere. However, the p-value of the kurtosis test of modality is 1.21 × 10−4, rejecting the null hypothesis of
unimodality. Note the large sample size. Although the kurtosis of arrival directions is statistically significantly different
from that of uniform distributions, it is not significantly different in the usual sense.

6. Discussion

We conclude with several remarks on multivariate kurtosis and future direction of investigation.
It has been known that Mardia’s definition of multivariate kurtosis [25] has some limitations. The main criticism

of Mardia’s original multivariate kurtosis κ is that it does not take into account all of fourth moments E(XiXjXkXl)
(i, j, k, l ∈ {1, . . . , d}) of the (standardized) random vector X = (X1, . . . , Xd) [21]. This results in several proposals of
scalar-valued multivariate kurtosis [10,20,21,24] and matrix-valued multivariate kurtosis [18,23,28]. We point out that
once the rotational symmetry is assumed, all of the information in the fourth moments is contained in ∥X∥. With the
change of variable X = ∥X∥U, E(XX⊤

⊗XX⊤) = E∥X∥
4E(UU⊤

⊗UU⊤), where U = X/∥X∥ follows the uniform distribution
on Sd−1, and ⊗ refers to the Kronecker product. Therefore, these various measures of multivariate kurtosis only depend
on the fourth moment of ∥X∥ for rotationally symmetric distributions.

For the rotationally symmetric cases, the simple form of Mardia’s kurtosis is clearly advantageous. As a comparison,
Koziol’s alternative definition of multivariate kurtosis [21] is κK = E(X⊤Y)4, for independent X,Y ∼ f . With the change of
variable used above, it can be shown that κK = 3κ2/{d(d + 2)}. That is, both κ and κK measure the essentially same
information. However, the empirical version of κK , κ̂K = n−2 ∑n

i=1
∑n

j=1(X
⊤

i Xj)4, is unappealing. Due to the double
summation, the computation times for κ̂K is O(n2d), compared with O(nd) for Mardia’s. Furthermore, κ̂K is a biased
estimator of κ with bias n−1(E∥X∥

8
− κK ). Even for a large sample size and with a bounded support, the bias seems

noneligible as the eight moment is typically large when the dimension is high.
We have limited ourselves with a perhaps strong assumption of rotational symmetry. The assumption greatly simplifies

the technical arguments and serves well in our application to dimension reduction of directional data. We conjecture that
similar results hold for both Euclidean and spherical elliptical distributions. Such an investigation will be the first step in
developing moment-based exploration of directional data.

Matrix-valued multivariate kurtosis and multivariate skewness have been used in exploration of distributional features,
such as tail behavior, presence of outliers, and departure from normality. To date, there has been no attempt of devising
a matrix-valued spherical kurtosis or skewness for directional data. Using the tangent coordinates is an obvious starting
point for this line of research.

7. Technical details

Proof of Theorem 1. Let ap = ap(g) = (p + 1)cg (p), for p ∈ {0, 1, . . .}.
Part (i). By Lemma 2, (5) holds if and only if

cg (d + 3)cg (d − 1)
[cg (d + 1)]2

≥
(d + 2)2

d(d + 4)
,

which is equivalent to

ad+3ad−1 ≥ a2d+2. (13)

We say that a sequence α = (ap)p≥0 is logarithmically convex (log-convex, for short) if apap+2 ≥ a2p , and is strictly
log-convex if apap+2 > a2p , for all p ≥ 0. If α is log-convex, then (13) holds for all d ≥ 0. If α is strictly log-convex, then
the inequality is strict as well. A logarithmically concave, or log-concave, sequence is defined similarly.

Assume without loss of generality that g is right-continuous. Define a nonnegative measure G on (0, ∞) by G((0, x]) =

g(0) − g(x) for all x > 0. Then G((x, ∞)) = g(x). With a slight abuse of notation, write G(x) = G((0, x]), then G is non-
negative, non-decreasing and right-continuous. G is degenerate only if g is a positive constant on [0, c) for some c > 0
and 0 on [c, ∞).

Case I: Suppose that G is non-degenerate. Observe that for any p ≥ 0,

ap(g) =

∫
∞

0
(p + 1)rpg(r)dr =

∫
∞

0
(p + 1)rp

∫
∞

0
1r≤ydG(y)dr

=

∫
∞

0

∫ y

0
(p + 1)rpdrdG(y) =

∫
∞

0
yp+1dG(y).

