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a b s t r a c t

Most work on conditionally specified distributions has focused on approaches that operate
on the probability space, and the constraints on the probability space oftenmake the study
of their properties challenging. We propose decomposing both the joint and conditional
discrete distributions into characterizing sets of canonical interactions, and we prove that
certain interactions of a joint distribution are sharedwith its conditional distributions. This
invariance opens the door for checking the compatibility between conditional distributions
involving the same set of variables. We formulate necessary and sufficient conditions
for the existence and uniqueness of discrete conditional models, and we show how a
joint distribution can be easily computed from the pool of interactions collected from
the conditional distributions. Hence, the methods can be used to calculate the exact
distribution of a Gibbs sampler. Furthermore, issues such as how near compatibility can
be reconciled are also discussed. Using mixed parametrization, we show that the proposed
approach is based on the canonical parameters, while the conventional approaches are
based on the mean parameters. Our advantage is partly due to the invariance that holds
only for the canonical parameters.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Conditional statements are rather natural human perspectives. A physician, for example, would have no difficulty in
citing the risk of stroke conditioned on combinations of risk factors such as smoking, obesity, diabetics etc. Nevertheless,
a family of conditional distributions only contains partial information about the joint distribution. When multiple families
of conditional distributions are presented, they may contain overlapping information about the joint, leading to possible
conflicts. On the other hand, the entirety of the separate pieces of partial information may not be sufficient to fully specify a
joint distribution. In this case, the set of conditionals is said to be incomplete. Note that in general a set of conditionals may
be both overlapping and incomplete in terms of specifying a joint distribution.
The framework of conditionally specified distributions has intrigued many researchers [1–5], and a recent review of

conditionally specified distributionswas provided by Arnold et al. [6]. Three common issues arise from this body of research:
(1) whether, given a set of conditional distributions, a joint distribution exists; (2) if the joint does exist, whether or not it is
unique; and, (3) how a joint distribution can be efficiently computed. In this paper, we address all three issues for discrete
distributions. Most work on conditionally specified discrete models in the literature has focused on the probability space
(e.g., [7,6]); compatibility check in the probability space can be complicated and often requires solving constrained linear
equations. Furthermore, many proposed methods may become ‘‘unwieldy’’ as the number of variables increases [8]. Here,
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we adopt a different paradigm, in which, instead of operating on the probability space we operate on the space of canonical
interactions. They are said to be canonical because these interactions are the canonical parameters in an exponential family.
Moreover, interactions of various orders are defined by difference operators acting upon the logarithms of probabilities. To
assess compatibility, every conditional distribution is first decomposed into interactions and then overlapping interactions
are checked for possible conflicts. A joint distribution is built from the pool of interactions, if no conflict has been found.
The theoretical justifications of our approach are anchored on two important results. First, we prove that certain

interactions of a joint distribution are shared with its conditional distribution. These shared interactions are said to be
invariant. Second, we show how those invariant interactions can build a unique conditional distribution. We call such a
collection of interactions the characterizing set of interactions (CSOI). The CSOI provides a useful platform for developing
results that address the existence, uniqueness, and computation issues.
To motivate our approach and to familiarize readers with the necessary notation, consider the following example of

adverse reaction to drug treatment and genotype in cancer patients. Treatment regimen that includes irinotecan has been
found to be effective for colorectal cancer patients, but the individual reaction to drug toxicity is known to be highly variable
[9]. Genotype in the regions of the gene UGT1A1 is known to be associated with adverse reaction, and the association can
be explained through a link of the gene to an active irinotecan metabolite SN38 pharmacokinetics. The genotype, X1, has
three variations: TA7/TA7, TA7/TA6, and TA6/TA6, coded as 1-3, respectively, where X1 = 1, X1 = 3 are homozygous,
and X1 = 2 is heterozygous. Let X2 represent the four levels of adverse reaction: severe, moderate, mild, and nil, coded as
1-4, respectively. Two conditional models are commonly used by clinicians: the diagnostic conditional model X1|X2, and
the treatment conditional model X2|X1. Of special interest are the following two parameters: the diagnostic likelihood
ratios dij = P(X1 = i|X2 = j)/P(X1 = i|X2 = j + 1), 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, and the treatment risk ratios
tij = P(X2 = j|X1 = i)/P(X2 = j|X1 = i + 1), 1 ≤ i ≤ 2, 1 ≤ j ≤ 4. Both parameters can be easily interpreted by
clinicians. For example, the diagnostic d11 is the ratio of the likelihood that a positive test result (7/7) would be expected in
a patient with severe adverse reaction to the likelihood that the same result would be expected in a patient with moderate
adverse reaction. Post-test odds of adverse reaction given test result can be quickly obtained by multiplying the diagnostic
likelihood ratio to the pre-test odds or through a device such as the nomogram.
To create a parsimonious diagnostic conditional model, suppose a clinician assumes that the diagnostic likelihood ratios

follow the samemultiplicative constant across adjacent levels of severity, i.e. dij/d(i+1)j = δi and that a similar model can be
specified for treatment conditional ratios, i.e., tij/ti(j+1) = τj. Two important questions of interest are immediate: (1) Are the
two conditional models compatible under the designated model constraints? (2) If they are, then how would one compute
the joint density?
As we shall see later from our compatibility results, the diagnostic and the treatment conditional models are only

compatible when δi = τj = c for all i, j and for some constant c . For the second question, we borrow a numerical example
from Arnold et al. [7], p. 23) to show how the joint distribution can be efficiently computed from the CSOI of two compatible
and complete conditional probabilities.

