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a b s t r a c t

A simultaneous confidence band provides useful information on the plausible range of the
unknown regression model, and different confidence bands can often be constructed for
the same regressionmodel. For a simple regression line, Liu and Hayter [W. Liu, A.J. Hayter,
Minimum area confidence set optimality for confidence bands in simple linear regression,
J. Amer. Statist. Assoc. 102 (477) (2007) pp. 181–190] proposed the use of the area of the
confidence set corresponding to a confidence band as an optimality criterion in comparison
of confidence bands; the smaller the area of the confidence set, the better the corresponding
confidence band. This minimum area confidence set (MACS) criterion can be generalized
to aminimum volume confidence set (MVCS) criterion in the study of confidence bands for
a multiple linear regressionmodel. In this paper hyperbolic and constant width confidence
bands for a multiple linear regression model over a particular ellipsoidal region of the
predictor variables are compared under the MVCS criterion. It is observed that whether
one band is better than the other depends on the magnitude of one particular angle that
determines the size of the predictor variable region. When the angle and hence the size of
the predictor variable region is small, the constant width band is better than the hyperbolic
band but only marginally. When the angle and hence the size of the predictor variable
region is large the hyperbolic band can be substantially better than the constant width
band.

Crown Copyright© 2008 Published by Elsevier Inc. All rights reserved.

1. Introduction

Consider the multiple linear regression model

Y = Xb+ e
where Yn×1 is the vector of observed responses, Xn×p is the design matrix whose first column is given by (1, . . . , 1)T and
whose jth (2 ≤ j ≤ p) column is given by (x1,j, . . . , xn,j)T, b = (b1, . . . , bp)T is the vector of regression coefficients, and
en×1 is an additive error vector with e ∼ N(0, σ 2I) and σ 2 unknown. Assume XTX is non-singular, so the least squares
estimator of b is given by b̂ = (XTX)−1XTY. Let σ̂ 2 denote the mean square error with degrees of freedom ν = n− p. Then
σ̂ 2 ∼ σ 2χ2ν /ν and is independent of b̂.
Let x = (1, x2, . . . , xp)T and x(1) = (x2, . . . , xp)T. A simultaneous confidence band for the regression function

xTb = b1 + b2x2 + · · · + bpxp
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on a given region X of the p − 1 predictor variables x(1) = (x2, . . . , xp)T provides useful information on where the true
but unknown regression model lies; a linear regression function is a plausible candidate for the unknown regression model
if and only if it is contained completely inside the confidence band. There are several recent papers considering various
applications of confidence bands; see for example [1–5].
Construction of simultaneous confidence bands has a history going back to Working and Hotelling [6]. Scheffé [7] first

provided the well known two-sided hyperbolic simultaneous confidence band over the whole spaceX = Rp−1 of the p− 1
predictor variables.More useful in practice, however, is construction of confidence bands over some finitely-bounded subset
of Rp−1 that corresponds to relevant values of the predictor variables. For p = 2, that is, when there is only one predictor
variable, construction of various exact simultaneous confidence bands incorporating interval restrictions on x2 has been
considered by Bowden and Graybill [8], Graybill and Bowden [9], Wynn and Bloomfield [10], Bohrer and Francis [11], and
Uusipaikka [12] among others. In particular, Gafarian [13] was the first to suggest use of constant width confidence bands
when x2 is restricted to a finite interval. See a recent review by [14].
For p > 2, construction of exact confidence bands over a finite regionX of the predictor variables is more difficult. When

p > 2 there are at least two predictor variables and the region X may assume various forms. One useful region X is the
rectangular set

Xr = {x(1)T : ai ≤ xi ≤ bi, i = 2, . . . , p},

where−∞ ≤ ai < bi ≤ ∞, i = 2, . . . , p are given constants. (We assume that−∞ < ai < bi <∞ for at least one value
of i.) Construction of two-sided hyperbolic confidence bands overXr has been considered by Knafl et al. [15], Naiman [16,
17] and Sun and Loader [18] among others. All these confidence bands are either conservative or approximate, however.
A simulation-based method for constructing a two-sided hyperbolic confidence band overXr for a general p ≥ 2 is given
recently in [19]; the critical constant can be calculated as accurately as one requires if the number of replications in the
simulation is set sufficiently large. Construction of a two-sided constant width confidence band overXr for a general p ≥ 2
is considered in [20] by using a combination of both numerical integration and simulation.
For p > 2, another useful regionX is given by the ellipsoidal regionXe in (1) below. Let X(1) be the n× (p − 1)matrix

produced from the designmatrix X by deleting the first columnof 1’s from X . Let x·j = 1
n

