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a b s t r a c t

In this paper, we introduce a unified skew Gaussian-log Gaussian model and propose a
general class of spatial samplingmodels that can account for both heavy tails and skewness.
This class includes some models proposed previously in the literature. The likelihood
function involves analytically intractable integrals and directmaximization of themarginal
likelihood is numerically difficult. We obtain maximum likelihood estimates of the model
parameters, using a stochastic approximation of the EM algorithm (SAEM). The predictive
distribution at unsampled sites is approximated based on Markov chain Monte Carlo
samples. The identifiability of the parameters and the performance of the proposed model
is investigated by a simulation study. The usefulness of our methodology is demonstrated
by analyzing a Pb data set in a region of north Iran.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Spatial modeling can provide a statistically sound approach for explaining a response variable observed over a region.
The traditional approaches to model spatial data are based on the Gaussian distribution. This assumption might be overly
restrictive to represent the data. The real data could be highly non-Gaussian and may show features like heavier tails or
skewness.

Considerable interest has been focused on approaches that allow theGaussian assumption to be relaxed in spatialmodels.
For modeling skewed distributions, De Oliveira et al. [9] extended the Bayesian transformed Gaussian model applying the
Box–Cox family of power transformations. To handle someof the potentialweaknesses associatedwith thismethod, Kimand
Mallick [21] developed the skew Gaussian random field based on the skew normal distribution (Azzalini and Capitanio [5]).
Even if theirmodel has an appealing construction, Genton andZhang [17] demonstrated that it has an identifiability problem.
In a different way, Zhang and El-Shaarawi [28] recently introduced a class of stationary process that have skewed marginal
distributions. They obtained maximum likelihood estimates of model parameters based on a Monte Carlo EM algorithm.
Dominguez-Molina et al. [10] and Gonzalez-Farias et al. [18] proposed a multivariate closed skew normal distribution
which is closed under marginalization and conditioning. Accordingly, an n-dimensional random vector Y is said to have
a multivariate closed skew-normal distribution, denoted by CSNn,m(µ, Σ,D, ν, Θ), if its density is

φn(y;µ, Σ)Φm(D(y − µ); ν, Θ)/Φm(0; ν, Θ + DΣD′), (1)
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where µ ∈ ℜ
n, ν ∈ ℜ

m and Σ ∈ ℜ
n×n and Θ ∈ ℜ

m×m are both covariance matrices, D ∈ ℜ
m×n, φn(y;µ, Σ),

and Φn(y;µ, Σ) are the probability density function (pdf ) and cumulative distribution function (cdf ), respectively, of the
n-dimensional normal distribution with mean vector µ and covariance matrix Σ , and D′ is the transpose of the matrix D. A
more detailed description of these and other skewed models may be found in the book edited by Genton [15].

If D = 0 this density reduces to the multivariate normal one and if m = 1 this clearly reduces to the skew-normal
distribution [4]. Allard and Naveau [2] used the multivariate closed skew normal and introduced a spatial skewed Gaussian
process. To increase the amount of skewness in the vector Y as well as to simplify the interpretation of this density, Allard
and Naveau [2] assumed thatm = n, ν = 0, Θ = Σ and D = δIn in which δ ∈ ℜ is a single parameter controlling skewness
and In is the identity matrix of dimension n. This model is also referred to as the homotopic model.

Arellano-Valle and Azzalini [3] presented a family of skew-normal distributions which unifies a plethora of SN
distributions including CSN with no over-parametrization problem. According to their approach, an n-dimensional random
vector Y has a multivariate unified skew-normal distribution, denoted by SUNn,m(µ, Σ, Γ , ν, ∆), if its density is

φn(y;µ, Σ)Φm(Γ ′Σ−1(y − µ); ν, ∆ − Γ ′Σ−1Γ )/Φm(0; ν, ∆), (2)

where ∆ ∈ ℜ
m×m is a correlation matrix, Γ ∈ ℜ

n×m. The SUN and CSN classes are equivalent when ∆ = Θ + DΣD′ and
Γ = ΣD′.

Note that if Y is partitioned as Y = (Y′

1, Y
′

2)
′, then the marginal distribution of k-dimensional vector Y1 is SUNk,m(µ1,

Σ11, Γ1, ν, ∆), where parameters correspond to the partition of Y as

µ =


µ1
µ2


, Σ =


Σ11 Σ12
Σ21 Σ22


, Γ =


Γ1
Γ2


.

Similar in spirit with [2], we will now introduce a new spatial skewed Gaussian process. Let {G(s), s ∈ R ⊆ ℜ
d
}, d ≥ 1, be

a spatial, ergodic, stationary, zero-mean Gaussian process with stationary covariance function c(h) = Cov(G(s + h),G(s))
and denoted the covariance matrix of the random vector G = (G(s1), . . . ,G(sn))′ byΣ . In order to link this spatial structure
with the skew-normal distribution, we assume that them-dimensional vector T has a normal distribution, such that

T
G


∼ Nm+n


0,


∆ Γ ′

Γ Σ


. (3)

Now, we define a SUN random process {Y (s)} as

Y (s) d
= µ(s) + [G(s)|T > ν].

For any (s1, . . . , sn), Y = (Y (s1), . . . , Y (sn))′ has the multivariate unified skew-normal distribution (2). We denote this
process the unified skewGaussian (SUN) process. Form = n,∆ = Σ ,Γ =

δ√
1+δ2

Σ and ν = 0, the SUNprocess corresponds

to the homotopic model.
The observed data may contain outliers which have extreme values compared to their neighboring observation values.

