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a b s t r a c t

A multivariate ultrastructural measurement error model is considered and it is assumed
that someprior information is available in the formof exact linear restrictions on regression
coefficients. Using the prior information alongwith the additional knowledge of covariance
matrix of measurement errors associated with explanatory vector and reliability matrix,
we have proposed three methodologies to construct the consistent estimators which also
satisfy the given linear restrictions. Asymptotic distribution of these estimators is derived
when measurement errors and random error component are not necessarily normally
distributed. Dominance conditions for the superiority of one estimator over the other under
the criterion of Löwner ordering are obtained for each case of the additional information.
Some conditions are also proposed under which the use of a particular type of information
will give a more efficient estimator.
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1. Introduction

A basic assumption in most of the statistical analysis is that the observations are recorded error-free. In practice, this
assumption is often violated and measurement errors creep into the observations. These measurement errors make the
results invalid, which are meant for no measurement error case. For example, the ordinary least squares estimator (OLSE)
has minimum variance in the class of linear and unbiased estimators in the case of linear regression analysis. The same
OLSE becomes inconsistent as well as biased in the presence of measurement errors in the data. It is well known that some
additional information from outside the sample is needed to obtain the consistent estimators of regression coefficients. This
additional information could be available in different forms in a univariate measurement error model — e.g., either of the
measurement error variances associated with explanatory variable or study variable is known, the ratio of measurement
error variances or reliability ratio is known etc. See, for example, [1–3] for more details.
In many situations, some prior information on regression coefficients is available which can be used to improve upon

the OLSE. When such prior information can be expressed in the form of exact linear restrictions binding the regression
coefficients, the restricted least squares estimator (RLSE) is used. The RLSE is unbiased, consistent, satisfies the given linear
restrictions on regression coefficients and has smaller variability aroundmean than the OLSEwhen there is nomeasurement
error in the data — see [4,5]. However, the RLSE becomes inconsistent and biased when the observations are contaminated
with measurement errors. The problem of finding the estimators which are consistent as well as which satisfy the linear
restrictions in the presence ofmeasurement errors in the data, is addressed in this paper. An iterative procedure for obtaining
the estimators under restrictions using total least squares approach is discussed in [6].
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We have considered a multivariate ultrastructural model – see [7] – for the modeling of measurement errors. The
measurement errors and the random error component are assumed to be normally distributed in most of the literature.
This assumption may not always hold true in many cases. So we do not assume any distributional form of the measurement
errors and the random error component. Only the existence and finiteness of the first four moments of measurement errors
and random error component is assumed — see, for example, [8,9] for non-normality effect in a univariate ultrastructural
model.
Among the different choices available for the additional information to construct the consistent estimators, the use

of covariance matrix of measurement errors and reliability matrix associated with explanatory variables, are the popular
strategies in case of amultivariatemeasurement errormodel — see, for example, [10–14]. Sowemake use of these two types
of information, along with the prior information to construct the estimators of regression coefficients that are consistent
and satisfy the given linear restrictions. The large sample asymptotic approximation theory is employed to derive the
asymptotic distribution of proposed estimators under the specification of an ultrastructural model. The covariancematrices
of asymptotic distribution of estimators are compared under the specification of each type of additional information using
the criterion of Löwner ordering.Whenmore thanone type of additional information is available and canbeused to construct
the consistent estimators, then the choice of estimators depends on the type of additional information used — see [15] for
more details in a univariate ultrastructural model. An attempt is made in this paper to explore which of the two types of
additional information yields more efficient estimators. The estimators under the two types of information are compared,
and the dominance conditions for the superiority of one estimator over the other are derived under the criterion of Löwner
ordering. The effect of departure from the normal distribution of measurement errors and random error component on the
asymptotic distribution of the proposed estimators is also studied. A Monte-Carlo simulation experiment is conducted to
study the finite sample properties of the estimators, and the effect of departure from normality of the measurement errors
on them is also studied.
We would like to discuss the idea of structural equation model (SEM) of which the measurement error models are a

particular case. The SEM is used for testing and estimating the causal relationships based on latent variables (indirectly
measured variables). The SEM consists of several equations representing the relationships between several endogenous and
exogenous variables. The area of SEM has seen an extensive growth in the last three decades and SEM has more advantages
thanmultiple regressionmodels — e.g. SEM hasmore flexible assumptions, use of confirmatory factor analysis to reduce the
measurement error by havingmultiple indicators per latent variable, ability to testmodels withmultiple dependents, better
handling of time series data, autocorrelated data, non-normal data, missing data etc. These are a few of the advantages,
among others. Lee [16] discussed the estimation of regression parameters under functional constraints on parameters
in SEM by using the generalized least squares estimation — see also [17]. In order to obtain the estimators, the penalty
function method [18,19 (p. 156)] is utilized and an algorithm is proposed to achieve this, followed by a numerical example.
Further, Lee and Poon [20] extended the generalized least squares estimation of regression parameters in SEM under a set of
inequality and equality functional restrictions, with a different approach. They proposed to fit the model by minimizing the
discrepancy between the covariance matrices of regression coefficients based on the data with and without measurement
errors. They have not presented any clear analytic form of the estimators but proposed an algorithm to minimize such
difference. This optimization approach yields the maximum likelihood estimators when the weight matrix is changed with
the parameters from iteration to iteration. This procedure yields more efficient estimators than those obtained by penalty
function approach. The efficiency properties of the estimator are not derived analytically, but are analyzed numerically.
Lee [21] discussed an issue of testing the validity of restrictions in SEM in the context of robust generalized least squares
approach. A new test statistic is proposed which is based on minimizing the discrepancy between the covariance matrices
of an identified model and sample covariance matrix. This method is claimed to be less computationally expensive than
earlier available methods. The popular software for doing SEM are LISREL (LInear Structural RELations), AMOS (Analysis of
MOment Structure), EQS, MPLUS etc. For example, the CO command in LISREL model is used to specify a parameter or an
additional parameter to be a function of other parameters of the LISRELmodel, and the CALIS command in SAS does a similar
job but is based on the multivariate normal distribution. The SEM is a complete path model and allows the path analysis by
constructing the path diagram. It can also handle the problem of identification in the estimation of parameters, which is one
of the crucial problem inmeasurement errormodels. The simultaneous equationmodels can be viewed as a particular case of
SEM (see [1, p. 196]) and has been analyzed in the presence of measurement errors in the literature — see, for example, [22–
24]. For structural equationmodels inmeasurement error case, see [25]. The LISREL can also handle the non-normality effect.
The papers by Anderson [26,27] study the functional and structural linear relationships, demonstrate their relationshipwith
SEM, and establish the asymptotic normality of the estimators. The approaches of SEM and measurement error models, in
handling the identifiability problem, are not exactly the same. The SEM has a more general approach by putting various
types of restrictions on the parameters tomake themodel identifiable. Use of different types of additional information yields
different estimators in measurement error models. Goldberger [28–30] demonstrated that the errors of measurement need
not destroy identifiability, provided that the model is otherwise over-identified. In fact, one can trade-off over-identifying
restrictions against the under-identifiability introduced by measurement error. The multivariate measurement error model
considered in this paper is a particular case of SEM, in the sense that it takes into account only one structural relationship
between one endogenous and several exogenous variables under the influence of measurement errors in the observations.
This has been demonstrated briefly in Section 2. A complete bibliography of SEM is out of the objectives of present work.
More interested readers are referred to an excellent exposition to SEM under measurement errors in [1, chapter 8] and
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references cited therein. In the works presented by, for example, Lee [16,21], Lee and Bentler [17] and Lee and Poon [20],
a general approach of constructing estimators based on generalized least squares is presented, and these approaches are
implemented through different approaches of numerical algorithms. No clear analytic form of the estimators is derived.
Since any assumption about the distributional form of either random error, measurement error or any other type of random
error is not needed for the estimation of regression parameters in the generalized least squares estimation, so the issues
related to the effect of departure from the normal distribution of either the measurement errors or any other types of errors
cannot be analytically ascertained. The numerical values of the estimators can only tell the values but do not give any idea
about the nature of effect of departure from normality. Other issues like clear analytic form of the estimators, role and effect
of choice of weight matrix for the generalized least squares estimation etc,. are not discussed in the literature. This work is
an attempt, in this direction, to address these issues. The setup of ultrastructural model which can be expressed in the form
of SEM is considered. Some other approaches which differ from the approaches presented in, for example, [16,17,20,21] are
presented. These approaches are essentially governed by the choice of weight matrices and provide clear analytic forms of
the estimators. Moreover, they do not need any algorithm to estimate the regression parameters. Since the analytical form
of the estimators is clear, so the asymptotic covariance matrices clearly pronounces the effect of departure from normality
of the distribution of measurement errors.
The plan of the paper is as follows. The multivariate ultrastructural model, exact linear restrictions on regression

coefficients and various statistical assumptions are described in Section 2. In Section 3, the construction of consistent
estimators which satisfy the given restrictions, is presented. The asymptotic distributions and dominance conditions of
the estimators are given in Section 4. The findings from the Monte-Carlo simulation experiment are presented in Section 5.
Section 6 contains the concluding remarks followed by the derivation of results in Appendix.

2. The ultrastructural model and prior information

Let a n× 1 vector of observations on study variable η and a n× pmatrix T = (ξij) , (i = 1, 2, . . . , n; j = 1, 2, . . . , p) of
n observations on each of the p explanatory variables are related by

η = Tβ, (2.1)

where β is a p× 1 vector of unknown regression coefficients. Suppose that the variables η and T are unobservable and can
only be observed with a n×1 vector of measurement errors ε = (ε1, ε2, . . . , εn)′ and a n× pmatrix of measurement errors
∆ = (δij) as

y = η + ε and X = T +∆, (2.2)

where y and X are observed values of η and T respectively.
Further, assume that ξij’s are randomly distributed with mean µij and random disturbance φij, (i = 1, 2, . . . , n; j =

1, 2, . . . , p). LetM = (µij) andΦ = (φij) be the n× pmatrices. Then we can express

T = M + Φ. (2.3)

We assume that δij, (i = 1, 2, . . . , n; j = 1, 2, . . . , p) are independent and identically distributed randomvariableswith
mean 0, variance σ 2δ , third moment γ1δσ

3
δ and fourth moment (γ2δ + 3)σ

4
δ . Similarly, φij, (i = 1, 2, . . . , n; j = 1, 2, . . . , p)

are assumed to be independent and identically distributed, with first four finite moments given by 0, σ 2φ , γ1φσ
3
φ and

(γ2φ + 3)σ 4φ respectively. Likewise, assume that εi, (i = 1, 2, . . . , n) are independent and identically distributed with
first four finite moments given by 0, σ 2ε , γ1εσ

3
ε and (γ2ε + 3)σ

4
ε respectively. Here, for a random variable Z , γ1Z and γ2Z

denote the Pearson’s coefficients of skewness and kurtosis of the random variable Z . Further, ε,∆ andΦ are also assumed
to be statistically independent. These specifications can be relaxed at the cost of slight algebraic complexity but without any
conceptual difficulty; see, for example, [10].
The Eqs. (2.1)–(2.3) describe the set up of an ultrastructural model — see [7,31]. The structural and functional forms of

measurement error model as well as the classical regression model can be obtained as its particular cases. When all the row
vectors of M are assumed to be identical, implying that rows of X are random and independent, having some multivariate
distribution, we get the specification of a structural model. WhenΦ is taken identically equal to a null matrix, implying that
σ 2φ = 0 and consequently that the matrix X is fixed but is measured with error, we obtain the specification of a functional
model. When both ∆ and Φ are identically equal to a null matrix, implying that σ 2φ = σ 2δ = 0 and consequently that X
is fixed and is measured without any measurement error, we get the classical regression model. Thus the ultrastructural
model provides a general framework for the study of three interesting models in a unified manner.
Suppose some prior information about the regression coefficients is available. Such prior information can be available

from different sources, for example, from some extraneous sources, similar kinds of experiments conducted in the past,
long association of the experimenter with the experiment etc. Assume that such information can be expressed in the form
of J (<p) exact linear restrictions, binding the regression coefficients as

r = Rβ, (2.4)

where r is a J × 1 known vector and R is a J × p known full row rank matrix.
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We also assume that limn−→∞(µn1, µn2, . . . , µnp)′ =: σµ. This assumption implies that limn−→∞ 1
nM
′M = σµσ

′
µ =

Σµ(say) and limn−→∞ 1
nM
′en = σµ, where en is a n × 1 vector of elements unity. This assumption is needed to avoid the

presence of any trend in the observations — see [32] and for the existence of the asymptotic distribution of the estimators.
For the sake of completeness, we present, now, how the measurement error model can be viewed in the set-up of

structural equation model. We consider, here, the LISREL model in standard notations from [1, chapter 8, p. 194]. We have
used asterisk sign (∗) additionally in the superscript in specifying the model in (2.5)–(2.7), and different variables from
the standard LISREL notations just to distinguish between the variables used in this paper and variables under LISREL.
The quantities inside the brackets represent the dimension of the vectors. The ith set of LISREL equations connecting the
observations on endogenous and exogenous variables is

η∗i = B
∗η∗i + Γ

∗ξ ∗i + ζ
∗

i (i = 1, 2, . . . , n) (2.5)

y∗i = Λ
∗

yη
∗

i + ε
∗

i (2.6)

x∗i = Λ
∗

xξ
∗

i + δ
∗

i (2.7)

where η∗i (m
∗
×1) and ξ ∗i (n

∗
×1) are the vectors of true but unobserved endogenous and exogenous variables, respectively,

with y∗i (p
∗
× 1) and x∗i (q

∗
× 1) being the respective corresponding observed vector values, ζ ∗i (m

∗
× 1) is the vector of usual

disturbance term from regression equation, and ε∗i (p
∗
× 1) and δ∗i (q

∗
× 1) are the corresponding vectors of measurement

errors. The matrices of regression coefficients are B∗ and Γ ∗ whereas the matrices of factor loadings are Λ∗x and Λ
∗
y . The

random vectors ξ ∗i , ζ
∗

i , ε
∗

i and δ
∗

i are assumed to be mutually uncorrelated with mean zero and covariance matricesΦ
∗,Ψ ∗,

Θ∗ε andΘ
∗

δ , respectively.
The ultrastructural model (2.1)–(2.3) becomes a particular case of LISREL in (2.5)–(2.7) by specifying η∗i = ηi, ξ

∗

i = Ti,
y∗i = yi, x

∗

i = Xi, ζ
∗

i = 0 (due to no error in equation model), ε
∗

i = εi, δ∗i = δi, B∗ = 0, Γ ∗ = β ′, Λ∗x = Ip, Λ
∗
y = 1,

Φ∗ΣT :=
1
nM
′M + σ 2φ I , Ψ

∗
= 0,Θ∗ε = σ

2
ε ,Θ

∗

δ = σ
2
δ Ip, p

∗
= 1,m∗ = 1, q∗ = p and n∗ = p. We have additionally assumed

the existence and finiteness of third and fourth order moments of δi, εi and φi.

