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ct

inear dimension reduction methods proposed in the literature can be formulated using an appropriate p
er matrices. The eigen-decomposition of one scatter matrix with respect to another is then often used
ne the dimension of the signal subspace and to separate signal and noise parts of the data. Three popu
ion reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOB
ed inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues a
test for the dimension of the signal space. The limiting null distributions of the test statistics are discussed a
ootstrap strategies are suggested for the small sample cases. In all three cases, consistent test-based estima
ignal subspace dimension are introduced as well. The asymptotic and bootstrap tests are illustrated in real da
es.

ds: Independent component analysis, Order determination; Principal component analysis, Sliced inverse
on
SC: Primary 62H12, Secondary 62F12

oduction

ension reduction (DR) plays an increasingly important role in high dimensional data analysis. In linear
n reduction for a random vector x ∈ Rp, the idea is to try to find a transformation matrix W ∈ Rq×p, q �
at the interesting features of the distribution of x are captured by Wx only, that is,

x|Wx is viewed as noise (unsupervised DR), or

y ⊥⊥ x |Wx for the response of interest y (supervised DR).

paper we consider three classical but diverse linear dimension reduction methods: principal component an
dependent component analysis and sliced inverse regression. As an introduction to our approach, we fi
ht the similarities between these three approaches and show that the different methods can be presented in
mework.

te Fx and S = S(Fx) for the cumulative distribution function and covariance matrix of x. To simplify t
, we assume in the following that E(x) = 0.

In the principal component analysis (PCA), one finds the p × p transformation matrix W such that

WW> = Ip and WSW> = D

esponding author
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D is a diagonal matrix with diagonal elements d1 ≥ · · · ≥ dp ≥ 0. If d1 ≥ · · · ≥ dq > dq+1 = · · · = dp ≥
is partitioned accordingly as W = (W>

1 ,W
>
2 )>, then W1x is often seen as the q-variate signal part and W

p−q)-variate noise part. Hence, W2x is considered noise if and only if the eigenvalues of W2SW>
2 are all equ

In the independent component analysis (ICA) with q non-Gaussian and p − q Gaussian components, t
rder blind identification (FOBI) method finds a transformation matrix W ∈ Rp×p such that

WSW> = Ip and WE
[
xx>S−1xx>

]
W> = D

D is a diagonal matrix with the diagonal elements ordered so that (d1 − (p + 2))2 ≥ · · · ≥ (dq − (p + 2
− (p + 2))2 = · · · = (dp − (p + 2))2 = 0. Then W can again be partitioned as W = (W>

1 ,W
>
2 )> so that, und

sumptions, W1x is the q-variate non-Gaussian signal and W2x the (p−q)-variate Gaussian noise. If we furth
1 := S and S2 := E

[
xx>S−1

1 xx>
]

then, W2x is considered noise if the eigenvalues of W2S2W>
2 are all equal

In the sliced inverse regression (SIR) with a p-variate random vector x and the response (dependent) variab
nds a matrix W ∈ Rp×p which satisfies

WS1W> = Ip and WS2W> = D

1 := S and S2 := E
[
E(x|y)E(x|y)>

]
and D is a diagonal matrix with the diagonal elements d1 ≥ · · · ≥ dp ≥

appropriate assumptions on the distribution of (x, y), we have d1 ≥ · · · ≥ dq > dq+1 = · · · = dp = 0 w
esponding partitioning W = (W>

1 ,W
>
2 )>. It is then thought that (W1x, y) carries all the information about t

ence between x and y, and W2x just presents noise. Thus, W2x is thought to be noise if the eigenvalues
>
2 are all equal to zero.

est and estimate the dimension of the signal space (also called order determination) and to separate signal a
e thus utilize, for empirical versions of appropriate choices of S1 and S2, the eigen-decomposition of S−1

1 S2,
he symmetric matrix R := S−1/2

1 S2S−1/2
1 . For the PCA case, we take S1 = Ip and S2 = Ŝ, the sample covarian

or some other scatter matrix, as defined later in Section 2. The tests are based on the first two moments
subsets of the eigenvalues of R and the corresponding estimates are obtained applying different sequent

strategies. The sequential testing procedures for the order determination problem in SIR have been suggest
by Li [24] and Bura and Cook [4]. Zhu et al. [46, 47] used the eigenvalues with BIC-type penalties to fi
nt estimates for the dimension of the signal subspace of a regression model. In other general approaches,
iss [45] considered eigenvectors rather than eigenvalues and proposed an estimation procedure that was bas
ootstrap variation of the subspace estimates for different dimensions. In a general approach, Luo and Li [2

ed the eigenvalues and bootstrap variation of eigenvectors for consistent estimation of the dimension. The l
roaches are based on the notion that the variation of eigenvectors is large for the the eigenvalues that are clo
r and their variability tends to be small for far apart eigenvalues.

CA the eigenvalues of Ŝ are generally used to make inference on the dimension of the signal space, see e
[19] and Schott [36] and references therein. Early papers on the use of bootstrap estimation and testing (v
nce intervals) in principal component analysis are Beran and Srivastava [1], Daudin et al. [11], Eaton and Ty
d Jackson [18]. For the use of permutation tests in restricting the number of principal components, see Dr
d Vieira [42].

he independent component analysis (ICA) the fourth-order blind identification (FOBI) by Cardoso [6] uses t
covariance matrix and the scatter matrix based on fourth moments and the eigenvalues provide measures
l kurtosis. These two matrices can be replaced by any two matrices possessing the so called independen

y, see Oja et al. [34], Tyler et al. [41] and Nordhausen and Tyler [33]. Very recently, Nordhausen et al. [3
e empirical eigenvalues of S−1

1 S2 to test and estimate the dimensions of Gaussian and non-Gaussian subspac
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and FOBI are examples of unsupervised dimension reduction procedures as they do not use informati
response variable y. Other examples of unsupervised dimension reduction methods are invariant coordina
n (ICS), see Tyler et al. [41], and generalized principal components analysis (GPCA), see Caussinus and Ru
[7]. Sliced inverse regression (SIR) uses the regular covariance matrix of x and the covariance matrix of t
nal expectation E(x|y). Other examples on supervised dimension reduction methods are the canonical cor

nalysis (CCA), sliced average variance estimate (SAVE) and principal Hessian directions (PHD), for examp
y all can be formulated using two scatter matrices. For these methods and estimation of the dimension of t
ubspace, also with regular bootstrap sampling, see Li [24], Cook and Weisberg [9], Li [25], Bura and Co
ok [8], Zhu et al. [46, 47], Bura and Yang [5] and Luo and Li [26] and the references therein. For nice revie
rvised dimension reduction, see Li [23], Ma and Zhu [27].

plan of this paper is as follows. In Section 2 we introduce the tools for our analysis, that is, the notion o
atrix with some preliminary theory. In all three cases in Sections 3 (PCA), 4 (FOBI) and 5 (SIR), respective

specify a natural semiparametric model: x = Az + b where A and b are the parameters and the distributi
tandardized z is only partially specified. The null hypothesis says that z can be partitioned as z = (z>1 , z>2
first part z1 carries the interesting variation. In the paper, the empirical version of the eigenvalues of S−1

1 S
the eigenvalues of R = S−1/2

1 S2S−1/2
1 , are utilized in this partitioning and used to build tests and estimates f

ension of z1. We discuss the asymptotic tests with corresponding estimates and provide different strategies f
p testing. Different approaches are illustrated with real data examples. All the proofs are postponed to t

ction.

adapt the following notation. Rp×p
sym and Rp×p

sym,+ are the sets of symmetric and positive definite symmetric p ×
s, respectively. The first and second moments and the variance of the eigenvalues of R ∈ Rp×p

sym are denoted

m1(R) := tr(R)/p, m2(R) := m1(R2), s2(R) := m2(R) −m2
1(R),

ively. If R = UDU> ∈ Rp×p
sym,+ is a eigen-decomposition of R then R1/2 := UD1/2U> ∈ Rp×q (symmet

of the square root matrix). Given k matrices A1, A2, . . . , Ak, we write

diag(A1, . . . , Ak) =



A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


.

torization of a matrix A = (ai j) ∈ Rp×q, denoted by vec(A), is a qp-vector obtained by stacking the colum
top of each other, that is, vec(A) = (a11, · · · , ap1, a12, · · · , ap2, · · · , a1q, · · · , apq)> . We further write Op

for the set of column orthonormal p × k matrices, i.e., U ∈ Op×k implies U>U = Ik. Hence, given U ∈ Op

UU> is the orthogonal projection onto the range of U, and QU = Ip − PU is the orthogonal projection on
gonal complement, i.e., onto the null space of U>. Let ei ∈ Rp denote the ith Euclidean basis element, i.e.
ith a one in the ith position and zeroes elsewhere. For two random vectors x and y, we write x ∼ y if x a

the same distribution. The random vector z ∈ Rp has a spherical distribution if Uz ∼ z for all U ∈ Op×p. T
tion of z is subspherical with dimension k, k < p, if U> z is spherical for some U ∈ Op×k. The distribution o
ical if x ∼ Az + b, where A ∈ Rp×p and b ∈ Rp and z ∈ R has a spherical distribution.

ter matrices

his chapter, we state what we mean by a scatter matrix and a supervised scatter matrix and provide som
nary results. Let Fx be the cumulative distribution function (cdf) of a p-variate random vector x and Fx,y t
he joint distribution of p-variate x and univariate y.

ion 1.
functional S(Fx) ∈ Rp×p

sym,+ is a scatter matrix (functional) if it is affine equivariant in the sense that S(FAx+b)

3
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A> for all non-singular A ∈ Rp×p and all b ∈ Rp.
functional S(Fx,y) ∈ Rp×p

sym is a supervised scatter matrix (functional) if it is affine equivariant in the sense th
b,y) = AS(Fx,y)A> for all non-singular A ∈ Rp×p and all b ∈ Rp.