Outlying observations can be error measurements or they may belong to a region in the space with larger observational
variance relative to the rest. Hence, the spatial outliers may be isolated or grouped. Based on a process with fat-tailed finite
dimensional distributions, Palacios and Steel [26] introduced the Gaussian log-Gaussian (GLG) process based on a ratio of a
Gaussian and a log-Gaussian process. In fact, they replaced the Gaussian stochastic process ϵ(s) by a ratio of independent
stochastic processes, ϵ(s)/

√
λ(s), where the mixing term λ(s) is a log-Gaussian stochastic process. This requires a smooth

λ(s)process, and thismeans that observationswith particularly small values ofmixing variableswill tend to cluster together.
However, they called observations with small λ(s) ‘‘outliers’’, even though these observations belong to a region with larger
observational variance, relative to the rest. Additionally, Fonseca and Steel [11] considered a similar mixing in the nugget
effect component allowing for individual outliers. They also extended the ideas by Palacios and Steel [26] to processes
in space and time. In fact, their approach used mixing at two levels. These approaches are suitable only for symmetric
heavier tail distributions will fail to handle skewed data. To deal with this problem, the use of scale mixture of skew normal
distributions has recently received attention for non-spatial data (see, e.g., [23,6,12,20,13,27]). Based on this idea, we intend
to describe a general spatial model that can take skewness and heavy tails into account which we term the unified skew
Gaussian-log-Gaussian (SUGLG) model. This model allows us to accommodate and identify outliers.

Considering the identifiability problems associated with non-Gaussian spatial random fields, Genton and Zhang [17]
proposed some remedies to avoid the unidentifiability. Subsequently, the GLG and homotopic models do not have the
identifiability problem. Ourmodel is also compatiblewith their remedies. In the sequel, we develop the likelihood-inference
methodology for our model. As the likelihood function involves analytically intractable integrals over the distribution
of the mixing random variables and since direct maximization of the marginal likelihood is difficult numerically, we
apply a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function. In this
algorithm, for approximating the relevant conditional expectations, we use a Markov chain Monte Carlo algorithm based
on the slice sampling [24,1]. Then, we compute predictions using the estimates of the parameters. Since the predictive
distribution cannot be evaluated in closed form, it will be approximated using Markov chain Monte Carlo. Outliers are
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identified through the highest posterior density (HPD) of randommixing variables. Finally, our approach is illustrated using
simulated data, as well as applying it to a real data set.

The organization of the paper is as follows. Section 2 introduces the mixture model and derives some of its properties.
Section 3 considers maximum likelihood estimation of the model parameters and describes the SAEM algorithm. Using
simulated data, the identifiability of the parameters and the performance of the proposed model is examined in Section 4.
Section 5 illustrates the use of proposed methodology on a spatial data set. Conclusions are given in Section 6.

2. The model

Let Z(s) be a random process defined for locations s in some spatial region R ⊆ ℜ
d. We assume that

Z(s) = f′(s)β + W (s) + τρ(s), (4)

where the mean surface is assumed to be a linear function of f(s) = (f1(s), . . . , fk(s)), a vector of k known functions of the
spatial coordinates, with unknown coefficient vector β ∈ ℜ

k. Further, the second-order stationary error process W (s) is
a unified skew Gaussian random process corresponding to the homotopic model. In fact, if W = (W (s1), . . . ,W (sn))′ is a
vector from this random process at n different locations s1, . . . , sn, we assume that the distribution of vectorW is

W ∼ SUNn,n


0, ω2Cθ,

ωδ
√
1 + δ2

Cθ, 0, Cθ


, (5)

where the skewness parameter δ and the scale parameter ω belong to ℜ and ℜ
+, respectively; Cθ is the n × n correlation

matrixwith Cθ(∥si−sj∥) as its (i, j)th element; Cθ(d) is a valid correlation function of distance d, parameterized by a vector θ.
Moreover, ρ(s) denotes an uncorrelated Gaussian processwith zeromean and unit variance,modeling the so-called ‘‘nugget
effect’’, which allows for measurement error and small-scale variation. The scale parameters τ is defined inℜ

+. With regard
to the alternative representation of [3] for SUN families, we have

W d
= ω

δ
√
1 + δ2

U + ω
1

√
1 + δ2

V, (6)

where V ∼ Nn(0, Cθ) and U ∼ TNn(0; 0, Cθ) are independent. It must be noted that TNn(c;µ, Σ) denotes the
Nn(µ, Σ) distribution truncated below at a point c. To facilitate the computations, we consider the reparametrization
α = ωδ/

√
1 + δ2 and σ = ω/

√
1 + δ2. Thus, we can replace model (6) with the following model

W d
= αU + σV. (7)

Now, we use the idea of scale mixing in order to construct processes that imply finite dimensional distributions with heavy
tails. In fact, we intend to introduce a model that in addition to skewness, allows for modeling regions in space with larger
observational variance relative to the rest of the space. For this purpose, we can add the scaling variables in the skewed
spatial model (7) to account for heavy tails as follows

Wλ
d
= αΛ−

1
2 U + σΛ−

1
2 V, (8)

where Λ = diag(λ1, . . . , λn) and λi = λ(si)′s are spatially correlated mixing variables which are independent of the other
model components. In sequel, we aim to define a random process such that its finite-dimensional distributions are equal
in distribution with the linear model (8). For this, we first suppose that G(s)|λ(s) is a spatial second-order stationary zero-
mean Gaussian process. Let G = (G(s1), . . . ,G(sn))′ and λ = (λ(s1), . . . , λ(sn))′, then we denote the covariance matrix
of G|λ by Σw = (σ 2

+ α2)Λ−
1
2 CθΛ−

1
2 . Also, let T be a normal vector of dimension n and consider the augmented normal

vector (T,G)′ conditional on λ, such that
T
G

λ ∼ N2n


0,


Cθ αCθΛ−

1
2

αΛ−
1
2 Cθ Σw


. (9)

Now, we define a SUGLG process {Wλ(s)} based on the following hierarchical representation:

1. [Wλ(s)|λ(s)] d
= [G(s)|T > 0, λ(s)].