∑n
i=1 xij be themean of the observed

values of the jth predictor variable (2 ≤ j ≤ p), and let ¯x(1) = (x·2, . . . , x·p)T. Define the (p− 1)× (p− 1)matrix

S =
1
n

(
X(1) − 1 ¯x(1)T

)T (
X(1) − 1 ¯x(1)T

)
=
1
n

(
XT(1)X(1) − n ¯x(1) ¯x(1)

T)
where 1 is an n-vector of 1’s. Note thatmatrix S is just the sample variance–covariancematrix of the p−1 predictor variables,
and it is non-singular whenever X is assumed to be of full column rank. With this, the ellipsoidal region is defined to be

Xe =

{
x(1) :

(
x(1) − ¯x(1)

)T S−1 (x(1) − ¯x(1)) ≤ a2} (1)

where a > 0 is a given constant. It is clear that this region is centered at ¯x(1) and has an ellipsoidal shape in x(1) =
(x2, . . . , xp)T ∈ Rp−1. One important feature of Xe is that the variance of the fitted regression model at x, Var(xTb̂), is a
constant for all the x(1) on the surface of the ellipsoidXe. Construction of an approximate two-sided hyperbolic confidence
band overXe was first considered by Halperin and Gurian [21]. Construction of exact hyperbolic confidence bands overXe
has since been considered by Bohrer [22], Casella and Strawderman [23], Seppanen and Uusipaikka [24] and Liu and Lin [25]
among others.
The purpose of this paper is to compare the twomost popular band forms: the Scheffé-type hyperbolic and Gafarian-type

constant width confidence bands overXe under the minimum area (volume) confidence set optimality criterion proposed
in [26]. We take advantage of the fact that any 1− α confidence band for the regression model xTb corresponds to a 1− α
confidence set in Rp for the regression coefficients b. Theminimum area (volume) confidence set optimality criterion prefers
a confidence bandwhose confidence set has a smaller area (volume). For p = 2, various confidence bands for a regression line
have been assessed and compared in [26] under the minimum area confidence set criterion. Indeed, before the appearance
of the minimum area (volume) confidence set criterion, (weighted) average width of a confidence band was the primary
optimality criterion for selection of confidence bands; see e.g., [27–29]. In particular, the hyperbolic and constant width
bands overXe were compared by Naiman [27] under the average width criterion.
In Section 2 the hyperbolic and constant width confidence bands and their corresponding confidence sets are presented.

In Section 3, comparisons between the confidence bands under theminimum volume confidence set criterion are given. The
notation of Liu and Lin [25] is adopted throughout this paper.

2. Confidence bands and confidence sets

In this section the hyperbolic and constant width confidence bands over Xe are detailed and the corresponding
confidence sets are identified. The two-sided hyperbolic confidence band is given by

xTb ∈ xTb̂± ch,2σ̂
√
xT(XTX)−1x for all x(1) = (x2, . . . , xp)T ∈ Xe (2)
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where Xe is defined in (1) and ch,2 is a suitably chosen critical constant so that the simultaneous confidence level of the
band is equal to 1− α.
As in Liu and Lin [25], define p-vector z =

√
n(1, ¯x(1)T)T, and let p× (p− 1)matrix Z satisfy (z, Z)T(XTX)−1(z, Z) = Ip. It

follows therefore that T = (z, Z)−1(XTX)(b̂−b)/σ̂ is a standard p-dimensional t random vector with ν degrees of freedom;
see e.g., [30] for a full description of the multivariate t distributions. Note that

