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a b s t r a c t

We are concerned with kernel density estimation on the rotation group SO(3). We prove
asymptotically optimal convergence rates for the minimax risk of the mean integrated
squared error for different function classes including bandlimited functions, functionswith
bounded Sobolev norm and functions with polynomially decaying Fourier coefficients and
give optimal kernel functions. Furthermore, we consider kernel density estimation with
nonnegative kernel functions and prove analogous saturation behavior as it is known for
the Euclidean case, i.e., the optimal minimax rate does not improve for smoothness classes
of functions which are more than two times differentiable. We also benchmark several
families of kernel functions with respect to their capability for kernel density estimation.
To make our finding applicable, we give a fast algorithm for the computation of the
kernel density estimator for large sampling sets and illustrate our theoretical findings by
numerical experiments. Finally, we apply our results to answer a long standing question
in crystallographic texture analysis on the number of orientationmeasurements needed to
estimate the underlying orientation density function up to a given accuracy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Kernel density estimation has been proven to be a powerful and flexible technique to estimate the underlying probability
density function of a given random sample [40]. In this paper we are concerned with kernel density estimation on the
rotation group SO(3). Our major motivation to consider this specific domain comes from crystallographic texture analysis,
where kernel density estimation on the rotation group is used to determine the orientation density function (ODF) of a
specimen from electron back scattering diffraction (EBSD) data [32,11]. The main open question in ODF estimation is: How
many measurements are needed to achieve a given accuracy [3,6,39,27,10]. This question will be answered in Section 3.4.

Letλ be theHaarmeasure on SO(3) and let X1, . . . , XN ∈ SO(3) be a random sample corresponding to a square integrable,
probability density function f ∈ L2(SO(3))with respect to λ. Then we call any measurable function

EN :
N

n=1

SO(3) → L2(SO(3))

that assigns to a random sample X1, . . . , XN ∈ SO(3) a function in L2(SO(3)) a square integrable density estimator. If we
assume

N
n=1 SO(3) to be endowed with the product measure corresponding to the density function f wewrite E

f
N and call

it the square integrable density estimator of f . In our paper we are interested in themean integrated squared error (MISE),

MISE(E f
N) = E∥f − E

f
N∥

2
2 = E


SO(3)

f (x)− E
f
N(x)

2 dλ(x), (1)
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as a measure for the mean discrepancy between the probability density function f and the square integrable density esti-
mator E

f
N of f . More specifically, we want to prove asymptotic lower and upper bounds for the so called minimax risk

inf
EN

sup
f∈F

MISE(E f
N), (2)

where the density function f is known to be within a certain smoothness class F ⊂ L2(SO(3)) and the infimum is taken
over all square integrable density estimators EN based on a random sample of size N .

Asymptotic upper and lower bounds of the minimax risk have been considered by many authors in the more general
setting of d-dimensional compact groups. Upper bounds of rate N−

2s
2s+d for the smoothness class of density functions with

bounded Sobolev norm of order s > d/2 have been found in [14,21,13,31]. Lower bounds of the same rate have been found
in [24] by following a general framework described in [35].

A specific class of density estimators are kernel density estimators. For a kernel function ψ ∈ L2(SO(3)) with
SO(3) ψ(x) dλ(x) = 1 the corresponding kernel density estimator, cf. [31], is defined by

f ∗

ψ (x) =
1
N

N
n=1

ψ(X−1
n x) x ∈ SO(3). (3)

Kernel density estimators with specific kernel functions ψ have been used in [14,21,13,31] to derive upper bounds for the
minimax risk (2). The purpose of this paper is to find optimal kernel functions ψ and asymptotically optimal lower and
upper bounds with explicit constants for the minimax risk (2) for different smoothness classes F .

The findings of our paper are as follows. For the simple case that F is the class FL of bandlimited functions of bandwidth
Lwe show in Theorem 4 that the minimax risk restricted to kernel density estimators satisfies asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈FL

MISE(f ∗

ψ ) · N =
(L + 1)(2L + 1)(2L + 3)− 3

3
,

with an asymptotically optimal kernel function being the Dirichlet kernel with bandwidth L. Since FL is finite dimensional
the density estimation problem is actually a parametric one.

For the smoothness class F 2
s,S , cf. (A.18), of density functions with bounded Sobolev norm of order s > 0 we show in

Theorem 5 that the minimax risk restricted to kernel density estimators satisfies asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F 2

s,S

MISE(f ∗

ψ ) · N
2s

2s+3 =


2s
3

−
2s

2s+3

+


2s
3

 3
2s+3


C

2s
2s+3 S

6
2s+3 , (4)

where C =
 4
3 −

8
s+3 +

4
2s+3


. The corresponding asymptotically optimal kernel function is the Jackson type kernel (11).

Surprisingly, the sharp constant in (4) differs from the Pinsker–Weyl bound reported in [22], indicating that there is still a
gap in understanding the asymptotic equivalence of kernel density estimation andwhite noise experiments for themanifold
case. For the Euclidean case results have been recently reported by Reiß [34].

Finally, we consider the smoothness class F ∞

s,S , cf. (A.19), of density functions with polynomially decaying Fourier co-
efficients with order s > 1

2 . In Theorem 6 we show that the minimax risk restricted to kernel density estimators satisfies
asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F ∞

s,S

MISE(f ∗

ψ ) · N
2s−1
2s+2 =

2
s−2
s+1π

(s + 1) sin 3π
2s+2

S
2

2s+2

and give an asymptotically optimal kernel function in (15).
Of practical importance is the case when the kernel function ψ is assumed to be nonnegative in order to guarantee a

nonnegative kernel density estimator. In analogy to the Euclidean case we prove in Theorem 7 an upper bound for the MISE
of two times weakly differentiable density functions f ∈ F 2

2,S ,

MISE(f ∗

ψ ) ≤ µ2(ψ)
2
∥△̃f ∥2

2 + N−1
∥ψ∥

2
2,

that depend on the second moment

µ2(ψ) =
4
3π

 1

0
(1 − t2)ψ(t)


1 − t2 dt

of the nonnegative kernel function ψ . In Theorem 8 we show that kernel density estimation with nonnegative kernel
functions ψ saturates at the convergence rate N−

4
7 , i.e., even for stricter smoothness classes F 2

s,S, s > 2 the minimax rate
does not improve. An example of a nonnegative kernel functionψ that attains this rate is the de la Vallée Poussin kernel (17).

Finally, we consider the minimax risk (2) without restricting the class of estimators to kernel density estimators.
Following the framework presented in [35] we extend the lower bound given in [24] for the class of density functions
with bounded Sobolev norm to the class of functions with polynomially decaying Fourier coefficients. More specifically, we
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prove in Theorem 12 the existence of a constant C such that

lim
N→∞

inf
EN

sup
f∈F ∞

s,S

MISE(E f
N) · N

2s−1
2s+2 > C .

It should be stressed that throughout this paper we assume that the smoothness class where the density belongs to is
known before, i.e., we consider only non-adaptive methods. For adaptive methods the reader is referred to [35] and the
references therein.

In order to make our finding applicable, we give in Section 3 a new fast algorithm for the numerical computation of
the kernel density estimator as well as for its Fourier coefficients for large sampling sets. The algorithm is based on the
nonequispaced fast Fourier transform [33] and fast summation [17] on the rotation group. Furthermore, we describe in
Section 3.1 an algorithm for drawing a random sample from a distribution on the rotation group. These algorithms are
applied to illustrate our theoretical findings by numerical simulations.

In Section 3.4 we generalize our results to the quotient SO(3)/S where S ⊂ SO(3) is a finite symmetry group. This
allows us to apply our results and algorithms to the ODF estimation problem from individual orientation measurements in
crystallographic texture analysis [32,11]. In particular, we answer the long standing question on the number of orientation
measurements needed to estimate the underlying orientation density function up to a given accuracy [3].

All the algorithms described in this paper are freely available as part of the texture analysis toolbox MTEX [15]. In
Section 3.4 the capabilities of this toolbox are demonstrated on a real world example.

Appendix A contains a tight representation of harmonic analysis on the rotation group including some results from
approximation theory. Most notably, we derive in Lemmas 14 and 19 inequalities for the Fourier coefficients of the
nonnegative function on the rotation group and prove in Theorem 18 for f ∈ F 2

s,S and ψ ∈ L2(SO(3)) a nonnegative,
zonal function the estimate

∥f − f ∗ ψ∥2 ≤
1
2


1 − ψ̂(1)


S.

A similar result was already known for the spherical case [41]. Appendix B contains some proofs that have been skipped in
the previous sections.