2. λ(s) is a log-Gaussian stochastic process.

Thus, for any vector Wλ = (Wλ(s1), . . . ,Wλ(sn))′ with G and T distributed according to (9), Wλ is equal in distributions to
the linear form (8). Hence, the distribution ofWλ|λ is SUNn,n(0, Σw, αΛ−

1
2 Cθ, 0, Cθ).

Now we introduce the random process Z(s) as

Z(s) = f′(s)β + Wλ(s) + τρ(s), (10)
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where the second-order stationary error process Wλ(s) is a SUGLG process. We can also represent the random process Z(s)
as follows

Z(s) = f′(s)β +
W (s)
√

λ(s)
+ τρ(s), (11)

where W (s) is a SUN random process, such that W = (W (s1), . . . ,W (sn))′ ∼ SUNn,n(0, (σ 2
+ α2)Cθ, αCθ, 0, Cθ). Thus, if

we denote the vector of observations by Z = (Z(s1), . . . , Z(sn)), then the model at the n sample locations can be written as

Z d
= Xβ + αΛ−

1
2 U + σΛ−

1
2 V + τρ, (12)

where X = (f(s1), . . . , f(sn))′ and ρ = (ρ(s1), . . . , ρ(sn))′. Recall that V andU are similar to those in the linearmodel (6). In
thismodel, the observationswith small values ofmixing variables λi characterize the regionswith a relatively large variance
around the underlying trend surface. In fact, the mixing process λ(s) is spatially correlated, and observations with small λi’s
belong to a region with larger observational variance relative to the rest of space and thus allows for modeling regions in
the space with larger observational variance. However, following [26], we will continue to call observations with small λi
‘‘outliers’’. As such, we assume that η(s) = ln(λ(s)) is a Gaussian random field with finite-dimensional distributions:

η = (ln(λ1), . . . , ln(λn))
′
∼ Nn


−

ν

2
1n, νCθ


, (13)

where 1n is a vector of 1’s of order n. We can easily see that this latter implies a lognormal distribution for λi with E(λi) = 1
and Var(λi) = eν

− 1. If ν is large, then with large probability, among the observations there exists a region with larger
observational variance relative to the rest. Note that we can use different correlation matrices for W and η, but in order to
reduce complexity of the model, the same correlation matrices are used.

Let z = (z1, . . . , zn) be a single realization of the considered random field, where zi = Z(si), then the conditional joint
distribution of z, given λ, is

pψ(z|Λ) = SUNn,n(Xβ, Σz, αΛ−
1
2 Cθ, 0, Cθ), (14)

where ψ′
= (β, σ , α, τ , θ′, ν) is the vector of all the model parameters and Σz = Σw + τ 2In. Given the mixing variables

λ, only the unified skew normal distribution behavior is assumed. We can think of model (12) with the finite-dimensional
distributions in (14) as the Gaussian and skewGaussianmodel givenλ andα. IfΛ = In andα = 0 themodel (12) is Gaussian,
and if Λ = In and τ = 0, it reduces to the homotopic model. Moreover, if α = 0, then we arrive at the GLG model. In the
sequel, we call the model (11) with the mixing distribution in (13) the SUGLG model.

2.1. The correlation function

To ease the computations, we assume that the process W (s) and η(s) have an isotropic power exponential correlation
function given by

Cθ(d) = exp(−ξdφ) = γ dφ
, ξ > 0, γ = exp(−ξ) ∈ (0, 1), φ ∈ (0, 2],

where d is the Euclidean distance and θ = (γ , φ)′ with γ the range parameter and φ the smoothness parameter. The range
parameter γ controls how fast the correlation decayswith distance, and parameterφ controls the smoothness of the random
field.

This class which is very flexible and popular, as in the cases φ = 1 and φ = 2, contains the exponential and Gaussian
correlation functions, respectively, which are often used in applications.

3. Maximum likelihood estimation

In this section, we consider the problem of computing the maximum likelihood (ML) estimates of the model parameters.
The likelihood function for ψ given the observed sample z can be written as

L(ψ; z) =


ℜ
n
+

f n,nSUN(z|Xβ, Σz, αΛ−
1
2 Cθ, 0, Cθ)dPλ.

As observed, the likelihood function does not have a simple form, so direct maximization of the likelihood is intractable. In
such cases, the EM algorithm is a popular strategy. For our model, the expectation of the complete likelihood involved in the
E-step of the algorithm cannot be done in a closed form. A possible solution to this problem is to compute the expectation
using a Monte Carlo method, this is known as the Monte Carlo EM (MCEM) algorithm. Recently, a stochastic approximation
version of EM (SAEM), has been suggested by Delyon et al. [8] as a powerful alternative to EM when expectation step is
untractable. This algorithm is computationally more efficient than a classical MCEM , due to recycling the simulations from
one iteration to the next in the smoothing phase of the algorithm (see [22]). Thus, we will use the SAEM algorithm.
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In practice, we usually know the sign of α based on whether the distribution of observations is right-skewed or left-
skewed. Thus, we assume that α > 0. To ease the computations, we rewrite the model as the following hierarchical model

Z = Xβ + Λ−
1
2 (U + V) + τρ,

U ∼ TNn(0; 0, α2Cθ), V ∼ Nn(0, σ 2Cθ), η ∼ Nn


−

ν

2
1n, νCθ


. (15)

With this hierarchical model, we treat U, V and η as latent variables. Hence, if Z+
= (Z,U,V, η) is the complete data, then

the complete-data log likelihood is
ℓc(ψ; z+) = log pβ,τ (z|u, v, η) + log pα2,θ(u) + log pσ 2,θ(v) + log pν,θ(η).