1− α = P

{
sup

x(1)∈Xe

|xT(b̂− b)|

σ̂
√
xT(XTX)−1x

≤ ch,2

}

= P

 sup
x(1)∈Xe

∣∣∣{(z, Z)T(XTX)−1x}T {(z, Z)−1(XTX)(b̂− b)/σ̂
}∣∣∣√{

(z, Z)T(XTX)−1x
}T {

(z, Z)T(XTX)−1x
} ≤ ch,2

 .
Let

Vh =

t : sup
x(1)∈Xe

∣∣∣{(z, Z)T(XTX)−1x}T t∣∣∣∥∥(z, Z)T(XTX)−1x∥∥ ≤ ch,2

 ⊂ Rp. (3)

Then the confidence set for the regression coefficients b that corresponds to the hyperbolic band in (2) is given by

Ch,2(b̂, σ̂ ) =
{
b : (z, Z)−1(XTX)(b− b̂)/σ̂ ∈ Vh

}
. (4)

Let w = (z, Z)T(XTX)−1x = (w1,w(1)
T)T where w(1) = (w2, . . . , wp)

T
= ZT(XTX)−1x and w1 = zT(XTX)−1x = 1/

√
n.

Then it follows from Liu and Lin [25, expressions (6), (7), (8) and (10)], that Vh can further be expressed as

Vh =
{
t : sup

w∈We

|wTt|
‖w‖

≤ ch,2

}
(5)

where

We =
{
w : w1 = 1/

√
n, ‖w‖2 ≤ (1+ a2)/n

}
⊂ Rp. (6)

From (4) and the definition of T, the critical constant ch,2 can be determined by solving 1 − α = P{T ∈ Vh} which, from
Liu and Lin [25, expression (28)], is equivalent to

1− α = Fp,ν

(
c2h,2
p

)∫ θ∗

0
2k sinp−2 θdθ +

∫ π/2−θ∗

0
2k sinp−2(θ + θ∗) · Fp,ν

{
c2h,2
p cos2 θ

}
dθ

where

θ∗ = arccos(1/
√
1+ a2) ∈ (0, π/2), (7)

k = 1/(
∫ π
0 sin

p−2 θdθ), and Fp,ν(·) is the cdf of the F distribution with p and ν degrees of freedom.
Now, we turn our attention to the Gafarian-type two-sided constant width band, given by

xTb ∈ xTb̂± cc,2
√
(1+ a2)/n σ̂ for all x(1) = (x2, . . . , xp)T ∈ Xe, (8)

where cc,2 is chosen so that the simultaneous confidence level of the band is equal to 1− α. Hence

1− α = P

{
sup

x(1)∈Xe
|xT(b̂− b)|/σ̂ ≤ cc,2

√
(1+ a2)/n

}

= P

{
sup

x(1)∈Xe

∣∣∣{(z, Z)T(XTX)−1x}T {(z, Z)−1(XTX)(b̂− b)/σ̂
}∣∣∣ ≤ cc,2√(1+ a2)/n} .

Let

Vc =

{
t : sup

x(1)∈Xe

∣∣∣{(z, Z)T(XTX)−1x}T t∣∣∣ ≤ cc,2√(1+ a2)/n} ⊂ Rp.
Then the confidence set for the regression coefficients b that corresponds to the constant-width band in (8) is given by

Cc,2(b̂, σ̂ ) =
{
b : (z, Z)−1(XTX)(b− b̂)/σ̂ ∈ Vc

}
. (9)
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Similar to the expression for Vh in (5), Vc can be written as

Vc =
{
t : sup

w∈We
|wTt| ≤ cc,2

√
(1+ a2)/n

}
(10)

whereWe is given in (6). Let t(1) = (t2, . . . , tp)T. Note that

sup
w∈We
|wTt| = sup

w∈We

∣∣t1/√n+w(1)
Tt(1)

∣∣ ≤ |t1|/√n+√a2/n ‖t(1)‖
and the upper bound above is attained at w ∈ We with w(1) = sign(t1)

√
a2/n t(1)/‖t(1)‖. Hence Vc in (10) can further be

expressed as

Vc =
{
t : |t1|/

√
n+

√
a2/n ‖t(1)‖ ≤ cc,2

√
(1+ a2)/n

}
.