3. Consistent estimation of parameters

First we state some basic definitions that are needed to develop the construction of consistent estimators which also
satisfy the linear restrictions.
For a matrix B, let (B)ij denote the (i, j)th element of the matrix B.

Definition 1. Let {An : n = 1, 2, . . .} be a sequence of random matrices and let {bn : n = 1, 2, . . .} be a sequence of real
numbers. We say that: (i) An = OP(bn) (An = oP(bn)) if every element of the random matrix An is OP(bn) (oP(bn)), and (ii)
plim An = A if plim (An)ij = Aij ∀ i, jwhere plim denotes the probability in limit.

Now we present some results in the following lemma which are used later in this paper.

Lemma 1. As n→∞,

(i) 1
√
nM
′Φ = OP(1), 1

√
nM
′∆ = OP(1), 1

√
nM
′ε = OP(1),

(ii) 1
√
nΦ
′∆ = OP(1), 1

√
n∆
′ε = OP(1), 1

√
nΦ
′ε = OP(1),

(iii) 1
√
n∆
′∆−

√
nσ 2δ Ip = OP(1),

1
√
nΦ
′Φ −

√
nσ 2φ Ip = OP(1),

(iv) plim( 1n∆
′∆) = σ 2δ Ip , plim(

1
nΦ
′Φ) = σ 2φ Ip ,

(v) plim( 1nM
′∆) = plim( 1nM

′Φ) = plim( 1nΦ
′∆) = plim( 1nM

′ε) = plim( 1nΦ
′ε) = plim( 1n∆

′ε) = 0.

The proof of the lemma is omitted.
The ordinary least squares estimator (OLSE) and restricted least squares estimator (RLSE) of β under the classical

regression model without measurement errors are

b = S−1X ′y

and

bR = b+ S−1R′(RS−1R′)−1(r − Rb)

respectively, where S = X ′X and bR is derived under the restrictions (2.4).
Note that b and bR are also themaximum likelihood estimators of β in the classical regressionmodel whenmeasurement

errors are absent and disturbances follow a multivariate normal distribution.
Further, let Σ = Σµ + σ 2φ Ip + σ 2δ Ip, RΣ = RΣ−1R′ and, assuming that as n → ∞, plim (S/n) = Σ , then

plim (X ′y/n) = (Σ − σ 2δ Ip)β . Using Lemma 1, we have

plim b = (Ip − σ 2δ Σ
−1)β (3.1)
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and

plim bR = [Ip − σ 2δ Σ
−1(Ip − R′R−1Σ RΣ

−1)]β. (3.2)

Thus it follows from (3.1) and (3.2) that both b and bR are inconsistent estimators of β . Moreover, b does not satisfy the
restrictions (2.4) but bR satisfies the restrictions (2.4). Note that if σ 2δ = 0 (which corresponds to the classical regression
model with nomeasurement errors on explanatory variables T ), then both b and bR are consistent estimators of β . Also note
that if σ 2δ > 0, then bR is consistent for estimating β only if J = p, which is a trivial case where β is completely known from
the restrictions only. So we ignore this case.
In order to obtain the consistent estimators of regression coefficients in measurement error models, we need some

additional information. Herewe propose to utilize the following two types of additional information separately, to construct
the consistent estimators which also satisfy the linear restriction:
(i) the reliability matrix associated with explanatory variables is known and
(ii) the covariance matrix of measurement errors associated with explanatory variables is known.

3.1. When reliability matrix of explanatory variables is known

We follow the approach proposed by Gleser [11] for the construction of consistent estimators of the regression
coefficients satisfying the linear restrictions under the assumption of a known reliability matrix. The reliability matrix
associated with the explanatory variables of the model is defined as Σ−1ObsΣTrue where ΣObs and ΣTrue are the covariance
matrices of observed and true values of explanatory variables. Based on this, the reliability ratio in our context can be
expressed as

K = Σ−1(Σ−1 − σ 2δ Ip). (3.3)

This definition of the reliabilitymatrix in (3.3) is the generalization of reliability ratio in a univariatemodel in psychometrics
literature — see [33,3,2,34]. Gleser [11] suggests estimating the reliability matrix K consistently, say by KX , using some prior
information and data on the explanatory variables, and then to use the obtained KX to construct an estimator of β .
We assume that

KX = Σ−1X ΣT , (3.4)

is known withΣX := 1
nM
′M + σ 2φ Ip + σ

2
δ Ip andΣT :=

1
nM
′M + σ 2φ Ip.

Since, as n→∞, plim b = (Ip − σ 2δ Σ
−1)β and lim KX = (Ip − σ 2δ Σ

−1), a consistent estimator of β is

b(1)K = K
−1
X b. (3.5)

Gleser [11] also discusses different ways to estimate the reliability matrix under functional and structural models — see
also [12]. He also showed that the knowledge of the reliability matrix makes the measurement error model identifiable
and gives the consistent estimators of the parameters as well. The advantage of such an approach based on the reliability
matrix is that the classical tools of regression analysis can be employed by a simple transformation on the measurement
error-ridden data. We refer the readers to [11,12,2 (p. 139)] for more details on this approach. It may be noted that when K
is known from some outside sample information, even then a consistent estimator of β can be obtained by replacing KX by
K in (3.5).
However, b(1)K is consistent for β but it does not satisfy the given linear restrictions — i.e., Rb

(1)
K 6= r .

Thus, it is desired to find a consistent estimator of β , which also satisfies the given restrictions (2.4). To achieve this, we
propose to minimize (b(1)K − β)

′S(b(1)K − β) with respect to β , subject to the restrictions Rβ = r and obtain the following
estimator:

b(2)K = b
(1)
K + S

−1R′R−1S (r − Rb
(1)
K ), (3.6)

where RS = RS−1R′. Such an estimator can be viewed as arising from a two stage restricted regression estimation procedure.
In the first stage, we use the method of moments (or maximum likelihood under normality) under the assumption of
known reliability matrix which gives b(1)K . Then, in the second stage, minimize the weighted error sum of squares under
the constraint Rβ = r which gives b(2)K . Such an estimator can also be obtained by replacing b in bR by b

(1)
K . Clearly plim

b(2)K = β and Rb
(2)
K = r . Thus b

(2)
K is consistent for β and satisfies the linear restrictions as well.

An alternative strategy to obtain the consistent estimator of β satisfying the restrictions is to utilize the plim bR. Since,
as n→∞,

plim bR =
[
Ip − (σ 2δ Σ

−1)
{
Ip − R′

(
R(σ 2δ Σ

−1)R′
)−1
R(σ 2δ Σ

−1)
}]
β

and

lim KX = Ip − σ 2δ Σ
−1,
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another consistent estimator of β is obtained by adjusting plim bR as

b(3)K =
[
KX + (Ip − KX )R′

(
R(Ip − KX )R′

)−1 R(Ip − KX )]−1 bR
= A−1KX bR, say, (3.7)

where

AKX = KX + (Ip − KX )R
′
(
R(Ip − KX )R′

)−1 R(Ip − KX ).
Clearly, plim b(3)K = β . Moreover, RAKX = R ⇒ R = RA−1KX and Rb

(3)
K = RA

−1
KX
bR = RbR = r . So b

(3)
K is consistent for β and

satisfies the linear restrictions.
Another approach to find the consistent estimator ofβ satisfying the linear restrictions is tominimize (b(1)K −β)

′(b(1)K −β)
with respect to β such that Rβ = r . This yields the following estimator

b(4)K = b
(1)
K + R

′(RR′)−1(r − Rb(1)K ), (3.8)

for which plim b(4)K = β and Rb
(4)
K = r . Such an estimator can also be thought of as arising from a two stage least squares

approach. The first stage is to use the method of moment (or maximum likelihood under normality) under the known
reliabilitymatrix and obtain b(1)K . The second stage involves using the least squares principle tominimize (b

(1)
K −β)

′(b(1)K −β)
under constraints Rβ = r which gives b(4)K .

3.2. When covariance matrix of measurement errors in explanatory variables is known

We assume that the covariance matrix of measurement errors associated with explanatory variables – i.e., Σδ = σ 2δ Ip
– is known. This essentially reduces to assuming that σ 2δ is known. It may be noted that the further analysis can also be
carried out withΣδ (without assuming the σ 2δ Ip structure) with suitably defining the coefficients of skewness and kurtosis
for a multivariate distribution.
We have plim b = (Ip − σ 2δ Σ

−1)β and plim( 1nS) = Σ . It follows that when σ
2
δ is known, a consistent estimator of β is

b(1)δ = (S − nΣδ)
−1X ′y,

= (S − nσ 2δ Ip)
−1X ′y, (3.9)

see [3,14,35]. Here (S − nσ 2δ Ip) is assumed to be a positive definite matrix. Note that b
(1)
δ is also the maximum likelihood

estimator under the assumption of normal distribution of measurement errors and known σ 2δ . Clearly, b
(1)
δ is consistent

for β , but Rb(1)δ 6= r — i.e., it does not satisfy the given linear restrictions (2.4). Therefore, to obtain an estimator of β that
is consistent as well as which satisfies the given linear restrictions (2.4), Shalabh, Garg and Misra [35] discussed various
approaches. Some are described here for the sake of completeness of paper. Firstly, they propose to minimize he weighted
sum of squares due to errors (b(1)δ − β)

′S(b(1)δ − β)with respect to β such that Rβ = r . This yields the following estimator:

b(2)δ = b
(1)
δ + S

−1R′R−1S (r − Rb
(1)
δ ), (3.10)

where RS = RS−1R′. Clearly, plim b
(2)
δ = β and Rb

(2)
δ = r — i.e., b

(2)
δ is consistent as well as satisfying the linear restrictions

(2.4). This estimator can also be thought as arising from a two stage least squares approach. Use method of moments (or
maximum likelihood under normality assumption) under known Σδ in the first stage which yields b

(1)
δ . Then minimize

(b(1)δ − β)
′S(b(1)δ − β) with respect to β under the constraints Rβ = r in the second stage and then b

(2)
δ is obtained. The

estimator b(2)δ can also be obtained by replacing b in bR by b
(1)
δ .

Next, since

plim bR = [Ip − σ 2δ (Ip −Σ
−1R′R−1Σ R)Σ

−1
]β

and plim( 1nS) = Σ , another consistent estimator of β can be obtained by adjusting the plim bR as

b(3)δ = [Ip − nσ
2
δ (Ip − S

−1R′R−1S R)S
−1
]
−1bR

= A−1δ bR, say, (3.11)

where Aδ Ip − nσ 2δ (Ip − S
−1R′R−1S R)S

−1. Clearly, plim b(3)δ = β . Moreover RAδ = R and thus R = RA
−1
δ , so

Rb(3)δ = RA
−1
δ bR = RbR = r.

Hence the estimator b(3)δ is a consistent estimator of β and it also satisfies the linear restrictions (2.4).
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Alternatively, following the two stage least squares procedure to obtain b(1)δ in the first stage and use least squares
principle to minimize (b(1)δ − β)

′(b(1)δ − β) with respect to β , subject to the linear restrictions Rβ = r in the second stage.
This gives the following estimator:

b(4)δ = b
(1)
δ + R

′(RR′)−1(r − Rb(1)δ ), (3.12)

for which plim b(4)δ = β and Rb
(4)
δ = r — i.e., b

(4)
δ is also consistent for β and satisfies the linear restrictions (2.4).

4. Asymptotic properties of the estimators

The exact distribution and finite sample properties of the estimators b(l)K and b
(l)
δ , (l = 2, 3, 4) are difficult to derive.

Even if derived, the expressions will turn out to be complicated and it may not be possible to draw any clear inference from
them. Moreover, the mean of b(1)δ does not exist under the normal distribution of measurement errors — see [2 (p. 58),36].
So we propose to employ the large sample asymptotic approximation theory to study the asymptotic distribution of the
estimators.
Define a function f : Rp×p × Rp×p −→ Rp×p as

f (Z1, Z2) = Z1(Z2 ∗ Ip), Z1, Z2 ∈ Rp×p, (4.1)

where ∗ denotes the Hadamard product operator of matrices and Rp×p is the collection of all p× p real matrices.
Let U and V be any positive definite matrices of appropriate order. Define

Ω = g(U, V ) = Ξ(U, V )+ Υ (U, V ) (4.2)

where

Ξ(U, V ) = (σ 2δ + σ
2
φ )[σ

2
δ {(ββ

′
− Uββ ′U)+ (tr Vββ ′U)Ip} + (tr Vββ ′V )Σ]

+ {σ 2ε + σ
2
δ (tr(2U − Ip)ββ

′)}Σ − σ 4δ ββ
′ (4.3)

Υ (U, V ) = γ1δσ
3
δ

[
f
(
σµe′p, Uββ

′U
)
+
{
f
(
σµe′p, Uββ

′U
)}′
− 2f

(
Ip, epσµ′Vββ ′U

)]
+ γ1φσ

3
φ

[
f
(
σµe′p, Vββ

′V
)
+
{
f
(
σµe′p, Vββ

′V
)}′
+ 2f

(
Ip, epσµ′Vββ ′V

)]
+ γ2δσ

4
δ f
(
Ip, Uββ ′U

)
+ γ2φσ

4
φ f
(
Ip, Vββ ′V

)
. (4.4)

Now we have the following theorem.