X = (x1, . . . , xn)> ∈ Rn×p be a random sample from a distribution Fx. The estimate Ŝ of the population val
s obtained as the value of the functional at the empirical distribution Fn of X. We also write S(X) for th
e. Let X = Z A> + 1nb> where Z = (z1, . . . , zn)> is a random sample from a spherical distribution Fz w

Ip. (Note that, for any scatter matrix S, S(Fz) ∝ Ip and can the rescaled to satisfy the last condition.) Then
dom sample from an elliptical distribution with S(Fx) = AA>.

er general assumptions, the limiting distribution of
√

n vec(S(Z) − Ip) is

Np2

(
0, σ1(Ip2 + Kp,p) + σ2vec(Ip)vec(Ip)>

)

p,p =
∑p

i=1
∑p

j=1(eie>j ) ⊗ (e je>i ) is the commutation matrix, see Theorem 1 in Tyler [38]. The limiting dist
s known if the following two constants, same for any i , j,

σ1 = AsVar(S(Z)ij), σ2 = AsCov(S(Z)ii,S(Z)jj)

wn and then AsVar(S(Z)ii) = 2σ1 + σ2. Also, under general conditions, the influence function of the scat
nal S(F) at a spherical Fz is given by

IF(x; S,Fz) = α(r)uuT − β(r)Ip,

= ||x|| and u = ||x||−1x, see Hampel et al. [16]. If S(F) is the covariance matrix and S(Fz) = Ip, then α(r) =

) = 1 and if z ∼ Np(0, Ip) then σ1 = 1 and σ2 = 0. For Tyler’s shape estimate (proposed in Tyler [40] a
so that its trace equals p) which we use as a robust alternative for the covariance matrix in our example
3, one gets α(r) = (p + 2) and β(r) = (p + 2)/p.

he following we often need to estimate σ1. It then follows, as noted in Croux and Haesbroeck [10], th
(α2(r))/(p(p + 2)). Due to affine equivariance of the scatter matrix, the limiting distribution of

√
n vec(S(X)

(A ⊗ A)
√

n vec(S(Z) − Ip) and, using Ŝ with a companion location estimate µ̂, σ1 can often be consisten
ed by

σ̂1 =
1

p(p + 2)
1
n

n∑

i=1

α2(r̂i), r̂i =

(
(xi − µ̂)>Ŝ

−1
(xi − µ̂)

)1/2
.

ing for subspace dimension in PCA

e model, null hypothesis and test statistic
X = (x1, . . . , xn)> be a random sample from a p-variate elliptical distribution Fx, that is, from the distributi
dom p-vector x generated by

x = Az + b,

A ∈ Rp×p is non-singular, b ∈ Rp and z has a spherical distribution around the origin, that is, Uz ∼ z for
×p. The distribution of z is then fully determined by the distribution of its radius r := ||z||. We assume th

Ip for the scatter matrix functional used in the analysis. For a general overview of spherical and elliptic
tions, see Kelker [21] or Bilodeau and Brenner [2].

the matrix of eigenvectors and the corresponding eigenvalues of S(Fx) are equivariant and invariant, respe
nder orthogonal transformations of x, it is not a restriction to assume in our derivations that A is diagon
sitive and descending entries and b = 0 so that S(Fx) is a diagonal matrix D = A2 with diagonal entr

4
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· ≥ dp > 0. Let Ŝ be the value of the scatter functional at the empirical distribution of X. For the asympto
we assume that

√
nvec(̂S − D) has a limiting multivariate normal distribution with zero mean vector and t

nce structure as described in Section 2. We wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = d for some unknown d,

that the dimension of the signal space is k. Under H0k, the distribution of x is subspherical, that is, the dist
f the subvector of the last p − k principal components is spherical. In principal component analysis, the scr

often used to figure out how many components to include in the final model. The null hypothesis H0k th
that there is the elbow on the scree plot at the kth eigenvalue. Also, sphericity and subsphericity (in a weak
re important in the analysis of the repeated measures data, for example.

est the null hypothesis, we use the variance of the p − k smallest eigenvalues, that is,

Tk := s2(Û
>
k ŜÛk), Ûk = arg min

U∈Op×(p−k)
m1(U>ŜU),

t statistic. It follows from the Poincaré separation theorem that a solution Ûk ∈ Op×(p−k) is the matrix of t
ctors associated with the p − k smallest eigenvalues of Ŝ and other solutions are obtained by post-multiplyi
orthogonal (p − k) × (p − k) matrix. The projection matrices P̂k := ÛkÛ

>
k and Q̂k := Ip − P̂k are unique a

P̂kŜQ̂k = 0 and provide the noise-signal decomposition x = P̂k x + Q̂k x with uncorrelated P̂k x and Q̂k x.

er possible measures for the variation of the smallest eigenvalues are s(Û
>
k ŜÛk)/m1(Û

>
k ŜÛk), i.e., the coeffi

variation, or the log ratio of the arithmetic mean m1(Û
>
k ŜÛk) to the geometrical mean det(Û

>
k ŜÛk)1/(p−k). I

variance matrix, then the latter measure corresponds to the likelihood ratio criterion for H0k in the multivaria
case.
ne wishes to test a related null hypothesis that S(Fx) has k+1 distinct eigenvalues with multiplicities 1, . . . , 1,
a natural test statistic is

Vk := min
U∈Op×(p−k):PU ŜQU=0

s2
(
U>ŜU

)
.

ion Ûk for which the minimum value is attained consists of the eigenvectors of Ŝ associated with the eigenvalu
together (in the variance sense). This is seen as follows. Let U ∈ Op×(p−k) and PUŜQU = 0. Then PUŜ = ŜP
ymmetric matrices commute if and only if they have the same eigenvectors, U is a matrix of p−k eigenvecto

y U0 ∈ Op×(p−k), post-multiplied by an orthogonal (p−k)×(p−k) matrix. Consequently, U>ŜU and U>0 ŜU0 ha
e eigenvalues and s2(U>ŜU) = s2(U>0 ŜU0). Thus the problem of minimizing s2(U>ŜU) under the constra
= 0 reduces to that of minimizing s2(U>0 ŜU0) over the p − k subsets of eigenvectors of Ŝ.

ymptotic tests for dimension
ume now that x is elliptical with diagonal scatter matrix D = A2. Let q denote the true value of the dimensi
ignal space, that is, H0q is true, and consider the limiting distribution of Tq = s2(Û

>
q ŜÛq). With a correct val

ve the partitions

D =

(
D1 0
0 dIp−q

)
, Ŝ =


Ŝ11 Ŝ12

Ŝ21 Ŝ22

 ,

ively, and the diagonal elements in D1 are strictly larger than d. Under our assumptions,
√

n(̂S − D) = OP(
have the following.

1. Under the stated assumptions and H0q, nTq = ns2 (̂S22) + OP(n−1/2).

er our assumptions stated in Section 2,
√

n vec(S(Z) − Ip) where Z = X D−1/2 converges in distribution to
ate normal distribution with zero mean vector and the covariance matrix σ1(Ip2 + Kp,p) + σ2vec(Ip)vec(Ip
e have the following.