Example 1. Let ai|j and bj|i denote, respectively, the two families of conditional distributions (X1|X2) and (X2|X1), where

ai|j =

(1/7 1/4 3/7 1/7
2/7 2/4 1/7 2/7
4/7 1/4 3/7 4/7

)
, bj|i =

(1/6 1/6 3/6 1/6
2/7 2/7 1/7 2/7
2/6 1/12 1/4 1/3

)
.

Distribution ai|j are characterized by (1) the last-column consecutive odds: αi = P(X1 = i|X2 = 4)/P(X1 = i + 1|X2 =
4), 1 ≤ i ≤ 2, and hence α1 = 1/2 and α2 = 1/2; and (2) the cross-distribution odds ratios: rij = P(X1 = i|X2 = j)P(X1 =
i + 1|X2 = j + 1)/[P(X1 = i + 1|X2 = j)P(X1 = i|X2 = j + 1)], 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. Similarly, distribution bj|i are
characterized by (1) the last-row consecutive odds: βj = P(X2 = j|X1 = 3)/P(X2 = j + 1|X1 = 3), 1 ≤ j ≤ 3, and hence
β1 = 4, β2 = 1/3, and β3 = 3/4; and (2) the cross-distribution odds ratios: r ′ij = P(X2 = j|X1 = i)P(X2 = j + 1|X1 =
i + 1)/[P(X2 = j + 1|X1 = i)P(X2 = j|X1 = i + 1)], 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. The numerical values for the odds ratios are as
follows:

(rij) = (r ′ij) =
(
1 1/6 6
1/4 6 2/3

)
.

The two characterizing sets of odds and odds ratios overlap on odds ratios; moreover, their overlapping parts have no
conflict, since rij = r ′ij for all i, j. This implies that they are compatible and that a joint distribution exists. A formal proof will
be given in Section 3.
If we pool the two characterizing sets, there are 6 rijs, 2 αis, and 3 βjs, altogether 11 odds and odds ratios. The joint

distribution also has 3×4−1 = 11 degrees of freedom. Hence, a unique joint distribution compatible with both ai|j and bj|i
can be built from them. To compute the joint distribution, we start with a 3×4 positivematrix (qij) and assign q34 = 1. Next,
select qij values such that the consecutive odds of the last row and last column of (qij) are identical to αi and βj, respectively.
This leads to the following (qij)matrix:

(qij) =

(
· · · 1/4
· · · 1/2
1 1/4 3/4 1

)
.
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Then, starting from the lowest right corner, sequentially enter the remaining six qij such that the (rij) is preserved in
(qij)—that is, qij = rijqi+1jqij+1/qi+1j+1, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. We have

(qij) =

(1/4 1/4 3/4 1/4
1/2 1/2 1/4 1/2
1 1/4 3/4 1

)
.

Generally, the computation of (qij) can be implemented through an efficient algorithm. Let B1 and B2 be, respectively,
3 × 3 and 4 × 4 upper triangular matrices of 1’s, and let A = B1 ⊗ B2, where the ⊗ is the Kronecker product. It will
be shown later that (qij) are equivalent to exp(Aθ), where θT = (log(r11 = 1), log(r21 = 1/4), log(β1 = 4), log(r21 =
1/6), log(r22 = 6), log(β2 = 1/3), log(r31 = 6), log(r23 = 2/3), log(β3 = 3/4), log(α1 = 1/2), log(α2 = 1/2), 0) consists
of the logarithms of odds-ratios, last-row odds, and last-column odds in lexicographical order.
Finally, normalize (qij) to form the joint (πij):

(πij) = (1/25)

(1 1 3 1
2 2 1 2
4 1 3 4

)
.

The same example may also be solved by the Gibbs sampler [2], which iteratively draws samples from ai|j and bj|i.
We now provide a roadmap of the mathematical results we will present. In Section 2, we describe a decomposition of a

multivariate discrete distribution and show that its canonical parameters are the interactions we will use. Afterward, in the
same section, we show the invariance of the canonical interactions and demonstrate how they can be used to characterize
conditional probabilities.We focus on conditional probabilities involving all J variables—that is, conditionals of the formπā|a,
where a ⊂ ℵ, ā ∪ a = ℵ, and ℵ represents the set of all J variables. Conditional distributions that satisfy this condition are
called J-conditionals. Necessary and sufficient conditions for compatibility and uniqueness for J-conditionals are described
in Section 3. If the interaction pool of a conditionalmodel is not complete, the joint distribution is under-specified and hence
can not be unique. The Posterior Slice Lemma, also described in Section 3, allows a special form of conditional information
that supplements an incomplete conditional model.
In Section 4, we provide a theoretical justification of CSOI in which we show that CSOI is the canonical component of the

mixed parametrization [10, p. 122] of the joint. As an application of the CSOI, we propose alternatives to the pseudo-Gibbs
sampler [11] in finding near-compatible joint distributions.