Theorem 1. The asymptotic distributions of
√
n(b(1)K − β),

√
n(b(2)K − β),

√
n(b(3)K − β) and

√
n(b(4)K − β) are normal with

common mean vector 0 and covariance matrices given by

Ω
(1)
K = (ΣK)

−1ΩK (ΣK)−1 (4.5)

Ω
(2)
K = A2Ω

(1)
K A2

′, (4.6)

Ω
(3)
K = A3ΩAK A3

′, (4.7)

Ω
(4)
K = A4Ω

(1)
K A4

′ (4.8)

respectively, where

K̄ = Ip − K

K̄X = Ip − KX

AKX = KX + (Ip − KX )R
′
(
R(Ip − KX )R′

)−1 R(Ip − KX )
ĀKX = K̄X + (Ip − K̄X )R

′
(
R(Ip − K̄X )R′

)−1
R(Ip − K̄X )

AK = lim
n→∞

AKX

ĀK = lim
n→∞

ĀKX

A2 = Ip − K̄R′{RK̄R′}−1R, (4.9)

A3 = A−1K A2Σ
−1, (4.10)

A4 = [Ip − R′(RR′)−1R], (4.11)

ΩK = g(K , K̄) (4.12)
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ΩAK = g(AK , ĀK ) (4.13)

N(K) = Υ (K , K̄) (4.14)

N(AK ) = Υ (AK , ĀK ). (4.15)

Proof. See Appendix for the proof of theorem. �

The quantity N(K) in (4.14) depicts the non-normality effect on the covariance matrix of the asymptotic distributions of
√
n(b(1)K −β),

√
n(b(2)K −β) and

√
n(b(4)K −β)whereas the quantity N(AK ) in (4.15) (which is obtained on replacing K by AK

in N(K)) shows the non-normality effect on the covariance matrix of the asymptotic distribution of
√
n(b(3)K − β). It is clear

from (4.14) and (4.15) that the skewness and kurtosis of the distributions of δij and φij only affect the covariance matrices
in the asymptotic distributions of all the estimators. The departure from normality of the distribution of εi does not affect
the asymptotic distribution of any of the estimators. Themagnitude of departure from normality depends on the values and
degree of skewness and kurtosis of the distributions of δij and φij. If the distribution of measurement errors is normal, then
both N(K) and N(AK ) become zero.
Nowwe find the dominance conditions of b(l)K , (l = 1, 2, 3, 4) under Löwner ordering, based on the covariance matrices

of their asymptotic distributions.
In further text, we refer Löwner ordering to the comparison of covariance matrices of the asymptotic distribution of the

estimators.
It may be noted that b(1)K does not satisfy the given linear restrictions (2.4), while b(2)K , b

(3)
K and b(4)K satisfy the given

restrictions. So it would be interesting to find the conditions under which the use of prior information results gain in
efficiency. So, now we compare the restricted estimators b(l)K , (l = 2, 3, 4) with the unrestricted estimator b(1)K under
the criterion of Löwner ordering.
First we compare b(1)K and b

(2)
K . SinceΩ

(1)
K is a positive definite matrix, we can write

Ω
(1)
K −Ω

(2)
K = (Ω

(1)
K )

1
2 [Ip − (Ω

(1)
K )
−
1
2 A2Ω

(1)
K A
′

2(Ω
(1)
K )
−
1
2 ](Ω

(1)
K )

1
2 .

Since (Ω(1)
K )
−
1
2 A2Ω

(1)
K A
′

2(Ω
(1)
K )
−
1
2 := W is a symmetric matrix, it can be written as ΓΛΓ ′, where Γ is the diagonal matrix

of the eigenvalues λj , (j = 1, 2, . . . , p) ofW andΛ is the orthogonal matrix of the eigenvectors ofW . Since Γ Γ ′ = Ip, we
can express

Ω
(1)
K −Ω

(2)
K = (Ω

(1)
K )

1
2 [Ip − ΓΛΓ ′](Ω

(1)
K )

1
2

= (Ω
(1)
K )

1
2Γ [Ip −Λ]Γ ′(Ω

(1)
K )

1
2 .

Thus Ω(1)
K − Ω

(2)
K is positive (or negative) definite matrix when (Ip − Λ) is positive (or negative) definite, which holds

true when λj < (or >)1; ∀j = 1, 2, . . . , p. Therefore b(1)K is less efficient than b
(2)
K under Löwner ordering when all the

eigenvalues of the matrix (Ω(1)
K )
−
1
2 A2Ω

(1)
K A
′

2(Ω
(1)
K )
−
1
2 are less than unity, and vice versa.

In case (Ω(1)
K )
−
1
2 A2(Ω

(1)
K )

1
2 is symmetric, then b(2)K is uniformly superior to b

(1)
K under Löwner ordering.

In a similar fashion, it can be found that b(1)K is less efficient than the b(3)K and b(4)K when all the eigenvalues of the
matrices (Ω(1)

K )
−
1
2 A3Ω

(1)
AK
A′3(Ω

(1)
K )
−
1
2 and (Ω(1)

K )
−
1
2 A4Ω

(1)
K A
′

4(Ω
(1)
K )
−
1
2 , respectively are less than unity and vice versa. In case

(Ω
(1)
K )
−
1
2 A3(Ω

(1)
AK
)
1
2 and (Ω(1)

K )
−
1
2 A4(Ω

(1)
K )

1
2 are symmetric matrices, then b(3)K and b

(4)
K , respectively, are uniformly superior

to b(1)K under Löwner ordering.
Now we compare the restricted estimators among themselves. First we compare b(2)K and b

(3)
K and we find that

Ω
(2)
K −Ω

(3)
K = A2(Ω

(1)
K )

1
2

[
Ip − (Ω

(1)
K )
−
1
2 A−12 A3ΩAK A

′

3A
′−1
2 (Ω

(1)
K )
−
1
2

]
(Ω

(1)
K )

1
2 A′2 . (4.16)

It follows from (4.16) that b(3)K is superior to b(2)K under Löwner ordering when all the eigenvalues of the matrix
(Ω

(1)
K )
−
1
2 A−12 A3ΩAK A

′

3A
′−1
2 (Ω

(1)
K )
−
1
2 are less than unity and vice versa. The uniform superiority of b(2)K over b

(3)
K holds true

when (Ω(1)
K )
−
1
2 A−12 A3Ω

1
2
AK
is symmetric.

It can also be obtained that b(2)K is less efficient than b
(4)
K under Löwner ordering when all the eigenvalues of the matrix

(Ω
(1)
K )
−
1
2 A−12 A4Ω

(1)
K A
′

4A
′−1
2 (Ω

(1)
K )
−
1
2 are less than unity and vice versa. Again, in case (Ω(1)

K )
−
1
2 A−12 A4(Ω

(1)
K )

1
2 is symmetric,

then b(4)K is uniformly superior to b
(2)
K under Löwner ordering.

Similarly, b(4)K is superior to b
(3)
K under Löwner ordering when all the eigenvalues of thematrix (Ω

(1)
K )
−
1
2 A−14 A3ΩAK A

′

3A
′−1
4

(Ω
(1)
K )
−
1
2 are less than unity, and vice versa. The uniform superiority of b(3)K over b

(4)
K holds when (Ω

(1)
K )
−
1
2 A−14 A3Ω

1
2
AK
is

symmetric.
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Since the assumption of normality is a popular assumption in the literature, so we present the results of Theorem 1when
measurement errors and random error component follow normal distributions.

Corollary 1. Assume that δij ∼ N(0, σ 2δ ), φij ∼ N(0, σ
2
φ ) and εi ∼ N(0, σ

2
ε ) for all (i = 1, 2, . . . , n; j = 1, 2, . . . , p). Then

the asymptotic distributions of
√
n(b(1)K − β),

√
n(b(2)K − β),

√
n(b(3)K − β) and

√
n(b(4)K − β) are normal, with common mean

vector 0 and covariance matrices given by

Ω
(1)
KN = (ΣK)

−1Ξ(K , K̄)(ΣK)−1 (4.17)

Ω
(2)
KN = A2Ω

(1)
KN A2

′, (4.18)

Ω
(3)
KN = A3Ξ(AK , ĀK )A3

′, (4.19)

Ω
(4)
KN = A4Ω

(1)
KN A4

′ (4.20)

respectively.

The next theorem describes the asymptotic distributions of
√
n
(
b(l)δ − β

)
, (l = 1, 2, 3, 4) — see also [35].

Theorem 2. The asymptotic distribution of
√
n
(
b(l)δ − β

)
is normal with mean vector 0 and covariance matrix BlΩδBl′, l =

1, 2, 3, 4, where

Ωδ = Ξδ + Nδ (4.21)

Ξδ = σ
2
εΣ + σ

2
δ (trββ

′)Σ + σ 4δ ββ
′ (4.22)

B1 = (Σ − σ 2δ Ip)
−1 (4.23)

B2 = {Ip −Σ−1R′(RΣ−1R′)−1R}(Σ − σ 2δ Ip)
−1

= A2(ΣK)−1, (4.24)

B3 = [Ip − σ 2δ {Σ
−1
−Σ−1R′(RΣ−1R′)−1RΣ−1}]−1{Σ−1 −Σ−1R′(RΣ−1R′)−1RΣ−1},

= A3, (4.25)

B4 = {Ip − R′(RR′)−1R}(Σ − σ 2δ Ip)
−1

= A4(ΣK)−1, (4.26)

and

Nδ = γ1δσ 3δ
{
f (σµe′p , ββ

′)+
(
f (σµe′p , ββ

′)
)′}
+ γ2δσ

4
δ f (Ip , ββ). (4.27)

A2, A3 and A4 are given in Theorem 1 in (4.9)–(4.11).

The quantity Nδ is the contribution of non-normality of distribution of δij in the covariance matrices of the asymptotic

distributions of
√
n
(
b(l)δ − β

)
(l = 1, 2, 3, 4). Clearly the effect of non-normality of distributions of φij and εi do not affect

the asymptotic distribution of the estimators. The magnitude of this effect depends on the skewness and kurtosis of the
distribution of δij.
Nowwe find the dominance conditions for the superiority of b(k)δ over b

(l)
δ (k, l = 1, 2, 3, 4, k 6= l) in the sense of Löwner

ordering. The dominance conditions for the superiority of b(1)δ over b
(2)
δ , b

(3)
δ , and b

(4)
δ will give an idea about the role of prior

information in improving the estimators.
It is observed that b(k)δ is less efficient than b

(l)
δ (k, l = 1, 2, 3, 4; k 6= l) under the criterion of Löwner ordering when

all the eigenvalues of the matrixΩ
−
1
2

δ B−1k BlΩδB′lB
′−1
k Ω

−
1
2

δ are less than unity, and vice versa. IfΩ
−
1
2

δ B−1k BlΩ
1
2
δ is symmetric,

then the uniform superiority of b(l)δ over b
(k)
δ holds true under Löwner ordering.

The next corollary presents the results of Theorem 2 when measurement errors and random error component are
normally distributed.

Corollary 2. Assume that δij ∼ N(0, σ 2δ ), φij ∼ N(0, σ 2φ ) and εi ∼ N(0, σ 2ε ) for all i = 1, 2, . . . , n; j = 1, 2, . . . , p.

The asymptotic distribution of
√
n
(
b(l)δ − β

)
is normal with mean vector 0 and covariance matrix BlΞδBl′, (l = 1, 2, 3, 4),

respectively.
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Another question arises that, given both the information viz. the covariance matrix of measurement errors associated
with explanatory variables and reliabilitymatrix of explanatory variables, which information yieldsmore efficient estimator
and under what conditions? Such guidelines will help the applied workers in choosing a good estimator, depending on their
experimental conditions. To answer this, we analyze the difference of the covariance matrices of asymptotic distributions
of
√
n(b(l)K − β) and

√
n(b(l)δ − β) (l = 2, 3, 4) and obtain the dominance conditions of one estimator over the other under

the criterion of Löwner ordering.
Let D(l) denote the difference between covariance matrices of asymptotic distributions of

√
n(b(l)K − β) and

√
n(b(l)δ −

β) (l = 2, 3, 4), then

D(2) = A2(ΣK)−1(ΩK −Ωδ)(ΣK)−1A′2 (4.28)

D(3) = A3(ΩAK −Ωδ)Σ
−1A′3, (4.29)

D(4) = A4(ΣK)−1(ΩK −Ωδ)(ΣK)−1A′4. (4.30)

Thus it is clear from (4.28) that b(2)K is superior (or inferior) than b
(2)
δ under Löwner ordering if (ΩK − Ωδ) is a negative (or

positive) semi-definite matrix. Moreover, it also follows from (4.28) and (4.30) that the dominance conditions of b(2)K over
b(2)δ and b

(4)
K over b

(4)
δ are the same. Let us consider

ΩK −Ωδ = Θ + [N(K)− Nδ] (4.31)

where

Θ = (σ 2δ + σ
2
φ )[σ

2
δ {(tr K̄ββ

′K)Ip − Kββ ′K} + (tr K̄ββ ′K̄)Σ] − 2σ 2δ (tr K̄ββ
′)Σ + σ 2δ (σ

2
φ − σ

2
δ )ββ

′.

It is difficult to derive any clear conditions for the definiteness or semi-definiteness of thematrix (ΩK−Ωδ). If we assume
that both δij and φij have a symmetric and platykurtic distribution (e.g., normal), then the quantity (N(K) − Nδ) vanishes
and (semi)definiteness of the matrixΘ ensures the dominance of one estimator over the other. Using the following lemma,
we check the (semi)definiteness of the matrixΘ and obtain the dominance conditions for the superiority of one estimator
over the other when [N(K)− Nδ] is zero.

Lemma 2. Let A be a p× p non-negative definite matrix and B be a p× p positive definite matrix. Then (A− B) is positive semi
definite matrix if and only if λi ≤ 1 ∀ i = 1, 2, . . . , p where λi’s are the eigenvalues of the matrix B−

1
2 AB−

1
2 .

Proof. See [5] for proof. �

If (tr K̄ββ ′K) > 0, thenΘ is positive semi-definite if and only if

• all the eigenvalues of the matrixΘ
−
1
2

2 Θ1Θ
−
1
2

2 are less than or equal to unity, provided σ 2φ > σ 2δ ,

• all the eigenvalues of the matrixΘ
−
1
2

4 Θ3Θ
−
1
2

4 are less than or equal to unity, provided σ 2φ < σ 2δ ,

• all the eigenvalues of the matrixΘ
−
1
2

2 Θ3Θ
−
1
2

2 are less than or equal to unity, provided σ 2φ = σ
2
δ ,

where

Θ1 = (σ
2
δ + σ

2
φ ){(tr K̄ββ

′K̄)Σ + σ 2δ (tr K̄ββ
′K)Ip} + σ 2δ (σ

2
φ − σ

2
δ )ββ

′,

Θ2 = (σ
2
δ + σ

2
φ )σ

2
δ Kββ

′K + 2σ 2δ (tr K̄ββ
′)Σ,

Θ3 = (σ
2
δ + σ

2
φ ){(tr K̄ββ

′K̄)Σ + σ 2δ (tr K̄ββ
′K)Ip},

Θ4 = (σ
2
δ + σ

2
φ )σ

2
δ Kββ

′K + 2σ 2δ (tr K̄ββ
′)Σ − σ 2δ (σ

2
φ − σ

2
δ )ββ

′.