2. Lower and upper bounds for kernel density estimators

2.1. Basic properties of the MISE

Let throughout this section f ∈ L2(SO(3)) be a probability density function and ψ ∈ L2(SO(3)) a kernel function with
SO(3) ψ(x) dλ(x) = 1. We start with the following well known decomposition result of the MISE (1) of the kernel density

estimator f ∗

ψ into a bias term and a variance term, see e.g. [36], which actually holds true for the much more general setting
of locally compact groups.

Lemma 1. The MISE (1) of the kernel density estimator f ∗

ψ , cf. (3), allows for the decomposition

MISE(f ∗

ψ ) = ∥f − Ef ∗

ψ∥
2
2 + E∥f ∗

ψ − Ef ∗

ψ∥
2
2

into a bias term

∥f − Ef ∗

ψ∥
2
2 = ∥f − f ∗ ψ∥

2
2

and a variance term

E∥f ∗

ψ − Ef ∗

ψ∥
2
2 =

1
N


∥ψ∥

2
2 − ∥f ∗ ψ∥

2
2


.

In particular, we have with respect to L2-convergence

lim
N→∞

f ∗

ψ = f ∗ ψ.

Proof. In order to keep the paper self contained we have included the proof in Appendix B. �

In the followingwe consider only zonal kernel functions, i.e.,ψ(x) depends only on the rotational angleω(x) of x ∈ SO(3).
Those functions can be seen as the group counterpart of radially symmetric functions in the Euclidean case. Some basic facts
on zonal functions on the rotation group can be found in Appendix A.2.Most importantly, wewill utilize that a zonal function
ψ ∈ L2(SO(3)) can be expanded into a Chebyshev series

ψ(x) =

∞
ℓ=0

ψ̂(ℓ)(2ℓ+ 1)U2ℓ


cos

ω(x)
2


,

where U2ℓ denotes the Chebyshev polynomials of second kind and order 2ℓ and the convergence of the sum is meant in
L2(SO(3)). We call the coefficients ψ̂(ℓ) Chebyshev coefficients of ψ and because of the normalization of ψ to integral one
we have ψ̂(0) = 1.
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Since the convolution of f with a zonal function ψ possesses a simple representation in the Fourier space, cf. (A.17), the
decomposition of the MISE in Lemma 1 allows for a simple representation in the Fourier domain.

Lemma 2. Let f̂ (ℓ, k, k′), ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ be the Fourier coefficients of a probability density function f ∈ L2(SO(3))

as defined in Appendix A.1, and let

f̂ 2ℓ =
1

(2ℓ+ 1)2

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)

2 , ℓ ∈ N. (5)

Then the MISE of the kernel density estimator f ∗

ψ has the representation

MISE(f ∗

ψ ) =

∞
ℓ=1


(2ℓ+ 1)2 f̂ 2ℓ (1 − ψ̂(ℓ))2 +

(2ℓ+ 1)2

N
ψ̂(ℓ)2


1 − f̂ 2ℓ


. (6)

Proof. Representation (6) is a direct consequence of Parseval’s identities (A.9), (A.16) and the convolution formula
(A.17). �

Note that in the Fourier representation (6) of the MISE the sum starts from ℓ = 1. This is due to the fact that we assumed
ψ̂(0) = 1 and f̂ (0, 0, 0) = f̂0 = 1.

2.2. Optimal kernel functions and rates of convergence

Our goal is to find optimal kernel functions that minimize the MISE (1) for certain smoothness classes F ⊂ L2(SO(3))
and to investigate the asymptotic decay rates of the MISE. Let us first consider the trivial case that the class of functions
F = {f }, f ∈ L2(SO(3)) consists only of the true density function itself.

Theorem 3. The MISE optimal kernel function for the class F = {f } is

ψf ,N(x) =

∞
ℓ=0

(2ℓ+ 1)
Nf̂ 2ℓ

(N − 1)f̂ 2ℓ + 1
U2ℓ


cos

ω(x)
2


, (7)

where the convergence of the sum is meant in L2(SO(3)). The corresponding MISE is

MISE(f ∗

ψf ,N
) =

∞
ℓ=1

(2ℓ+ 1)2
f̂ 2ℓ (1 − f̂ 2ℓ )

(N − 1)f̂ 2ℓ + 1
. (8)

In particular, we have f ∗

ψf ,N
→ f in L2(SO(3)) as N → ∞ and the best possible rate of convergence is N−1 unless f is constant.

Proof. See Appendix B. �

A second simple case is that the class of functions F is the space of bandlimited probability density functions

FL =


f ∈ L2(SO(3)) | f ≥ 0,


f (x) dλ(x) = 1, and f̂ (ℓ, k, k′) = 0 for all ℓ > L


.

In this case the density estimation problem becomes a parametric problem and we have the following result on the
asymptotic minimax risk.

Theorem 4. An asymptotically optimal kernel function for the class FL of bandlimited density functions of order L > 0 is the
Dirichlet kernel ψD

L , L ∈ N,

ψD
L (x) =

L
ℓ=0

(2ℓ+ 1)U2ℓ


cos

ω(x)
2


. (9)

The corresponding asymptotic minimax risk is

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈FL

MISE(f ∗

ψ ) · N = ∥ψD
L ∥

2
2 =

(L + 1)(2L + 1)(2L + 3)− 3
3

.

Proof. Let f ∈ FL. Plugging in the Dirichlet kernel ψD
L into (6) and making use of Parseval’s identity (A.16) and the

assumption f̂ (0, 0, 0) = 1 we arrive at the estimate

MISE(f ∗

ψD
L
) =

1
N
(∥ψD

L ∥
2
2 − ∥f ∥2

2) ≤
1
N


L
ℓ=0

(2ℓ+ 1)2


− 1


=
(L + 1)(2L + 1)(2L + 3)− 3

3N
.
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In order to show that this upper bound is asymptotically sharp we consider for a fixed sample size N a density function
f ∈ FL that maximizes the optimal MISE (8). Componentwise differentiation of (8) leads to

f̂ 2ℓ =

√
N − 1
N − 1

, ℓ = 1, . . . , L.

Since f̂ 2ℓ decays to zero as N tends to infinity f can be guarantied to be nonnegative for N sufficiently large. By (8) we obtain

MISE(f ∗

ψf ,N
) =

L
ℓ=1

(2ℓ+ 1)2

√
N−1
N−1


1 −

√
N−1
N−1


(N − 1)

√
N−1
N−1 + 1

=

L
ℓ=1

(2ℓ+ 1)2

N −

√
N
2

N(N − 1)2
,

and, hence,

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f̃∈FL

MISE(f̃ ∗

ψ ) · N ≥ lim
N→∞

inf
ψ∈L2(SO(3))

MISE(f ∗

ψ ) · N

= lim
N→∞

MISE(f ∗

ψf ,N
) · N

= lim
N→∞

N ·

L
ℓ=1

(2ℓ+ 1)2

N −

√
N
2

N(N − 1)2

=
(L + 1)(2L + 1)(2L + 3)− 3

3
. �

Next we consider for s, S > 0 the smoothness classesF 2
s,S of density functions f with Sobolev norm ∥f ∥2,s < S; cf. (A.18).

Then because of Lemma 1, Theorem 18 and the assumption ψ̂(0) = 1 the MISE can be bounded from above by

MISE(f ∗

ψ ) ≤ sup
ℓ∈N\{0}

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

S2 + N−1
∥ψ∥

2
2. (10)

It turns out that by selecting a kernel function ψ that minimizes this upper bounds we obtain asymptotically optimal
convergence rates.

Theorem 5. Let S > 0 be sufficiently small. Then an asymptotically optimal kernel function with respect to the class F 2
s,S of

functions with Sobolev norm of order s > 0 bounded by S is the Jackson type kernel ψ J
L,s: SO(3) → R,

ψ
J
L,s(x) = 1 +

⌊L⌋
ℓ=1

(2ℓ+ 1)

1 −

ℓs/2(ℓ+ 1)s/2

Ls/2(L + 1)s/2


U2ℓ


cos

ω(x)
2


, (11)

with bandwidth

L =


2s
3

NS2

C

 1
2s+3

(12)

where C =
 4
3 −

8
s+3 +

4
2s+3


. This kernel function asymptotically realizes the minimax risk

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F 2

s,S

MISE(f ∗

ψ ) · N
2s

2s+3 =


2s
3

−
2s

2s+3

+


2s
3

 3
2s+3


C

2s
2s+3 S

6
2s+3 .

Proof. See Appendix B. �

For the specific case s = 2 the Jackson type kernel has the explicit representation

ψ
J
L,2 (cosω) =

(2L + 3)

(L − 2) cosω sin 2Lω − 3L cos 2Lω sinω


+ L(2L − 1) sin(2L + 3)ω

8L(L + 1) sin5 ω
2

.