5
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m 1. Under the previously stated assumptions and under H0q,

n(p − q)Tq

2d2σ1

d−→ χ2
1
2 (p−q−1)(p−q+2).

ultiplicities of the eigenvalues of D1 are smaller than p−q then P(Vq = Tq)→ 1 and the limiting distributio
nd nTq are the same.

the test construction in practice we thus need to estimate two population constants σ1 and d, both of whi
riant under orthogonal transformations to x. The limiting distribution in Theorem 1 stays the same even
d are replaced by their consistent estimates, say σ̂1 and d̂. Construction of a consistent estimate for σ1 h
been discussed in Section 2. The unknown d can be consistently estimated by the average of the p−q small
lues, that is, by d̂ = m1(Û

>
q ŜÛq). Note also that the test statistic in Theorem 1 with these replacements depen

smallest eigenvalues through their coefficient of variation, a test statistic suggested by Schott [36]. As not
sly, a possible test statistic for H0q is also the log of the ratio of the arithmetic and geometric means of t
t p−q eigenvalues of Ŝ, say Lq. Then under the null hypotheses as well as under certain contiguous alternativ

2d2Lq)
p−→ 0 and then, under H0q, n(p − q)Lq/σ̂1

d−→ χ2
(p−q−1)(p−q+2)/2. See Theorem 5.1 and 5.2 and their proo

[39].
now utilize the test statistics Tk, k ∈ {0, 1, . . . , p − 1}, for the estimation problem and collect some use
properties in the following theorem.

m 2. Under the previously stated assumptions and under H0q,

r k < q, Tk
P−→ ck for some c1, . . . , cq−1 > 0,

r k = q, n(p − q)Tq/(2d2σ1)
d−→ χ2

1
2 (p−q−1)(p−q+2)

,

r k > q, nTk ≤ ( p−q
p−k )2nTq = OP(1).

onsistent estimate q̂ of the unknown dimension q ≤ p − 1 can then be based on the test statistics Tk, k
. , p − 1}, as follows.

ry 1. For all k ∈ {0, 1, . . . , p − 1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 a
∞ as n→ ∞. Then, under the assumptions of Theorem 2,

P(Tk ≥ ck,n) →
{

1, if k < q,
0, if k ≥ q,

min{k : Tk < ck,n} P−→ q.

e that, by definition, Tp−1 = 0 and the maximum value of q is p − 1, which corresponds to the small
lue being distinct. The estimate q̂ is easily found by using the so called bottom-up testing strategy: Start w
r H00, H01 and so on, and stop when you get the first acceptance. An alternative consistent estimate with
n testing strategy is q̂ = max{k : Tk−1 ≥ ck−1,n} using successive tests for H0,p−2,H0,p−3, . . . , and stoppi

e first rejection. For large p, faster strategies such as the divide and conquer algorithm are naturally availab
stimation.
Fk be the limiting distribution of nTk under H0k. The sequences of critical values (ck,n) for testing H0k can
ned by the corresponding sequences of asymptotical test sizes (αk,n) satisfying αk,n = 1 − Fk(nck,n) A simp
ctical choice of the sequences of the test sizes is for example αk,n = (n0/n)αk, k ≤ p − 2 and n ≥ n0. Th
∞ as αk,n = 1 − Fk(nck,n)→ 0, and ck,n → 0 as nck,nαk,n = nck,n(1 − Fk(nck,n))→ 0.
nd the discussion on asymptotics, suppose we relax now the ellipticity assumption and consider a model f
iag(Iq,U)z ∼ z for all U ∈ O(p−q)×(p−q). Since D = A2 = diag(D1, dIp−q), x is subspherical but not necessar
l. It is then easy to show that, for the covariance matrix and finite fourth moments, Lemma 1 and Theorem

6
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>
q he

p-value of
the sub he
small s he
null hyp

3.3. Bo

Aga

It is imp r it
is false in
bootstra te
µ̂ and c

>
k

and Q̂k y.
The m

a distrib

(i) f

(ii) w

We sug nd
elliptica ey
come a al
part is er
modifie

Boo

1. S ng
e

2. T
3. F

a
4. F

w

Boo

1. S
2. T

Journal Pre-proof
d true with σ1 = 1. For other scatter matrices, however, the asymptotic behavior in this wider model is n

ma 1 shows the remarkable fact that under the null hypothesis H0q the limiting distributions of nTq

ŜÛq) and that of ns2(U>q ŜUq) with known noise subspace are the same. If, in the small sample case, t
s are obtained from the limiting distribution of the test statistic, the variation coming from the estimation
space is thus ignored in the null asymptotic approximation. In the following we therefore propose that t
ample null distribution of a test statistic be estimated by resampling the data from a distribution obeying t
othesis and being as close as possible to the empirical distribution.

otstrap tests for dimension

in, let q denote the true dimension of the signal space and we wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = d for some d.

ortant to stress that, in the practical testing situation, we do not know whether H0k is true (k = q) or whethe
(k , q) but we still wish to compute the p-values for true H0k. See Hall and Wilson [15] for some guidelines
p hypothesis testing. For testing, we start with a scatter matrix estimate Ŝ and a companion location estima

ompute Ûk and Tk = s2(Û
>
k ŜÛk), the variance of p− k smallest eigenvalues of Ŝ. We further write P̂k = ÛkÛ

= Ip − P̂k for the estimated projection matrices to the noise and signal subspace under true H0k, respectivel
basic idea in the bootstrap testing strategy is that the bootstrap samples X∗ for H0k should be generated fro
ution Fn,k

or which the null hypothesis H0k is true (even if k , q) and

hich is as close as possible to the empirical distribution Fn of X.

gest the following two procedures. In the first procedure, the bootstrap samples come from a subspherical a
l distribution (with the distribution of the radius estimated from the data) and, in the second procedure, th
subspherical distribution (not assuming full ellipticity). It is important that the dimension of the subspheric

p − k even when k , q. If one wishes to assume multivariate normality then the first procedure can be furth
d accordingly.

tstrap strategy PCA-I (elliptical subspherical distribution):

tarting with X ∈ Rn×p, compute µ̂, Ŝ with the estimated matrix of eigenvectors in Û and correspondi
stimated eigenvalues in D̂.

ake a bootstrap sample Z̃ = ( z̃1, . . . , z̃n)> of size n from (X − 1nµ̂
>)Û D̂

−1/2
.

or ellipticity to be true, transform
z∗i = Oi z̃i, i ∈ {1, . . . , n},

nd O1, . . . ,On ∈ Op×p are i.i.d. from the Haar distribution.
or subsphericity to be true as well, the bootstrap sample is

X∗ = Z∗ D̂
1/2
k Û

>
+ 1nµ̂

>,

here D̂k = diag(d̂1, . . . , d̂k,
∑p

i=k+1 d̂i/(p − k), . . . ,
∑p

i=k+1 d̂i/(p − k)).

tstrap strategy PCA-II (subspherical distribution):

tarting with X ∈ Rn×p, compute Ŝ, µ̂, Ûk, P̂k and Q̂k.
ake a bootstrap sample X̃ = (x̃1, . . . , x̃n)> of size n from X.

7

Jo
ur

na
l P

re
-p

ro
of



3. F

a
4. T

For ull
distribu

with ran

where O

Con ze
N from ly,
symme

where r̂
d−→

χ2
1
2 (p−k− ri-

bution −
k)Tk(X he
same ap

In p or
H0k suc ap
sample

Note th by
1
M p̂(1 −

The or
exampl

3.4. An

The as
then be of
orthogo ity
is then of
the data ta

Journal Pre-proof
or subsphericity to be true, transform

x∗i =

[
Q̂k + ÛkOiÛ

>
k

]
(x̃i − µ̂) + µ̂, i ∈ {1, . . . , n},

nd O1, . . . ,On ∈ O(p−k)×(p−k) are i.i.d. from the Haar distribution.
he bootstrap sample is X∗ = (x∗1, · · · , x∗n).

both strategies and for k ∈ {0, . . . , p − 1}, the hypothesis H0k is true for the corresponding bootstrap n
tion, say Fn,k. For the PCA-I strategy,

Fn,k(x) =
1
n

n∑

i=1

EOi,p

[
I
(
Ûk D̂

1/2
k Oi,p D̂

−1/2
Û
>
k (xi − µ̂) + µ̂ ≤ x

)]

dom matrices O1,p, . . . ,On,p ∈ Op×p from the Haar distribution. Similarly, for the PCA-II strategy,

Fn,k(x) =
1
n

n∑

i=1

EOi,p−k

[
I
(
(Q̂k + ÛkOi,p−kÛ

>
k )(xi − µ̂) + µ̂ ≤ x

)]
,

1,p−k, . . . ,On,p−k ∈ O(p−k)×(p−k) are from the Haar distribution.

sider next the distribution of nTk(X∗) for the PCA-I strategy. Let then X∗N ∈ RN×p be a random sample of si
Fn,k. Note that Fn,k is an elliptical distribution with true H0k and with data dependent parameters, name

try center µ := µ̂, covariance matrix S := Û D̂kÛ
>

and

d := d̂ =
1

p − k

p∑

i=k+1

d̂i, σ1 := σ̂1 =
1

p(p + 2)
1
n

n∑

i=1

α2(r̂i),

i = ((xi − µ̂)>Ŝ
−1

(xi − µ̂))1/2, i ∈ {1, . . . , n}. Theorem 1 then implies that, given X, N(p− k)Tk(X∗N)/(2d̂2σ̂1)