(4.32)

If (tr K̄ββ ′) < 0, thenΘ is positive semi-definite if and only if

• all the eigenvalues of the matrixΘ
−
1
2

6 Θ5Θ
−
1
2

6 are less than or equal to unity, provided σ 2φ > σ 2δ ,

• all the eigenvalues of the matrixΘ
−
1
2

8 Θ7Θ
−
1
2

8 are less than or equal to unity, provided σ 2φ < σ 2δ ,

• all the eigenvalues of the matrixΘ
−
1
2

6 Θ7Θ
−
1
2

6 are less than or equal to unity, provided σ 2φ = σ
2
δ ,

where

Θ5 = (σ
2
δ + σ

2
φ )(tr K̄ββ

′K̄)Σ + σ 2δ (σ
2
φ − σ

2
δ )ββ

′
− 2σ 2δ (tr K̄ββ

′)Σ,

Θ6 = (σ
2
δ + σ

2
φ )σ

2
δ {Kββ

′K − (tr K̄ββ ′K)Ip},

Θ7 = (σ
2
δ + σ

2
φ )(tr K̄ββ

′K̄)Σ − 2σ 2δ (tr K̄ββ
′)Σ,

Θ8 = (σ
2
δ + σ

2
φ )σ

2
δ {Kββ

′K − (tr K̄ββ ′K)Ip} − σ 2δ (σ
2
φ − σ

2
δ )ββ

′.

(4.33)
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5. Simulation study

The asymptotic distribution of the estimators explain the behavior and properties of the distribution of estimators
when sample size is large. To study the finite sample properties of the estimators, we conducted a Monte-Carlo simulation
experiment. Another objective of the Monte-Carlo simulation experiment was to study the effect of departure from
normality of the distribution of measurement errors and random error component, on the finite sample behavior of the
estimators. We used the following distributions for this purpose:

(i) Normal distribution (having no skewness and no kurtosis),
(ii) Student’s t distribution (having zero skewness but non-zero kurtosis) and
(iii) Gamma Distribution (having both non-zero skewness and non-zero kurtosis).

We considered two sample sizes n = 25 and n = 45 which can be considered as small and large samples, respectively.

We chose the following values of other parameters to generate the observations: p = 5, β =


2.2
1.1
3.0
4.2
2.5

 ,


2.0
−3.2
2.5
−5.1
1.5

 , R =
0.8 0.6 0.7 0.9 0.8
0.2 0.7 0.4 0.7 0.8
0.6 0.4 0.6 0.1 0.4
0.5 0 0.8 0.9 0.4

 and obtained r = Rβ . We fixed twomatrices of orders 25×5 and 45×5 forM . The experiment is
conducted for the following values and combinations of the variances (σ 2ε , σ

2
φ , σ

2
δ ): (0.4, 0.4, 0.4), (0.4, 0.4, 1), (1, 0.4, 0.4),

(0.4, 1, 0.4), (1, 1, 0.4)(1, 1, 1). The observations from all the distributions were scaled suitably to have zero mean and the
same variance as specified in the different combinations. The reliabilitymatrix KX = ( 1nM

′M+σ 2φ Ip+σ
2
δ Ip)

−1( 1nM
′M+σ 2φ Ip)

can be obtained with these set of values and is used in constructing the estimators, b(l)K and b
(l)
δ , (l = 1, 2, 3, 4). The bias

vectors and mean squared error (MSE) matrices of b(l)K and b
(l)
δ , (l = 1, 2, 3, 4) are estimated empirically based on 10000

replications for all combinations of (σ 2ε , σ
2
φ , σ

2
δ ) stated above. Keeping in mind the length of the paper, only a few results

are presented here in the Tables 1–6.
It is observed that the absolute values of empirical bias (EB) of b(l)K and b

(l)
δ , (l = 1, 2, 3, 4) goes to a null vector as sample

size increases. The magnitude of EBs and rate of such convergence depends on the values of (σ 2ε , σ
2
φ , σ

2
δ ). This property of

the estimators is also evident from the asymptotic results. The magnitude of empirical absolute bias is smaller under the
sample size n = 43 than n = 25, which shows that the estimators under consideration are asymptotically unbiased, even
for this sample size. This establishes the asymptotic unbiasedness of all the estimators as suggested by the analytic results.
No clear uniform superiority of any estimator under the case of known reliability ratio is clearly seen from the simulated
results. In general, b(3)K is found to have smaller empirical absolute bias among others, but the difference in the magnitude
of bias with other estimators’ bias is small. Among the estimators b(l)δ , (l = 2, 3, 4), b

(3)
δ has the smallest empirical absolute

bias, while b(4)δ has the largest empirical absolute bias, in both the small and large samples.
Observing the values of the empirical mean squared error matrices (EMSEM) of b(l)K and b

(l)
δ (l = 2, 3, 4) from

the Tables 1–6, it can be seen that the variability of all the estimators decreases as the sample size increases under
all distributions of measurement errors under consideration, viz., normal, t , and gamma,. This clearly establishes the
consistency property of the estimators as explained by the asymptotic theory. We observe, under all the distributions of
measurement errors, that

EMSEM(b(2)K )≤L EMSEM(b
(3)
K )≤L EMSEM(b

(4)
K ), (5.1)

EMSEM(b(3)δ )≤L EMSEM(b
(2)
δ )≤L EMSEM(b

(4)
δ ), (5.2)

where ≤L implies Löwner ordering. For the two square matrices G1 and G2, G1≤L G2 implies that G1 − G2 is negative semi
definite. Thus it is clear from (5.1) that b(2)K is better than b

(3)
K and b

(4)
K both b

(3)
δ is better then b

(2)
δ and b

(4)
δ both under the

criterion of Löwner ordering of EMSEM. Since the dominance conditions stated in the earlier Section depend on the unknown
parameters, so we also verified them under the given parametric set up. The dominance under simulated results goes as per
the dominance conditions based on asymptotic theory in most of the cases.
In order to have an idea about the effect of prior information on the efficiency of the estimators, we compared the EMSEM

of unrestricted estimators b(1)K and b
(1)
δ with the restricted estimators b

(l)
K and b

(l)
δ (l = 2, 3, 4), respectively. It is observed

that under all the distributions, b(1)K and b
(1)
δ are less efficient than b

(l)
K and b

(1)
δ (l = 2, 3, 4), respectively in the sense of

mean squared errors of the estimators.
The effect of variances σ 2ε , σ

2
φ and σ

2
δ on the variability of the estimators is observed by increasing one of these variances

while keeping other two fixed, and also by increasing two of them while keeping the remaining one fixed. It is noticed
that σ 2ε has no significant effect, but σ

2
δ plays a dominating role in affecting the variability of any of the estimators b

(l)
K

and b(l)δ (l = 2, 3, 4) under all the distributions of measurement errors, viz., normal, t and gamma. As σ 2δ is increased, the
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Table 1
Empirical bias vectors and empirical mean squared error matrices of b(2)K , b

(3)
K and b

(4)
K when measurement errors and random error components follow

normal distribution.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)K )
′ 0.0006 −0.0051 −0.0014 −0.0021 0.0069 0.0003 −0.0023 −0.0006 −0.0010 0.0032

EB(b(3)K )
′ 0.0005 −0.0048 −0.0013 −0.0020 0.0064 0.0003 −0.0031 −0.0008 −0.0013 0.0042

EB(b(4)K )
′ 0.0004 −0.0038 −0.0010 −0.0016 0.0052 0.0004 −0.0040 −0.0011 −0.0017 0.0054

0.0011 −0.0098 −0.0027 −0.0041 0.0133 0.0006 −0.0054 −0.0015 −0.0023 0.0073
−0.0098 0.0900 0.0246 0.0377 −0.1216 −0.0054 0.0494 0.0135 0.0207 −0.0667

EMSEM(b(2)K ) −0.0027 0.0246 0.0067 0.0103 −0.0332 −0.0015 0.0135 0.0037 0.0056 −0.0182
−0.0041 0.0377 0.0103 0.0157 −0.0508 −0.0023 0.0207 0.0056 0.0086 −0.0279
0.0133 −0.1216 −0.0332 −0.0508 0.1641 0.0073 −0.0667 −0.0182 −0.0279 0.0900

0.0011 −0.0104 −0.0028 −0.0044 0.0141 0.0006 −0.0056 −0.0015 −0.0024 0.0076
−0.0104 0.0955 0.0260 0.0399 −0.1289 −0.0056 0.0516 0.0141 0.0216 −0.0697

EMSEM(b(3)K ) −0.0028 0.0260 0.0071 0.0109 −0.0352 −0.0015 0.0141 0.0038 0.0059 −0.0190
−0.0044 0.0399 0.0109 0.0167 −0.0539 −0.0024 0.0216 0.0059 0.0090 −0.0291
0.0141 −0.1289 −0.0352 −0.0539 0.1740 0.0076 −0.0697 −0.0190 −0.0291 0.0941

0.0013 −0.0117 −0.0032 −0.0049 0.0157 0.0007 −0.0061 −0.0017 −0.0026 0.0083
−0.0117 0.1069 0.0291 0.0447 −0.1443 −0.0061 0.0562 0.0153 0.0235 −0.0759

EMSEM(b(4)K ) −0.0032 0.0291 0.0079 0.0122 −0.0393 −0.0017 0.0153 0.0042 0.0064 −0.0207
−0.0049 0.0447 0.0122 0.0187 −0.0603 −0.0026 0.0235 0.0064 0.0098 −0.0317
0.0157 −0.1443 −0.0393 −0.0603 0.1947 0.0083 −0.0759 −0.0207 −0.0317 0.1024

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)K )
′

−0.0001 0.0011 0.0003 0.0004 −0.0014 0 −0.0003 −0.0001 −0.0001 0.0005

EB(b(3)K )
′

−0.0001 0.0013 0.0004 0.0005 −0.0017 0.0001 −0.0011 −0.0003 −0.0005 0.0015

EB(b(4)K )
′

−0.0002 0.0018 0.0005 0.0008 −0.0025 0 0 0 0 0

0.0009 −0.0083 −0.0023 −0.0035 0.0112 0.0005 −0.0045 −0.0012 −0.0019 0.0061
−0.0083 0.0759 0.0207 0.0317 −0.1024 −0.0045 0.0412 0.0112 0.0172 −0.0556

EMSEM(b(2)K ) −0.0023 0.0207 0.0056 0.0087 −0.0279 −0.0012 0.0112 0.0031 0.0047 −0.0152
−0.0035 0.0317 0.0087 0.0133 −0.0428 −0.0019 0.0172 0.0047 0.0072 −0.0232
0.0112 −0.1024 −0.0279 −0.0428 0.1383 0.0061 −0.0556 −0.0152 −0.0232 0.0750

0.0009 −0.0087 −0.0024 −0.0036 0.0117 0.0005 −0.0047 −0.0013 −0.0019 0.0063
−0.0087 0.0794 0.0217 0.0332 −0.1072 −0.0047 0.0427 0.0116 0.0179 −0.0576

EMSEM(b(3)K ) −0.0024 0.0217 0.0059 0.0091 −0.0292 −0.0013 0.0116 0.0032 0.0049 −0.0157
−0.0036 0.0332 0.0091 0.0139 −0.0448 −0.0019 0.0179 0.0049 0.0075 −0.0241
0.0117 −0.1072 −0.0292 −0.0448 0.1448 0.0063 −0.0576 −0.0157 −0.0241 0.0778

0.0011 −0.0098 −0.0027 −0.0041 0.0132 0.0005 −0.0050 −0.0014 −0.0021 0.0067
−0.0098 0.0894 0.0244 0.0374 −0.1207 −0.0050 0.0458 0.0125 0.0192 −0.0618

EMSEM(b(4)K ) −0.0027 0.0244 0.0066 0.0102 −0.0329 −0.0014 0.0125 0.0034 0.0052 −0.0169
−0.0041 0.0374 0.0102 0.0156 −0.0505 −0.0021 0.0192 0.0052 0.0080 −0.0259
0.0132 −0.1207 −0.0329 −0.0505 0.1629 0.0067 −0.0618 −0.0169 −0.0259 0.0835

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)K )
′

−0.0002 0.0022 0.0006 0.0009 −0.0030 0.0003 −0.0025 −0.0007 −0.0011 0.0034

EB(b(3)K )
′ 0.0002 −0.0014 −0.0004 −0.0006 0.0019 0.0002 −0.0017 −0.0005 −0.0007 0.0024

EB(b(4)K )
′

−0.0008 0.0075 0.0020 0.0031 −0.0101 0.0004 −0.0038 −0.001 −0.0016 0.0051

0.0024 −0.0223 −0.0061 −0.0093 0.0301 0.0013 −0.0122 −0.0033 −0.0051 0.0165
−0.0223 0.2047 0.0558 0.0856 −0.2763 −0.0122 0.1120 0.0305 0.0468 −0.1512

EMSEM(b(2)K ) −0.0061 0.0558 0.0152 0.0233 −0.0754 −0.0033 0.0305 0.0083 0.0128 −0.0412
−0.0093 0.0856 0.0233 0.0358 −0.1156 −0.0051 0.0468 0.0128 0.0196 −0.0632
0.0301 −0.2763 −0.0754 −0.1156 0.3730 0.0165 −0.1512 −0.0412 −0.0632 0.2041

0.0014 −0.0131 −0.0036 −0.0055 0.0177 0.0005 −0.0047 −0.0013 −0.0019 0.0063
−0.0131 0.1204 0.0328 0.0503 −0.1625 −0.0047 0.0427 0.0116 0.0179 −0.0576