The optimal rate of convergence, but with a worse constant, is also attained by the Dirichlet kernel ψD
Lopt , (9); see also [14].

For s = 2 the corresponding optimal parameter Lopt is given by

L7opt ≈ NS2, (13)
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which leads to the asymptotic upper bound

MISE(f ∗

ψD
Lopt
) ≤ L−4

optS
2
+

4
3
(L3opt + O(L2opt))N

−1
=


1 +

4
3


S6/7N−4/7

+ O(N−5/7) ≈
7
3
S6/7N−4/7.

Finally, we consider for s > 1
2 , S > 0 the smoothness classF ∞

s,S of density functions f with polynomially decaying Fourier
coefficients of order s; cf. (A.19). Then we have by Lemma 1, Theorem 18 and (A.16) the upper bound

MISE(f ∗

ψ ) ≤

∞
ℓ=1


1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

S2 + N−1(2ℓ+ 1)2ψ̂(ℓ)2

 . (14)

As in the just previous case of the Sobolev class we obtain asymptotically optimal convergence rates by selecting a kernel
function ψ that minimizes this upper bound.

Theorem 6. Let S > 0 be sufficiently small. Then an asymptotically optimal kernel function ψF ∞
s,S ,N

for the class F ∞

s,S of density

functions with polynomially decaying Fourier coefficients of order s > 1
2 is the zonal function

ψF ∞
s,S ,N

(x) =

∞
ℓ=0

(2ℓ+ 1)
NS2

NS2 + (2ℓ+ 1)2ℓs(ℓ+ 1)s
U2ℓ


cos

ω(x)
2


. (15)

This function asymptotically realizes the minimax risk

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F ∞

s,S

MISE(f ∗

ψ ) · N
2s−1
2s+2 =

2
s−2
s+1π

(s + 1) sin 3π
2s+2

S
2

2s+2 .

Proof. See Appendix B. �

The results of Theorems 5 and 6 compare well with the inclusions F ∞

s+ε,S ⊂ F ℓ2
s− 1

2 ,S
, with ε, S, S ′ > 0 as in (A.20), in the

sense that for ε → 0 we obtain for both classes the same optimal rates of convergence, namely, N−
2s−1
2s+2 .

2.3. Nonnegative kernel functions

In many practical applications one is often interested in nonnegative kernel density estimators, i.e., in kernel density
estimation with nonnegative kernel functions. In the Euclidean setting this restriction allows for a simple, asymptotically
sharp, upper bound for the MISE the so called asymptotic mean integrated squared error (AMISE), cf. [40],

AMISE(f ∗

ψ ) = µ2(ψ)
2
∥△f ∥2

2 + N−1
∥ψ∥

2
2 (16)

where f :Rd
→ R is assumed to be a twice continuous differentiable function and

µ2(ψ) =


Rd

∥x∥2
2ψ(x) dx

denotes the second moment of the kernel function ψ . Using Theorem 18 we show an analogous upper bound for (10) in
the setting of kernel density estimation on the rotation group with nonnegative zonal kernel functions. For formulating this
result it is handy to make use of the notation ψ(t) = ψ(x), t ∈ [0, 1], where t = cos ω(x)2 ; cf. Appendix A.2.

Theorem 7. Let S > 0, let f ∈ F 2
2,S(SO(3)) be a two times weakly differentiable density function and let ψ ∈ L2(SO(3)) be a

nonnegative, zonal kernel function with ψ̂(0) = 1. Then we have

MISE(f ∗

ψ ) ≤
1
4
|1 − ψ̂(1)|2∥f ∥2

2,2 + N−1
∥ψ∥

2
2 = µ2(ψ)

2
∥△̃f ∥2

2 + N−1
∥ψ∥

2
2,

with

µ2(ψ) =
4
3π

 1

0
(1 − t2)ψ(t)


1 − t2 dt

and with △̃ denoting the Laplace–Beltrami operator on SO(3).
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Proof. Using the decomposition of the MISE into a bias and a variance term, cf. Lemma 1, the left hand side inequality
becomes a direct consequence of Theorem 18. For the right hand side equality we observe that for any nonnegative zonal
function ψ with ψ̂(0) = 1 we have by (A.14) and U2(t) = 4t2 − 1,

1
4
(1 − ψ̂(1)) =

1
π

 1

0
ψ(t)


1 −

1
3

U2(t)


1 − t2 dt =

4
3π

 1

0
ψ(t)(1 − t2)


1 − t2 dt

and, furthermore, that

∥f ∥2
2,2 = ∥△̃f ∥2

2. �

A popular nonnegative kernel function on SO(3) is the de la Vallée Poussin kernel ψVP
κ , cf. [17], which is defined for any

κ ∈ N \ {0} by its finite Chebyshev expansion

ψVP
κ (x) =

(κ + 1)22κ−1
2κ−1
κ

 
cos

ω(x)
2

2κ

=


2κ + 1
κ

−1 κ
ℓ=0

(2ℓ+ 1)

2κ + 1
κ − ℓ


U2ℓ


cos

ω(x)
2


. (17)

Choosing the parameter κ in an optimal way the de la Vallée Poussin kernel yields the optimal convergence rate N−
4
7 for

the class F 2
2,S .

Theorem 8. Let S > 0 andF 2
2,S the class of density functions with bounded Sobolev norm of order 2. Then the optimal parameter

κopt of the de la Vallée Poussin kernel ψVP
κ satisfies

κ7
opt ≈

27

9π
∥f ∥4

2,2N
2 (18)

which yields the MISE estimate

sup
f∈F 2

2,S

MISE(f ∗

ψVP
κopt
) ≤ 3.8S2N−4/7. (19)

Proof. The L2-norm of the de la Vallée Poussin kernel computes to

∥ψVP
κ ∥

2
2 =

4
π

 1

0
ψVP
κ (t)

2

1 − t2 dt =

4
π

(κ + 1)22κ−1
2κ−1
κ

  1

0
t4κ

1 − t2 dt

=
√
π
Γ (κ + 2)2Γ


2κ +

1
2


Γ

κ +

1
2

2
Γ (2κ + 2)

.

Since we have asymptotically by the Stirling formula

Γ (κ + 2)
Γ

κ +

1
2

 =
Γ (κ + 2)Γ (κ)22κ−1

Γ (2κ)
√
π

= 22κ κ + 1
√
π

Γ (κ + 1)2

Γ (2κ + 1)
≈ (κ + 1)

√
κ

we obtain for the L2-norm of the de la Vallée Poussin kernel the approximation

∥ψVP
κ ∥

2
2 =

√
π
Γ (κ + 2)2Γ


2κ +

1
2


Γ

κ +

1
2

2
Γ (2κ + 2)

≈


π

2

√
κ(κ + 1)2

2κ + 1
≈


π

8
κ3/2.

Since

1 − ψ̂VP
κ (1) = 1 −


2κ+1
κ−1




2κ+1
κ

 = 1 −
κ!(κ + 1)!

(κ − 1)!(κ + 2)!
= 1 −

κ

κ + 2
=

2
κ + 2

we obtain the upper bound

MISE(f ∗

ψVP
κ
) ≤ (κ + 2)−2

∥f ∥2
2,2 +


π

8
κ3/2N−1.

Minimization with respect to κ gives the stated results. �
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Similar to the Euclidean case kernel density estimation with nonnegative, zonal kernel functions ψ does not allow for
better convergence rates than N−

4
7 independent of the smoothness of the function f . We have the following lower bound.

Theorem 9. Let F ⊂ L2(SO(3)) be any function class that contains the function f (x) = 1 + D0,0
1 (x). Then we have the lower

bound

inf
ψ≥0

sup
f∈F

MISE(f ∗

ψ ) ≥ N−4/7
−

4
3
N−1.

Proof. From (A.5) we know that f = 1 + D0,0
1 is indeed a density function. Let ψ be a nonnegative kernel function. Then

we have by Lemma 19 a lower bound on ∥ψ∥2 and by Lemma 14 the upper bound ψ̂(1)2 ≤ 1. Together with Lemma 1 and
(A.17) this gives the following lower bound for the MISE of the kernel density estimator f ∗

ψ

MISE(f ∗

ψ ) =
(1 − ψ̂(1))2

3
+

1
N


∥ψ∥

2
2 − 1 −

ψ̂(1)2

3



≥
(1 − ψ̂(1))2

3
+

64
√
2

105N
(1 − ψ̂(1))−

3
2 −

4
3
1
N
.