1)(p−k+2)
(a.s.) which provides, for large n, the same asymptotic chi-squared approximation for the dist

of the unconditional n(p − k)Tk(X∗)/(2d̂2σ̂1) as well. Theorem 1 gave the same approximation for n(p
)/(2d̂2σ̂1). For the PCA-I strategy applied to the covariance matrix, similar arguments can be used to get t
proximations for the distributions of n(p − k)Tk(X∗)/(2d̂2) and n(p − k)Tk(X)/(2d̂2).

ractice, the exact p-values are not computed but estimated as follows. Let T = T (X) be a test statistic f
h as Tk, that is, the variance of the p − k smallest eigenvalues of Ŝ. If X∗1, · · · , X∗M are independent bootstr
s of size n as described above and T ∗i = T (X∗i ), i ∈ {1, . . . ,M}, then the bootstrap p-value is given by

p̂ =
#(T ∗i ≥ T ) + 1

M + 1
.

at, conditioned on X, p̂ is a random variable whose variance around the true p-value can be estimated
p̂).
asymptotic and bootstrap tests discussed here have been extended to a noisy latent model framework, f

e, in Virta and Nordhausen [43].

example

standard repeated measures ANOVA needs the assumption of spherical multivariate normality. Sphericity h
en defined both in terms of the variances of difference scores and in terms of the variances and covariances
nal contrasts to be used in the analysis, see e.g., Lane [22]. Preliminary testing for sphericity or subspheric
of interest in this context. Subsphericity indicates that there are no latent subgroups or clusters in that part
, and the subspherical part may then be seen simply as noise. To illustrate the methodology we use some da
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e LASERI study (Cardivascular risk in young Finns study) which is available in the R package ICSNP [3
ct these data, 223 subjects took part in a tilt-table test. For the first ten minutes the subjects were lying on
ed table in a supine position, then the table was tilted to a head-up position for five minutes, and thereaf

d to the supine position for the last five minutes. Various hemodynamic variables were measured during t
ent. The variable considered here consists of the four measurements of the systemic vascular resistance ind
on all subjects. The four time points were (i) the tenth supine minute before the tilt, the (ii) second and (i
nute during the tilt and (iv) the fifth minute in supine position after the tilting. The 223 SVRI values at the
ints are shown in Fig. 1 (left figure).
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eft figure: The original data set consisting of the SVRI values measured on 223 subjects at 4 time points. Right figure: The estima
rt (upper curves) and noise part (lower part) of the same data set.

illustrate the three testing strategies from above we use as scatter matrix the sample covariance matrix a
shape matrix where the location is estimates as specified in Hettmansperger and Randles [17]. The obtain
lues of the sample covariance matrix and Tyler’s shape matrix are then 982935.95, 176465.68, 36213.9
5 and 8.94, 1.78, 0.30, 0.21, respectively, and the corresponding eigenvectors are the columns of



−0.48 0.46 −0.42 0.62
−0.51 −0.53 −0.56 −0.38
−0.52 −0.44 0.64 0.36
−0.50 0.56 0.31 −0.59


,



−0.47 0.52 −0.13 0.70
−0.51 −0.48 −0.70 −0.11
−0.53 −0.47 0.69 0.12
−0.48 0.52 0.10 −0.70


.

atter matrices seem to suggest that q = 2 and that the principal components are (close) to the average and t
t comparing the supine and tilted positions and the two contrasts within positions. The suggestion q = 2
ed by the p-values for H00, H01 and H02 using the two scatter matrices and three testing strategies, see Table
imated signal and noise parts of the data using Tyler’s scatter matrix are given in Fig. 1 (right figure).

ing for subspace dimension in FOBI

e model, null hypothesis and test statistic

he independent component (IC) model it is assumed that X = (x1, . . . , xn)> is a random sample from a dist
f the form

x = Az + b
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The p-values for testing q = 0 (H00), q = 1 (H01) and q = 2 (H02) based on the covariance matrix and Tyler’s shape matrix for the SV
p-values are calculated using three different testing strategies.

Cov Tyler’s shape matrix
Asymp PCA-I PCA-II Asymp PCA-I PCA-II

H00 0.000 0.002 0.002 0.000 0.002 0.002
H01 0.000 0.002 0.002 0.000 0.002 0.002
H02 0.104 0.130 0.142 0.064 0.072 0.064

A ∈ Rp×p is non-singular, b ∈ Rp, and z is a random p-vector with independent components standardized
z) = 0 and Cov(z) = Ip. We further assume that z = (z>1 , z>2 )> where the components of z1 ∈ Rq (signal) a
ussian and the components of z2 ∈ Rp−q (noise) are Gaussian. The general idea then is to make inference
nown q, 0 ≤ q ≤ p, and to estimate the non-Gaussian signal and Gaussian noise subspaces. In this chapter w
some recent tests and estimates for q introduced in Nordhausen et al. [30] that are based on the joint use

ariance matrix and the matrix of fourth moments. Throughout this chapter we therefore need to assume th
th moments of z exist.

he independent component analysis (ICA) it is usually assumed that q is p − 1 or p. If 1 ≤ q ≤ p is allowed
ase, the approach is sometimes called non-Gaussian independent component analysis (NGICA). In the no
n component/subspace analysis (NGCA), z1 and z2 are independent, z1 is non-Gaussian and z2 is Gaussia
there is no a1 ∈ Rq such that a>1 z1 has a normal distribution while a>2 z2 has a normal distribution for
p−q. The components of z1 are thus allowed to be dependent in the NGCA model. See Blanchard et al. [
t al. [37] and Nordhausen et al. [30].

ourth order blind identification (FOBI) an unmixing matrix W ∈ Rp×p and a diagonal matrix D ∈ Rp×p a
uch that

WS1W> = Ip, WS2W> = D,

1 = E
[
(x − E(x))(x − E(x))>

]
and S2 = E

[
r2(x − E(x))(x − E(x))>

]
with r2 = (x − E(x))>S−1

1 (x − E(x
catter matrix based on fourth moments. The matrix W is called an unmixing matrix as Wx has independe
ents under the assumption that E(z4

1), . . . , E(z4
q) are distinct from one another and from 3 (normal case). Wr

S1/2
1 . As U>U = Ip, U is orthogonal and W = U>S−1/2

1 . If

R := S−1/2
1 S2S−1/2

1 ,

S1/2RS1/2W> = U>RU = D and U is therefore obtained from the eigen-decomposition R = UDU>. T
lue di in D is then p + 2 if and only if E(z4

i ) = 3, i ∈ {1, . . . , p}, and, under mild assumptions, the eigenvalu
used to separate the Gaussian and non-Gaussian components. As W(FAx)Ax and W(Fx)x are the same
changes, location shifts and perturbations of the coordinates and the ordered eigenvalues of D(FAx) and
are the same, we can in our derivations assume without any loss of generality that A = Ip, b = 0 and S1 =

= D = diag(D1, (p + 2)Ip−q). For our approach, we also need the assumption that the diagonal elements in
inct from p + 2.

X = (x1, . . . , xn)> be a random sample from the stated independent component model with q non-Gaussian a
ussian independent components with an unknown dimension q. Write Ŝ1, Ŝ2 and R̂ for the values of function
nd R, respectively, at the empirical distribution of X. If

√
n(̂S1 − Ip) = OP(1) and

√
n(̂S2 − D) = OP(1) the

sky’s theorem,

√
n(R̂ − D) =

√
n(̂S2 − D) − 1

2

[√
n(̂S1 − Ip)D + D

√
n(̂S1 − Ip)

]
+ oP(1)

limiting multivariate normality of
√

nvec(R̂ − D) follows from the joint limiting multivariate normality
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Ŝ1 − Ip, Ŝ2 − D) which holds if the eight moments of z exist. We wish to test the null hypothesis

H0k : exactly p − k eigenvalues in D are p + 2

that the dimension of the signal space is k. To test the null hypothesis H0k, we use the test statistic

Tk := min
U∈Op×(p−k)

m2

(
U>(R̂ − (p + 2)Ip)U

)
= min

U∈Op×(p−k)
m1

(
U>(R̂ − (p + 2)Ip)2U

)
.

hat Kankainen et al. [20] used T0 = m2

(
R̂ − (p + 2)Ip

)
to test for full multivariate normality of x. If

Ûk = arg min
U∈Op×(p−k)

m1

(
U>(R̂ − (p + 2)Ip)2U

)
,

ain according to the Poincaré separation theorem, a solution of Ûk is the matrix of the eigenvectors associat
p − k eigenvalues of R that are closest to p + 2. We can then also write

Tk = m2

(
Û
>
k (R̂ − (p + 2)Ip)Ûk

)
= s2

(
Û
>
k R̂Ûk

)
+

[
m1

(
Û
>
k R̂Ûk

)
− (p + 2)

]2

Ŝ
−1/2
1 x is, under H0k, an estimate for the Gaussian noise vector.

ymptotic tests for dimension

sider the independent component model and, without loss of generality, presume A = Ip and b = 0. Le
the dimension of the non-Gaussian signal space, and denote the corresponding partition by

R̂ =

(
R̂11 R̂12

R̂21 R̂22

)
.

have the following result.