Now, using the polar coordinates (Rv, θv1, . . . , θv,p−1)T for a p-dimensional vector v = (v1, . . . , vp)T
v1 = Rv cos θv1
v2 = Rv sin θv1 cos θv2
v3 = Rv sin θv1 sin θv2 cos θv3
· · · · · ·

vp−1 = Rv sin θv1 sin θv2 · · · sin θv,p−2 cos θv,p−1
vp = Rv sin θv1 sin θv2 · · · sin θv,p−2 sin θv,p−1

where


0 ≤ θv1 ≤ π
0 ≤ θv2 ≤ π
· · · · · ·

0 ≤ θv,p−2 ≤ π
0 ≤ θv,p−1 ≤ 2π
Rv ≥ 0

the set Vc can be expressed as

Vc =
{
t : |Rt cos θt1|/

√
n+

√
a2/n |Rt sin θt1| ≤ cc,2

√
(1+ a2)/n

}
= Vc,1 + Vc,2 (11)

where

Vc,1 =
{
t : 0 ≤ θt1 ≤ π/2, Rt cos(θt1 − θ∗) ≤ cc,2

}
(12)

Vc,2 =
{
t : π/2 ≤ θt1 ≤ π, Rt cos(π − θt1 − θ∗) ≤ cc,2

}
(13)

with θ∗ given in (7).
From the definition of T and expressions (9), (11), (12) and (13), the critical constant cc,2 can be solved from

1− α = P{T ∈ Vc} = P{T ∈ Vc,1} + P{T ∈ Vc,2} = 2P{T ∈ Vc,1}

=

∫ π/2

0
2k sinp−2 θFp,ν

(
c2c,2

p cos2(θ − θ∗)

)
dθ

where the final equality follows immediately from the distributions of RT(∼
√
pFp,ν) and θT1 and the independence of RT and

θT1 (see e.g., [25, expressions (11) and (12)].)
Now we consider the one-sided hyperbolic and constant width bands and, without loss of generality, focus on the lower

confidence bands. The lower hyperbolic band is given by

xTb > xTb̂− ch,1σ̂
√
xT(XTX)−1x for all x(1) = (x2, . . . , xp)T ∈ Xe

where ch,1 is chosen so that the simultaneous confidence level of the band is equal to 1−α. From Liu and Lin [25, expression
(25)], the critical constant ch,1 can be solved from

1− α =
∫ θ∗

0
k sinp−2 θdθ · Fp,ν

(
c2h,1
p

)
+

∫ π/2

0
k sinp−2(θ + θ∗)Fp,ν

(
c2h,1
p cos2 θ

)
dθ +

∫ π
2 −θ

∗

0
k sinp−2 θdθ.

The lower constant width band is given by

xTb > xTb̂− cc,1
√
(1+ a2)/n σ̂ for all x(1) = (x2, . . . , xp)T ∈ Xe,

where cc,1 is chosen so that the simultaneous confidence level of the band is equal to 1− α. Similar to the two-sided case,
we have

1− α = P
{
sup
w∈We

wTT ≤ cc,1
√
(1+ a2)/n

}
(14)

where T = (T1, TT(1))
T is the same as before. Note that

sup
w∈We

wTT = T1/
√
n+

√
a2/n ‖T(1)‖.
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The probability in (14) is therefore equal to

P
{
T1/
√
n+

√
a2/n ‖T(1)‖ ≤ cc,1

√
(1+ a2)/n

}
= P

{
RT cos θT1/

√
n+

√
a2/n RT sin θT1 ≤ cc,1

√
(1+ a2)/n

}
= P

{
RT cos(θT1 − θ∗) ≤ cc,1

}
= P

{
0 ≤ θT1 <

π

2
+ θ∗, RT cos(θT1 − θ∗) ≤ cc,1

}
+ P

{π
2
+ θ∗ ≤ θT1 ≤ π

}
=

∫ π
2 +θ

∗

0
k sinp−2 θFp,ν

(
c2c,1

p cos2(θ − θ∗)

)
dθ +

∫ π

π
2 +θ

∗

k sinp−2 θdθ.