Minimizing the above expression with respect to ψ̂(1) results in

MISE(f ∗

ψ ) ≥
4
3


2
5

4/7 7
3

3/7

N−4/7
−

4
3
N−1 > N−4/7

−
4
3
N−1. �

For completeness we consider also another frequently applied nonnegative zonal kernel function on the rotation group,
the Abel–Poisson kernel ψAP

κ , cf. [17], which is defined for κ ∈ (0, 1) by its Chebyshev series

ψAP
κ (x) =

∞
ℓ=0

(2ℓ+ 1)κ2ℓU2ℓ


cos

ω(x)
2


. (20)

Computing its L2-norm to

∥ψAP
κ ∥

2
2 =

∞
ℓ=0

(2ℓ+ 1)2κ4l
=

1 + 6κ4
+ κ8

(1 − κ4)3
,

Theorem 7 gives us for any f ∈ F 2
2,S the upper bound

MISE(f ∗

ψAP
κ
) ≤

(1 − κ2)2

4
S2 +

1 + 6κ4
+ κ8

(1 − κ4)3
N−1

≈ (1 − κ)2S2 +
1
8
(1 − κ)−3N−1.

Minimization with respect to κ yields

(1 − κopt)
5

≈
3
16

N−1S−2 (21)

and

MISE(f ∗

ψAP
κopt
) ≤


3
16

2/5

+
1
8


3
16

−3/5

S6/5N−2/5

≈ 0.86S6/5N−2/5.

Thus, the Abel–Poisson kernel seems not be well suited for kernel density estimation on the rotation group.

2.4. General lower bounds

In this section we consider the minmax risk (2) for the general setting, i.e., where the infimum is taken over all square
integrable estimators. Since explicit constants are not known for this general casewe just show that the rates of convergence
are the same as for kernel density estimation. For the smoothness classF 2

s,S of density functionswith bounded Sobolev norm
this has been proven in [24]. We prove a similar result for the smoothness class F ∞

s,S of density functions with polynomially
decaying Fourier coefficients following the same lines. For completeness, we present here both proofs simultaneously. A
general recipe for the derivation of lower bounds can be found in [35].
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The idea is to restrict the density estimation problem to a finite subset F ∗
⊂ F ∞

s,S ⊂ L2(SO(3)), s, S > 0 by observing
that for any sequence ρN > 0 and any constant A > 0

ρ−2
N inf

EN
sup
f∈F ∞

s,S

MISE(E f
N) ≥ ρ−2

N inf
EN

sup
f∈F ∗

E∥f − E
f
N∥

2
2 ≥ A2 inf

EN
sup
f∈F ∗

Pf (∥f − E
f
N∥

2
2 ≥ ρ2

NA
2). (22)

In order to bound the right hand side from below the density functions in F ∗ have to be sufficiently separated in the
L2-norm and their Kullback divergences

K(f , g) =


SO(3)

f (x) log
f (x)
g(x)

dλ(x), f , g ∈ F ∗

have to be sufficiently small. More precisely, we are going to apply Theorem 2.5 in [35].

Theorem 10. Let N > 0 be the number of random samples and let F ∗ be a finite set of density functions on SO(3) such that
there are constants A, ρN , α ∈ (0, 1

8 ) satisfying

1. the functions in F ∗ are AρN separated, i.e., for all f , g ∈ F ∗, f ≠ g we have

∥f − g∥2 ≥ AρN ,

2. the Kullback divergences between the functions in F ∗ are sufficiently small, i.e., there is a function f0 ∈ F ∗, f0 > 0 satisfying

N
|F ∗|


f∈F ∗\f0

K(f , f0) ≤ α log
F ∗

 .
Then

inf
EN

sup
f∈F ∗

Pf (∥f − E
f
N∥2 ≥ ρNA) ≥

√
|F ∗|

1 +
√

|F ∗|


1 − 2α −


2α

log |F ∗|


> 0.

As candidates for the finite set F ∗ we consider for t ∈ R, L ∈ N and a constant C > 0 the sets

Ft,L =


f (x) = 1 + CL−t− 3

2

2L
ℓ=L+1

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)
√
2ℓ+ 1D̄k,k′

ℓ | f̂ (ℓ, k, k′) ∈ {0, 1}


,

where the functions
√
2ℓ+ 1D̄k,k′

l are chosen as a real valued orthonormal basis in Harmℓ(SO(3)). Since for every L ∈ N, s >
0 and f ∈ Fs,L,

∥f ∥2
2,s = 1 + C2L−2s−3

2L
ℓ=L+1

ℓ
k,k′=−ℓ

ℓs(ℓ+ 1)s
f̂ (ℓ, k, k′)

2 ≤ C̃C2

and

∥f ∥2
∞,s+ 1

2
= max


1, C2L−2s−3 max

ℓ=L+1,...,2L

ℓ
k,k′=−ℓ

ℓs+
1
2 (ℓ+ 1)s+

1
2

f̂ (ℓ, k, k′)

2 ≤ C̃C2

with a constant C̃ independent of L, the constant C can be chosen such that Fs,L ⊂ F 2
s,S and Fs,L ⊂ F ∞

s+ 1
2 ,S

. On the other hand

we conclude from
Dk,k′
ℓ (x)

 ≤ 1, cf. (A.5), that the constant C can be chosen such that all functions inFs,L are nonnegative. It
remains to compute the separation distance and the Kullback divergences of the functions in Ft,L. For f , g ∈ Ft,L with f ≠ g
we have

∥g − f ∥2 ≥ CL−t− 3
2

and for f0 = 1 ∈ Ft,L we have by Jensen’s inequality

K(f , f0) =


SO(3)

f (x) log f (x) dλ(x) ≤


SO(3)

(f (x)− 1)2 dλ(x) ≤ C̃L−2t (23)

with some constant C̃ independent of L. If we would apply Theorem 10 directly to the sets Ft,L the gained lower bound
would be not optimal. However, by applying the lemma of Koo [23], we find a subset F̂t,L of Ft,L that has a larger separation
distance, but almost the same cardinality.
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Lemma 11. Let N ∈ N,N > 8. Then the largest subset ΩN ⊂ {0, 1}N with separation distance
√
N
8 , i.e., for all x, y ∈ ΩN we

have ∥x − y∥2 ≥

√
N
8 , has the cardinality log |ΩN | − 1 ≥ 0.27N.

Applying Koo’s lemma to Ft,L we end up with a subset F̂t,L ⊂ Ft,L with separation distance

∥g − f ∥2 ≥ CL−t , f , g ∈ F̂t,L, f ≠ g,

but almost the same cardinality log
F̂t,L

 ≥ 0.27L3. Now we are ready to prove the general lower bound.

Theorem 12. For the smoothness class of density functions with Sobolev norm of order s > 0 bounded by S > 0 the minimax risk
is bounded from below at rate N−

2s
2s+3 , whereas for the smoothness class of density functions with polynomially decaying Fourier

coefficients of order s > 1
2 the minimax risk is bounded from below at rate N−

2s−1
2s+2 , i.e., there are constants C1, C2 > 0 such that

lim
N→∞

inf
EN

sup
f∈F 2

s,S

MISE(E f
N) · N

2s
2s+3 > C1,

and

lim
N→∞

inf
EN

sup
f∈F ∞

s,S

MISE(E f
N) · N

2s−1
2s+2 > C2.

Proof. Let N > 8, t > 0, C > 0 and let F̂t,L be the set defined just above the theoremwith separation distance CL−t . Setting
L = N

1
2t+3 this separation distance becomes

∥f − g∥2
2 ≥ C2L−2t

= C2N−
2t

2t+3 , f , g ∈ F̂t,L, f ≠ g,

i.e. F̂t,L satisfies the first condition of Theorem 10 with ρN = N−
2t

2t+3 and A = C2. On the other hand we obtain from (23) for
the Kullback divergence with f0 = 1,

NF̂t,L
 

f∈F̂t,L\f0

K(f , f0) ≤ N8C2L−2s
= 8C2L3 ≤

8C2

0.27
log

F̂t,L
 .

By adjusting C such that 8C2

0.27 ≤
1
8 the second condition of Theorem 10 is satisfied. Consequently,

inf
EN

sup
f∈F ∗

Pf

∥f − E

f
N∥2 ≥ N−

2t
2t+3 C2


≥ C̃ > 0.

Thus, setting t = s for the class F 2
s,S and t = s −

1
2 for the class F ∞

s,S , the lower bounds for the minimax risk claimed in
Theorem 10 follow from (22). �

3. Numerical experiments

In this section we are going to illustrate our theoretical findings by numerical experiments. The general concept is as
follows:

1. Choose a test density function f ∈ L2(SO(3)).
2. Fix a kernel function ψ ∈ L2(SO(3)).
3. Draw a random sample from the distribution given by f of size N ∈ N.
4. Compute the kernel density estimator f ∗

ψ .
5. Compute the integrated squared error ∥f − f ∗

ψ∥
2
2.