Since ∥G∥max = g(0) is finite, F = G/∥G∥max is a non-degenerate probability distribution function on [0, ∞). Let Y ∼ F ,
then the sequence β = (bk)k≥0, where bp = ap−1(g)/∥G∥max = E(Y p), is a Stieltjes moment sequence [36]. Let H(β) be the
Hankel matrix generated by β , i.e., the (i, j)th element of H(β) is bi+j. It is known that a Stieltjes moment sequence has a
totally positive Hankel matrix (see, e.g., Theorem 4.4 of [31]). In particular, all minors of order 2 of H(β) is positive. That
is, bpbp+2 > b2p+1, for all p ≥ 0, which in turn leads that the sequence ap(g) is also strictly log-convex.
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Case II: Suppose that G is degenerate, which occurs only when fg is a ball uniform, or g(r) = c01r<c1 for some c0, c1 > 0.
For such g , the sequence ap(g) is linear, and the equality of (13) holds. This completes a proof for Part (i).

Part (ii). Using a similar argument used above, (6) holds if ad+3ad−1 ≤ a2d+2, which is implied by ap+2ap ≤ a2p+1 for any
p ∈ {0, 2, . . .}. It only remains to show that under the conditions on g , the sequence ap is log concave.

Let m = supr g(r) = g(c). Without loss of generality, assume that g is right-continuous and c = 1. Then since the
function H : [0, 1] → [0, 1], H(·) = m−1g(·), is a probability distribution function on [0, 1],

ap = m(p + 1)
∫ 1

0
rpm−1g(r)dr = m

{
1 −

∫ 1

0
ypdH(y)

}
.

Notice that the sequence (cp)p≥0, cp =
∫ 1
0 ypdH(y) is a Hausdorff moment sequence. Hausdorff showed that (cp) is a

Hausdorff moment sequence if and only if it is completely monotone [Theorem 1.5, 36]. A sequence (cp) is said to be
completely monotone if for all j ≥ 0, p ≥ 0,

∆jcp :=

j∑
i=1

(−1)i
(
j
i

)
ap+i ≥ 0.

In particular, by plugging in j = 1, 2, we have cp ≥ cp+1, and cp + cp+2 ≥ 2cp+1. Together with the fact that c0 = 1,
we conclude that (cp) is convex and cp ≤ 1 for any p. This immediately implies that ap is nonnegative and concave. An
application of Jensen’s inequality leads that log ap is concave as well. □

Proof of Lemma 3. We utilize the hyperspherical coordinate system for x ∈ Sd, with respect to µ. Without loss of
generality, assume that µ = e1. For any x = (x1, . . . , xd+1)⊤ ∈ Sd, we write x1 = cosφ1, xk =

(∏k−1
i=1 sinφi

)
cosφk,

k = 2, . . . , d, and xd+1 =
∏d

i=1 sinφi, for φk ∈ [0, π], k = 1, . . . , d − 1, and φd ∈ [0, 2π ). The volume element of Sd is
then dVd =

∏d−1
i=1 (sinφi)d−idφ. So, the density function of X with respect to φ is

fφ(φ) = gS(φ1)
d−1∏
i=1

(sinφi)d−i. (14)

The log-mapped X is then

Y = Logµ(X) =
φ1

sinφ1
(x2, . . . , xd+1)⊤ = φ1

⎛⎜⎜⎜⎜⎜⎜⎝

cosφ2
sinφ2 cosφ3

...(∏d−1
i=2 sinφi

)
cosφd(∏d−1

i=2 sinφi

)
sinφd

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and the Jacobian of the transformation φ ↦→ Logµ(X) is J = φd−1
1

∏d−1
i=2 (sinφi)d−i. Observe that ∥Y∥ = φ1. Thus, the density

function of Y is

fY(y) = fφ(φ)J−1
= gS(φ1)

(sinφ1)d−1

φd−1
1

= gS(∥y∥)
(
sin ∥y∥

∥y∥

)d−1

, (15)

which proves (i).
A proof for (ii) is derived from observing that ∥Y∥ = φ1 is independent of φ2, . . . , φd as shown in (14).
For (iii), We observe from (15) that fY on Rd is rotationally symmetric about the origin and that the sectional density

of fY along any ray from the origin is

g(r) = gS(r)
(
sin r
r

)d−1

.