EMSEM(b(3)K ) −0.0036 0.0328 0.0090 0.0137 −0.0443 −0.0013 0.0116 0.0032 0.0049 −0.0157
−0.0055 0.0503 0.0137 0.0210 −0.0679 −0.0019 0.0179 0.0049 0.0075 −0.0241
0.0177 −0.1625 −0.0443 −0.0679 0.2194 0.0063 −0.0576 −0.0157 −0.0241 0.0778

(continued on next page)
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Table 1 (continued)

n = 25 n = 45

0.0029 −0.0270 −0.0074 −0.0113 0.0365 0.0015 −0.0139 −0.0038 −0.0058 0.0187
−0.0270 0.2478 0.0676 0.1036 −0.3345 −0.0139 0.1272 0.0347 0.0532 −0.1717

EMSEM(b(4)K ) −0.0074 0.0676 0.0184 0.0283 −0.0912 −0.0038 0.0347 0.0095 0.0145 −0.0468
−0.0113 0.1036 0.0283 0.0433 −0.1399 −0.0058 0.0532 0.0145 0.0222 −0.0718
0.0365 −0.3345 −0.0912 −0.1399 0.4516 0.0187 −0.1717 −0.0468 −0.0718 0.2318

Table 2
Empirical bias vectors and empirical mean squared error matrices of b(2)K , b

(3)
K and b

(4)
K when measurement errors and random error component follow

t-distribution with 12 degrees of freedom.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)K )
′ 0.0006 −0.0054 −0.0015 −0.0022 0.0072 0.0002 −0.0015 −0.0004 −0.0006 0.0021

EB(b(3)K )
′ 0.0006 −0.0055 −0.0015 −0.0023 0.0074 0.0002 −0.0018 −0.0005 −0.0007 0.0024

EB(b(4)K )
′ 0.0007 −0.0066 −0.0018 −0.0028 0.0089 0.0003 −0.0027 −0.0007 −0.0011 0.0036

0.0011 −0.0100 −0.0027 −0.0042 0.0134 0.0006 −0.0055 −0.0015 −0.0023 0.0074
−0.0100 0.0913 0.0249 0.0382 −0.1232 −0.0055 0.0500 0.0136 0.0209 −0.0675

EMSEM(b(2)K ) −0.0027 0.0249 0.0068 0.0104 −0.0336 −0.0015 0.0136 0.0037 0.0057 −0.0184
−0.0042 0.0382 0.0104 0.0160 −0.0515 −0.0023 0.0209 0.0057 0.0087 −0.0282
0.0134 −0.1232 −0.0336 −0.0515 0.1664 0.0074 −0.0675 −0.0184 −0.0282 0.0911

0.0011 −0.0105 −0.0029 −0.0044 0.0142 0.0006 −0.0057 −0.0016 −0.0024 0.0077
−0.0105 0.0966 0.0263 0.0404 −0.1304 −0.0057 0.0522 0.0142 0.0218 −0.0704

EMSEM(b(3)K ) −0.0029 0.0263 0.0072 0.0110 −0.0356 −0.0016 0.0142 0.0039 0.0059 −0.0192
−0.0044 0.0404 0.0110 0.0169 −0.0545 −0.0024 0.0218 0.0059 0.0091 −0.0294
0.0142 −0.1304 −0.0356 −0.0545 0.1761 0.0077 −0.0704 −0.0192 −0.0294 0.0951

0.0013 −0.0117 −0.0032 −0.0049 0.0159 0.0007 −0.0061 −0.0017 −0.0026 0.0083
−0.0117 0.1077 0.0294 0.0450 −0.1454 −0.0061 0.0562 0.0153 0.0235 −0.0758

EMSEM(b(4)K ) −0.0032 0.0294 0.0080 0.0123 −0.0397 −0.0017 0.0153 0.0042 0.0064 −0.0207
−0.0049 0.0450 0.0123 0.0188 −0.0608 −0.0026 0.0235 0.0064 0.0098 −0.0317
0.0159 −0.1454 −0.0397 −0.0608 0.1963 0.0083 −0.0758 −0.0207 −0.0317 0.1024

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)K )
′

−0.0007 0.0066 0.0018 0.0028 −0.0089 0.0001 −0.0008 −0.0002 −0.0003 0.0010

EB(b(3)K )
′

−0.0007 0.0067 0.0018 0.0028 −0.0091 0.0001 −0.0012 −0.0003 −0.0005 0.0016

EB(b(4)K )
′

−0.0007 0.0060 0.0016 0.0025 −0.0081 0.0002 −0.0021 −0.0006 −0.0009 0.0029

0.0009 −0.0085 −0.0023 −0.0035 0.0114 0.0005 −0.0044 −0.0012 −0.0019 0.0060
−0.0085 0.0776 0.0212 0.0325 −0.1048 −0.0044 0.0407 0.0111 0.0170 −0.0550

EMSEM(b(2)K ) −0.0023 0.0212 0.0058 0.0089 −0.0286 −0.0012 0.0111 0.0030 0.0046 −0.0150
−0.0035 0.0325 0.0089 0.0136 −0.0438 −0.0019 0.0170 0.0046 0.0071 −0.0230
0.0114 −0.1048 −0.0286 −0.0438 0.1414 0.0060 −0.0550 −0.0150 −0.0230 0.0742

0.0010 −0.0089 −0.0024 −0.0037 0.0120 0.0005 −0.0046 −0.0012 −0.0019 0.0062
−0.0089 0.0813 0.0222 0.0340 −0.1098 −0.0046 0.0420 0.0115 0.0176 −0.0567

EMSEM(b(3)K ) −0.0024 0.0222 0.0061 0.0093 −0.0299 −0.0012 0.0115 0.0031 0.0048 −0.0155
−0.0037 0.0340 0.0093 0.0142 −0.0459 −0.0019 0.0176 0.0048 0.0073 −0.0237
0.0120 −0.1098 −0.0299 −0.0459 0.1482 0.0062 −0.0567 −0.0155 −0.0237 0.0766

0.0011 −0.0100 −0.0027 −0.0042 0.0134 0.0005 −0.0050 −0.0014 −0.0021 0.0068
−0.0100 0.0912 0.0249 0.0381 −0.1231 −0.0050 0.0459 0.0125 0.0192 −0.0620

EMSEM(b(4)K ) −0.0027 0.0249 0.0068 0.0104 −0.0336 −0.0014 0.0125 0.0034 0.0052 −0.0169
−0.0042 0.0381 0.0104 0.0160 −0.0515 −0.0021 0.0192 0.0052 0.0080 −0.0259
0.0134 −0.1231 −0.0336 −0.0515 0.1662 0.0068 −0.0620 −0.0169 −0.0259 0.0837

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)K )
′ 0.0005 −0.0046 −0.0013 −0.0019 0.0063 0.0001 −0.0005 −0.0001 −0.0002 0.0007

EB(b(3)K )
′ 0.0005 −0.0043 −0.0012 −0.0018 0.0058 −0.0001 0.0005 0.0001 0.0002 −0.0007

EB(b(4)K )
′ 0.0002 −0.0017 −0.0005 −0.0007 0.0023 0 −0.0003 −0.0001 −0.0001 0.0004
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Table 2 (continued)

n = 25 n = 45

0.0025 −0.0233 −0.0063 −0.0097 0.0314 0.0013 −0.0123 −0.0034 −0.0051 0.0166
−0.0233 0.2133 0.0582 0.0892 −0.2880 −0.0123 0.1127 0.0307 0.0471 −0.1522

EMSEM(b(2)K ) −0.0063 0.0582 0.0159 0.0243 −0.0785 −0.0034 0.0307 0.0084 0.0129 −0.0415
−0.0097 0.0892 0.0243 0.0373 −0.1204 −0.0051 0.0471 0.0129 0.0197 −0.0636
0.0314 −0.2880 −0.0785 −0.1204 0.3888 0.0166 −0.1522 −0.0415 −0.0636 0.2054

0.0028 −0.0255 −0.0070 −0.0107 0.0344 0.0014 −0.0132 −0.0036 −0.0055 0.0178
−0.0255 0.2339 0.0638 0.0978 −0.3157 −0.0132 0.1209 0.0330 0.0506 −0.1632

EMSEM(b(3)K ) −0.0070 0.0638 0.0174 0.0267 −0.0861 −0.0036 0.0330 0.0090 0.0138 −0.0445
−0.0107 0.0978 0.0267 0.0409 −0.1320 −0.0055 0.0506 0.0138 0.0211 −0.0683
0.0344 −0.3157 −0.0861 −0.1320 0.4263 0.0178 −0.1632 −0.0445 −0.0683 0.2204

0.0030 −0.0278 −0.0076 −0.0116 0.0375 0.0015 −0.0141 −0.0038 −0.0059 0.0190
−0.0278 0.2545 0.0694 0.1064 −0.3436 −0.0141 0.1293 0.0353 0.0541 −0.1746

EMSEM(b(4)K ) −0.0076 0.0694 0.0189 0.0290 −0.0937 −0.0038 0.0353 0.0096 0.0147 −0.0476
−0.0116 0.1064 0.0290 0.0445 −0.1437 −0.0059 0.0541 0.0147 0.0226 −0.0730
0.0375 −0.3436 −0.0937 −0.1437 0.4638 0.0190 −0.1746 −0.0476 −0.0730 0.2357

Table 3
Empirical bias vectors and empirical mean squared error matrices of b(2)K , b

(3)
K and b

(4)
K when measurement errors and random error component follow

gamma distribution.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)K )
′ 0.0001 −0.0012 −0.0003 −0.0005 0.0016 0.0003 −0.0025 −0.0007 −0.0010 0.0034

EB(b(3)K )
′ 0.0002 −0.0018 −0.0005 −0.0007 0.0024 0.0003 −0.0027 −0.0007 −0.0011 0.0037

EB(b(4)K )
′ 0 0.0002 0.0001 0.0001 −0.0003 0.0005 −0.0048 −0.0013 −0.002 0.0065

0.0011 −0.0100 −0.0027 −0.0042 0.0135 0.0006 −0.0055 −0.0015 −0.0023 0.0074
−0.0100 0.0916 0.0250 0.0383 −0.1237 −0.0055 0.0502 0.0137 0.0210 −0.0677

EMSEM(b(2)K ) −0.0027 0.0250 0.0068 0.0105 −0.0337 −0.0015 0.0137 0.0037 0.0057 −0.0185
−0.0042 0.0383 0.0105 0.0160 −0.0517 −0.0023 0.0210 0.0057 0.0088 −0.0283
0.0135 −0.1237 −0.0337 −0.0517 0.1670 0.0074 −0.0677 −0.0185 −0.0283 0.0914

0.0012 −0.0107 −0.0029 −0.0045 0.0144 0.0006 −0.0058 −0.0016 −0.0024 0.0078
−0.0107 0.0981 0.0267 0.0410 −0.1324 −0.0058 0.0527 0.0144 0.0221 −0.0712

EMSEM(b(3)K ) −0.0029 0.0267 0.0073 0.0112 −0.0361 −0.0016 0.0144 0.0039 0.0060 −0.0194
−0.0045 0.0410 0.0112 0.0171 −0.0554 −0.0024 0.0221 0.0060 0.0092 −0.0298
0.0144 −0.1324 −0.0361 −0.0554 0.1787 0.0078 −0.0712 −0.0194 −0.0298 0.0961

0.0013 −0.0116 −0.0032 −0.0049 0.0157 0.0007 −0.0061 −0.0017 −0.0026 0.0083
−0.0116 0.1064 0.0290 0.0445 −0.1436 −0.0061 0.0563 0.0154 0.0236 −0.0760

EMSEM(b(4)K ) −0.0032 0.0290 0.0079 0.0121 −0.0392 −0.0017 0.0154 0.0042 0.0064 −0.0207
−0.0049 0.0445 0.0121 0.0186 −0.0601 −0.0026 0.0236 0.0064 0.0098 −0.0318
0.0157 −0.1436 −0.0392 −0.0601 0.1939 0.0083 −0.0760 −0.0207 −0.0318 0.1026

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)K )
′ 0.0002 −0.0021 −0.0006 −0.0009 0.0028 0 −0.0001 0 0 0.0001

EB(b(3)K )
′ 0.0003 −0.0025 −0.0007 −0.0011 0.0034 0 0 0 0 0

EB(b(4)K )
′ 0.0003 −0.0024 −0.0007 −0.001 0.0033 0 0.0002 0.0001 0.0001 −0.0003

0.0009 −0.0085 −0.0023 −0.0035 0.0115 0.0005 −0.0045 −0.0012 −0.0019 0.0060
−0.0085 0.0778 0.0212 0.0325 −0.1050 −0.0045 0.0410 0.0112 0.0171 −0.0553

EMSEM(b(2)K ) −0.0023 0.0212 0.0058 0.0089 −0.0286 −0.0012 0.0112 0.0030 0.0047 −0.0151
−0.0035 0.0325 0.0089 0.0136 −0.0439 −0.0019 0.0171 0.0047 0.0072 −0.0231
0.0115 −0.1050 −0.0286 −0.0439 0.1417 0.0060 −0.0553 −0.0151 −0.0231 0.0747

0.0010 −0.0089 −0.0024 −0.0037 0.0120 0.0005 −0.0047 −0.0013 −0.0020 0.0063
−0.0089 0.0816 0.0223 0.0341 −0.1102 −0.0047 0.0428 0.0117 0.0179 −0.0577

EMSEM(b(3)K ) −0.0024 0.0223 0.0061 0.0093 −0.0301 −0.0013 0.0117 0.0032 0.0049 −0.0157
−0.0037 0.0341 0.0093 0.0143 −0.0461 −0.0020 0.0179 0.0049 0.0075 −0.0241
0.0120 −0.1102 −0.0301 −0.0461 0.1488 0.0063 −0.0577 −0.0157 −0.0241 0.0779

0.0011 −0.0099 −0.0027 −0.0041 0.0133 0.0005 −0.0050 −0.0014 −0.0021 0.0067
−0.0099 0.0904 0.0247 0.0378 −0.1221 −0.0050 0.0456 0.0124 0.0191 −0.0615

EMSEM(b(4)K ) −0.0027 0.0247 0.0067 0.0103 −0.0333 −0.0014 0.0124 0.0034 0.0052 −0.0168
(continued on next page)
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Table 3 (continued)

n = 25 n = 45

−0.0041 0.0378 0.0103 0.0158 −0.0511 −0.0021 0.0191 0.0052 0.0080 −0.0257
0.0133 −0.1221 −0.0333 −0.0511 0.1648 0.0067 −0.0615 −0.0168 −0.0257 0.0830