6. Compute an estimate of theMISE by repeatingM times the steps 3–5 and taking themean value of the integrated squared
errors.

As the test density function f we chose a linear combination of de la Vallée Poussin kernels ψVP
κ , cf. (17), translated to

two arbitrarily chosen locations of the rotation group,

f (x) = 0.2 + 0.7ψVP
90 (Re2,

π
6
x)+ 0.1ψVP

350(Re1,
4π
9
x), (24)

where Rη,ω denotes the rotation about axis η ∈ S2 with angle ω. We have f ∈ F 2
2,S and f ∈ F ∞

2.5,S′ with S = 4600 and
S ′

= 5200. Our numerical experiments showed that increasing the number or changing the type of the zonal functionsψVP
κ

in (24) has only minor influence on our numerical results.
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3.1. Drawing a random sample from a distribution on SO(3)

In this section we briefly describe how to draw a random sample of a radially symmetric density function on SO(3). How
to draw random samples for other classes of distributions, e.g. the Bingham distribution, can be found in [5]. Let f > 0 be a
strictly positive density function on [0, 1]. Then the corresponding cumulative distribution function

F(y) =

 y

0
f (x) dx

defines a diffeomorphism

F : [0, 1] → [0, 1]

and by the transformation rule we have for any integrable function h: [0, 1] → R, 1

0
h(y) dy =

 1

0
h(F(x))f (x) dx.

Hence, the distribution of f under F becomes the uniform distribution and we can draw a random sample from the
distribution given by ψ by drawing a random sample of the uniform distribution on [0, 1] and applying F−1 to it.

Let us now consider a zonal functionψ on the rotation group SO(3). Thenψ depends only on the rotational angle ω of a
rotation Rξ,ω about an arbitrary axis ξ ∈ S2 and we will write φ(ω) = ψ(Rξ,ω). Using the parametrization of the rotational
group by axis and angle the integral of an integrable function h: SO(3) → R with respect to ψ may be decomposed as

SO(3)
h(x)ψ(x) dλ(x) =

 π

0


S2

h(Rξ,ω) dσ(ξ) φ(ω) sin2 ω

2
dω.

Hence, we can draw a random sample Xn ∈ SO(3), n = 1, . . . ,N of the distribution given byψ by drawing a random sample
ξn ∈ S2, n = 1, . . . ,N of the uniform distribution on the unit sphere and drawing a random sample ωn ∈ [0, π], n =

1, . . . ,N of the distribution given by the density f (ω) = φ(ω) sin2 ω
2 and setting Xn = Rξn,ωn .

3.2. Numerical computation of the kernel density estimator

Since we want to check our results for large sample sizes, i.e., up to N = 107, we have to apply fast algorithms to
compute the kernel density estimator. An algorithm that allows to evaluate the kernel density estimator (3) corresponding
to N random samples atM arbitrarily chosen nodes with the numerical complexityO(N +M) is described in [17]. However,
as we are only interested in the L2-error ∥f ∗

ψ − f ∥2 we rest at computing the Fourier coefficients of f and f ∗

ψ up to polynomial
degree L = 128 and applying Parseval’s identity.

Let Xn ∈ SO(3), n = 1, . . . ,N be a random sample and let ψ ∈ L2(SO(3)) be a zonal function with finite Chebyshev
expansion (A.13). Then according to (A.4) and (A.12) the kernel density estimator f ∗

ψ has the representation

f ∗

ψ (x) =
1
N

N
n=1

L
ℓ=0

(2ℓ+ 1)ψ̂(ℓ)U2ℓ


cos

ω(x−1Xn)

2



=
1
N

N
n=1

L
ℓ=0

(2ℓ+ 1)ψ̂(ℓ)
ℓ

k,k′=−ℓ

Dk,k′
ℓ (Xn)D

k,k′
ℓ (x).

Hence, the Fourier coefficients of the kernel density estimator f ∗

ψ are given by the sum

f̂ ∗

ψ (l, k, k
′) =

1
N

N
n=1

ψ̂(ℓ)
√
2ℓ+ 1Dk,k′

l (Xn)

which is essentially an adjoined Fourier transform on the rotation group SO(3). Algorithms for the fast Fourier transform on
the rotation group aswell as for its adjoined transform have been described in [25] for regular nodes and in [33] for arbitrary
nodes. An implementation of the latter one is available as part of the NFFT library [20].

3.3. Numerical results

In our numerical experiments we estimated the MISE for sample sizes N = 101 up to N = 107. For a fixed sample size
N we considered different kernel functions. On the one hand we applied the MISE optimal kernel function as defined in
Theorem 3 and compared the numerical estimated MISE with the theoretical expression found in (8). On the other hand we
used the formulas (12), (15), (13), (18), and (21) for the optimal parameters of the F 2

2,S optimal Jackson type kernel (11),
the F ∞

2.5,S optimal kernel (15), the Dirichlet kernel (9), the Abel–Poisson kernel (20), and the de la Valleé Poussin kernel (17)
and computed the MISE for the kernel density estimator with respect to these kernel functions. Fig. 1 shows the Chebyshev
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Fig. 1. This plot shows the Chebyshev coefficients of the kernel functions investigated throughout the numerical experiments. The kernel parameter has
been chosen to be optimal with respect to the test function (24) and N = 104 .

Fig. 2. This plot shows theMISE as a function of the number of random samplesN and the kernel used for kernel density estimation. The theoretical bound
as well as the MISE optimal kernel was computed according to Theorem 3. The parameters for the other kernel functions were chosen MISE optimal as
specified in the formulas (12), (15), (13), (18), and (21).

coefficients of the kernel functions mentioned above with optimal kernel parameter for the specific choice of N = 104

random samples. In Fig. 2 the relative MISE

MISErel(f ∗

ψ ) =
MISE(f ∗

ψ )

∥f ∥2
2

is plotted for the different kernel functions ψ .
Our numerical experiments show that the MISE for the optimal kernel almost perfectly fits our theoretical findings. This

indicates that our approaches for generating the random sample and estimating the MISE work satisfactory. Furthermore,
we observe for the F 2

2,S optimal, the F ∞

2.5,S optimal, the Dirichlet kernel, and the de la Valleé Poussin kernel the predicted
convergence rateN−4/7 with a slightly better constant for theF ∞

2.5,S optimal kernel function. As predictedwe observe for the
Abel–Poisson kernel the convergence rate N−2/5. Themore rapid convergence for the Dirichlet kernel starting with N = 106

is due to the fact that we worked with bandlimited functions.

3.4. Application to crystallographic texture analysis

The subject of crystallographic texture analysis is themicrostructure of polycrystallinematerials. A central question is the
relative alignment of the crystalswithin the specimen. Thanks to the regular structure of the atomic lattice of crystals one can
define for each crystal within the specimen a rotation x ∈ SO(3) that brings its atomic lattice in coincidencewith a reference
lattice fixed to the specimen. The alignment of a crystal within the specimen is discribed by a rotation x ∈ SO(3) that
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Fig. 3. The rawEBSDdata. Each square corresponds to a single orientationmeasurement at the surface of the specimen. The color is computedby translating
the rotation into Euler angles and assigning them to theRGBvalues. Empty squares are locations ofmeasurement errors. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

rotates some crystal fixed coordinate system into coincidence with some specimen fixed coordinate system. The rotational
symmetries of the atomic lattice form a finite symmetry group S ⊂ SO(3) the so called point group. The orientation of a
crystal is defined as the coset xS ∈ SO(3)/S of all symmetrically equivalent rotations.

Electron back scatter diffraction (EBSD) is a technique that uses an electron microscope to measure orientations XnS ∈

SO(3)/S, n = 1, . . . ,N at certain positions pnx , p
n
y ∈ R at the surface of a specimen [1,26]. In general, these positions are

chosen to form a regular grid. In order to visualize such an orientation map each rotation is translated into Euler angles
which in turn define the RGB values of a color. Fig. 3 shows a typical detail of such an orientation map. One easily identifies
the crystals within the specimen which show up as connected regions of the same color.

Obviously, the orientation data are statistically dependent. This problem can be partly overcome by identifying the
grain structure within the measurements, cf. [2], and selecting only one orientation per grain. Furthermore, the orientation
data are usually affected by measurement errors. For simplicity, we assume here that all the orientation data Xn are exact
and statistically independent, i.e., we completely disregard the spatial dependency. The impact of the absence of these
simplification should be part of an upcoming paper.

An important characteristic of the crystallographic structure of a specimen is the so called orientation density function
f : SO(3)/S → R which is defined as the relative frequency of orientations within the specimen by volume, i.e., for any
measurable set A ⊂ SO(3)/S the integral


A f (x) dλ(x) is the volume portion of crystals within the specimen with an

orientation in A. The orientation density function (ODF) of a specimen is the starting point for the calculation of several other
texture characteristics and macroscopic properties of the specimen. Its determination from experimental measurements is
a key problem in crystallographic texture analysis [7,29,16].