Substituting this expression in (14), the critical constant cc,1 can be computed numerically. All the critical constants ch,2,
ch,1, cc,2 and cc,1 depend only on θ∗, p, ν and α.

3. Comparisons under the MVCS criterion

In this section we first calculate the volumes of the two-sided confidence sets ch,2(b̂, σ̂ ) and cc,2(b̂, σ̂ ). We then compare
the volumes of these confidence sets to see which is smaller so that the corresponding confidence band is more desirable
under the MVCS criterion. Finally, we compare the one-sided hyperbolic and constant width bands in a similar way.
Let v(R) denote the volume of a set R ⊂ Rp, and let Bp(r) denote the ball of radius r in Rp. Note that the Jacobian of the

transformation from the Cartesian coordinates to the polar coordinates given in the last section is equal to

|J| = Rp−1 sinp−2 θ1 sinp−3 θ2 · · · sin θp−2.

Hence it is clear that

v(Bp(r)) =
∫ r

R=0

∫ π

θ1=0

∫ π

θ2=0
· · ·

∫ π

θp−2=0

∫ 2π

θp−1=0
|J|dRdθ1 · · · dθp−1 = cprp

where cp is a constant depending only on p.
From Liu and Lin [25, Lemma 4], Vh in (5) can be partitioned into four parts: Vh = Vh,1 + Vh,2 + Vh,3 + Vh,4 where

Vh,1 = {t : 0 ≤ θt1 ≤ θ∗, Rt ≤ ch,2},

Vh,2 = {t : θ∗ < θt1 ≤
π

2
, Rt cos(θt1 − θ∗) ≤ ch,2},

Vh,3 = {t :
π

2
< θt1 ≤ π − θ

∗, Rt cos(π − θ∗ − θt1) ≤ ch,2},

Vh,4 = {t : π − θ∗ < θt1 ≤ π, Rt ≤ ch,2}.

Now v(Vh,1) is equal to∫ ch,2

R=0

∫ θ∗

θ1=0

∫ π

θ2=0
· · ·

∫ π

θp−2=0

∫ 2π

θp−1=0
|J|dRdθ1 · · · dθp−1 =

(∫ θ∗

θ1=0
sinp−2 θ1dθ1

/∫ π

θ1=0
sinp−2 θ1dθ1

)
v(Bp(ch,2))

= k
∫ θ∗

θ1=0
sinp−2 θ1dθ1 v(Bp(ch,2))

and v(Vh,2) is equal to∫ ∫
R cos(θ1−θ∗)≤ch,2

θ∗≤θ1≤π/2

∫ π

θ2=0
· · ·

∫ π

θp−2=0

∫ 2π

θp−1=0
|J|dRdθ1 · · · dθp−1

=

∫ ∫
R cos(θ1−θ∗)≤ch,2

θ∗≤θ1≤π/2

Rp−1 sinp−2 θ1dRdθ1

/∫ ch,2

R=0

∫ π

θ1=0
Rp−1 sinp−2 θ1dRθ1dθ1

 v(Bp(ch,2))
= k

∫ π/2

θ∗
sinp−2 θ1/ cosp(θ1 − θ∗)dθ1 v(Bp(ch,2)).

Furthermore, we have v(Vh,3) = v(Vh,2) and v(Vh,4) = v(Vh,1). Combining these gives

v(Vh) = 2k

(∫ θ∗

θ1=0
sinp−2 θ1dθ1 +

∫ π/2

θ∗
sinp−2 θ1/ cosp(θ1 − θ∗)dθ1

)
v(Bp(ch,2)). (15)
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Fig. 1. Plot of the function eff(θ∗) for p = 3, ν = 15 and α = 0.05.

For the two-sided constant width band (8), similar calculation from expressions (11)–(13) shows that

v(Vc,1) = v(Vc,2) = k
∫ π/2

0
sinp−2 θ1/ cosp(θ1 − θ∗)dθ1 v(Bp(cc,2))

and so

v(Vc) = 2k
∫ π/2

0
sinp−2 θ1/ cosp(θ1 − θ∗)dθ1 v(Bp(cc,2)). (16)

Now note that the confidence sets Ch,2 in (4) and Cc,2 in (9) are of the form

C(b̂, σ̂ ) =
{
b : (z, Z)−1(XTX)(b− b̂)/σ̂ ∈ V

}
= σ̂ (XTX)−1(z, Z)V + b̂

and so

v
(
C(b̂, σ̂ )

)
=
∣∣σ̂ (XTX)−1(z, Z)∣∣ v(V ) = ∣∣σ̂ (XTX)−1/2∣∣ v(V ).