It follows, after some simple algebra, that the sum of the three first terms is:

ℓ∗

c (ψ; z+) = −
n
2
log τ 2

−
1

2τ 2
(z − Xβ − Wλ)

′(z − Xβ − Wλ) −
n
2
log σ 2

−
1

2σ 2
V′C−1

θ V −
n
2
logα2

−
1

2α2
U′C−1

θ U − log


ℜ
n
+

exp


−
1
2
U′C−1

θ U

dU

−
n
2
log ν − log |Cθ| −

1
2ν


η+

ν

2
1n

′

Cθ−1

η+

ν

2
1n

′

, (16)

where Wλ = Λ−
1
2 (U + V). The SAEM algorithm starts with some initial estimate ψ(0). At the mth iteration, given estimate

ψ(m), the new estimate ψ(m+1) is generated in two steps; a stochastic approximation step, and a maximization step. The
process is iterated from the starting value ψ(0) to convergence. Based on (16), we have

Q (ψ|ψ(m)) = Eψ(m) [ℓc(ψ; z+)|z] = −
n
2
log τ 2

−
1

2τ 2
[z′z − 2β′X ′z

− 2z′Eψ(m)(Wλ|z) + β′X ′Xβ + 2β′X ′Eψ(m)(Wλ|z)

+ Eψ(m)(W′

λWλ|z)] −
n
2
log σ 2

−
1

2σ 2
tr[C−1

θ Eψ(m)(VV′
|z)]

−
n
2
logα2

−
1

2α2
tr[C−1

θ Eψ(m)(UU′
|z)] − log


ℜ
n
+

exp


−
1
2
U′C−1

θ U

dU

−
n
2
log ν − log |Cθ| −

1
2
1′

n[C
−1
θ Eψ(m)(η|z)] −

ν

8
1′

nC
−1
θ 1n −

1
2ν

tr[C−1
θ Eψ(m)(ηη

′
|z)]. (17)

At iteration m of the SAEM algorithm, if {(Ui,Vi, ηi)}
l
i=1 are samples from the joint posterior distribution pψ(m)(U,V, η|z),

then an stochastic approximation of Eψ(m)(g(U,V, η)|z) is

Em+1
= Em

+ γm+1


1
l

l
i=1

g(Ui,Vi, ηi) − Em


where γm is a smoothing parameter, i.e. a decreasing sequence of positive numbers.

At the maximizing step, new estimates are obtained by maximizing (17) where the conditional expectations have been
replaced by corresponding stochastic approximations. Thus, if Em+1

i , i = 1, . . . , 9 are stochastic approximations of the
conditional expectations corresponding to each component in Eq. (17), then the updates of the parameters at the mth
iteration can be produced in the following closed form expressions:

β(m+1)
= (X ′X)−1X ′

[z − Em+1
1 ],

τ 2(m+1)
=

1
n
[z′z − β(m+1)′(X ′X)β(m+1)

− 2z′Em+1
1 + Em+1

2 ],

θ(m+1)
= Arg min

θ


2 log |Cθ| + n log tr(C−1

θ Em+1
3 ) + n log tr(C−1

θ Em+1
4 )

+ 2 log


ℜ
n
+

exp


−
1
2
U′C−1

θ U

dU + n log νθ + 1′

nC
−1
θ Em+1

5 +
1
νθ

tr[C−1
θ Em+1

6 ] +
νθ

4
1′

nC
−1
θ 1n


,

σ 2(m+1)
=

1
n
tr(C−1

θ(m+1)E
m+1
3 ),

α2(m+1)
=

1
n
tr(C−1

θ(m+1)E
m+1
4 ),

ν(m+1)
= 2[1′

nCθ(m+1)
−11n]

−1


−n +


n2 + 1′

nCθ(m+1)
−11n tr(Cθ(m+1)

−1Em+1
6 )


,
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where

νθ = 2
−n +


n2 + 1′

nCθ
−11n tr(Cθ−1Em+1

6 )

1′
nCθ

−11n
.

The convergence of the SAEM algorithm depends on the choice of the smoothing parameter γm and the number of
simulations from the joint posterior distribution. In principle, the number of simulations should not affect the convergence
of the SAEM algorithm but a good choice of it can improve the performance of the algorithm. Because the starting point
may not be in the neighborhood of maximum likelihood estimate, we use a large value for γm, so that the parameters move
quickly into vicinity of maximum likelihood estimate. After moving the estimates ψ(m) around the maximum likelihood
estimate, we use a small value for γm to stabilize the algorithm in the neighborhood of maximum likelihood estimate. Thus,
to improve convergence in the SAEM algorithm, we choose γm as

γm =

1, for 1 ≤ m ≤ K ;
1

m − K
, for m > K ,

where K was determined graphically by plotting the values of the SAEM estimates against the iteration number. In theMCEM
algorithm, γk would be equal to 1 for all iterations. Because the SAEM algorithm is a stochastic algorithm, a deterministic
convergence criterion is not appropriate. We recommend implementing the SAEM algorithm with a sufficiently large
number of iterations and checking the convergence by plotting the values of the SAEM estimates against the iteration
number.

In the sequel, we will describe anMCMC algorithm for sampling from the joint posterior distribution pψ(U,V, η|z).