Estimating the ODF from individual crystal orientations has been discussed in many publications starting with [8]; see
also [4,39] and the references therein. Assuming the orientationmeasurements to be a random sample of the unknown ODF
f , a canonical estimator is the kernel density estimator [32,11]

f ∗

ψ (xS) =
1
N

N
n=1

ψ̃(X−1
n x), xS ∈ SO(3)/S, (25)

where ψ ∈ L2(SO(3)) is a zonal kernel function and

ψ̃(x) =
1
|S|


s∈S

ψ(xs)

is its symmetrized version. Over the years there has been a lot of investigation in the texture community to find good kernel
functionsψ and,most importantly, to determine the number ofmeasurementswhich are necessary to estimate the trueODF
f up to a given accuracy [3,6,39,27,10]. However, so far only results for specific model ODFs using numerical or experimental
simulations are known.

In order to apply the results of our paper to crystallographic texture analysis we have to generalize them to the quotient
SO(3)/S, where S ⊂ SO(3) is a finite subgroup of cardinality |S|.

Theorem 13. Let f ∈ L2(SO(3)/S) be the true ODF, X1S, . . . , XNS ∈ SO(3)/S a corresponding random sample and let
f̃ ∈ L2(SO(3)) be defined by

f̃ (x) = f (xS), x ∈ SO(3).
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Then we have for any zonal kernel function ψ ∈ L2(SO(3)) and its symmetrized version ψ̃ ∈ L2(SO(3)),

ψ̃(x) =
1
|S|


s∈S

ψ(xs),

the following representation of the MISE

MISE(f ∗

ψ ) = ∥f̃ − f̃ ∗ ψ∥
2
2 + N−1


∥ψ̃∥

2
2 − ∥f̃ ∗ ψ∥

2
2


.

Proof. First of all we observe that with X1, . . . , XN ∈ SO(3) being a random sample of f̃ ∈ L2(SO(3)), the sequence
X1S, . . . , XNS ∈ SO(3)/S is a random sample of f ∈ L2(SO(3)/S). Hence, we have for x ∈ SO(3),

f̃ ∗

ψ̃
(x) =

1
N

N
n=1

ψ̃(X−1
n x) = f ∗

ψ (xS)

and, consequently,

Ef ∗

ψ (xS) = Ef̃ ∗

ψ̃
(x) = f̃ ∗ ψ̃(x)

=
1
|S|


s∈S


SO(3)

f (yS)ψ(y−1xs) dλ(y)

=
1
|S|


s∈S


SO(3)

f (ysS)ψ(s−1y−1xs) dλ(y) = f̃ ∗ ψ(x).

Together with Lemma 1 we obtain

MISE(f ∗

ψ ) = E∥f − f ∗

ψ∥
2
2 = E∥f̃ − f̃ ∗

ψ̃
∥
2
2

= ∥f̃ − f̃ ∗ ψ̃∥
2
2 + N−1


∥ψ̃∥

2
2 − ∥f̃ ∗ ψ̃∥

2
2


= ∥f̃ − f̃ ∗ ψ∥

2
2 + N−1


∥ψ̃∥

2
2 − ∥f̃ ∗ ψ∥

2
2


. �

Observing further that for ψ sufficiently sharp, i.e.,
SO(3)

ψ(sx)ψ(sx) dλ(x) ≈ 0, s, s′ ∈ S, s ≠ s′,

we have

∥ψ̃∥
2
2 ≈ |S|−1

∥ψ∥
2
2,

we conclude that all the results from Section 2 remain true for the quotient SO(3)/S if the number of random samples N is
replaced by Ñ = |S|N . As a consequence, the number of measurements N required for a given accuracy is the number of
measurements Ñ required for the case without crystal symmetry divided by the number of symmetry elements |S|.

Since nonnegativity of the ODF is often required in texture analysis, we conclude from Section 2.3 that the de la
Vallée Poussin kernel ψVP

κ is well suited for ODF estimation. Furthermore, if the smoothness of the ODF, i.e., ∥f ∥2,2, is
approximately known formula (18) gives the optimal kernel parameter and formula (19) can be used to determine the
number of measurements necessary to achieve a given accuracy. If nothing is known about the smoothness of the function
f adaptive estimation procedures have to be applied to determine the smoothness class simultaneously with the density
estimate; cf. [35]. In this paper we mention only least squares cross validation [40], where the optimal kernel parameter
κopt is derived from the data by

κopt = argmin
κ


∥f ∗

ψVP
κ

∥
2
2 +

2
(1 − N−1)


ψVP
κ (0)−

1
N

N
m=1

f ∗

ψVP
κ
(Xm)


. (26)

A more throughout analysis of automatic bandwidth selection methods for kernel density estimation on the rotation group
will be part of a forthcoming paper.

We complete our paper by considering a real world EBSD dataset of a ferrit specimen measured by I. Lischewski at the
department of physical metallurgy andmetal physics, Aachen, Germany. This dataset consists of 124.000 single orientations
which subdivides into about 1500 crystals. A subset of these orientation data is plotted in Fig. 3. Using least squares cross
validation (26) we estimate an optimal kernel parameter κ∗ and apply the algorithm presented in Section 3.2 to efficiently
evaluate the corresponding kernel density estimate f ∗

ψVP
κopt

. The common way to visualize the estimate f ∗

ψVP
κopt
(x) of the ODF is
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Fig. 4. Two-dimensional sections of the estimated ODF f ∗

ψVP
opt
(x) with σ+ = φ1 + φ2 fixed to the values 0°, 9°, . . . , 81° and the remaining parameters Φ

and φ1 − φ2 describing in polar coordinates the location of a rotation x ∈ SO(3) within the plot, where φ1,Φ, φ2 are the Euler angles of x ∈ SO(3). Red
colors indicate high values and blue colors low values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

to plot it as a function of the Euler anglesφ1,Φ, φ2. In order to sectioning this three dimensional domainwe fix σ+ = φ1+φ2
and plot f with respect to the remaining parameters Φ and σ− = φ1 − φ2. Such two dimensional sections are plotted in
Fig. 4 where σ+ is set to the values 0◦, 9◦, . . . , 81◦. More details about these, so called, sigma sections can be found in [28].

We conclude that the results presented in this paper allow to perform ODF estimation from EBSD data more efficiently.
Tomake our results easily applicable, all algorithms described in this paper are freely available as part of the texture analysis
toolbox MTEX [15,18].
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Appendix A. Harmonic analysis on the rotation group

We start by giving some basic notations and results on harmonic analysis on the rotation group SO(3). For a detailed
introduction into harmonic analysis on SO(3), see [12,38,37]. By the rotation group SO(3)wedenote the set of all orthogonal,
three by three matrices with determinant one. Any such matrix x ∈ SO(3) can be interpreted as a rotation in the
three dimensional Euclidean space about a certain axis of rotation ξ ∈ S2 and a certain rotational angle ω = ω(x) =

arccos 1
2 (Tr x − 1), where Tr x denotes the trace of x. Conversely, we denote for every unit vector ξ ∈ S2 and every angle

ω ∈ [0, 2π ] the matrix that acts as a rotation about ξ with angle ω by Rξ,ω ∈ SO(3).
Let e2 = (0, 1, 0)t , e3 = (0, 0, 1)t and let α, γ ∈ [0, 2π), β ∈ [0, π] be three angles. Then we define the Euler angle

parametrization of the rotation group by the surjective mapping

(α, β, γ ) → x(α, β, γ ), x(α, β, γ ) = Re3,α Re2,β Re3,γ .

Note that the Euler angle parametrization is not unique in the identity, i.e., for all α ∈ [0, 2π ], Re2,0 = Re3,α Re2,0 Re3,−α .
Since SO(3) is a compact topological group it possesses a unique Haar measure λ such that λ(SO(3)) = 1. In terms of Euler
angles the Haar measure has the representation

λ(A) =


SO(3)

1A(x) dλ(x) =
1

8π2

 2π

0

 π

0

 2π

o
1A(x(α, β, γ )) dα sinβ dβ dγ

where A is an open subset of SO(3) and 1A denotes the corresponding indicator function.

A.1. Harmonic functions

Our major function space will be the space of square integrable functions L2(SO(3)) on the rotation group endowed with
the inner product

⟨f1, f2⟩ =


SO(3)

f1(x)f2(x) dλ(x)
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and the corresponding norm ∥f ∥2 =
√

⟨f , f ⟩. An important function system on the rotation group is formed by the so called
Wigner-D functions, cf. [37],

Dk,k′
ℓ (x(α, β, γ )) = e−ikαe−ik′γ dk,k

′

ℓ (cosβ), ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ, (A.1)

withWigner-d functions dk,k
′

ℓ : [−1, 1] → R, ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ,

dk,k
′

ℓ (t) =
(−1)ℓ−k

2ℓ


(ℓ+ k)!