Hence from (15) and (16)

eff :=
v
(
Cc,2(b̂, σ̂ )

)
v
(
Ch,2(b̂, σ̂ )

) = v(Vc)
v(Vh)

=

∫ π/2
0 sinp−2 θ1/ cosp(θ1 − θ∗)dθ1∫ θ∗

θ1=0
sinp−2 θ1dθ1 +

∫ π/2
θ∗
sinp−2 θ1/ cosp(θ1 − θ∗)dθ1

(
cpc,2
cph,2

)
. (17)

Under the MVCS criterion, the two-sided hyperbolic band is better than the two-sided constant width band if and only if
eff > 1.
It can be shown that eff does not change if one of the predictor variables has a linear transformation (i.e. eff is location

and scale invariant). It is noteworthy that eff depends only on θ∗, p, ν and α. The size of the regionXe in (1) is determined
by a: the larger is a the bigger isXe. From the one-to-one relationship (7) between a and θ∗, the size ofXe is alternatively
determined by θ∗; the larger is the angle θ∗ the bigger isXe. When θ∗ → 0 from right, both the hyperbolic and constant
width bands approach the two-sided t-confidence interval for xTb at x(1) = x̄(1). When θ∗ → π/2, the hyperbolic band
approaches the Scheffé band over the whole space of the predictor variables. One the other hand, as θ∗ → π/2, the critical
constant cc,2 of the constant width band approaches a finite constant and so the width of the band 2cc,2

√
(1+ a2)/nσ̂ and

the volume v(Vc) in (16) approach infinity.
We have calculated eff as a function of θ∗ ∈ (0, π/2) for given values of p = 3(1)8, ν = 15, 40,∞ and α =

0.10, 0.05, 0.01. The following pattern appears for all the combinations of p, ν andα: The function eff(θ∗) first decreases and
then increases over θ∗ ∈ (0, π/2). When θ∗ approaches zero from above, eff(θ∗) approaches one.When θ∗ approaches π/2
from below, eff(θ∗) approaches infinity. At a certain threshold value θ∗0 = θ

∗

0 (p, ν, α), eff(θ
∗

0 ) is equal to one. The threshold
value θ∗0 (p, ν, α) is relatively stable for different values of ν and α we studied, but it increases in p. The value of θ

∗

0 (p, ν, α)
is approximately equal to 0.8 for p = 3 and 1.1 for p = 8. Furthermore, minθ∗∈(0,π/2) eff(θ∗) is no less than 0.98 for all the
combinations studied. Fig. 1 provides a plot of eff(θ∗) for p = 3, ν = 15 and α = 0.05, the shape of which is typical for all
the combinations of p, ν and α.
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From these observations, the following conclusions can be drawn. When 0 < θ∗ < θ∗0 (i.e. when the value of a in (1) is
smaller than a certain threshold value), the two-sided constant width band improves upon the two-sided hyperbolic band
in terms of its MVCS. The advantage of the constant width band over the hyperbolic band in this situation is very limited,
however, since minθ∗∈(0,π/2) eff(θ∗) is only very marginally smaller than one. On the other hand, when θ∗0 < θ∗ < π/2, the
hyperbolic band improves upon the constant width band. Indeed, the advantage of the hyperbolic band over the constant
width band can be enormous, especially when θ∗ is close to the upper limit π/2 since eff(θ∗) becomes very large when θ∗
is close to π/2.
These observations are consistent with those for a simple linear regression made in [26], where the angle θ/2 plays a

similar role there as the angle θ∗ does here. In a simple linear regression, however, the interval over which the confidence
bands are constructed is not necessarily symmetric about the mean of the observed values of the predictor variable.
Now we turn our attention to the comparison of the one-sided hyperbolic and constant width bands. Note that the