We then follow the proof of Lemma 2. In particular, by Lemma 1, Σ = σ 2Id for σ 2
= d−1E∥Y∥

2. Then, κ(fX) = κ(fY) =

E(Y⊤Σ−1Y)2 = d2E∥Y∥
4/(E∥Y∥

2)2. Writing E∥Y∥
m

= C(m, d; gS)/C(0, d; gS) and rearranging gives (iii). □

Proof of Lemma 4. For a given ϵ > 0, suppose that

ρ(µ, µ̂) < ϵ. (16)

To avoid the non-converging ∥Logµx − Logµ̂x∥ case, let us assume for now that x ∈ Sd satisfy

ρ(−µ, x) > 2ϵ. (17)
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Write Logµx = ρ(µ, x)v(µ), where v(µ) = {x − µ(µ⊤x)}/∥x − µ(µ⊤x)∥ is the spherical projection of µ onto the
nullspace of x. Denote the geodesic segment from x to −x passing through µ by γ (µ). It can be checked that γ (µ)
also passes v(µ) and that the angle formed by the two geodesic segments γ (µ) and γ (µ̂) (either at x or at −x) equals
ρ{v(µ), v(µ̂)}. Under the conditions (16) and (17), we will construct an upper bound for the angle.

Specifically, the spherical law of cosines for the spherical triangle formed by the vertices µ, µ̂ and −x states that
cos C = (cos c−cos a cos b)/(sin a sin b), where C = ρ{v(µ), v(µ̂)}, c = ρ(µ, µ̂) < ϵ, a = ρ(µ, −x) > 2ϵ and b = ρ(µ̂, −x).
Since a > c , b ∈ [a − c, a + c] by the triangle inequality. To find an upper bound of C , or equivalently a lower bound of
cos C , we choose b so that cos C is minimized. Taking the derivative of cos C with respect to b, we have for h(b) := cos C ,
h′(b) = −(sin b)−2(cos b cos c − cos a). The solution of h′(b) = 0 on [a − c, a + c] is unique and satisfies

cos b =
cos a
cos c

.

We note that the above choice of b, for given values of a and c , makes a right-angled triangle. In particular, the angle
formed at the vertex µ is π/2.

All in all, we have

cos C ≥
cos c − cos a cos a

cos c

sin a
{
1 − ( cos acos c )

2
}1/2 =

(
1 +

cos2 c − 1
sin2 a

) 1
2

,

and since cos c > cos ϵ and sin2 a ≤ 1, cos C > cos ϵ. We conclude that the conditions (16) and (17) imply that
C = ρ{v(µ), v(µ̂)} < ϵ and that ∥v(µ) − v(µ̂)∥ =

√
2 − 2 cos C <

√
2 − 2 cos ϵ = 2 sin(ϵ/2). Then

∥Logµx − Logµ̂x∥ = ∥ρ(µ, x)v(µ) − ρ(µ̂, x)v(µ̂)∥
= ∥ρ(µ, x)v(µ) − ρ(µ̂, x)v(µ) + ρ(µ̂, x)v(µ) − ρ(µ̂, x)v(µ̂)∥

≤ |ρ(µ, x) − ρ(µ̂, x)|∥v(µ)∥ + |ρ(µ̂, x)|∥v(µ) − v(µ̂)∥ < ρ(µ, µ̂) + 2π sin(ϵ/2) ≤ c0ϵ, (18)

for a constant c0 < ∞.
By definition, ∥LogµX − Logµ̂X∥ = O(n−1/2) if for any ϵ > 0, there are M,N < ∞ such that for every n ≥ N ,

Pr(∥LogµX− Logµ̂X∥ < M/
√
n) > 1− ϵ. Fix ϵ. Since ρ(µ, µ̂) = Op(n−1/2), choose M,N0 such that Pr(ρ(µ, µ̂) < M/

√
n) ≥

1− ϵ/2 for n ≥ N0. Given the events that ρ(µ, µ̂) < M/
√
n and ρ(−µ,X) > 2M/

√
n, hereafter denoted as E1(n) and E2(n),

(18) leads that ∥Logµx − Logµ̂x∥ ≤ c0/
√
n, for some c0 < ∞. Therefore,

Pr(∥Logµx − Logµ̂x∥ ≤ c0/
√
n) ≥ Pr(∥Logµx − Logµ̂x∥ ≤ c0/

√
n | E1(n) ∩ E2(n)) Pr(E1(n) ∩ E2(n))

= 1 · Pr(E1(n) ∩ E2(n)) ≥ Pr(E1(n)) + Pr(E2(n)) − 1 ≥ −ϵ/2 + Pr(E2(n)). (19)

Since ρ(µ,X) has an absolutely continuous distribution on (0, π ), one can choose N ≥ N0 large enough so that Pr(E2(n)) =

Pr(ρ(−µ,X) > 2M/
√
n) = Pr(ρ(µ,X) ≤ π − 2M/

√
n) > 1 − ϵ/2. This, with (19), shows that ∥LogµX − Logµ̂X∥ =

O(n−1/2). □
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