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)K )
′

−0.0001 0.0007 0.0002 0.0003 −0.0010 0.0006 −0.0051 −0.0014 −0.0022 0.0069

EB(b(3)K )
′ 0 −0.0001 0 0 0.0002 0.0006 −0.0052 −0.0014 −0.0022 0.0070

EB(b(4)K )
′

−0.0008 0.0076 0.0021 0.0032 −0.0103 0.0007 −0.0062 −0.0017 −0.0026 0.0084

0.0025 −0.0230 −0.0063 −0.0096 0.0311 0.0014 −0.0125 −0.0034 −0.0052 0.0168
−0.0230 0.2112 0.0576 0.0883 −0.2852 −0.0125 0.1142 0.0311 0.0478 −0.1542

EMSEM(b(2)K ) −0.0063 0.0576 0.0157 0.0241 −0.0778 −0.0034 0.0311 0.0085 0.0130 −0.0420
−0.0096 0.0883 0.0241 0.0369 −0.1193 −0.0052 0.0478 0.0130 0.0200 −0.0645
0.0311 −0.2852 −0.0778 −0.1193 0.3850 0.0168 −0.1542 −0.0420 −0.0645 0.2081

0.0028 −0.0256 −0.0070 −0.0107 0.0345 0.0015 −0.0137 −0.0037 −0.0057 0.0185
−0.0256 0.2343 0.0639 0.0980 −0.3163 −0.0137 0.1256 0.0343 0.0525 −0.1696

EMSEM(b(3)K ) −0.0070 0.0639 0.0174 0.0267 −0.0863 −0.0037 0.0343 0.0093 0.0143 −0.0463
−0.0107 0.0980 0.0267 0.0410 −0.1323 −0.0057 0.0525 0.0143 0.0220 −0.0709
0.0345 −0.3163 −0.0863 −0.1323 0.4270 0.0185 −0.1696 −0.0463 −0.0709 0.2290

0.0030 −0.0272 −0.0074 −0.0114 0.0367 0.0015 −0.0140 −0.0038 −0.0059 0.0190
−0.0272 0.2492 0.0680 0.1042 −0.3364 −0.0140 0.1287 0.0351 0.0538 −0.1737

EMSEM(b(4)K ) −0.0074 0.0680 0.0185 0.0284 −0.0917 −0.0038 0.0351 0.0096 0.0147 −0.0474
−0.0114 0.1042 0.0284 0.0436 −0.1407 −0.0059 0.0538 0.0147 0.0225 −0.0726
0.0367 −0.3364 −0.0917 −0.1407 0.4541 0.0190 −0.1737 −0.0474 −0.0726 0.2345

Table 4
Empirical bias vectors and empirical mean squared error matrices of b(2)δ , b

(3)
δ and b(4)δ when measurement errors and random error component follow

normal distribution.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)δ )
′ 0.0008 −0.0071 −0.0019 −0.0030 0.0096 −0.0001 0.0011 0.0003 0.0005 −0.0015

EB(b(3)δ )
′ 0.0006 −0.0059 −0.0016 −0.0025 0.0079 −0.0002 0.0019 0.0005 0.0008 −0.0026

EB(b(4)δ )
′ 0.0015 −0.0134 −0.0037 −0.0056 0.0182 0.0005 −0.0042 −0.0011 −0.0017 0.0056

0.0012 −0.0111 −0.0030 −0.0046 0.0150 0.0007 −0.0060 −0.0016 −0.0025 0.0081
−0.0111 0.1019 0.0278 0.0426 −0.1375 −0.0060 0.0550 0.0150 0.0230 −0.0742

EMSEM(b(2)δ ) −0.0030 0.0278 0.0076 0.0116 −0.0375 −0.0016 0.0150 0.0041 0.0063 −0.0202
−0.0046 0.0426 0.0116 0.0178 −0.0575 −0.0025 0.0230 0.0063 0.0096 −0.0310
0.0150 −0.1375 −0.0375 −0.0575 0.1857 0.0081 −0.0742 −0.0202 −0.0310 0.1002

0.0012 −0.0109 −0.0030 −0.0046 0.0147 0.0006 −0.0059 −0.0016 −0.0025 0.0080
−0.0109 0.1000 0.0273 0.0418 −0.1349 −0.0059 0.0544 0.0148 0.0227 −0.0734

EMSEM(b(3)δ ) −0.0030 0.0273 0.0074 0.0114 −0.0368 −0.0016 0.0148 0.0040 0.0062 −0.0200
−0.0046 0.0418 0.0114 0.0175 −0.0564 −0.0025 0.0227 0.0062 0.0095 −0.0307
0.0147 −0.1349 −0.0368 −0.0564 0.1822 0.0080 −0.0734 −0.0200 −0.0307 0.0991

0.0016 −0.0143 −0.0039 −0.0060 0.0193 0.0008 −0.0071 −0.0019 −0.0030 0.0095
−0.0143 0.1308 0.0357 0.0547 −0.1766 −0.0071 0.0647 0.0176 0.0271 −0.0874

EMSEM(b(4)δ ) −0.0039 0.0357 0.0097 0.0149 −0.0482 −0.0019 0.0176 0.0048 0.0074 −0.0238
−0.0060 0.0547 0.0149 0.0229 −0.0739 −0.0030 0.0271 0.0074 0.0113 −0.0365
0.0193 −0.1766 −0.0482 −0.0739 0.2384 0.0095 −0.0874 −0.0238 −0.0365 0.1179

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)δ )
′

−0.0004 0.0041 0.0011 0.0017 −0.0056 0.0002 −0.0015 −0.0004 −0.0006 0.0020

EB(b(3)δ )
′

−0.0005 0.0048 0.0013 0.0020 −0.0065 0.0001 −0.0011 −0.0003 −0.0004 0.0015

EB(b(4)δ )
′ 0.0001 −0.0014 −0.0004 −0.0006 0.0018 0.0005 −0.0044 −0.0012 −0.0018 0.0059

0.0009 −0.0087 −0.0024 −0.0036 0.0117 0.0005 −0.0046 −0.0013 −0.0019 0.0063
−0.0087 0.0794 0.0217 0.0332 −0.1072 −0.0046 0.0425 0.0116 0.0178 −0.0574

EMSEM(b(2)δ ) −0.0024 0.0217 0.0059 0.0091 −0.0292 −0.0013 0.0116 0.0032 0.0049 −0.0157
−0.0036 0.0332 0.0091 0.0139 −0.0448 −0.0019 0.0178 0.0049 0.0074 −0.0240
0.0117 −0.1072 −0.0292 −0.0448 0.1447 0.0063 −0.0574 −0.0157 −0.0240 0.0775
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Table 4 (continued)

n = 25 n = 45

0.0009 −0.0085 −0.0023 −0.0036 0.0115 0.0005 −0.0046 −0.0013 −0.0019 0.0062
−0.0085 0.0780 0.0213 0.0326 −0.1052 −0.0046 0.0422 0.0115 0.0177 −0.0570

EMSEM(b(3)δ ) −0.0023 0.0213 0.0058 0.0089 −0.0287 −0.0013 0.0115 0.0031 0.0048 −0.0155
−0.0036 0.0326 0.0089 0.0136 −0.0440 −0.0019 0.0177 0.0048 0.0074 −0.0238
0.0115 −0.1052 −0.0287 −0.0440 0.1421 0.0062 −0.0570 −0.0155 −0.0238 0.0770

0.0013 −0.0117 −0.0032 −0.0049 0.0158 0.0006 −0.0054 −0.0015 −0.0023 0.0073
−0.0117 0.1075 0.0293 0.0450 −0.1451 −0.0054 0.0496 0.0135 0.0207 −0.0669

EMSEM(b(4)δ ) −0.0032 0.0293 0.0080 0.0123 −0.0396 −0.0015 0.0135 0.0037 0.0057 −0.0183
−0.0049 0.0450 0.0123 0.0188 −0.0607 −0.0023 0.0207 0.0057 0.0087 −0.0280
0.0158 −0.1451 −0.0396 −0.0607 0.1959 0.0073 −0.0669 −0.0183 −0.0280 0.0904

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)δ )
′ 0.0008 −0.0074 −0.0020 −0.0031 0.0101 0.0005 −0.0037 −0.0010 −0.0013 0.0041

EB(b(3)δ )
′

−0.0009 0.0078 0.0021 0.0033 −0.0105 −0.0004 0.0038 0.0010 0.0015 −0.0049

EB(b(4)δ )
′ 0.0053 −0.0489 −0.0133 −0.0205 0.0661 0.0018 −0.0162 −0.0044 −0.0068 0.0219

0.0069 −0.0636 −0.0173 −0.0266 0.0858 0.0015 −0.0142 −0.0039 −0.0059 0.0191
−0.0636 0.5826 0.1589 0.2436 −0.7865 −0.0142 0.1299 0.0354 0.0543 −0.1754

EMSEM(b(2)δ ) −0.0173 0.1589 0.0433 0.0664 −0.2145 −0.0039 0.0354 0.0097 0.0148 −0.0478
−0.0266 0.2436 0.0664 0.1019 −0.3289 −0.0059 0.0543 0.0148 0.0227 −0.0733
0.0858 −0.7865 −0.2145 −0.3289 1.0617 0.0191 −0.1754 −0.0478 −0.0733 0.2367

0.0031 −0.0285 −0.0078 −0.0119 0.0385 0.0015 −0.0134 −0.0037 −0.0056 0.0181
−0.0285 0.2611 0.0712 0.1092 −0.3526 −0.0134 0.1231 0.0336 0.0515 −0.1662

EMSEM(b(3)δ ) −0.0078 0.0712 0.0194 0.0298 −0.0962 −0.0037 0.0336 0.0092 0.0140 −0.0453
−0.0119 0.1092 0.0298 0.0457 −0.1474 −0.0056 0.0515 0.0140 0.0215 −0.0695
0.0385 −0.3526 −0.0962 −0.1474 0.4759 0.0181 −0.1662 −0.0453 −0.0695 0.2243

0.0537 −0.4918 −0.1341 −0.2057 0.6640 0.0021 −0.0189 −0.0052 −0.0079 0.0255
−0.4918 4.5084 1.2296 1.8853 −6.0863 −0.0189 0.1734 0.0473 0.0725 −0.2341

EMSEM(b(4)δ ) −0.1341 1.2296 0.3353 0.5142 −1.6599 −0.0052 0.0473 0.0129 0.0198 −0.0638
−0.2057 1.8853 0.5142 0.7884 −2.5452 −0.0079 0.0725 0.0198 0.0303 −0.0979
0.6640 −6.0863 −1.6599 −2.5452 8.2165 0.0255 −0.2341 −0.0638 −0.0979 0.3160

Table 5
Empirical bias vectors and empirical mean squared error matrices of b(2)δ , b

(3)
δ and b(4)δ when measurement errors and random error component follow

t-distribution with 12 degrees of freedom.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)δ )
′ 0.0008 −0.0078 −0.0021 −0.0033 0.0105 −0.0008 0.0078 0.0021 0.0033 −0.0105

EB(b(3)δ )
′ 0.0007 −0.0066 −0.0018 −0.0028 0.0089 −0.0010 0.0087 0.0024 0.0037 −0.0118

EB(b(4)δ )
′ 0.0017 −0.0155 −0.0042 −0.0065 0.0209 −0.0002 0.0019 0.0005 0.0008 −0.0026

0.0013 −0.0115 −0.0031 −0.0048 0.0156 0.0006 −0.0058 −0.0016 −0.0024 0.0078
−0.0115 0.1057 0.0288 0.0442 −0.1427 −0.0058 0.0528 0.0144 0.0221 −0.0713

EMSEM(b(2)δ ) −0.0031 0.0288 0.0079 0.0121 −0.0389 −0.0016 0.0144 0.0039 0.0060 −0.0195
−0.0048 0.0442 0.0121 0.0185 −0.0597 −0.0024 0.0221 0.0060 0.0092 −0.0298
0.0156 −0.1427 −0.0389 −0.0597 0.1927 0.0078 −0.0713 −0.0195 −0.0298 0.0963

0.0012 −0.0113 −0.0031 −0.0047 0.0153 0.0006 −0.0057 −0.0016 −0.0024 0.0077
−0.0113 0.1036 0.0282 0.0433 −0.1398 −0.0057 0.0523 0.0143 0.0219 −0.0706

EMSEM(b(3)δ ) −0.0031 0.0282 0.0077 0.0118 −0.0381 −0.0016 0.0143 0.0039 0.0060 −0.0192
−0.0047 0.0433 0.0118 0.0181 −0.0585 −0.0024 0.0219 0.0060 0.0091 −0.0295
0.0153 −0.1398 −0.0381 −0.0585 0.1888 0.0077 −0.0706 −0.0192 −0.0295 0.0953

0.0016 −0.0150 −0.0041 −0.0063 0.0203 0.0008 −0.0069 −0.0019 −0.0029 0.0093
−0.0150 0.1377 0.0375 0.0576 −0.1858 −0.0069 0.0634 0.0173 0.0265 −0.0856

EMSEM(b(4)δ ) −0.0041 0.0375 0.0102 0.0157 −0.0507 −0.0019 0.0173 0.0047 0.0072 −0.0234
−0.0063 0.0576 0.0157 0.0241 −0.0777 −0.0029 0.0265 0.0072 0.0111 −0.0358
0.0203 −0.1858 −0.0507 −0.0777 0.2509 0.0093 −0.0856 −0.0234 −0.0358 0.1156

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)δ )
′ 0.0012 −0.0076 −0.0029 −0.0023 0.0093 −0.0009 0.0068 0.0019 0.0027 −0.0093

(continued on next page)
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Table 5 (continued)

n = 25 n = 45

EB(b(3)δ )
′ 0.0013 −0.0054 −0.0019 −0.0033 0.0075 −0.0015 0.0082 0.0032 0.0027 −0.0099

EB(b(4)δ )
′ 0.0015 −0.0149 −0.0037 −0.0054 0.0201 −0.0006 0.0021 0.0009 0.0004 −0.0017

0.0008 −0.0106 −0.0025 −0.0062 0.0155 0.0005 −0.0079 0.0025 −0.0018 0.0053
−0.0106 0.1041 0.0277 0.0468 −0.1426 −0.0079 0.0510 0.0180 0.0226 −0.0735