3.1. Markov Chain Monte Carlo Simulation

To implement the Markov chain Monte Carlo simulation, we write the complete posterior conditional distributions as

p(u, v|z, η) = p(v|z,u, η)p(u|z, η), (18)
p(η|z,u, v) ∝ pψ(z|u, v, η)pν,θ(η), (19)

where

p(u|z, η) = TNn(0, Σ−1
u Λ−

1
2 Σ−1ϵ, Σ−1

u ),

p(v|z,u, η) = Nn


1
τ 2

Σ−1
v Λ−

1
2 (ϵ− Λ−

1
2 u), Σ−1

v


, (20)

with ϵ = z− Xβ, Σ = τ 2In + σ 2Λ−
1
2 CθΛ−

1
2 , Σu =

1
α2 C

−1
θ + Λ−

1
2 Σ−1Λ−

1
2 , Σv =

1
σ 2 C

−1
θ +

1
τ2 Λ−1 and pν,θ(η) denotes the

distribution in (13). The full conditional posterior of V is known and is easy to sample from. Although the full conditional of
U defines a standard probability distribution, sampling from this distribution is simply impracticable. In fact, two methods
can be used for sampling from this full conditional. If n is small, we propose to use rejection sampling: generate proposals
of multivariate normal distribution which are accepted if they are inside the support region otherwise they get rejected.
However, the rejection sampling may be inefficient when n is large. In this case, the Gibbs iterative algorithm is preferable
in which each component is generated conditional on all other components of U.

The full conditional of η does not define a standard probability distribution. The main issue is that the elements of η are
not conditionally independent given other parameters and data. This complicates the matter in view of the large dimension
of η. To solve this problem, Palacios and Steel [26] partitioned the elements of η in blocks, each of which corresponds to a
cluster of observations that are relatively close together. Indeed, they wanted to confine most of the dependence between
the ηi’s to the same cluster. For each cluster, they used a Metropolis–Hastings step in their MCMC algorithm. Their method
has some drawbacks. First, the Metropolis–Hastings algorithm is difficult to automatize since it involves tuning tailored to
each application. Second, the convergence time of theMarkov chain increases with increasing the number of clusters. Third,
the inferences can be affected by the clustering algorithm.

Recently, auxiliary variable methods based on slice sampler have been found to provide an attractive strategy by
those who used the Markov chain Monte Carlo (MCMC) algorithms to simulate from complex nonnormalized multivariate
densities [24]. For sampling from the full conditional of η, we implement the slice sampling algorithmbased on two auxiliary
variables [1,28]. For this purpose, if U1|z, η,u, v and U2|η have the uniform distribution on the intervals [0, pψ(z|η,u, v)]
and [0, pν,θ(η)], respectively, then

p(U1,U2, η|z,u, v) ∝ I{U1<pψ(z|η,u,v)}I{U2<pν,θ(η)}, (21)

where I denotes the indicator function. Thus,

p(η|z,u, v,U1,U2) ∝ I{U1<pψ(z|η,u,v)}I{U2<pν,θ(η)}. (22)
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Now, if e1 and e2 represent exponential distribution with mean 1, say exp(1), then logU1 = log pψ(z|η,u, v) − e1 and
logU2 = log pν,θ(η)− e2, given z,u, v and η. Based on these assumptions, we introduce an algorithm for sampling from the
joint posterior distribution. Indeed, givenu(t), v(t) and η(t), we can summarize themain steps of the slice sampling algorithm
at step (t + 1) as

1. Draw e(t+1)
1 and e(t+1)

2 from exp(1), and let
at = log pψ(z|η(t),u(t), v(t)) − e(t+1)

1 , bt = log pν,θ(η
(t)) − e(t+1)

2 .
2. Draw η(t+1) from a uniform distribution on

{η; at < log pψ(z|η,u(t), v(t))}


{η; bt < log pν,θ(η)}.
3. Draw (u(t+1), v(t+1)) from p(u, v|z, η(t+1)).
4. Iterate above steps until we get the appropriate number of MCMC samples.

For details regarding step 2, see the Appendix.

3.2. Prediction

In many applications, predicting the response values at new locations is an important goal. In this section, predictions at
new locations aremade using the plug-inmethod inwhichwe first assume true values of parameters are known and predict
the vector Z0 = (Z01 , . . . , Z0p) at unsampled locations s01 , . . . , s0p . We then carry out the prediction under the parameter
estimates. For this, we must first determine the joint distribution of (W′,W′

0)
′ in which W0 = (W (s01), . . . ,W (s0p))′.

According to SUN process, we have

(W′,W′

0)
′ d
= [(G′,G′

0)
′
|T > 0], (23)

where G = (G(s01), . . . ,G(s0p))′ and the joint distribution of ((G′,G′

0)
′, T′)′ is T

G
G0

 ∼ N2n+p


0,


Coo
θ αΓ +

′

αΓ + Σ+


, (24)

where Σ+
= (σ 2

+ α2)C+

θ and

C+

θ =


Coo
θ Cop

θ

Cpo
θ Cpp

θ


, Γ +

=


Coo
θ

Γ0


,

with Cpp
θ = [Cθ(∥s0i − s0j∥)]p×p, C

op
θ = [Cθ(∥si − s0j∥)]n×p and Λp = diag(exp(η0)). Finally, Γ0 is a p × n matrix modeling

the influence of the n truncated normal values on the interpolated points. With regard to (24), we choose Γ0 = Cpo
θ .