2. Under the previously stated assumptions and under H0q,

nTq = n · m2

(
R̂22 − (p + 2)Ip−q

)
+ OP(n−1/2) = n · s2

(
R̂22

)
+ n

[
m1(R̂22) − (p + 2)

]2
+ OP(n−1/2).

e that the first term in the sum on the second row provides a test statistic for the equality of p − q eigenvalu
to p + 2 and the second term measures the deviation of their average from p + 2 (Gaussian case). Under o
tions and under H0q, these two random variables are asymptotically independent and we have the following

m 3. Under the previously stated assumptions and under H0q,

n(p − q)Tq
d−→ 2σ1χ

2
1
2 (p−q−1)(p−q+2) + (2σ1 + σ2(p − q)) χ2

1

ependent chi squared variables χ2
1
2 (p−q−1)(p−q+2)

and χ2
1, and σ1 = Var

(
‖z‖2

)
+ 8 and σ2 = 4.

all that Tq = Tq,1 + Tq,2 where Tq,1 = s2(Û
>
q R̂Ûq) and Tq,2 = [m1

(
Û
>
q R̂Ûq

)
− (p + 2)]2 provide two asympto

dependent test statistics for H0q as seen from the proof of the theorem. Under the assumptions in Theorem

Tq,1
d−→ 2σ1χ

2
1
2 (p−q−1)(p−q+2)

and n(p−q)Tq,2
d−→ (2σ1 + σ2(p − q)) χ2

1. For deriving the values of σ1 and σ2, s
endix in Nordhausen et al. [30]. They show that the result is true even in the wider NGCA model. As seen in t

1 = AsVar((R̂22)12) and σ2 = AsCov((R̂22)11, (R̂22)22). In the independent component model, we simply ha
p
k=1 E(z4

k)− p + 8 with a consistent estimate σ̂1a = 1
n
∑n

i=1
∑p

k=1(ẑi)4
k − p + 8 where ẑi = Ŵ(xi − x̄), i ∈ {1, . . . ,

ider NCGA model, the parameter σ1 can be consistently estimated by σ̂1b = 1
n
∑n

i=1 ‖ ẑi‖4 − p2 + 8. Bo
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es, σ̂1a and σ̂1b, are consistent in the case of the independent component model even for unknown q.

stimate q, we consider the joint limiting behavior of test statistics n(p − k)Tk for H0k, k ∈ {0, . . . , p − 1}, b
ue H0q. For k ∈ {0, . . . , p − 1}, write

T ∗k = m2

(
(0, Ip−k)(R̂ − (p + 2)Ip)(0, Ip−k)>

)
.

k ≤ T ∗k , k ∈ {0, . . . , p − 1}, and we have the following [30].

m 4. Under the previously stated assumptions and under H0q,

r k < q, Tk
P−→ ck for some c1, . . . , cq−1 > 0,

r k = q, n(p − k)Tk
d−→ Ck,

r k > q, n(p − k)Tk ≤ n(p − k)T ∗k
d−→ Ck,

Ck ∼ 2σ1χ
2
(p−k−1)(p−k+2)/2 + (2σ1 + σ2(p − k)) χ2

1

ependent chi squared variables χ2
(p−k−1)(p−k+2)/2 and χ2

1 and σ1, and σ2 as in Theorem 4.

in PCA, a consistent estimate q̂ of the unknown dimension q can be based on sequential testing using the t
s Tk and corresponding critical values ck,n, k ∈ {0, . . . , p − 1}, as suggested in the following. Other (top-dow
e and conquer) strategies again provide alternative consistent estimates.

ry 2. For all k ∈ {0, . . . , p − 1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 a
∞ as n→ ∞. Then

P(Tk ≥ ck,n) →
{

1, if k < q,
0, if k ≥ q,

q̂ = min{k : Tk < ck,n} P−→ q.

otstrap tests for dimension

q denote the true dimension and consider the test statistic Tk = m2

(
Û
>
k (R̂ − (p + 2)Ip)Ûk

)
for H0k, k

p − 1}. In the following we also need

P̂k = Ŝ
1/2
1 ÛkÛ

>
k Ŝ
−1/2
1 , Q̂k = Ip − P̂k,

are the estimated projection matrices (with respect to Mahalanobis inner product) to the noise and sign
es, respectively.

obtain the p-value for Tk, the bootstrap samples are generated, as in PCA, from a distribution for which t
othesis H0k is true under the stated model (even if k , q) and which is as similar as possible to the empiric

tion of X. We suggest again two procedures. The first one is for testing the hypothesis H0k in the IC mod
second one in the wider NGCA model, see Nordhausen et al. [30]. The bootstrap p-values are obtained as

ith M bootstrap samples.

tstrap strategy FOBI-I (IC model):

tart with centered X ∈ Rn×p and compute x̄ and Ŵ = (Ŵ
>
1 , Ŵ

>
2 )> where Ŵ2 = Û

>
k Ŝ
−1/2
1 .

rite Ẑ = (X − 1n x̄>)Ŵ
>

and further Ẑ = (Ẑ1, Ẑ2) where Ẑ2 ∈ Rn×(p−k).
et Z∗1 ∈ Rn×k for a matrix of independent componentwise bootstrap samples of size n from Ẑ1.
et Z∗2 ∈ Rn×(p−k) be a random sample of size n from Np−k(0, Ip−k).
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rite Z∗ = (Z∗1, Z
∗
2).

rite X∗ = Z∗(Ŵ
>

)−1 + 1n x̄>.

tstrap strategy FOBI-II (NGCA model):

tart with X ∈ Rn×p, compute x̄, Ŝ1, Ŝ2, R̂, Ûk, P̂k and Q̂k.
ake a bootstrap sample X̃ = (x̃1, . . . , x̃n)> of size n from X.
or the noise space to be Gaussian, transform

x∗i = [Q̂k(x̃i − x̄) + Ŝ
1/2
1 Ûk oi] + x̄, i ∈ {1, . . . , n},

here o1, . . . , on are i.i.d. from Np−k(0, Ip−k).
∗ = (x∗1, . . . , x

∗
n)>.

he case of the FOBI-I strategy, the bootstrap null distribution Fk,n(x) is the average

1
nk

n∑

i1,··· ,ik=1

Eoi1 ···ik

[
I
(
Ŵ
−1

(
(ei1 , . . . , eik )

>(X − 1n x̄>)Ŵ
>
1

oi1···ik

)
+ x̄ ≤ x

)]
,

he o>i1···ik s are from Np−k(0, Ip−k) and the e>i s (with the ith element one and other elements zero) are in Rn, a
OBI-II strategy, the bootstrap samples for H0k are generated from the distribution Fk,n(x) that is the average

1
n

n∑

i=1

Eoi

[
I
(
[Q̂k(xi − x̄) + Ŝ

1/2
1 Ûk oi] + x̄ ≤ x

)]
,

1, . . . , on ∼ Np−k(0, Ip−k).

in the PCA bootstrap asymptotics, let X∗N be a random sample of size N from Fn,k. As these observatio
om the ICA and NGCA models, respectively, with true H0k and known (data based) parameters σ1 = σ̂1a

1b and σ2 = 4, the limiting (conditional and unconditional) distribution of NTk(X∗N) is as given in Theorem
e n, the limiting distribution then provides the approximation for nTk(X∗) as well.
bootstrapping testing strategy was explored for any pair of two scatter matrices in [35] in is quite similar th

roach described above.

example

is often illustrated using mixed images. Following this tradition, we mix 6 grey scale images: Two of t
are the pictures of a cat and a forest road, available in the R package ICS [29], and the remaining four imag
Gaussian noise. The images have 130 × 130 pixels and the six original images can be presented as a mat
×p with n = 16900 pixels and p = 6 columns indentifying the 6 images. The observed mixed images are th
A> + 1nb> and the idea is to recover the two (signal) images. Note that the rows of X are not independent
mple but FOBI uses the marginal distribution of the column elements rather than their joint distribution.
first three columns of the Z and Ẑ = XŴ

>
are given on the first and second row of Fig. 2, respectively. No

result on the second row would be the same for any choices of A and b. The ordered eigenvalues (with respe
quared deviation from p + 2 = 8) of R̂ are 9.00, 8.27, 7.92, 8.04, 7.97 and 8.00. The p-values for H01-H04 bo
ests are given Table 2. Note that the bootstrap tests here use m = 500 bootstrap samples. In this examples
ts nicely agree and the false hypothesis H01 is rejected and the true hypothesis H02 is the first to be accepted
= 0.05.
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Fig. 2: T ted
compone

Table 2: del
was assum

Journal Pre-proof
he first row shows the original signal images plus one exemplary noise component from Z. The second row shows the first three estima
nts Ẑ when using FOBI. All components not shown look like the noise components (third column).