EMSEM(b(2)δ ) −0.0025 0.0277 0.0072 0.0138 −0.0388 0.0025 0.0180 0.0035 0.0049 −0.0152
−0.0062 0.0468 0.0138 0.0144 −0.0599 −0.0018 0.0226 0.0049 0.0090 −0.0291
0.0155 −0.1426 −0.0388 −0.0599 0.1927 0.0053 −0.0735 −0.0152 −0.0291 0.0937

0.0003 −0.0117 −0.0025 −0.0042 0.0144 0.0005 −0.0053 −0.0011 −0.0024 0.0072
−0.0117 0.1034 0.0285 0.0436 −0.1403 −0.0053 0.0501 0.0116 0.0218 −0.0679

EMSEM(b(3)δ ) −0.0025 0.0285 0.0072 0.0114 −0.0374 −0.0011 0.0116 0.0006 0.0058 −0.0159
−0.0042 0.0436 0.0114 0.0178 −0.0579 −0.0024 0.0218 0.0058 0.0091 −0.0293
0.0144 −0.1403 −0.0374 −0.0579 0.1878 0.0072 −0.0679 −0.0159 −0.0293 0.0920

0.0008 −0.0199 −0.0012 −0.0071 0.0216 0.0008 −0.0097 0.0010 −0.0024 0.0082
−0.0199 0.1277 0.0434 0.0560 −0.1832 −0.0097 0.0603 0.0205 0.0271 −0.0868

EMSEM(b(4)δ ) −0.0012 0.0434 0.0067 0.0166 −0.0523 0.0010 0.0205 0.0015 0.0066 −0.0221
−0.0071 0.0560 0.0166 0.0238 −0.0773 −0.0024 0.0271 0.0066 0.0110 −0.0356
0.0216 −0.1832 −0.0523 −0.0773 0.2502 0.0082 −0.0868 −0.0221 −0.0356 0.1151

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)δ )
′ 0.0003 −0.0027 −0.0007 −0.0011 0.0036 0.0005 −0.0046 −0.0013 −0.0019 0.0062

EB(b(3)δ )
′ 0.0006 −0.0054 −0.0015 −0.0023 0.0073 0.0001 −0.0006 −0.0002 −0.0002 0.0008

EB(b(4)δ )
′

−0.0007 0.0068 0.0019 0.0028 −0.0092 0.0017 −0.0154 −0.0042 −0.0065 0.0209

0.0056 −0.0511 −0.0139 −0.0214 0.0690 0.0017 −0.0158 −0.0043 −0.0066 0.0214
−0.0511 0.4683 0.1277 0.1958 −0.6322 −0.0158 0.1452 0.0396 0.0607 −0.1960

EMSEM(b(2)δ ) −0.0139 0.1277 0.0348 0.0534 −0.1724 −0.0043 0.0396 0.0108 0.0166 −0.0535
−0.0214 0.1958 0.0534 0.0819 −0.2644 −0.0066 0.0607 0.0166 0.0254 −0.0820
0.0690 −0.6322 −0.1724 −0.2644 0.8534 0.0214 −0.1960 −0.0535 −0.0820 0.2647

0.0031 −0.0287 −0.0078 −0.0120 0.0388 0.0016 −0.0148 −0.0040 −0.0062 0.0200
−0.0287 0.2633 0.0718 0.1101 −0.3554 −0.0148 0.1355 0.0370 0.0567 −0.1830

EMSEM(b(3)δ ) −0.0078 0.0718 0.0196 0.0300 −0.0969 −0.0040 0.0370 0.0101 0.0155 −0.0499
−0.0120 0.1101 0.0300 0.0460 −0.1486 −0.0062 0.0567 0.0155 0.0237 −0.0765
0.0388 −0.3554 −0.0969 −0.1486 0.4798 0.0200 −0.1830 −0.0499 −0.0765 0.2470

0.0269 −0.2465 −0.0672 −0.1031 0.3328 0.0024 −0.0217 −0.0059 −0.0091 0.0293
−0.2465 2.2600 0.6164 0.9451 −3.0510 −0.0217 0.1986 0.0542 0.0831 −0.2681

EMSEM(b(4)δ ) −0.0672 0.6164 0.1681 0.2578 −0.8321 −0.0059 0.0542 0.0148 0.0227 −0.0731
−0.1031 0.9451 0.2578 0.3952 −1.2759 −0.0091 0.0831 0.0227 0.0347 −0.1121
0.3328 −3.0510 −0.8321 −1.2759 4.1189 0.0293 −0.2681 −0.0731 −0.1121 0.3620

Table 6
Empirical bias vectors and empirical mean squared error matrices of b(2)δ , b

(3)
δ and b(4)δ when measurement errors and random error component follow

gamma distribution.

n = 25 n = 45

σ 2ε = 0.4, σ
2
φ = 0.4, σ

2
δ = 0.4

EB(b(2)δ )
′ 0.0010 −0.0088 −0.0024 −0.0037 0.0118 −0.0007 0.0068 0.0018 0.0028 −0.0091

EB(b(3)δ )
′ 0.0008 −0.0077 −0.0021 −0.0032 0.0104 −0.0006 0.0070 0.0020 0.0029 −0.0099

EB(b(4)δ )
′ 0.0016 −0.0147 −0.0040 −0.0062 0.0199 −0.0009 0.0045 0.0011 0.0022 −0.0057

0.0012 −0.0112 −0.0031 −0.0047 0.0151 0.0006 −0.0059 −0.0016 −0.0025 0.0079
−0.0112 0.1028 0.0280 0.0430 −0.1388 −0.0059 0.0539 0.0147 0.0225 −0.0727

EMSEM(b(2)δ ) −0.0031 0.0280 0.0076 0.0117 −0.0379 −0.0016 0.0147 0.0040 0.0061 −0.0198
−0.0047 0.0430 0.0117 0.0180 −0.0580 −0.0025 0.0225 0.0061 0.0094 −0.0304
0.0151 −0.1388 −0.0379 −0.0580 0.1874 0.0079 −0.0727 −0.0198 −0.0304 0.0982

0.0012 −0.0111 −0.0030 −0.0046 0.0149 0.0006 −0.0058 −0.0016 −0.0024 0.0079
−0.0111 0.1013 0.0276 0.0424 −0.1368 −0.0058 0.0534 0.0146 0.0223 −0.0721

EMSEM(b(3)δ ) −0.0030 0.0276 0.0075 0.0116 −0.0373 −0.0016 0.0146 0.0040 0.0061 −0.0197
−0.0046 0.0424 0.0116 0.0177 −0.0572 −0.0024 0.0223 0.0061 0.0093 −0.0301
0.0149 −0.1368 −0.0373 −0.0572 0.1847 0.0079 −0.0721 −0.0197 −0.0301 0.0973



Shalabh et al. / Journal of Multivariate Analysis 100 (2009) 1498–1520 1515

Table 6 (continued)

n = 25 n = 45

0.0015 −0.0142 −0.0039 −0.0059 0.0191 0.0008 −0.0070 −0.0019 −0.0029 0.0094
−0.0142 0.1299 0.0354 0.0543 −0.1754 −0.0070 0.0638 0.0174 0.0267 −0.0861

EMSEM(b(4)δ ) −0.0039 0.0354 0.0097 0.0148 −0.0478 −0.0019 0.0174 0.0047 0.0073 −0.0235
−0.0059 0.0543 0.0148 0.0227 −0.0733 −0.0029 0.0267 0.0073 0.0112 −0.0360
0.0191 −0.1754 −0.0478 −0.0733 0.2367 0.0094 −0.0861 −0.0235 −0.0360 0.1162

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 0.4

EB(b(2)δ )
′

−0.0003 0.0025 0.0007 0.0010 −0.0033 −0.0003 0.0024 0.0007 0.0010 −0.0033

EB(b(3)δ )
′

−0.0004 0.0032 0.0009 0.0014 −0.0044 −0.0003 0.0032 0.0009 0.0013 −0.0043

EB(b(4)δ )
′ 0.0004 −0.0035 −0.0010 −0.0015 0.0047 0.0004 −0.0034 −0.0009 −0.0014 0.0046

0.0010 −0.0090 −0.0025 −0.0038 0.0122 0.0005 −0.0045 −0.0012 −0.0019 0.0060
−0.0090 0.0825 0.0225 0.0345 −0.1114 −0.0045 0.0410 0.0112 0.0171 −0.0553

EMSEM(b(2)δ ) −0.0025 0.0225 0.0061 0.0094 −0.0304 −0.0012 0.0112 0.0030 0.0047 −0.0151
−0.0038 0.0345 0.0094 0.0144 −0.0466 −0.0019 0.0171 0.0047 0.0072 −0.0231
0.0122 −0.1114 −0.0304 −0.0466 0.1504 0.0060 −0.0553 −0.0151 −0.0231 0.0746

0.0010 −0.0089 −0.0024 −0.0037 0.0120 0.0005 −0.0044 −0.0012 −0.0019 0.0060
−0.0089 0.0814 0.0222 0.0341 −0.1099 −0.0044 0.0407 0.0111 0.0170 −0.0549

EMSEM(b(3)δ ) −0.0024 0.0222 0.0061 0.0093 −0.0300 −0.0012 0.0111 0.0030 0.0046 −0.0150
−0.0037 0.0341 0.0093 0.0142 −0.0460 −0.0019 0.0170 0.0046 0.0071 −0.0230
0.0120 −0.1099 −0.0300 −0.0460 0.1484 0.0060 −0.0549 −0.0150 −0.0230 0.0741

0.0013 −0.0116 −0.0032 −0.0049 0.0157 0.0006 −0.0053 −0.0014 −0.0022 0.0071
−0.0116 0.1065 0.0290 0.0445 −0.1437 −0.0053 0.0484 0.0132 0.0202 −0.0653

EMSEM(b(4)δ ) −0.0032 0.0290 0.0079 0.0121 −0.0392 −0.0014 0.0132 0.0036 0.0055 −0.0178
−0.0049 0.0445 0.0121 0.0186 −0.0601 −0.0022 0.0202 0.0055 0.0085 −0.0273
0.0157 −0.1437 −0.0392 −0.0601 0.1941 0.0071 −0.0653 −0.0178 −0.0273 0.0882

σ 2ε = 1.0, σ
2
φ = 1.0, σ

2
δ = 1.0

EB(b(2)δ )
′ 0.0009 −0.0077 −0.0021 −0.0032 0.0103 0.0008 −0.0067 −0.0018 −0.0028 0.0090

EB(b(3)δ )
′

−0.0009 0.0081 0.0022 0.0034 −0.0110 0.0004 −0.0036 −0.0010 −0.0015 0.0048

EB(b(4)δ )
′ 0.0053 −0.0482 −0.0132 −0.0202 0.0651 0.0021 −0.0192 −0.0052 −0.0080 0.0259

0.0061 −0.0559 −0.0152 −0.0234 0.0755 0.0016 −0.0149 −0.0041 −0.0062 0.0201
−0.0559 0.5125 0.1398 0.2143 −0.6919 −0.0149 0.1367 0.0373 0.0572 −0.1845

EMSEM(b(2)δ ) −0.0152 0.1398 0.0381 0.0585 −0.1887 −0.0041 0.0373 0.0102 0.0156 −0.0503
−0.0234 0.2143 0.0585 0.0896 −0.2893 −0.0062 0.0572 0.0156 0.0239 −0.0772
0.0755 −0.6919 −0.1887 −0.2893 0.9341 0.0201 −0.1845 −0.0503 −0.0772 0.2491

0.0010 −0.0089 −0.0024 −0.0037 0.0120 0.0016 −0.0143 −0.0039 −0.0060 0.0193
−0.0089 0.0814 0.0222 0.0341 −0.1099 −0.0143 0.1308 0.0357 0.0547 −0.1766

EMSEM(b(3)δ ) −0.0024 0.0222 0.0061 0.0093 −0.0300 −0.0039 0.0357 0.0097 0.0149 −0.0482
−0.0037 0.0341 0.0093 0.0142 −0.0460 −0.0060 0.0547 0.0149 0.0229 −0.0739
0.0120 −0.1099 −0.0300 −0.0460 0.1484 0.0193 −0.1766 −0.0482 −0.0739 0.2385

0.0330 −0.3026 −0.0825 −0.1265 0.4085 0.0021 −0.0196 −0.0053 −0.0082 0.0264
−0.3026 2.7737 0.7565 1.1599 −3.7445 −0.0196 0.1794 0.0489 0.0750 −0.2422

EMSEM(b(4)δ ) −0.0825 0.7565 0.2063 0.3163 −1.0212 −0.0053 0.0489 0.0133 0.0205 −0.0661
−0.1265 1.1599 0.3163 0.4851 −1.5659 −0.0082 0.0750 0.0205 0.0314 −0.1013
0.4085 −3.7445 −1.0212 −1.5659 5.0551 0.0264 −0.2422 −0.0661 −0.1013 0.3270

variabilities of b(l)K and b
(l)
δ (l = 2, 3, 4) increase significantly, and vice-versa. When σ 2φ increases, keeping the other two

variances fixed, then the variabilities b(l)K and b
(l)
δ (l = 2, 3, 4) decrease. However this decrement is very small. The effect of

reliability matrix KX is also observed on the variability of b
(l)
K (l = 2, 3, 4), and it is seen that the variability decreases when

the reliability ratio increases.
The pattern of effect of variances σ 2ε , σ

2
φ and σ

2
δ on the variability of b

(l)
K (l = 2, 3, 4) is the same, but different for

b(l)δ (l = 2, 3, 4) under the normal, t and gamma distributed measurement errors. The variabilities b(l)δ (l = 2, 3, 4) increase
with σ 2δ , and vice-versa under normal distribution. When σ

2
δ increases, then the variabilities of all the estimators under t

distributed measurement errors increase, whereas it decreases in case of gamma distributed measurement errors. On the
other hand, when σ 2φ increases, then the variabilities of all the estimators decrease under the t as well as gamma distributed
measurement errors.
Further, we compare the corresponding values in the EMSEMswith the same parameters under different distributions of

measurement errors. The difference in such values may be contributed as due to the departure from normality, in particular
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due to the effect of skewness and kurtosis of the distribution of measurement errors. No significant difference among the
variabilities of b(l)K and b