2. Canonical representation of a discrete multivariate distribution and its conditional distributions

Assume that there are J discrete random variables and each Xi = ki, 1 ≤ ki ≤ Ki with positive probabilities. The random
vector X = (X1, . . . , XJ) has joint distribution πℵ consisting of probabilities πk1,...,kJ = P[X1 = k1, . . . , XJ = kJ ]. Let
Bi, 1 ≤ i ≤ J be an Ki × Ki upper triangular matrix of 1s, and let A be BJ ⊗ · · · ⊗ B1, where⊗ is the Kronecker product. Also,
let vector logπℵ = (logπ1...1, . . . , logπK1...KJ )

T be arranged in lexicographical order such that the first index changes the
fastest and the last index the slowest. Clearly, logπℵ is of length K1 × · · · × KJ = K , and A is a K × K invertible matrix. We
can reparametrize πℵ as

πℵ = exp(Aθℵ), (1)
where θℵ = A−1 logπℵ. Eq. (1) is a log-linear decomposition of πℵ, and θℵ is called the vector of interactions. To
show the general structure of the matrices, we use an example. Consider a 3 × 2 × 2 table with cell probabilities π =
(π111, π211, . . . , π322)

T. Let

B2 =
(
1 1
0 1

)
, B1 =

(1 1 1
0 1 1
0 0 1

)
. (2)

Then the incidence matrix A = B2⊗B2⊗B1. Because the inverse matrix of a⊗-product of matrices is the⊗-product of the
inverse matrices, we have A−1 = B−12 ⊗ B−12 ⊗ B−11 , where

B−12 =
(
1 −1
0 1

)
, B−11 =

(1 −1 0
0 1 −1
0 0 1

)
.

The components of θℵ are more conveniently represented by the following difference operator [12, p. 35]: for 1 ≤ ki <
Ki, 1 ≤ i ≤ J ,

5i h(k1, . . . , ki, . . . , kJ) = h(k1, . . . , , ki−1, ki, ki+1, . . . , kJ)− h(k1, . . . , ki−1, ki + 1, ki+1, . . . , kJ),
and5i h(k1, . . . , Ki, . . . , kJ) = 0. Here, the function h can be the logarithm of a joint distribution, or a J-conditional. Define
∇
i as the vector (5i, . . . ,5i, ϑ)T, where ϑ : ϑh(k1, . . . , kJ) = h(k1, . . . , kJ) is the identity operator. Furthermore, let ∇
denote∇J⊗· · ·⊗∇1, which is of lengthK . Define aHamadanproduct · between two vectors as (x1, . . . , xK )T·(y1, . . . , yK )T =
(x1y1, . . . , xKyK )T.
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Lemma 1. The interaction vector θℵ can be expressed as∇ · logπℵ.

Proof. For an Ki × Ki upper triangular matrix of 1s, its inverse, B−1i , consists of Ki row vectors of Ri =
(0, . . . , 1,−1, 0, . . . , 0), i < Ki, with 1 in the ith location and RKi = (0, . . . , 0, 1) as the last row. Therefore, each B−1i
is equivalent to∇

i, and A−1 is equivalent to∇.

See also Ip et al. [13] for a proof using mathematical induction. In the above example, matrix B−12 ⊗ B−12 ⊗ B−11 has the
same effect as vector (53, ϑ)T⊗ (52, ϑ)T⊗ (51,51, ϑ)T = (535251,535251,5352 ϑ,53 ϑ 51,53 ϑ 51,53 ϑϑ, ϑ
5251, ϑ 5251, ϑ 52 ϑ, ϑϑ 51, ϑϑ 51, ϑϑϑ)

T. There is a clear need to simplify notation and we abbreviate
515253 ϑ · · ·ϑ , which is of length J , as 5123. For example, matrix B−12 ⊗ B−12 ⊗ B−11 above is expressed as
(5123,5123,523,513,513,53,512,512,52,51,51, ϑ

3)T. In addition, if Xi, i = 1, 2, 3 are binary variables that can take
value 1 or 2, then

512 f (1, 1, 2) = 5152 ϑ f (1, 1, 2)
= 51[f (1, 1, 2)− f (1, 2, 2)]
= f (1, 1, 2)− f (2, 1, 2)− [f (1, 2, 2)− f (2, 2, 2)].

Also, we denote ϑ J = ϑ · · ·ϑ by 5∅. Note that by lexicographical arrangement, for a distribution such as (X1, X2, X3), 512
only applies to logπk1k2K3—that is, only when X3 takes the value of the last category K3. Thus,5∅ only applies to logπK1···KJ .
The canonical interactions θℵ, or simply θ, consist of logarithms of local adjacent-category logits, local log odds ratios,

log ratios of odds ratios, and so on. The following example provides an illustration.