(ℓ− k′)!(ℓ+ k′)!(ℓ− k)!


(1 − t)k′−k

(1 + t)k+k′
∂ℓ−k

∂tℓ−k

(1 + t)k
′
+ℓ

(1 − t)k′−ℓ
. (A.2)

TheWigner-D functions can be characterized as thematrix elements of the left regular representation of the group SO(3)
in L2(S2), i.e., for a certain orthonormal basis of spherical harmonicsYk

ℓ ∈ L2(S2), ℓ = 0, . . . ,∞, k = −ℓ, . . . , ℓ, they satisfy
the representation properties

Dk,k′
ℓ (x) =


Yk′
ℓ (x

−1
·),Yk

ℓ


=

1
4π


S2

Yk′
ℓ (x

−1
· η)Yk

ℓ(η) dσ(η), x ∈ SO(3), (A.3)

and

Dk,k′
ℓ (xy) =

ℓ
j=−ℓ

Dk,j
ℓ (x)D

j,k′
ℓ (y), x, y ∈ SO(3). (A.4)

In particular, (A.3) implies for all k, k′
= −ℓ, . . . , ℓ, x ∈ SO(3),Dk,k′

ℓ (x)
 ≤ 1. (A.5)

As a consequence of the Peter–Weyl Theorem [38, Section 3.3] the Wigner-D functions are orthogonal, i.e.,
D
k1,k′1
ℓ1

,D
k2,k′2
ℓ2


=

1
8π2


SO(3)

D
k1,k′1
ℓ1

(x)D
k2,k′2
ℓ2

(x) dλ(x) =
1

2ℓ1 + 1
δk1k2δk′1k

′
2
δℓ1ℓ2 , (A.6)

ℓ1, ℓ2 ∈ N, k, k′
= −ℓ, . . . , ℓ, and form a basis of L2(SO(3)). In particular, any function f ∈ L2(SO(3)) has a unique series

expansion in terms of Wigner-D functions

f =

∞
ℓ=0

ℓ
k=−ℓ

ℓ
k′=−ℓ

f̂ (ℓ, k, k′)
√
2ℓ+ 1Dk,k′

ℓ (A.7)

with Fourier coefficients f̂ (ℓ, k, k′) given by the integral

f̂ (ℓ, k, k′) =


f ,

√
2ℓ+ 1Dk,k′

ℓ


. (A.8)

Parseval’s identity yields

∥f ∥2
2 =

∞
ℓ=0

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)

2 . (A.9)

Additionally, a complete system of rotational invariant and irreducible subspaces is given by

Harmℓ(SO(3)) = span

Dk,k′
ℓ | k, k′

= −ℓ, . . . , ℓ


which satisfy

L2(SO(3)) = clos
∞
ℓ=0

Harmℓ(SO(3)),

where clos denotes the closure in L2(SO(3)). Let f , h ∈ L2(SO(3)) be two square integrable functions on SO(3). Then their
convolution

f ∗ h(x) =


SO(3)

f (y)h(y−1x) dλ(y)

defines a function in L2(SO(3)) and we have the well known identity of its Fourier coefficients [25]

f ∗ h(ℓ, k, k′) =
1

√
2ℓ+ 1

l
j=−ℓ

f̂ (ℓ, k, j)ĥ(ℓ, j, k′), ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ. (A.10)
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A.2. Zonal functions

A function ψ: SO(3) → C is called zonal if and only if it satisfies for all x, y ∈ SO(3)

ψ(x) = ψ(yxy−1).

Since for any x ∈ SO(3) the set of rotations { yxy−1
| y ∈ SO(3) } can be identified with the set of all rotations y ∈ SO(3)

having rotation angle ω(y) = ω(x), a zonal function ψ can be written as a function of t = cos ω(x)2 . As long as it does not
cause any confusion we write for the latter function

ψ(t) = ψ(x),

where x is an arbitrary rotation with cos ω(x)2 = t . Moreover, we have for ψ ∈ L2(SO(3))

∥ψ∥
2
2 =

1
8π2


SO(3)

|ψ(x)|2 dλ(x) =
4
π

 1

0
|ψ(t)|2


1 − t2 dt, (A.11)

i.e., t → ψ(t) is a function in L2([0, 1],
√
1 − t2 dt).

By the Peter–Weyl Theorem the subspace of zonal functions in L2(SO(3)) is spanned by the characters χℓ, ℓ ∈ N,

χℓ(x) =

ℓ
k=−ℓ

Dk,k
ℓ (x) = U2ℓ


cos

ω(x)
2


=

sin 2ℓ+1
2 ω(x)

sin ω(x)
2

, (A.12)

whereUℓ denotes the Chebyshev polynomials of second kind anddegree ℓ ∈ N. In particular, the subspace of zonal functions
in Harmℓ(SO(3)) is one dimensional and any zonal function ψ ∈ L2(SO(3)) has a Chebyshev expansion of the form

ψ =

∞
ℓ=0

ψ̂(ℓ)(2ℓ+ 1)χℓ(x). (A.13)

The Chebyshev coefficients ψ̂(ℓ) are given by

ψ̂(ℓ) =
4
π

1
2ℓ+ 1

 1

0
ψ(t)U2ℓ(t)


1 − t2 dt (A.14)

and are related to the Fourier coefficients ψ̂(ℓ, k, k′), ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ of ψ by

ψ̂(ℓ, k, k′) =

√
2ℓ+ 1ψ̂(ℓ), k = k′,

0, k ≠ k′.
(A.15)

In particular, the Chebyshev coefficients satisfy Parseval’s identity

∥ψ∥
2
2 =

∞
ℓ=0

(2ℓ+ 1)2 |ψ̂(ℓ)|2. (A.16)

As a special case of the convolution formula (A.10) the convolution of a function f ∈ L2(SO(3)) with a zonal function
ψ ∈ L2(SO(3)) has the Fourier coefficients

f ∗ ψ(ℓ, k, k′) = f̂ (ℓ, k, k′)ψ̂(ℓ), ℓ ∈ N, k, k′
= −ℓ, . . . , ℓ. (A.17)

We will need also the following estimate on the Fourier coefficients of nonnegative functions on the rotation group.

Lemma 14. Let f ∈ L2(SO(3)), f ≠ 0, be an almost everywhere nonnegative function. Then we have for all ℓ ∈ N \ {0},

1
(2ℓ+ 1)2

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)

2 < f̂ (0, 0, 0)2.

For zonal functions ψ ∈ L2(SO(3)) with ψ ≥ 0, almost everywhere, and ψ̂(0) > 0 the above inequality simplifies to

ψ̂(ℓ)2 < ψ̂(0)2, ℓ ∈ N \ {0}.

Proof. Without loss of generality we may assume f̂ (0, 0, 0) =

SO(3) f (x) dλ(x) = 1. Together with the assumptions f ≥ 0

almost everywhere this implies that there are an open set A ⊂ SO(3) and an ε > 0 such that f (x) ≥ ε for all x ∈ A. On
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the other hand the characters χℓ(x) = U2ℓ(cos ω(x)2 ), ℓ = 1, . . . ,∞ are polynomials in cos ω(x)2 and, hence, for every fixed
x ∈ SO(3)we have f ∗ χℓ(x) ≠ χℓ(xy−1) for almost all y ∈ A. From this we conclude

0 <

SO(3)


f ∗ χℓ(x)− χℓ(xy−1)

2
f (y) dλ(y)

= (f ∗ χℓ)
2(x)− 2(f ∗ χℓ)

2(x)+ f ∗ χ2
ℓ (x) = (f ∗ χ2

ℓ )(x)− (f ∗ χℓ)
2(x).