confidence sets for b that correspond to the one-sided hyperbolic and constant width bands are not bounded and have
volumes equal to infinity. To overcome this, we adopt the following approach that is also used for the comparison of one-
sided confidence bands or intervals under the average width criterion; see e.g., [27]. Since the 1− α level lower and upper
hyperbolic (constant width) confidence bands are symmetric about the fitted regression model xTb̂, we use half of the
volume of the set of b that corresponds to the band

xTb ∈ xTb̂± ch,1σ̂
√
xT(XTX)−1x for all x(1) = (x2, . . . , xp)T ∈ Xe

as a measure for the one-sided hyperbolic band, and half of the volume of the set of b that corresponds to the band

xTb ∈ xTb̂± cc,1
√
(1+ a2)/n σ̂ for all x(1) = (x2, . . . , xp)T ∈ Xe

as ameasure for the one-sided constant width band. Hence the ratio of these twomeasures, eff1(θ∗), still has the expression
(17) except that ch,2 and cc,2 are replaced by ch,1 and cc,1 respectively.
We have also calculated eff1 as a function of θ∗ ∈ (0, π/2) for given values of p = 3(1)8, ν = 15, 40,∞ and

α = 0.10, 0.05, 0.01. It turns out that eff1(θ∗) has similar shape and properties as eff(θ∗).
We therefore recommend that the hyperbolic band should be the default method of choice unless the ‘‘constant width’’

feature of the constant width band is highly desirable for the practical problem under study. One example of when constant
width is more desirable than hyperbolic shape is given in [32].
Note that, on the set

{
x(1) :

(
x(1) − ¯x(1)

)T S−1 (x(1) − ¯x(1)) = b2} for a given b satisfying 0 ≤ b ≤ a, the width of the
hyperbolic band is constant. This constant width increases with b and is equal to the width of the constant width band at
a particular value of b between 0 and a. As such, the hyperbolic band is narrower than the constant width band when x(1)
is near x̄(1) and vice versa when x(1) is near the boundary of Xe. Comparison of the hyperbolic and constant width bands
under the average width criterion in [27] leads to conclusions that differ from our observations under the MVCS criterion
above in twomajor ways. First, the average width of the hyperbolic band is always no larger than that of the constant width
band. Second, the ratio of the average widths of the two bands is always finite even as θ∗ → π/2. Of course, under either
form of optimality one is led to recommend use of the hyperbolic bands, so in that sense there is a consistency of direction
in both criteria.
Finally, we use a portion of the acetylene data in [31] to briefly illustrate the calculations discussed in this paper. This

same data set has also been used for illustration by Casella and Strawderman [23], Naiman [16] and Liu and Lin [25] among
others. The two predictor variables are reactor temperature (x2) and ratio of H2 to n-Heptane (x3). The response variable (y)
is conversion of n-Heptane to Acetylene. There are sixteen data points, so that p = 3, n = 16 and ν = 13. The fittedmultiple
linear regression model is given by y = −130.69+ 0.134x2 + 0.351x3, with σ̂ = 3.624, and R2 = 0.92.
The observed values of x2 range from 1100 to 1300 with average x·2 = 1212.5, and the observed values of x3 range from

5.3 to 23 with average x·3 = 12.4. So, the ellipsoidal regionXe is centered at (x·2, x·3)T = (1212.5, 12.4)T. The size ofXe
increases with the value of a. For a = 1.9 and α = 0.10 as considered in [25], the regionXe is comparable with the range
of observations on the predictor variables and our MATLAB program calculates θ∗ = 1.086, ch,2 = 2.723, cc,2 = 2.598,
ch,1 = 2.370, cc,1 = 2.276, eff = 1.119 and eff1 = 1.141. So the two-sided hyperbolic band is about 12%more efficient than
the two-sided constant width band in this particular case, and the one-sided hyperbolic band is about 14% more efficient
than the one-sided constant width band. The smallest value of eff over a ∈ (0,∞) is equal to 0.987, obtained at a = 0.771.
The smallest value of eff1 over a ∈ (0,∞) is equal to 0.990, attained at a = 0.761.
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