Example 2 (Example 1 continued). Let π = (π11, π21, . . . , π34)
T
;∇ = (52,52,52, ϑ)

T
⊗ (51,51, ϑ)

T
=

(512,512,52,512,512,52,512,512,52,51,51, ϑ
2
= 5∅)

T, with θ equivalent to (512 logπ11, · · · ,512 logπ23,52
logπ31,52 logπ32,52 logπ33,51 logπ14,51 logπ24, logπ34)T. As an example, 512 logπ11 is the log odds ratio
log[(π11π22)/(π12π21)], and51 logπ14 is the consecutive log odds logπ14/π24.

The advantage of ∇ · logπℵ over A−1 logπℵ is that individual interactions can be easily identified using the former
representation. With the difference operator, each interaction can be identified via products of operators with the
appropriate subscript. Ip and Wang [14] use the difference operator5a for marginal modeling of contingency tables. Other
applications of interactions in measurement theory can be found in Ip et al. [13].
From the above discussion, it is also evident that each interaction represents one degree of freedom. Lemma 1 directly

leads to the following likelihood function in terms of interactions, and the interaction vector in Lemma 1 becomes the
canonical parameter in the likelihood.

Lemma 2. Let Xj = kj, 1 ≤ kj ≤ Kj, 1 ≤ j ≤ J be represented by indicator variables Yk1,...,kJ = 1, when (X1, . . . , XJ) =
(k1, . . . , kJ), and 0 otherwise. The loglikelihood function for X can be expressed as:

`(θ) = sTθ − κ(θ), (3)

where θ = ∇ · logπℵ, sT = yTA and κ(θ) = log(
∑K
k=1 exp(Rkθ)), with Rk being the kth row vector of A.

Example 3. Consider four binary variables (X1, X2, X3, X4)with their interactions specified as follows for easy identification:

θT = (51234,5234,5134,534,5124,524,514,54,5123,523,513,53,512,52,51,5∅)

= (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0).

The Amatrix of Lemma 2 is

A =
(
C C
0 C

)
, where

C =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


.

After normalization of exp(Aθ), the joint probability in lexicographical order is

π11234 = (.1432, .0697, .0725, .0486, .0786, .0506, .0516, .0406,
.0999, .0571, .0582, .043, .0606, .044, .0445, .0375).
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Notice that we use 0 for5∅ in θ so that its right value, log(.0375), emerges after normalization. Individual probability πk is
computed via exp(Rkθ)/

∑K
k=1 exp(Rkθ) so that the sum of πk, 1 ≤ k ≤ K is always 1. Therefore, there is no restriction of

values of canonical parameters of θ.

The following lemma identifies the shared interactions between a J-dimensional joint and its J-conditional distributions.
First, denote the power set of ℵ by 2ℵ.

Lemma 3 (Invariance). For a, b ∈ 2ℵ such that b 6⊂ a,5b logπℵ = 5b logπā|a.

Proof. Because b 6⊂ a, there is a variable Xj such that j ∈ b, but j 6∈ a. Hence, we have5j log(π···,j,···/πa) = log(π···,j,···/πa)−
log(π···,j+1,···/πa) = 5j logπ···,j,···, which implies that5b logπℵ = 5b\{j}5j logπℵ = 5b\{j}5j logπā|a.

Building upon this result, the next lemma shows that the set of invariant interactions, {5b logπℵ, b 6⊂ a}, is equivalent
to πā|a. Two sets are said to be equivalent if all elements from any one set can be derived from the other set.

Lemma 4 (Characterization). Let a ⊂ {1, . . . , J} be fixed. Probability distributions πℵ, and πā|a are, respectively, characterized
by the sets of interactions ȷ = {5b logπℵ, b 6= ∅}, and ı = {5b logπℵ, b 6⊂ a}.

The proof is given in Appendix B. The sets ȷ and ı are, respectively, called the CSOI of πℵ and πā|a. We illustrate the
Characterization Lemma with an example (a continuation of Example 1) that shows how ai|j = π1|2 can be derived from its
CSOI:{512,51}.

Example 4 (Example 1 continued). The CSOI for π1|2 consists of 51 log a24 = log(1/2), 51 log a14 = log(1/2), and
512 log aij = log rij, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3; whence, set the remaining interactions to zero. The vector of interactions
is therefore λ′ = (log 1, log(1/4), 0, log(1/6), log 6, 0, log 6, log(2/3), 0, log(1/2), log(1/2), 0)T. Let (q′ij) be exp(Aλ′)
arranged in a matrix, which gives:

(q′ij) =

(1/4 1 1 1/4
1/2 2 1/3 1/2
1 1 1 1

)
.

Normalizing each column of (q′ij) gives the conditional distribution π1|2.

3. Compatibility and uniqueness conditions

The Invariance Lemma and Characterization Lemma facilitate checking the compatibility and uniqueness of conditional
models. Compatible conditional distributions are those that can be derived from the same joint distribution:

Definition 1. Suppose a and c are both non-empty subsets of ℵ. A joint πℵ is said to be capable of generating π1ā|a if
π1ā|a = πℵ/πa. Two families of J-conditionals, π1ā|a and π2c̄|c , are said to be compatible if there exists a joint πℵ that is capable
of generating both families of J-conditionals. And πℵ is called a compatible joint distribution.