Consequently, the joint distribution of (W′,W′

0)
′ will be

(W′,W′

0)
′
∼ SUNn+p,n(0, Σ+, αΓ +, 0, Coo

θ ). (25)

Also, based on (11) and (25), the joint distribution of (Z, Z0)
′ can be easily obtained as

p(z, z0|η, η0) = SUNn+p,n(Xopβ, Λ+
−

1
2
Σ+Λ+

−
1
2

+ τ 2In+p, αΛ+
−

1
2
Γ +, 0, Coo

θ ), (26)

where η0 = (η(s01), . . . , η(s0p))
′, Xop = (X ′, X ′

p)
′ with Xp = (f(s01), . . . , f(s0p))

′ and Λ+
=


Λo 0
0 Λp


. Now, to make

prediction, we need to obtain the full predictive distribution

p(z0|z) =


ℜp


ℜn

p(z0|z, η, η0)p(η0|η, z)p(η|z)dηdη0. (27)

In this case, since the process is non-Gaussian, the full predictive distribution cannot be evaluated in closed form but can be
approximated using Monte Carlo samples, where drawings from p(η, |z) are obtained directly from the MCMC algorithm,
described in the previous section. Since p(η0|η, z) = p(η0|η), we can evaluate (27) using samples of η0 from

p(η0|η) = Nn


−

ν

2
1p + Cpo

θ Coo
θ

−1

η+

ν

2
1n


, ν(Cpp

θ − Cpo
θ Coo

θ
−1Cop

θ )


. (28)

Also, based on (26), the conditional density of [z0|z, η, η0] takes the form

p(z0|z, η, η0) = SUNp,n(µz0|z, Σz0|z, αΓz0|z, −αCoo
θ Λ

−
1
2

o Σ−1
z (z − Xβ), ∆z0|z), (29)
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where µz0|z = Xpβ + A(z − Xβ) and

A = (σ 2
+ α2)Λ

−
1
2

p Cpo
θ Λ

−
1
2

o Σ−1
z ,

Σz0|z = (σ 2
+ α2)Λ

−
1
2

p Cpp
θ Λ

−
1
2

p + τ 2Ip − A(Λ
−

1
2

o Cop
θ Λ

−
1
2

p ),

Γz0|z = Λ
−

1
2

p Cpo
θ − AΛ

−
1
2

o Coo
θ ,

∆z0|z = Coo
θ − α2Coo

θ Λ
−

1
2

o Σ−1
z Λ

−
1
2

o Coo
θ .

Thus, for each posterior drawing of η, we generate a drawing from (28) and finally using sampling from density in (29),
we can obtain a realization from the predictive distribution (27). Repeating the aforementioned steps as many times as
required, we achieve samples from the predictive distribution as {z(j)

0 ; j = 1, . . . , J}. The estimates of the spatial predictor
and prediction variance are then given as

E(Z0|z) =
1
J

J
j=1

z(j)
0 ,

Var(Z0|z) =
1
J

J
j=1

z(j)
0 z(j)′

0 −
1
J2

J
j=1

z(j)
0

J
j=1

z(j)′
0 . (30)

3.3. Outlier detection

The model (11) can account for regions with larger observational variance. In other words, this model is able to
accommodate the regions with larger observational variance and does not need to identify them for inference. But, it
may be useful to have a criterion to identify regions with inflated variance. In this model, for λi = 1, the marginal
sampling distribution of observations is the unified skew Gaussian. Also, observations with particularly small values of
mixing variables λi tend to be away from the mean surface; hence, this observation may be considered as an outlier.

In order to identify the outliers, Palacios and Steel [26] proposed to compute the Bayes factor in favor of the model with
λi = 1 (and all other elements of λi free), against the model with free λi. However, this method becomes computationally
very intensive as it requires to generate a new sample of posterior distribution for each observations. To overcome this
problem, we apply the highest posterior density (HPD) 100(1 − α)% credible intervals of random mixing variables for
determining regions with increased variance. Since in this situation, the posterior distribution does not have a closed form,
the algorithm of [7] can be used to determine this region. In this algorithm, {λij}

l
j=1 denotes ergodic MCMC samples from

the posterior distribution p(λi|z) and λi(j) is the jth ordered statistic, an HPD region will be obtained for λi as below:

Ri
α(n) = (λi(k∗)

, λi(k∗+[(1−α)n])), (31)

where [(1 − α)n] denotes the integer part of (1 − α)n and k∗ is selected in a way that:

λi(k∗+[(1−α)n]) − λi(k∗)
= min

1≤k≤n−[(1−α)n]
(λi(k+[(1−α)n]) − λi(k)). (32)

4. Simulation study

Information contained in data on certain identifiable parameters is often very limited. Sometimes such parameters can
be poorly estimated with practically attainable sample sizes, which can substantially affect the estimates of parameters
of primary interest. The SUGLG model introduces the extra parameters α and ν beyond the parametrization of the usual
Gaussian model, so it is natural to examine to what extent information on these parameters can be recovered from data.
Also, the mixing process have been added in the skew-Gaussian spatial process to account for heavy tails. Therefore, the
other fundamental question is about the capability of model to identify outliers. In this section, we first use simulation to
assess the identifiability of the parameters and the ability of the SUGLG model to correctly identify outlying observations.
Notice that inferences are based on the SAEM algorithm with 100 iterations and K = 80. Also, the total number of Monte
Carlo simulations performed at each iteration was chosen to be l = 500.

To address parameters identifiability, we generate data from our SUGLGmodel with a constant mean surface and spatial
sampling points were considered on regular lattice of the unit square. We focus on the extra parameters α and ν, because
we would expect inference to be most challenging for these parameters. Throughout, we use a sample size of n = 100
with β = 0, σ 2

= 1, τ 2
= 0.1, φ = 1 and γ = 0.2. To consider identifiability of α, four data sets were generated with

α = 0.01, 1, 1.5 and 2. Then, themaximum likelihood of themodel parameters are obtained via the SAEMalgorithm. Table 1
displays the estimations for α. This table clearly indicates that the data allow for meaningful inference on α, even with this
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Fig. 1. The HPD regions and the estimated values of E(λi|z), i = 1, . . . , 100, under the SUGLGmodel. Solid line: E(λ|z). Dotted line: lower bound. Dashed
line: upper bound.

Table 1
Identifiability of two parameters α and ν.

α
True value 0.01 1 1.5 2
Estimated value 0.09 1.13 1.37 1.86

ν
True value 0.1 1 2 3
Estimated value 0.06 1.12 1.68 2.87

Table 2
Bias and root of mean square error of parameter estimates under various models.