The asympotic and bootstrapping based p-values for H01-H04 for the image data when using FOBI. Either an IC model or a NGCA mo
ed. The null hypothesis q = 1 (H01) is rejected by all four tests and the true value q = 2 (H02) is the smallest one to be accepted.

ICA NGCA
Asymp Boot Asymp Boot

H01 0.000 0.002 0.000 0.002
H02 0.211 0.082 0.206 0.116
H03 0.878 0.940 0.873 0.880
H04 0.810 0.778 0.806 0.729
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(y, z>1 )> en
they co to
transfor nd
estimat .

Remar re-
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y ⊥⊥ z2| .s.
for SAV it-
erature nt
[4]. Se u-
tions ar

In t ×p

such th

with S1 o-
nal elem

Again, of
eigenve

In p int
interval },
indepen te
approxi R)
then jus

in the a ite
µ := E(

Con

Journal Pre-proof
ing for subspace dimension in SIR

e model, null hypothesis and test statistic
his section we assume that

(y, X) =

((
y1
x1

)
, · · · ,

(
yn

xn

))>
∈ Rn×(p+1)

dom sample from a distribution of (y, x>)> where

x = Az + b,

p×p is non-singular, b ∈ Rp and z = (z>i , z>2 )> is a random p-vector with E(z) = 0, Cov(z) = Ip a
⊥⊥ z2. If z1 ∈ Rq and z2 ∈ Rp−q, with q being the smallest value for which this condition holds, th

rrespond respectively to the signal and noise parts of z. The partition z = (z>i , z>2 )> is then unique up
mations z1 → O1 z1 and z2 → O2 z2 with O1 ∈ Oq×p and O2 ∈ O(p−q)×(p−q). The aim is again to test a
e the unknown dimension q and then find the projections to the well defined signal and noise subspaces of x

k 1. Note that our assumption (y, z>1 )> ⊥⊥ z2 is stronger than the regular assumptions in sliced inverse
n and related methods: In classical SIR and SAVE approaches the dependence conditions are for example
z1 and E(z2|z1) = 0 a.s. (linearity condition) for SIR and (ii) y ⊥⊥ z2|z1, E(z2|z1) = 0 and Cov(z2|z1) = Ip−q a
E. Alternative or additional assumptions needed for easy and tractable asymptotics have been given in the l

such as the assumption that z is multivariate normal [24] or that the conditional covariance Cov(z|y) is consta
e Section 5.2 for more discussion. Under our strong assumption, bootstrap samples from a true null distrib
e easily generated as shown in Section 5.3.

he sliced inverse regression (SIR) one finds a transformation matrix W ∈ Rp×p and a diagonal matrix D ∈ Rp

at
WS1W> = Ip and WS2W> = D

:= E
[
(x − E(x))(x − E(x))>

]
and S2 := E

[
E(x − E(x)|y)E(x − E(x)|y)>

]
. Under our assumptions, the diag

ents in D are
d1 ≥ · · · ≥ dq ≥ dq+1 = · · · = dp = 0.

as in ICA, W = U>S−1/2
1 with some orthogonal U ∈ Rp×p and, if R := S−1/2

1 S2S−1/2
1 then U is the matrix

ctors of R.

ractice, the random variable y is replaced by its discrete approximation as follows. Let S1, . . . ,SH be H disjo
s (slices) such that R = S1 + · · · + SH and let yd :=

∑H
h=1 yhI(y ∈ Sh) for some choices yh ∈ Sh, h ∈ {1, . . . ,H

dent of z. (I(y ∈ Sh) = 1 if y ∈ Sh and zero otherwise.) The random variable yd can then be seen as a discre
mation of a continuous random variable y. Naturally also (yd, z>1 )> ⊥⊥ z2. The sliced inverse regression (SI
t refers to the use of the inverse regression E(x − E(x)|yd) and the corresponding supervised scatter matrix

S2 = E
[
E(x − E(x)|yd)E(x − E(x)|yd)>

]

nalysis of the data. With this choice of S2, we still have d1 ≥ · · · ≥ dq ≥ dq+1 = · · · = dp = 0. Next wr
x) and Σ := Cov(x), and µh := E(x|y ∈ Sh), Σh := Cov(x|y ∈ Sh) and ph = P(y ∈ Sh), h ∈ {1, . . . ,H}. Then

S1 = Σ, S2 =

H∑

h=1

ph(µh − µ)(µh − µ)>.

sider next the corresponding sample statistics. For the estimates of S1 and S2, write

Ŝ1 =
1
n

n∑

i=1

(xi − x̄)(xi − x̄)>, Ŝ2 =
1
n

H∑

h=1

nh(x̄h − x̄)(x̄h − x̄)>,
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where x̄ n
Pillai’s ull
distribu

Fur

stating ic,
that is,

where t

5.2. As

As at
(y, X) i at
the num 0)
with a f he
full q-d

Let

Then R̂

for som ct
dimens

An asym

Lemma

Not

Conseq in
Lemma of
n(p − q

Theore

Journal Pre-proof
h = 1
nh

∑n
i=1 xiI(yi ∈ Sh) and nh =

∑n
i=1 I(yi ∈ Sh), h ∈ {1, . . . ,H}. Note that np · m1 (̂S

−1
1 Ŝ2) is the well-know

trace statistic for testing H0 : µ1 = · · · = µH under the assumption that Σ1 = · · · = ΣH with the limiting n
tion χ2

(H−1)p.

thermore, let R̂ = Ŝ
−1/2
1 Ŝ2Ŝ

−1/2
1 . We wish to test the null hypothesis

H0k : d1 ≥ · · · ≥ dk > dk+1 = · · · = dp = 0

that the dimension of the signal space is exactly k. To test the null hypothesis, we use a natural test statist
the average of the p − k smallest eigenvalues of R̂, that is,

Tk := m1(Û
>
k R̂Ûk),

he columns of Ûk ∈ Op×(p−k) are the eigenvectors corresponding the smallest p − k eigenvalues of R̂.

ymptotic tests for dimension

the eigenvalues of R̂ are invariant under affine transformations, we can assume without loss of generality th
s a random sample from a SIR model with A = Ip and b = 0. This implies S1 = Ip and µ = 0. We assume th
ber of slices H > q + 1, the slices S1, . . . ,SH do not change with n, and the related S2 = R = D = diag(D1,
ull-rank D1 ∈ Rq×q. The assumption thus states that, with selected H slices and by using SIR, one can find t
imensional signal space.
fh = nh/n, h ∈ {1, . . . ,H}, and write

B̂ = Ŝ
−1/2
1

( √
f1(x̄1 − x̄), . . . ,

√
fH(x̄H − x̄)

)
.

= B̂B̂
>

and, with π = (
√

p1, · · · , √pH)>,

B̂→ B :=
(
µ1, · · · ,µH

)
diag(π) =

(
D1/2

1 0
0 0

)
Q

e Q ∈ OH×H , where Q = (Q>1 ,Q
>
2 )> and Q1 ∈ Oq×H satisfies Q1π = 0. With the correct Q and corre

ion q, we have the partitions

B̂ =

(
B̂1

B̂2

)
, B̂Q> =

(
B̂1Q>1 B̂1Q>2
B̂2Q>1 B̂2Q>2

)
.

ptotic approximation to the distribution of Tq = m1(Û
>
q R̂Ûq) can now be stated as follows:

3. Under the previously stated assumptions and under H0q,

n · Tq = n · m1(B̂2Q>2 Q2B̂
>
2 ) + OP(n−1/4).

e that, in this setting, with U>q =
(
0, Ip−q

)
,

U>q R̂Uq = B̂2B̂
>
2 = B̂2Q>1 Q1B̂

>
2 + B̂2Q>2 Q2B̂

>
2 .

uently, unlike in Lemmas 1 and 2 for PCA and ICA asymptotics, the asymptotic approximation given
3 is not obtained by simply replacing Ûq by Uq within the definition of Tq. The limiting distribution

)Tq is then given in the following theorem.