Compatibility becomes an issue only when some interactions are redundantly specified. Naturally, compatibility is
affirmed when the redundant or overlapping interactions are identical.

Theorem 1 (Compatibility). Let π1ā|a and π2c̄|c be two conditional distributions having the same rectangular J-dimensional
support, and let A and C denote the CSOI of π1ā|a and π2c̄|c , respectively. In other words, A = {5

1
b = 5b logπ1ā|a, b 6⊂ a}

and C = {52d = 5d logπ2c̄|c, d 6⊂ c}. Then, the two conditional distributions are compatible if and only if 5
1
b = 5

2
d holds for

b = d.

Proof. If the given conditionals are compatible with some π∗
ℵ
, then, by the Invariance Lemma, 51b = 5b logπ∗

ℵ
and

5
2
d = 5d logπ∗

ℵ
. Hence,51b = 5

2
d holds for b = d.

To prove the converse, consider the union E = A ∪ C. The condition ensures that every5e ∈ E is uniquely determined
from either π1 or π2. If E does not have all the interactions (when a ∩ c 6= ∅), we assign 5f = 0, f ⊂ a ∩ c and let
F = E ∪ {5f }. By the Characterization Lemma, a joint distribution can be constructed from F , and this joint is capable of
generating both π1 and π2 because its CSOI has bothA and C as its subsets.

From Theorem 1, it is straightforward to derive the following corollary due to [2]:

Corollary 1. The two-dimensional conditionals ai|j of (X1|X2) and bj|i of (X2|X1) are compatible if and only if 512 log ai|j =
512 log bj|i.

Corollary 1 implies that, in the genotype example in Section 1, the constrained diagnostic conditional model and the
treatment conditional model are only compatible when their cross-distribution odds ratios are consistent.
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Definition 2. A given set of J-conditional distributions: {πāi|ai , ai ⊂ ℵ, 1 ≤ i ≤ l} is said to be complete for ℵ if every
interaction5b, b ∈ 2ℵ, b 6= ∅ can be derived from one of the given J-conditionals. Otherwise, the given set of J-conditionals
is said to be incomplete.

Theorem 2 (Uniqueness). A given set of J-conditional distributions {πāi|ai , 1 ≤ i ≤ l} specifies a unique joint distribution πℵ if
and only if (1) the set is complete for ℵ, and (2) every pair of conditional distributions are compatible.
Proof. The proof is a direct application of the Characterization Lemma toA = ∪i=li=1{5b logπāi|ai , b 6⊂ ai}.

The following examples illustrate the use of Theorems 1 and 2.

Example 5. For theπ11|2 andπ22|1 with ā = {1} and c̄ = {2}, their CSOIs areA = {5112,5
1
2} andC = {5212,5

2
1}, respectively.

From Theorem 1, π11|2 and π22|1 are compatible if and only if5
1
12 = 5

2
12.

Example 6. Consider checking the compatibility between π112|34 and π213|24 for ℵ = {1234} with ā = {12}
and c̄ = {13}. Their CSOIs are A = {5

1
1234,5

1
123,5

1
124,5

1
134,5

1
234,5

1
12,5

1
13,5

1
14,5

1
23,5

1
24,5

1
1,5

1
2} and

C = {5
2
1234,5

2
123,5

2
124,5

2
134,5

2
234,5

2
12,5

2
13,5

2
14,5

2
23,5

2
34,5

2
1,5

2
3}, respectively. All of the interactions, except

5
1
24,5

1
2,5

2
34,5

2
3, must be equal in order for π

1
12|34 and π213|24 to be compatible.

In Example 6, the collection {π12|34,π13|24} is not complete because interactions 54 logπK1K2K3 l, 1 ≤ l ≤ (K4 − 1) are
absent. When a given collection of conditional distributions are compatible but not complete, a unique family of conditional
distributions, instead of the joint distribution, can be constructed. For example, a unique family of conditional distributions
π123|4 can be derived from {π12|34,π13|24} using the union ofA and C in Example 6.

Theorem 3 (Intersection). An incomplete set of conditional distributions {πāi|ai , 1 ≤ i ≤ l} specifies a unique conditional
distribution πB̄|B , whereB = ∩li=1 ai, if and only if every pair of conditional distributions is compatible.

Proof. The union of the CSOI of {πāi|ai , 1 ≤ i ≤ l} isA = ∪
l
i=1{5b, b 6⊂ ai} = {5b, b 6⊂ ∩

l
i=1 ai = B}. Compatibility implies

that every5b for b 6⊂ B is uniquely determined; whence, by Characterization Lemma 4,A determines a unique πB̄|B .
There are several ways to supplement an incomplete set of conditionals so that a joint distribution can be obtained. For

example, to supplement (X1, X2|X3), options include finding: (1) a marginal distribution of X3, (2) the ‘‘missing’’ interaction
53, or (3) a so-called posterior slice of X3 in the form P[X3 = j|X1 = K1, X2 = K2], 1 ≤ j ≤ K3. From the Characterization
Lemma, the last two options are clearly equivalent because53 is indeed the CSOI of πX3|X1=K1,X2=K2 .