Parameter True value Gaussian GLG SUN SUGLG
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

β0 0 −0.148 0.196 −0.109 0.098 0.088 0.052 −0.053 0.034
β1 0.1 −0.217 0.147 0.086 0.072 −0.231 0.189 −0.084 0.061
β2 −0.1 0.193 0.101 0.046 0.032 0.053 0.094 0.022 0.016
σ 2 1 8.217 6.526 3.455 2.058 6.281 5.409 1.011 0.093
τ 2 0.1 2.570 2.235 1.893 1.692 1.449 1.608 0.974 0.102
φ 1 0.796 0.881 0.413 0.247 0.421 0.239 0.128 0.0179
γ 0.2 0.299 0.138 0.121 0.092 0.141 0.075 0.099 0.069
α 2 – – – – 1.06 1.033 0.346 0.288
ν 2 – – 0.630 0.715 – – −0.343 0.277

quite moderate sample size. The same applies for inference on ν presented in Table 1 for four data sets generated with
ν = 0.1, 1, 2 and 3.

We also investigated the potential of the SUGLG model to identify outliers. For this, we generate n = 100 data points
based on the model (4) and (5) with β = 0, σ 2

= 1, α = 3, τ 2
= 0.1, φ = 1 and γ = 0.2. We then select two observations

(2 and 60). Location 2 is contaminated subtracting 2 units from the simulated data and location 60 ismodified adding 2 units
to the simulated data. Fig. 1 presents the 95% HPD regions and the posterior mean values of λi, i = 1, . . . , 100 under the
SUGLG model. We came to the conclusion by this figure that two observations 2 and 60 have the smallest posterior mean
values of mixing variables and very small HPD intervals.

Now, in order to examine the performance of the proposed model, we simulated 50 data sets from the SUGLG model
with σ 2

= 1, τ 2
= 0.1, φ = 1, γ = 0.2, α = 2, ν = 2. In addition, assuming that s = (s1, s2), we consider the mean

function β0 + β1s1 + β2s2 with β = (0, 0.1, −0.1). To compare four models Gaussian, GLG, SUN and SUGLG, we computed
the average of bias (Bias) and the root of mean-square error (RMSE) of the parameters, calculated in the following way for
a parameter κ

Bias(κ̂) = ¯̂κ − κ, RMSE(κ̂) =

 1
50

50
i=1

(κ̂i − κ)2,

where κ̂i is the estimation of κ from simulated data set i, and ¯̂κ =
1
50

50
i=1 κ̂i. The results are summarized in Table 2. The

SUGLG model has the best performance, in the sense that the estimates under this model are most appropriate than those
of the other models. The bias and RMSE measures for both σ 2 and τ 2 are noticeably large under the three other models.
Although the value of Bias is of course large under our model, it can be justified with respect to under estimation for ν and
over estimation for φ and γ . We conclude that the proposed method gives satisfactory results.
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Fig. 2. Sampling locations of the Pb data.

Table 3
Maximum likelihood estimates of the SUGLG model parameters for the Pb data.

Parameter α β σ 2 τ 2 φ γ ν

Estimation 1 12.3 4.3 1.7 1.2 0.73 1.5

5. Illustrative example

The analyzed data set contains a total of 117 samples that were collected for mapping the Pb-contaminated areas in
soils of a region of north Iran. Sampling locations are shown in Fig. 2. Also, for exploratory purpose, the histogram, ignoring
sampling locations, and the highly robust empirical semivariogram (see [16]) of data are plotted in Fig. 3. The histogram
suggests that the data have moderately right-skewed distribution. Furthermore, it is clear from the highly robust empirical
semivariograms that there exists a strong spatial correlation as well as a nugget effect in the data set. Since explanatory
analysis of the data did not show any significant relation between Pb and the spatial locations, themean function is assumed
to be constant, so k = 1. At each iteration of the SAEM algorithm, the total number of Monte Carlo simulations performed
was chosen to be l = 500. Also, the convergence of the algorithm is then monitored by plotting the parameter values
at each iteration versus the iteration number. The algorithm was stopped when iterates appeared to fluctuate randomly.
Therefore, algorithm is implemented with 200 iterations and K = 150. Under these assumptions for the SAEM algorithm,
we first compare the influence of the presence of a nugget effect in the SUGLG model through Bayes factor (see [19]). For
this, the marginal likelihood of data for the considered SUGLG models was computed using the modified harmonic mean
estimator p̂4 of [25]. The Bayes factor in favor of the SUGLG model with the nugget effect versus the SUGLG model without
the nugget effect was evaluated as 107 that indicates the data favor the presence of the nugget effect. The estimation of
model parameters under the SUGLG model are presented in Table 3. This table clearly indicates the existence of strong
spatial correlation. To assess the predictive performance of the SUGLGmodel and compare it to those of three other models
(i.e. Gaussian, SUN and GLG), we use a cross-validation approach based on single-point deletion predictive distribution, as
described by Gelfand et al. [14]. We use MSPR =

1
n

n
i=1(zi − ẑi)2 criterion, where zi is the observed value at location si

and ẑi is the predicted value. MSPR of corresponding the SUGLG, GLG, SUN and Gaussian models are equal to 10.6, 15.1,
17.2 and 21.6, respectively. Thus, the SUGLG model evidently outperforms three other models. As another criterion, we
computed Bayes factors between models. The Bayes factor in favor of the SUGLG versus the Gaussian, GLG and SUNmodels
was evaluated as 5.9 × 1027, 2.8 × 1020 and 3.2 × 106, respectively, that indicated overwhelming support for the SUGLG
model.