m 5. Under our assumptions and under H0q, n(p − q)Tq
d−→ χ2

(p−q)(H−q−1).
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same limiting distribution is given in Theorem 5.1 in Li [24] and in Corollary 1 in Bura and Cook [4] und
ditional independence relation y ⊥⊥ z2|z1 and under the linearity condition E(z2|z1) = 0, a.s.. In the form
rem is stated under an additional assumption that the distribution of z is multivariate normal, but within t
is noted that it in fact holds if Cov(z2|y) does not depend on y. In the latter, the above theorem is stated und

itional assumption that Cov(z|y) does not depend on y, but from their proof it can be noted that they only ne
old for Cov(z2|y). In our setting, this condition obviously holds since z2 ⊥⊥ y. For completeness, a proof

m 5 is given in the Appendix. Note that for q ≥ H − 1, Tq = 0.
stimate q, we consider the limiting behavior of the test statistics n(p − k)Tk for H0k, k ∈ {0, . . . ,H − 1}, wh
0q is true. We write

T ∗k = m1((Ip−k, 0)Û
>
q R̂Ûq(Ip−k, 0)>), k ∈ {q + 1, . . . ,H − 1}

n have the following theorem.

m 6. Under the previously stated assumptions and under H0q,

r k < q, Tk
P−→ ck for some c1 > 0, · · · , cq−1 > 0,

r k = q, n(p − k)Tk
d−→ χ2

(p−q)(H−q−1),

r k > q, P(Tk ≤ T ∗k )→ 1 and n(p − k)T ∗k
d−→ χ2

(p−k)(H−q−1)

in PCA and ICA, a consistent estimate q̂ of the unknown dimension q can found with the bottom-up seque
ing strategy as follows. Again alternative testing strategies may be used to find computationally faster a
nt estimates.

ry 3. For all k ∈ {0, . . . ,H − 1}, let (ck,n) be a sequence of positive real numbers such that ck,n → 0 a

∞ as n→ ∞. Then q̂ = min{k : Tk < ck,n} P−→ q.

bootstrap test for dimension

consider the hypotheses H0k saying that the rank of D is k, k ∈ {1, . . . ,H − 1}. Bootstrap samples are th
enerated from a null distribution for which (y, z>1 )> ⊥⊥ z2 and z1 ∈ Rk even if the true dimension p ,
ap sampling from a null distribution obeying the weaker assumptions such as y ⊥⊥ z2|z1 and E(z2|z1) =

v(z2|y) = Ip−k seems much more difficult to carry out and not developed here. Sampling under our stro
tion is described in the following.

tstrap strategy SIR: Generate from the SIR model.

tarting from X, find x̄ and Ŵ = (Ŵ
>
1 , Ŵ

>
2 )> where Ŵ1 ∈ Rk×p and

rite Ẑi = (X − 1n x̄>)Ŵ
>
i , i ∈ {1, 2}.

et (y∗, Z∗1) be a bootstrap sample of size n from (y, Ẑ1).
et Z∗2 be a bootstrap sample of size n from Ẑ2.

Bootstrap samples in 2 and 3 are independent)
rite Z∗ = (Z∗1, Z

∗
2).

rite (y∗, X∗) =

(
y∗, Ẑ

∗
(Ŵ
>

)−1 + 1n x̄>
)
.

ther terms, the bootstrap null distribution Fk,n at (y, x>)> is now obtained as the average

1
n2

n∑

i=1

n∑

j=1

I





y>ei

Ŵ
−1

(
Ŵ1(X − 1n x̄>)>ei

Ŵ2(X − 1n x̄>)>e j

)
 +

(
0
x̄

)
≤

(
y
x

) ,
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are both r
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Journal Pre-proof
he e>s are in Rn. As for PCA and ICA bootstrap strategies, let X∗N be a sample of size N from Fk,n for whi

hypothesis H0k and our model assumptions naturally hold true. Then NTk(X∗N)
d−→ χ2

(p−k)(H−k−1) and therefo
e n, also the distribution of nTk(X∗n) can be approximated by the same distribution. The estimated bootstr
is obtained as in the previous cases.

example

the illustration we revisit the Australian Athletes data available in the R package dr [44]. The respon
y is the lean body mass the predictors in x are given by the logarithms of height (Ht), weight (Wt), red c

RCC), white cell count (WCC), Hematocrit (Hc), Hemoglobin (Hg), plasma ferritin concentration (Ferr) a
skin folds (SSF). The same data was analysed e.g., by Cook [8], who developed tests of the hypothesis of
r a selected subset of predictors. The data for all 202 athletes is shown in Fig. 3 and the SIR eigenvalues a
g to two decimal places, 0.95, 0.21, 0.11, 0.07, 0.04, 0.02, 0.01 and 0.00.
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airwise scatter plots for 9 variables in the Australian athletes data. The first variable LBM is the response variable to be explained by
ng variables.

The p-values for H00-H03 with two testing strategies for the Australian athletes data. The null hypotheses q = 0 (H00) and q = 1 (H
ejected and both tests suggest an estimate q̂ = 2.

H00 H01 H02 H03
SIR-I 0.002 0.002 0.090 0.349

Asymp 0.000 0.001 0.121 0.458

observed p values for successive testing of hypotheses H00 to H04 are reported in Table 3. The number
p samples was M = 500 and the bootstrap test as well as the asymptotic test suggest that the signal space h
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ion two. Note that the p-values of the asymptotic tests differ slightly from those in Cook [8], perhaps due
t number of slices and different numbers of observations in slices.
two signal components are plotted against the response in Fig. 4 where the plotting symbols differ for fema

le athletes. The figure nicely shows that both components contain information about the response. The gend
thletes was not used in the analysis. However, the first two SIR components seem also to separate the fema
le athletes.
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he pairwise scatter plots for the response LBM and the two first SIR components SIC.1 and SIC.2. In the plots different symbols are u
nd women. The gender was not used in the analysis.

l remarks

his paper, we considered three dimension reduction methods based on the use of a pair of sample matric
al component analysis, fourth order blind identification and sliced inverse regression, and showed how first tw
ts of the eigenvalues of one matrix with respect to another can be used to test for signal (and noise) dimensio
cluding joint framework for the three methods is summarized in Table 4. In all three cases, the asympto

tributions of the test statistics were given and bootstrap strategies were provided for the testing problems. T
otic and bootstrap tests were compared in real data examples. These three methods serve here as examp
s obvious that our approach can be extended to other pairs of scatter matrices tailored for the multivaria
rametric goodness-of-fit problems at hand, see e.g., Nordhausen et al. [28].

R code for all computations in the paper is available upon request from Klaus Nordhausen and almost
s are implemented in the R package ICtest [31]. Simulation results are given in an extend version of th
n Arxiv. However larger simulation studies as well as theoretical studies in various contexts are still necessa
uture to compare the estimates here to other consistent estimates suggested in the literature [26, 45, 47] and
e different sequential testing strategies (bottom-up, top-down, divide and conquer).
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Table 4: The similarities and differences between PCA, ICA and SIR and their use of scatter matrices in the data analysis.

PCA FOBI SIR

upervised No No Yes

odel elliptical model independent component
model

regression model

ata numeric vector x numeric vector x response y and num
vector x

catter matrix S1 identity matrix Ip covariance matrix covariance matrix

catter matrix S2 any scatter matrix S scatter matrix based on
fourth moments

supervised SIR sca
matrix

ignal non-spherical principal
components

non-Gaussian indepen-
dent components

components sufficien
explain y

oise spherical principal com-
ponents

Gaussian independent
components

components condit
ally independent
y

ypothesis multiplicity of smallest
eigenvalue is p − k

multiplicity of eigen-
value p + 2 is p − k

multiplicity of
eigenvalue is p − k

est statistics variance of the p − k
smallest eigenvalues

smallest sum of squared
distances between p − k
eigenvalues and p + 2

mean of the p−k sma
eigenvalues

imiting distributions chi-square weighted sum of inde-
pendent chi-square vari-
ables

chi-square

ootstrapping two different strategies two different strategies one strategy
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cal Details

for Section 3
of of Lemma 1. Let d̂ = (d̂q+1, . . . , d̂p) denote the r = p − q smallest ordered eigenvalues of Ŝ and
, . . . , δ̂r) denote the ordered eigenvalues of Ŝ22. Lemma 3.1 in Eaton and Tyler (1991) then states that d̂ − δ̂)

and, applying Theorem 3.2 in Eaton and Tyler (1991), δ̂ − d1r = OP

(
n−1/2

)
then implies that d̂ − d1r

/2
)
. Setting Pr = Ir − r−11r1>r , we then have r ·Tq = d̂

>
Pr d̂ = (̂d− d1r)>Pr (̂d− d1r) and r · s2 (̂S22) = δ̂

>
Prδ̂

r)>Pr (̂δ − d1r). Hence,

r
(
Tq − s2 (̂S22)