Lemma 5 (Posterior Slice). Let a = {1, . . . ,m} be fixed. Conditional distributions π1ā|a and π2a|xm+1=Km+1,...,xJ=KJ determine a
unique joint distribution.
Proof. By Lemma 4, the CSOI of π1ā|a is A = {5b logπ1

ℵ
, b 6⊂ a}. The CSOI of π2a|xm+1=Km+1,...,xJ=KJ is C =

{5c logπ2a|xm+1=Km+1,...,xJ=KJ , c ⊂ a}. Thus,A∪(C\5∅) is complete forℵ and hence it determines a unique joint distribution.
Moreover, sinceA and C are indexed by disjoint sets, compatibility is automatic.

Example 7 (Example 3 continued). Suppose (X3, X4|X1, X2) is known. (According to the Characterization lemma, it is
uniquely determined by Example 3’s θ except 5a = 0, a ⊂ {1, 2} and its computation is outlined in Appendix). Its
complementary posterior slice should be (X1, X2|X3 = 2, X4 = 2). To verify this, we take 512,52,51 from θ and add
5∅ = 0 to form the CSOI of the posterior slice. Then, the interaction vector isλ = (512,52,51,5∅) = (0.15, 0.16, 0.17, 0).
It follows that

exp(B2λ) = exp(0.48, 0.16, 0.17, 0) = (1.616, 1.1735, 1.1853, 1),

where B2 is taken from Eq. (2). After normalization, the vector takes the value (0.3248, 0.2358, 0.2383, 0.2010). This
has exactly the same value as the distribution of (X1, X2|X3 = 2, X4 = 2) derived from the joint probabilities:
(π11122, π

1
2122, π

1
1222, π

1
2222) = (0.0606, 0.044, 0.0445, 0.0375).

The Posterior Slice Lemma can be useful in applications when marginal data are hard to get but data are available for
a specific combination of values of the conditioning variables. Consider an example in which X indicates the presence or
absence of one ormore genemarkers, and Z is disease statuses of a newly identified or rare disease. Suppose heredity theory
suggests that Z |X follows a specific multinomial distribution. In addition, only data for Z = z0, and hence X |Z = z0 – the
conditional distribution of gene markers given a specific disease status – are available. This is not an uncommon occurrence
in practice. Then, the two pieces of information, Z |X and X |Z = z0, can be combined to create a unique joint distribution for
(X, Z).

4. Discussions and applications

Using mixed parameters, we offer a heuristic derivation for the Characterization Lemma. Afterward, we discuss two
applications of the interaction-based approach.
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4.1. Mixed parameters

Even though Eq. (1) is mathematically equivalent to the saturated loglinear model, there is a major difference:
interactions θℵ by themselves are minimally sufficient parameters in the sense of [15], while loglinear interactions are
not identifiable without additional constraints. To our knowledge, no log-linear model has been proposed for conditional
probabilities. We consider θa|ā = ∇ · logπa|ā a log-linear decomposition for the J-conditional because πa|ā = exp(Aθa|ā).
We now use the mixed parametrizations of [10, p. 122], to justify COSI. Let (θ(1), θ(2)) and (s(1), s(2)), respectively,

denote matching partitions of the canonical interactions θ and the canonical statistic s in Eq. (2). The mean parameters
are µ(i) = Eθs(i), i = 1, 2. A complementary mixed parameter (µ(2), θ(1)) can be formed by ‘‘cross-breeding’’ µ and θ.
Barndorff–Nielsen [10, p. 122] proved that the mixed parameter (µ(2), θ(1)) uniquely specifies the joint distribution. The
motivation of the Characterization Lemma is as follows: if we can make µ(2) equivalent to the marginal distribution πa,
then θ(1) should characterize πā|a, and hence be the CSOI. For illustration, consider the mixed parameter of a bivariate
distribution πij. When the canonical interactions are partitioned into θ(1) = {512,51}, and θ(2) = {52, ϑ}, the mean
parameter corresponding to θ(2) is

∑k
j=1 π+j, 1 ≤ k ≤ J2—i.e., the cumulative marginal distribution X2. Thus, θ(1) must

characterize π1|2. A further partition of θ(1) into {512} and {51}, and a second application of mixed parametrization, leads
to the well-known specification of πij in terms of πi+, π+j, and512.
In the literature, almost all of the theoretical developments of conditional models have focused on the mean parameters

(probabilities). For example, to find a joint distribution from πā|a and πc̄|c , Arnold et al. [16] propose finding marginal
distributions π1a and π2c by solving the constrained linear equations πā|aπ

1
a = πc̄|cπ

2
c , which have a total of K equations,

where K − 1 is the degree of freedom of the joint. Because the combined number of cells in π1a and π2c is often much fewer
than K , the system of equations is over-specified. Furthermore, probabilities must be non-negative. All of these restrictions
oftenmake the linear-equation approach a computationally challenging endeavor. The advantage of the proposed approach
is partly due to its invariance property (Lemma 3).