Fig. 4 presents the 95% HPD regions and the posterior mean values of λi, i = 1, . . . , 117 under the SUGLG model.
According to this figure, the smallest posteriormean values ofmixing variableswere found to correspond to observations 21,
24, 29, 36, 38, 43, 49 and 52 (see Fig. 2 to observe the exact locations). As seen, these mentioned observations are clustered
together, so they belong to a region with larger observational variance relative to the rest. Furthermore, the length of HPD
interval is considerably smaller for these observations.
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Fig. 3. Histograms (left column) and robust empirical semivariograms (right column) from the simple regression for plumb data.

Fig. 4. The HPD regions and the estimated values of E(λi|z), i = 1, . . . , 100, under SUGLG model. Solid line: E(λ|z). Dotted line: lower bound. Dashed
line: upper bound.

Fig. 5. The contour map corresponding to the predictive mean for the Pb data.

Finally, the contour map corresponding to the predictive mean under the SUGLG case, is shown in Fig. 5. According to
this figure, the predictions are highest in the area of inflated variance that contains the aforementioned observations.

6. Conclusions

The unified skew Gaussian-log Gaussian (SUGLG) model presented in this paper provides a new approach to account
for both skewness and heavy tails which are two pervasive features of the spatial data. We developed a likelihood-based
approach for the inference and a SAEM algorithm for estimating the model parameters. Using simulated data, meaningful
inference on parameters was concluded. Also, the simulation results indicate that regions in space with relatively large
observational variance can appropriately identified utilizing the proposed model. The numerical example provides a useful
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tool for illustrating our methodology and the results showed that the Pb data clearly supports our model compared to the
three other models.

Finally, it is worth noting that themodel considered in this work has the potential to be used in othermodel frameworks,
such as the generalized linear geostatistical models and the spatiotemporal data. Any further development on these issues
will be very interesting.
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Appendix

We offer a method to draw a sample from the uniform distribution on {at < log pψ(z|η,u(t), v(t))}


{bt < log pν,θ(η)}.
At first, we have

at < log pψ(z|η,u(t), v(t)) ⇔ (ϵ− Λ−
1
2 w(t))′(ϵ− Λ−

1
2 w(t)) < a∗

t ,

bt < log pν,θ(η) ⇔


η+

ν

2
1n

′

C−1
θ


η+

ν

2
1n


< b∗

t , (33)

wherew(t)
= u(t)

+v(t), a∗
t = (ϵ−Λ(t)−

1
2 w(t))′(ϵ−Λ(t)−

1
2 w(t))+2τ 2e(t+1)

1 and b∗
t = (η(t)

+
ν
21n)

′C−1
θ (η(t)

+
ν
21n)+2νe(t+1)

2 .
Thus,

{η; at < log pψ(z|η,u(t), v(t))}


{η; bt < log pν,θ(η)}

= {η = log(λ); (ϵ− Λ−
1
2 w(t))′(ϵ− Λ−

1
2 w(t)) < a∗

t }


η;

η+

ν

2
1n

′

C−1
θ


η+

ν

2
1n


< b∗

t


.

Now, we define

Ii(η
(t)
−i ) =


η∗

∈ ℜ;


η+

ν

2
1n

′

C−1
θ


η+

ν

2
1n


< b∗

t if η = (η
(t)
1 , . . . , η

(t)
i−1, η

∗, η
(t)
i+1, . . . , η

(t)
n )


.

Then, Ii(η
(t)
−i ) contains all possible values of the ith coordinates in order for η to remain in the n dimensional oval while

the other n − 1 coordinates are fixed. Clearly, Ii(η
(t)
−i ) is a non-empty interval because η

(t)
i ∈ Ii(η

(t)
−i ). Let (e1, . . . , en) and

(l1, . . . , ln) are eigenvectors and eigenvalues of Cθ , respectively, where ej = (e1j, . . . , enj)′. It follows, after some algebra,
that if

a1 =

n
j=1

1
lj
e2ij,

a2 = 2
n

j=1

n
k=1
k≠i

eij
lj
ekj

η

(t)
k +

ν

2


,

a3 =


η

(t)
i +

ν

2


a2 +


η

(t)
i +

ν

2

2
a1 + 2νe(t+1)

2 ,

f1 =

−a2 +


a22 + 4a1a3

2a1
,

f2 =

−a2 −


a22 + 4a1a3

2a1
,

then

Ii(η
(t)
−i ) =


η∗

∈ ℜ; min{f1, f2} < η∗
+

ν

2
< max{f1, f2}


. (34)

Also, let

Ji(η
(t)
−i ) =


η∗

∈ ℜ
+
; (ϵ− Λ−

1
2 w(t))′(ϵ− Λ−

1
2 w(t)) < a∗

t if

Λ = diag(exp(η(t)
1 ), . . . , exp(η(t)

i−1), exp(η
∗), exp(η(t)

i+1), . . . , exp(η
(t)
n ))


.
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Clearly, Ji(η
(t)
−i ) is also a non-empty interval because η

(t)
i ∈ Ji(η

(t)
−i ). Now, if ξ2 = ξ1 − ϵ2

i ≥ 0, where ξ1 = (ϵi −
w

(t)
i
λ
(t)
i

)2 +

2τ 2e(t+1)
1 then

Ji(η
(t)
−i ) =

η∗
∈ ℜ

+
; η∗ > log


|w

(t)
i |

√
ξ1 − ϵiw

(t)
i

ξ2

2
 . (35)

Also, when ξ2 < 0, we have

Ji(η
(t)
−i ) =

η∗
∈ ℜ

+
; log


|w

(t)
i |

√
ξ1 − ϵiw

(t)
i

ξ2

2

< η∗ < log


|w

(t)
i |

√
ξ1 + ϵiw

(t)
i

−ξ2

2
 . (36)

Thus, under (34), (35) and (36), ith element η(t+1) can be generated uniformly on the interval Ii(η
(t)
−i )


Ji(η
(t)
−i ).
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