(l)
δ (l = 2, 3, 4) is observed when σ 2δ , σ

2
φ and σ

2
ε are small. When σ

2
δ increases, the variabilities of

b(l)K (l = 2, 3, 4)under t distribution are higher thanunder normality. However this difference is very small. Such adifference
becomes higher when the degree of freedom of t distribution are decreased, which in turn increases the coefficient of
kurtosis of t distribution.We have obtained results for t distributionwith 12 and 8 degree of freedom. On the other hand, the
variability is smaller under gamma distribution than under t and normal distributions. This decrement becomes very high
when the shape parameter of gamma distribution is decreased from 5 to 2. Note that the skewness of gamma distribution
increases when shape parameter is decreased. Also, σ 2φ does not significantly affect the variability of b

(l)
K (l = 2, 3, 4) under

different distributions of measurement errors. These changes are significant when sample size is small. This clearly shows
the effect of the coefficients of skewness and kurtosis on the variability of these estimators. Such an effect is also explained
by the asymptotic theory.
The difference in the variability of b(l)K (l = 2, 3, 4) under different distributions is not very significant. While this is

not so, the case with the estimators b(l)δ (l = 2, 3, 4). When the EMSEM’s of the estimators b(l)δ (l = 2, 3, 4) under normal
distribution case are compared under the same sample size and same variance with the corresponding EMSEMs in the
gamma distribution, we find that the variability of b(4)δ decreases significantly when the sample size is 25. This change
is not significant when the sample size is large. The changes in the variabilities of b(2)δ and b(3)δ are not significant. The
difference between the variabilities of b(2)δ and b

(4)
δ in case of the t distribution, is higher than under the gamma distribution

of measurement errors. The difference in the variability of b(3)δ under t and gamma distributed measurement errors is not
significant. In large samples, the variability of b(2)δ , b

(3)
δ and b(4)δ are almost the same under the t and gamma distributed

measurement errors. Thus, the difference in the EMSEM of different estimators under the t and gamma distributed
measurement errors with their corresponding values under normally distributed measurement errors, is significant. The
magnitude of such difference essentially depends on the direction and magnitude of the departure from symmetry and
peakedness of the distribution of measurement errors. Such changes are also explained by the asymptotic theory. The effect
of departure from normality is seen to be more prominent in small samples than in large samples.

6. Conclusions

We have proposed three methodologies to utilize the prior information in constructing the consistent estimators that
also satisfy the linear restrictions in ameasurement error model. Utilizing the additional knowledge of the reliability matrix
of the explanatory variables and covariance matrix of the measurement errors in explanatory variables, we have derived
three different estimators in each case. Without assuming any distributional form of measurement errors and random error
component, we have derived the asymptotic distribution of the estimators under a multivariate ultrastructural model. The
dominance conditions of the estimators under each specification of additional knowledge, and between the two types
of information, are derived under the criterion of Löwner ordering based on the asymptotic covariance matrices. Such
dominance conditions can be checked by finding the eigenvalues of a certain matrix. The findings from a Monte-Carlo
simulation experiment shed some light on the finite sample properties of the estimators. Some ideas about the role and
effect of individual measurement error variance and dominance of estimators is reported, which is based on simulated
results. The effect of non-normality is more prevalent in small samples than in large samples and when the coefficients of
skewness and kurtosis are high.
We have used a very general framework for incorporating the non-stochastic linear restrictions in the measurement

error model. Such framework of linear restrictions is also used in developing the tests of hypothesis in a general framework,
developing pre-test estimators under the theory of preliminary test estimation, studying the structural change in the
parameters etc. So our methodology can also be used in such a setting. The set-up of measurement error model considered
in this paper is a particular case of structural equation model (SEM). So the approaches presented in this paper can also be
extended to SEM. These are some areas for the further research in this direction.

Appendix

The following lemma will be useful in deriving orders of various expressions in the proofs of the Theorems.

Lemma 3. Let C = (cij) be a m × m matrix and let ‖C‖1 =
max
1≤i≤m

∑m
j=1 |cij| and ‖C‖2 =

max
1≤j≤m

∑m
i=1 |cij| be the maximum

column sum and maximum row sum matrix norms, respectively. If ‖C‖1 < 1 and/or ‖C‖2 < 1, then (Im − C) is invertible and

(Im − C)−1 =
∞∑
i=0

C i

where C0 = Im.

Proof. see e.g., [37]. �
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Let us define,

H :=
1
√
n
S −
√
nΣX , (A.1)

h :=
1
√
n
X ′(ε −∆β)+

√
nσ 2δ β. (A.2)

Various expectations used in the results are presented in the following lemma.

Lemma 4. For a non stochastic p× p matrix C and a non stochastic 1× p vector d, using the distributional properties of ε , ∆
andΦ , we have

E(HCH) = (σ 2δ + σ
2
φ )

{
ΣX

(
C ′ + (tr C)Ip

)
+ C ′Sµµ + (tr

1
n
MCM ′)Ip

}
+ (γ1δσ

3
δ + γ1φσ

3
φ )
{
f (sµe′p , C)+

(
f (sµe′p , C)

)′
+ 2f (Ip , eps′µC)

}
+ (γ2δσ

4
δ + γ2φσ

4
φ )f (Ip , C),

E(hdH) = −σ 2δ
[
ΣX

{
d′β ′ + (trβd)Ip

}
+ γ1δσδ

{
f (sµe′p , d

′β ′)+
(
f (sµe′p , d

′β ′)
)′
+ f (Ip , eps′µd

′β ′)
}

+ γ2δσ
2
δ f (Ip , d

′β ′)
]
,

E(hh′) = σ 2εΣX + σ
2
δ (tr ββ

′)ΣX + σ
4
δ ββ

′
+ γ1δσ

3
δ

{
f (sµe′p , ββ

′)+
(
f (sµe′p , ββ

′)
)′}
+ γ2δσ

4
δ f (Ip , ββ

′),

where f (Z1 , Z2) = Z1 ∗ (Z2 ∗ Ip) ∀ Z1 , Z2 ∈ Rp×p as in (4.1).

Proof. Proof follows by using the distributional properties of ε,∆,Φ and following [38]. �

With the help of Lemma 1, it can be shown that h = OP(1) and H = OP(1). The estimation errors of the estimators
b(1)K , b

(2)
K , b

(3)
K and b(4)K are expanded using the large sample asymptotic approximation theory to find the asymptotic

distributions.
From (3.5),

b(1)K = Σ
−1
T ΣX

(
β + S−1X ′(ε −∆β)

)
.

Let K̄X := Ip − KX . Using Lemma 3, we can write
√
n(b(1)K − β) = Σ−1T {h+ HK̄Xβ} + OP(n

−
1
2 ). (A.3)

The estimation error of b(2)K

b(2)K − β = (b
(1)
K − β)+ S

−1R′(RS−1R′)−1(r − Rb(1)K ). (A.4)

SinceΣ−1X = O(1) and plim (n
−
1
2Σ−1X H) = 0, using Lemma 3, we have

S−1 =
1
n
(Ip − n−

1
2Σ−1X H)Σ

−1
X + OP(n

−2) , (A.5)

for sufficiently large n.
Let RX = RΣ−1X R

′ so that R−1X = O(1). Moreover, since plim(n
−
1
2 R−1X RΣ

−1
X HΣ

−1
X R

′) = 0, from (A.5), we have

1
n
(RS−1R′)−1 =

(
Ip + n−

1
2 R−1X RΣ

−1
X HΣ

−1
X R

′

)
R−1X + OP(n

−1). (A.6)

Also, (
r − Rb(1)K

)
= −n−

1
2 RΣ−1T {h+ HK̄Xβ} + n

−1RΣ−1T HΣ
−1
X {h+ HK̄Xβ} + OP(n

−
3
2 ). (A.7)

Using (A.3)–(A.7), we have
√
n(b(2)K − β) = (Ip − QΣX )Σ

−1
T {h+ HK̄Xβ} + OP(n

−
1
2 ),

where Q = Σ−1X R
′(RΣ−1X R

′)−1RΣ−1X . Clearly QΣX = K̄XR
′
{RK̄XR′}−1R, we get

√
n(b(2)K − β) = A(2,X)Σ

−1
T {h+ HK̄Xβ} + OP(n

−
1
2 ), (A.8)

where A(2,X) = [Ip − K̄XR′{RK̄XR′}−1R].
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Now, consider the estimator b(3)K ,

b(3)K − β = A
−1
KX
bR − β, (A.9)

where

AKX =
[
KX + K̄XR′

(
RK̄XR′

)−1
RK̄X

]
and

bR = β + [Ip − S−1R′R−1S R](nS
−1)

(
1
√
n
h− σ 2δ β

)
. (A.10)

Since K̄X = σ 2δ Σ
−1
X H⇒ AKX = Ip − σ

2
δ (Σ

−1
X − Q ) and using (A.5) and (A.6) in (A.10), we get

bR = AKXβ +
1
√
n
(Σ−1X − Q ){h+ H(Ip − AKX )β} + OP(n

−1). (A.11)

Thus,
√
n(b(3)K − β) = A

−1
KX
(Σ−1X − Q ){h+ H(Ip − AKX )β} + OP(n

−
1
2 )

= A−1KX A(2,X)Σ
−1
X {h+ H(Ip − AKX )β} + OP(n

−
1
2 ). (A.12)

Next, the estimation error of b(4)K

b(4)K − β = (b
(1)
K − β)+ R

′(RR′)−1(r − Rb(1)K )

=
[
Ip − R′(RR′)−1R

]
(b(1)K − β). (A.13)

From (A.3),
√
n(b(4)K − β) =

[
Ip − R′(RR′)−1R

]
Σ−1T {h+ HK̄Xβ} + OP(n

−
1
2 ). (A.14)

Proof of Theorem 1. Let mi, φi and δi be the ith rows of the matrices M, Φ and ∆ respectively; i = 1, 2, . . . , n. We can
write,

H =
1
√
n
S −
√
nΣX

=
1
√
n

n∑
i=1

[m′i(φi + δi)+ (φ
′

i + δ
′

i)mi + (δ
′

iφi + φ
′

iδi)+ (δ
′

iδi − σ
2
δ Ip)+ (φ

′

iφi − σ
2
φ Ip)],

HK̄Xβ =
1
√
n

(
Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X )

)
×

n∑
i=1

(
vec

(
m′i(φi + δi)

)
, vec

(
(φ′i + δ

′

i)mi
)
, vec(δ′iφi + φ

′

iδi), vec(δ
′

iδi − σ
2
δ Ip), vec(φ

′

iφi − σ
2
φ Ip)

)′
=

n∑
i=1

C1inw1i, (A.15)

where

C1in =
1
√
n

(
Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X ), Ip ⊗ (β ′K̄X )

)
×
(
(Ip ⊗m′i), (Ip2 ⊗mi), Ip2 , Ip2 , Ip2

)
andw1i =

(
(φ′i + δ

′

i) vec
(
Ip ⊗ (φ′i + δ

′

i)
)
vec(δ′iφi + φ

′

iδi) vec(δ
′

iδi − σ
2
δ Ip) vec(φ

′

iφi − σ
2
φ Ip)

)′.
Now consider

h =
1
√
n
X ′ε −

1
√
n
(X ′∆− nσ 2δ Ip)β

=
(
Ip,−(Ip ⊗ β ′)

) n∑
i=1

1
√
n

[
(Ip+1 ⊗m′i)

(
εi
δ′i

)
+

(
φ′iεi

vec(φ′iδi)

)
+

(
δ′iεi

vec(δ′iδi − σ
2
δ Ip)

)]

=

n∑
i=1

C2inw2i, (A.16)
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where,

Cin =
1
√
n

(
Ip , −(Ip ⊗ β ′)

) (
(Ip+1 ⊗m′i) Ip2+p Ip2+p

)
are p× (2p2 + 3p+ 1) non-stochastic matrices and

w2i =
(
εi, δ

′

i , φ
′

iεi, vec(φ
′

iδi), δiεi, vec(δ
′

iδi − σ
2
δ Ip)

)
are (2p2 + 3p+ 1)× 1 independent and identically distributed random vectors, i = 1, 2, . . . , n.
Thus from (A.15) and (A.16),

h+ HK̄Xβ =
n∑
i=1

(
C2in C1in

) (w2i
w1i

)
. (A.17)

Therefore by central limit theorem, h + HK̄Xβ has a limiting normal distribution with mean vector E(h + HK̄Xβ) = 0
and covariance matrix

ΩK := lim
n→∞

E
[
(h+ HK̄Xβ)(h+ HK̄Xβ)′

]
= (σ 2δ + σ

2
φ )[σ

2
δ {(ββ

′
− Kββ ′K)+ (tr K̄ββ ′K)Ip} + (tr K̄ββ ′K̄)Σ]

+ {σ 2ε + σ
2
δ (tr(2K − Ip)ββ

′)}Σ − σ 4δ ββ
′
+ N(K),

where

N(K) = γ1δσ 3δ
[
f
(
σµe′p, Kββ

′K
)
+
{
f
(
σµe′p, Kββ

′K
)}′
− 2f

(
Ip, epσµ′K̄ββ ′K

)]
+ γ1φσ

3
φ

[
f
(
σµe′p, K̄ββ

′K̄
)
+
{
f
(
σµe′p, K̄ββ

′K̄
)}′
+ 2f

(
Ip, epσµ′K̄ββ ′K̄

)]
+ γ2δσ

4
δ f
(
Ip, Kββ ′K

)
+ γ2φσ

4
φ f
(
Ip, K̄ββ ′K̄

)
, (A.18)

and K̄ = Ip − K , K = limn→∞ KX .
Now from (A.3), it is clear that the asymptotic distribution of

√
n(b(1)K − β) is the same as the asymptotic distribution of

Σ−1T (h + σ 2δ HΣ
−1
X β). Since limn→∞ΣT limn→∞ΣXKX = ΣK , the asymptotic distribution of

√
n(b(1)K − β) is normal with

mean vector 0 and covariance matrix given by

Ω
(1)
K = (ΣK)

−1ΩK (ΣK)−1. (A.19)

Asymptotic normality of
√
n(b(2)K − β),

√
n(b(3)K − β) and

√
n(b(4)K − β) can be shown in a similar fashion using (A.8), (A.12)

and (A.14).
The proof of the results in Theorem 2 can be followed from [14,35]. �
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