4.2. Besag’s compatibility check

There is a connection between the compatibility check of [17, explained below] and Theorem 1. Consider the case of
three binary variables; check compatibility for {π(1)1|23,π

(2)
2|13,π

(3)
3|12}. According to [17], there are 3! = 6 different paths

directed from (1, 1, 1) to (2, 2, 2). For example, R1 : (1, 1, 1) → (2, 1, 1) → (2, 2, 1) → (2, 2, 2). Besag defined the
following ratio for this specific path: BR1 = [π(1)(1|11)π(2)(1|21)π(3)(1|22)]/[π(1)(2|11)π(2)(2|21)π(3)(2|22)]. Without a
formal proof, he argued that if the all six ratios are the same, then the three conditional distributions are compatible. From
the CSOI perspective, the ratio BR1 is equal to 5

(1)
123+5

(1)
13 +5

(1)
12 +5

(1)
1 +5

(2)
23 +5

(2)
2 +5

(3)
3 . The superscript indicates

the conditional distribution from which the 5 is derived. For another path, R2 : (1, 1, 1) → (2, 1, 1) → (2, 1, 2) →
(2, 2, 2), the Besag’s ratio is BR2 = [π(1)(1|11)π(3)(1|21)π(2)(1|22)]/[π(1)(2|11)π(3)(2|21)π(2)(2|22)], which is equal to
5
(1)
123+5

(1)
13 +5

(1)
12 +5

(1)
1 +5

(3)
23 +5

(3)
3 +5

(2)
2 . Therefore, BR1 = BR2 if and only if 523 of π

(2) is equal to the 523 of π(3).
When all six of Besag’s ratios are equal, the overlapping interactions are identical, and thus compatible. It can be shown that
the number of checks of Theorem 1 is also J!. Again, Besag [17] operated with the mean parameters, while Theorem 1 relies
on the canonical parameters.

4.3. Near-compatible conditional models

When the conditional models are incompatible, the existence of a joint distribution is jeopardized. Under such a
circumstance, one alternative is to find a so-called near-compatible joint distribution. There has been growing interest in
finding joint distributions that are close to the specified (incompatible) conditional distributions [6,18,11]. Two related areas
of active research regarding incompatible conditional distributions include Markov Chain Monte Carlo and Gibbs sampling
[21], and multiple imputation [19,20].
There are three areas that CSOIs are uniquely suitable to address in the realm of near-compatible conditional models. The

first is to devise a measure to quantify the nearness of a collection of conditionals to a compatible joint model. The second is
to identify the source of incompatibility in terms of their CSOIs. The third is to search for a solution by modifying the source
of incompatibility.
To illustrate this approach, we modify the conditional probabilities in Example 1 so that they become incompatible.

Specifically, (bj|i(1, 1), bj|i(2, 1)) are changed from the original (1/6, 1/6) to (1/4, 1/12) (both italicized):

ai|j =

(1/7 1/4 3/7 1/7
2/7 2/4 1/7 2/7
4/7 1/4 3/7 4/7

)
, bj|i =

(1/4 1/12 3/6 1/6
2/7 2/7 1/7 2/7
2/6 1/12 1/4 1/3

)
.

The corresponding cross-distribution odds ratios (see Example 1) for ai|j and bj|i are, respectively,

(raij ) =
(
1 1/6 6
1/4 6 2/3

)
, (rbij ) =

(
3 1/12 6
1/4 6 2/3

)
.
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Table 1
Errors from using different combinations of interactions for incompatible joint distributions. The L2 error is

∑
(πi|j−ai|j)2+

∑
(πj|i−bj|i)2 . Pseudo-Gibbs1

started the Gibbs sampling chain with bj|i , and pseudo-Gibbs2 started with ai|j .

rπ11 rπ12 L2 error

(ra11, r
a
12) 1 1/6 0.03472

(ra11, r
b
12) 1 1/12 0.09114

(rb11, r
a
12) 3 1/6 0.05851

(rb11, r
b
12) 3 1/12 0.02294

Arithmetic mean 2 1/8 0.01888
Geometric mean 1.732 0.1179 0.00981
Pseudo-Gibbs1 1.009 0.285 0.0115
Pseudo-Gibbs2 3.96 0.203 0.0333

A conventional approach for finding a joint that is least at variancewith the given conditional probabilities is tominimize
an objective function such as L2 error or Kullback–Leibler pseudo-distance [7, p. 30–36]. Any probability-basedminimization
will average out the discrepancies over the entire support, and there is no way to preserve the interactions that are already
in agreement. An interaction-based alternative is to minimize the same objective function, while retaining the consistent
interactions during minimization. For the above incompatible example, one alternative is to specify the joint probabilities,
πij, such that they satisfy rπij = (πijπi+1j+1)/(πi+1jπij+1) = αraij + (1 − α)r

b
ij . Therefore, r

π
11 = α + 3(1 − α), rπ12 =

α′/6 + (1 − α′)/12, and rπij = r
a
ij , otherwise. This approach not only reduces the dimension of minimization from 12

to 2 (i.e., α and α′) but also alleviates the constraints placed on the minimization, because the ranges of rπij are basically
unconstrained.
Table 1 shows the L2 errors for different combinations of rπ11 and r