)
= 2(̂δ − d1r)>Pr (̂d − δ̂) + (̂d − δ̂)>Pr (̂d − δ̂),

s OP

(
n−3/2

)
+ OP

(
n−2

)
= OP

(
n−3/2

)
.

of of Theorem 1. By Lemma 1 it is sufficient to consider the limiting distribution of n · s2 (̂S22). Let aga
q and Z22 =

√
n(̂S22 − dIr)/d. Then

nr · s2 (̂S22)/d2 = n · vec(̂S22)>Γvec(̂S22)/d2 = vec(Z22)>Γvec(Z22),

= Ir2 − r−1vec(Ir)vec(Ir)> is idempotent. The second identity follows since Γvec(Ir) = 0. Under H

Z with vec(Z) ∼ Nr2 (0,Σ), where Σ = σ1(Ir2 + Kr,r) + σ2vec(Ir)vec(Ir)>. This implies

nr · s2 (̂S22)/d2 d−→ 2σ1z>z, with z = Γvec(Z)/
√

2σ1 ∼ Nr2 (0,Σo),

Σ0 = Γ
1
2

(Ir2 + Kr,r)Γ =
1
2

(
Ir2 + Kr,r − 2

r
vec(Ir)vec(Ir)>

)
.

is symmetric and idempotent with rank(Σ0) = (r2 +r−2)/2 = (r+2)(r−1)/2, and so z>z ∼ χ2
(r+2)(r−1)/2 and t

t of the theorem follows. The second part follows as Vq is the minimum of the variance over all (p−q)-subs
rdered eigenvalues of Ŝ. The variance of the p − q smallest eigenvalues, that is, Tq converges in probability
he variance for any other

(
p
q

)
− 1 choices of subsets converges in probability to a positive constant.

of of Theorem 2. (i) Tk converges in probability to the variance of p−k smallest eigenvalues which is positi
q. (ii) is given in the previous theorem. (iii) follows as, for k ∈ {q, . . . , p − 1},

Tk =
1

2(p − k)2

p∑

i=k+1

p∑

j=k+1

(d̂i − d̂ j)2 ≤
(

p − q
p − k

)2 1
2(p − q)2

p∑

i=q+1

p∑

j=q+1

(d̂i − d̂ j)2 =

(
p − q
p − k

)2

Tq.

for Section 4
of of Lemma 2. This proof is similar to the proof of Lemma 1. Again set r = p − q. Rather than using t
g of the roots given in Section 4, let λ1, . . . , λp denote the ordered eigenvalues of R, and so for some 0 ≤ m ≤
+ 2, λm+1 = · · · = λm+r = p + 2 and λm+r+1 < p + 2. Also, let λ̂ = (λ̂m+1, . . . , λ̂m+r)> denote the (m + 1)th

th ordered eigenvalues of R̂ and let δ̂ = (δ̂1, . . . , δ̂r)> denote the ordered eigenvalues of R̂22. Again using [1
g its Lemma 3.1 twice gives λ̂ − δ̂ = OP

(
n−1

)
and applying its Theorem 3.2 gives λ̂ − (p + 2)1p = OP

(
n−1/

· Tq = (̂λ − (p + 2)1r)>(̂λ − (p + 2)1r) and r · s2 (̂S22) = (̂δ − (p + 2)1r)> (̂δ − (p + 2)1r). Hence,

r
(
Tq − m2(R̂22)

)
= 2(̂δ − (p + 2)1r)> (̂λ − δ̂) + (̂λ − δ̂)> (̂λ − δ̂),

s OP

(
n−3/2

)
+ OP

(
n−2

)
= OP

(
n−3/2

)
.

of of Theorem 3 By Lemma 2 it is sufficient to consider the joint limiting distribution of n(s2(R̂22),m2
1(R̂22

in r = p− q. The arguments for obtaining the limiting distribution of n · s2(R̂22) are analogous to those used
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f of Theorem 1, and we use the same notation but now with Z22 =
√

n(R̂22 − (p + 2)Ir)/(p + 2)→ Z with t
y that U>ZU ∼ Z for all U ∈ Or×r. Then again vec(Z) ∼ Nr2 (0,Σ), where Σ = σ1(Ir2 +Kr,r)+σ2vec(Ir)vec(Ir
o population constants σ1 and σ2. Using arguments analogous to those in the proof of Theorem 1, we aga

nder the null hypothesis that nr · s2(R̂22)/(p + 2)2 → χ2
(r+2)(r−1)/2. Next, r

√
n ·m1(R̂22) = vec(Ir)>vec(Z22)

vec(Z) ∼ N(0, σ2), with σ2 = vec(Ir)>Σvec(Ir) = 2rσ1 + r2σ2. Thus r2n · m2
1(R̂22)

d−→ σ2χ2
1. Finally, rec

in the proof of Theorem 1, n · s2(R̂22) = vec(Z22)>Γvec(Z22) where Γvec(Ir) = 0. This establishes t
dence of the limiting distributions of the component variables in (n · s2(R̂22), n · m2

1(R̂22)), and consequen
m 3 follows with some constants σ1 and σ2. The values of σ1 and σ2 are derived in the Appendix in [30].
of of Theorem 4. (i) Tk converges in probability to the sum of p − k smallest eigenvalues of (D − (p + 2)I
s positive for k < q. (ii) is given in the previous theorem. (iii) follows as

Tk = min
U∈Op×(p−k)

m1

(
U>(R̂ − (p + 2)Ip)2U

)
≤ m1

(
(0, Ip−k)(R̂ − (p + 2)Ip)2(0, Ip−k)>

)

result follows as, for k ∈ {q, . . . , p − 1}, (0, Ip−k)R̂(0, Ip−k)> is a (p − k) × (p − k)-submatrix of R̂22 with t
limiting distribution.

for Section 5
of of Lemma 3. For H ≥ p, let γ̂ = (γ̂q+1, . . . , γ̂p)> denote the p − q smallest ordered singular valu
. When q + 1 < H < p, we use the same notation while noting γ̂H+1 = · · · = γ̂p = 0. Likewise,
, . . . , η̂p−q)> denote the ordered singular values of B̂2Q>2 . Since

√
n(B̂− B)Q> = OP(1), it follows respective

heorems 4.1 and 4.2 in [13] that γ̂ − η̂ = OP

(
n−3/4

)
and γ̂ = OP

(
n−1/2

)
. Next, observe that (p − q)Tq = γ̂

− q)m1(B̂2Q>2 Q2B̂
>
2 ) = η̂>η̂. Hence,

(p − q){Tq − m1(B̂2Q>2 Q2 B̂
>
2 )} = 2̂η> (̂γ − η̂) + (̂γ − η̂)> (̂γ − η̂),

s OP

(
n−5/4

)
+ OP

(
n−3/2

)
= OP

(
n−5/4

)
.

of of Theorem 5. By Lemma 3, the limiting distributions of n · Tq and n · m1(B̂2Q>2 Q2B̂
>
2 ) are the same. L

p−q refer to the last p − q components of I(yi ∈ Sh)x ∈ Rp, h ∈ {1, . . . ,H}. Hence, under H0q, x∗ = z2

dent of the response y. Since fh · x∗h = 1
n
∑n

i=1 x∗(h),i, where x∗(h),i = x∗i I(yi ∈ Sh), with E(x∗(h)) = phE(x∗) =

)) = ph Cov(x∗) = phIp−q, Cov(x∗(h), x
∗
(m)) = 0 for h , m, and fh

P−→ ph, it follows from the central lim

and from Slutsky’s theorem that
√

n
( √

f1 x∗1, . . . ,
√

fH x∗H
) d−→ Z, where the elements of the (p − q) ×

matrix Z are i.i.d. N(0, 1).

ce Ŝ1
p−→ Ip and x∗ =

∑H
h=1 fhx∗h, we obtain

√
n · B̂2Q>2

d−→ Z(IH − ππ>)Q>2 with π> = (
√

p1, . . . ,
√

pH). Hen
d−→ ZPZ>, where P = (IH−ππ>)Q>2 Q2(IH−ππ>). It is shown below that P is idempotent with rank H−q−

mplies ZPZ> ∼ Wishartp−q(H−q−1, Ip−q), and consequently, n · tr(B̂2Q>2 Q2B̂
>
2 )

d−→ tr(ZPZ>) ∼ χ2
(p−q)(H−q−

omplete the proof, note that since µ = 0, it follows that Bπ = 0 and hence Q1π = 0. Also, since IH − ππ>
tent with rank H − 1, we have

IH − ππ> = (IH − ππ>)Q>Q(IH − ππ>) = Q>1 Q1 + P,

mplies P is idempotent with rank H − q − 1.
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ja, S. Sirkiä, J. Eriksson, Scatter matrices and independent component analysis, Austrian Journal of Statistics 35 (2016) 175–189.
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