π
12 of πij, in which the other necessary interaction terms

remain unchanged, using their values from either ai|j or bj|i. The first four entries in Table 1 represent the four combinations
of the ra11, r

a
12, r

b
11 and r

b
12, which are considered as the four corners of the range for (r

π
11, r

π
12). Hence, their errors will tend to

be large. The next two entries employ the component-wise arithmetic means, ((1+ 3)/2, (1/6+ 1/12)/2), and geometric
means, (

√
3,
√
1/72), each of which is considered to be a compromise between the two incompatible distributions. The last

two entries are directly derived from the pseudo-Gibbs sampler, which will be discussed next.
Incompatible conditional specifications are common phenomena in dependence networks; Heckerman et al. [11]

coined the term pseudo-Gibbs sampling for conditional probabilities ‘‘without [necessarily] respecting the consistency
constraints’’. Also, see Arnold et al. [18]. To make comparisons between the pseudo-Gibbs and the CSOI approach, we
generate joint distributions π∗ by applying pseudo-Gibbs samplers between the incompatible ai|j and bj|i. The numerical
results of the Gibbs sampler are summarized as follows. (1) π∗ depends upon the starting value—that is, whether ai|j
or bj|i (correspondingly pseudo-Gibbs1 and Gibbs2) was used to start the chain. (2) Their L2 errors are, respectively,
0.0115 and 0.03325. (3) Their respective CSOIs are log(1.009, 0.285, 0.15, 5.98, 6.06, 0.64, 0.52, 0.48, 4.42, 0.31, 0.76)
and log(3.96, 0.203, 0.067, 6.81, 6.33, 0.62, 0.49, 0.51, 4.16, 0.32, 0.76). The pseudo-Gibbs sampler changes the entire
set of interactions, so none of the originally consistent interactions (rij, i 6= 1 and j 6= 1, 2) are preserved. Moreover,
the 51 of ai|j and 52 of bj|i are altered by the Gibbs samplers even though they do not cause incompatibility. (4) None
of the pseudo-Gibbs can outperform the geometric mean—that is, (

√
3,
√
1/72) gives the smallest error. Geometric means

are equivalent to averages of the overlapping interactions. The results from Table 1, while limited, suggest that estimating
the joint distribution from some average of the incompatible interactions while keeping the consistent portion intact may
be a reasonable alternative to the brute force (pseudo-) Gibbs sampler. Further study in this direction may offer fruitful
opportunities.

4.4. Conclusion

Gelman and Raghuanthan [21] noted that ‘‘the study of conditional distributions is an area where theory has not caught
up with practice.’’ It is our hope that the theoretical work reported here will contribute to some of the central issues such
as invariance, characterization, and solving the incompatibility of conditionally specified models.
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Appendix. Proof of the characterization lemma

(I) Fromprobabilities to interactions. By Lemma 1, the case for ȷ is trivial. For ı, arrange logπā|a in the same lexicographical
order as πℵ, and consider5 · logπā|a. Deleting5b logπā|a, b ⊂ a from5 · logπā|a gives the set ı.
(II) From interactions to probabilities. We first describe how to construct the joint distribution from ȷ. Add 5∅ = 0 to ȷ

to provide a complete set of interactions, then arrange the interactions of ȷ∪ {5∅} into a vector lexicographically and call it
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λ. Let Q = exp(Aλ) = (qk1,···,kJ ). Normalizing the vector gives the following joint probabilities:

πℵ(k1, . . . , kJ) = qk1,...,kJ

/ K1∑
i1=1

· · ·

KJ∑
iJ=1

qi1,...,iJ

 .
Because πℵ and Q only differ by a constant multiplier, they have the same set of interactions. In other words, ȷ =
(5 · logQ) \ 5∅, and π is the required joint.
Analogously, the family of conditional probabilities πā|a can be constructed from ı. Assume without loss of generality

that a = {1, . . . ,m}. For each value of (X1, . . . , Xm) = (i1, . . . , im), add 5e = 0 for all e ⊂ a to ı to form a complete set of
interactions. Arrange each set of interactions lexicographically into a K × 1 vector λ′. Compute Q′ = exp(Aλ′) = (q′k1,...,kj).
Normalize (q′k1,...,kJ ) for each (i1, . . . , im) to obtain the following family of conditional densities:

πā|(x1,...,xm)=(i1,...,im)(im+1, . . . , iJ) = q
′

i1,...,iJ

/ Km+1∑
lm+1=1

· · ·

KJ∑
lJ=1

q′i1,...,im,lm+1,···,lJ

 .
Because all the supplemented interactions,5e, are constant, they will not affect the values of the interaction terms in ı. We
can then follow the same proof of the Invariance Lemma to show that5b logπā|a = 5b logQ

′
= 5b logπℵ, for every b 6⊂ a.

For example, the conditional distribution of (X3, X4|X1, X2) of Example 7 is computed using the same A matrix of
Example 3 with the interaction vector being

λ′
T
= (51234,5234,5134,534,5124,524,514,54,5123,523,513,53,512,52,51,5∅)

= (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.11, 0.12, 0.13, 0.14, 0, 0, 0, 0).

The four 0s in λ represent the four normalizing steps, one for each combination of (X1 = i, X2 = j).
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