Integration over SO(3) and making use of Fubini’s Theorem, (A.13) and (A.17) result in

0 <

SO(3)

(f ∗ χ2
ℓ )(x)− (f ∗ χℓ)

2(x) dλ(x)

=


SO(3)


SO(3)

χℓ(xy−1)2f (y) dλ(y) dλ(x)− ∥f ∗ χℓ∥
2
2

= ∥χℓ∥
2
2 − ∥f ∗ χℓ∥

2
2

= 1 −
1

(2ℓ+ 1)2

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)

2 .
The second assertion is a direct consequence of (A.15). �

A.3. Sobolev spaces and integral means

In order to quantify the smoothness of functions on the rotation group we define weighted Sobolev spaces. Let s ≥ 0 and
let f ∈ L2(SO(3))with Fourier coefficients f̂ (ℓ, k, k′), ℓ ∈ N, k, k′

= −ℓ, . . . , ℓ. Then we define Sobolev semi-norms of f by

∥f ∥2
2,s =

∞
ℓ=1

ℓ
k,k′=−ℓ

ℓs(ℓ+ 1)s
f̂ (ℓ, k, k′)

2 ,
∥f ∥2

∞,s = sup
ℓ∈N\{0}

ℓ
k,k′=−ℓ

ℓs(ℓ+ 1)s
f̂ (ℓ, k, k′)

2 ,
and consider for some S > 0 the smoothness class of probability densities

F 2
s,S =


f ∈ L2(SO(3)) | f ≥ 0,


f (x) dλ(x) = 1, and ∥f ∥2,s < S


, (A.18)

with finite Sobolev norm and the smoothness class of probability densities

F ∞

s,S =


f ∈ L2(SO(3)) | f ≥ 0,


f (x) dλ(x) = 1, and ∥f ∥∞,s < S


(A.19)

with polynomially decaying Fourier coefficients. Since for any s ≥
1
2 and ε > 0,

sup
ℓ∈N\{0}

ℓ
k,k′=−ℓ

ℓs−
1
2 (ℓ+ 1)s−

1
2

f̂ (ℓ, k, k′)

2 ≤

∞
ℓ=1

ℓ
k,k′=−ℓ

ℓs−
1
2 (ℓ+ 1)s−

1
2

f̂ (ℓ, k, k′)

2
≤


∞
ℓ=1

ℓ−
1
2 −ε(ℓ+ 1)−

1
2 −ε


sup

ℓ̃∈N\{0}

ℓ̃
k,k′=−ℓ̃

ℓ̃s+ε(ℓ̃+ 1)s+ε
f̂ (ℓ̃, k, k′)

2
we have for S > 0 and S ′

= S


∞

ℓ=1 ℓ
−

1
2 −ε(ℓ+ 1)−

1
2 −ε ,

F ∞

s+ε,S ⊂ F 2
s− 1

2 ,S
′
⊂ F ∞

s− 1
2 ,S

′
. (A.20)

The final goal of this section is to derive an estimate for the approximation error ∥f − f ∗ψ∥
2
2 for functions f ∈ F 2

s,S and
f ∈ F ∞

s,S and a zonal function ψ ∈ L2(SO(3))with ψ̂(0) = 1. To this end we consider the integral means

τt f (x) =
1
4π


S2

f (x Rξ,2 arccos t) dσ(ξ), t ∈ [0, 1], x ∈ SO(3),

where Rξ,2 arccos t ∈ SO(3) is the rotation about ξ ∈ S2 with angle 2 arccos t ∈ [0, π] and σ is the spherical surface measure.
The value τt f (x) represents the mean of the function f along all rotations y that are at distance 2 arccos t from x. In analogy
to the spherical Funk–Hecke formula, cf. [30, Theorem 6], we have the following result on integral means of the Wigner-D
functions.
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Lemma 15. Let t ∈ [0, 1], ℓ ∈ N, and k, k′
= −ℓ, . . . , ℓ. Then we have

τtD
k,k′
ℓ =

1
2ℓ+ 1

U2ℓ(t)D
k,k′
ℓ .

Proof. First of all we recognize that τtD
k,k′
ℓ may be rewritten by using (A.4) as

τtD
k,k′
ℓ (x) =

1
4π


S2

Dk,k′
ℓ (xRξ,2 arccos t) dσ(ξ)

=

ℓ
j=−ℓ

Dk,j
ℓ (x)

1
4π


S2

Dj,k′
ℓ (Rξ,2 arccos t) dσ(ξ)

=

ℓ
j=−ℓ

Dk,j
ℓ (x)

1
8π2


SO(3)

Dj,k′
ℓ (Ryξ,2 arccos t) dλ(y)

=

ℓ
j=−ℓ

Dk,j
ℓ (x)

1
8π2


SO(3)

Dj,k′
ℓ (yRξ,2 arccos ty−1) dλ(y)

where the last two terms are independent from the specific choice of ξ ∈ S2. Since the last integral defines a zonal function
with respect to Rξ,2 arccos t that is contained in Harmℓ(SO(3))we obtain

1
8π2


SO(3)

Dj,k′
ℓ (yRξ,2 arccos ty−1) dλ(y) =


1

2ℓ+ 1
U2ℓ(t), if j = k′,

0, if j ≠ k′

and consequently

τtD
k,k′
ℓ (x) =

1
2ℓ+ 1

U2ℓ(t)D
k,k′
ℓ (x). �

Next we proceed as in [41] and show that the family of integral means τt , t ∈ [0, 1] defines an approximation process
as t → 1. To this end we need the following estimate.

Lemma 16. Let ω ∈ [0, π] and ℓ ∈ N, ℓ > 0. Then

(2ℓ+ 1)−
sin(2ℓ+1)ω

sinω

(2ℓ+ 1)ℓ(ℓ+ 1)
≤

3 −
sin 3ω
sinω

6
.

Proof. Let ω ∈ [0, π] and ℓ ∈ N, ℓ > 0. Using the cosine expansion of the Dirichlet kernel and the Fejér kernel, cf. [9],

sin(2ℓ+ 1)ω
sinω

= 1 + 2
ℓ

k=1

cos 2kω,
sin2 ℓω

sin2 ω
= ℓ+ 2

ℓ−1
k=1

(ℓ− k) cos 2kω,

we obtain

(2ℓ+ 1)−
sin(2ℓ+ 1)ω

sinω
= 2

ℓ
k=1

(1 − cos 2kω) = 4(sin2 ω)

ℓ
k=1

sin2 kω
sin2 ω

= 4(sin2 ω)


ℓ(ℓ+ 1)

2
+ 2

ℓ
k=1

k−1
m=1

(k − m) cos 2mω



= 2(sin2 ω)


ℓ(ℓ+ 1)+ 2

ℓ−1
m=1

(ℓ− m)(ℓ+ 1 − m) cos 2mω


.

In particular, we have

(2ℓ+ 1)ℓ(ℓ+ 1)

3 −

sin 3ω
sinω


− 6


(2ℓ+ 1)−

sin(2ℓ+ 1)ω
sinω


= 4(sin2 ω)


(2ℓ+ 1)ℓ(ℓ+ 1)− 3ℓ(ℓ+ 1)− 6

ℓ−1
m=1

(ℓ− m)(ℓ+ 1 − m) cos 2mω



≥ 4(sin2 ω)


2(ℓ− 1)ℓ(ℓ+ 1)− 6

ℓ−1
m=1

(ℓ− m)(ℓ+ 1 − m)


= 0. �
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Lemma 17. Let S > 0, f ∈ F 2
2,S and t ∈ [0, 1]. Then

∥f − τt f ∥2 ≤
2
3
(1 − t2)S.

Proof. For f ∈ F 2
2,S and t ∈ [0, 1] we have by Lemma 15 and the normalization U0(t) = 1,

∥f − τt f ∥2
2 =

∞
ℓ=0

ℓ
k,k′=−ℓ


1 −

U2ℓ(t)
2ℓ+ 1

2 f̂ (ℓ, k, k′)

2
≤


sup

ℓ∈N\{0}

(2ℓ+ 1)− U2ℓ(t)
ℓ(ℓ+ 1)(2ℓ+ 1)

2
∞
ℓ=1

ℓ
k,k′=−ℓ

ℓ2(ℓ+ 1)2
f̂ (ℓ, k, k′)

2 .
From Lemma 16 we know that for all ω ∈ [0, π] and ℓ ∈ N, ℓ > 0,

(2ℓ+ 1)− U2ℓ(cosω)
ℓ(ℓ+ 1)(2ℓ+ 1)

=
(2ℓ+ 1)−

sin(2ℓ+1)ω
sinω

(2ℓ+ 1)ℓ(ℓ+ 1)
≤

3 −
sin 3ω
sinω

6
=

3 − U2(cosω)
6

,

and, hence,

∥f − τt f ∥2
2 ≤


3 − U2(t)

6

2

S2 =


2 − 2t2

3

2

S2. �

We conclude our remarks on harmonic analysis on the rotation group by giving the promised approximation result on
∥f − f ∗ ψ∥

2
2.

Theorem 18. Let ψ ∈ L2(SO(3)) be a zonal function with ψ̂(0) = 1. Then we have for any s, S > 0, f ∈ F 2
s,S the inequality

∥f − f ∗ ψ∥
2
2 ≤ sup

ℓ∈N\{0}

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

S2,

and for any s > 1
2 , f ∈ F ∞

s,S the inequality

∥f − f ∗ ψ∥
2
2 ≤

∞
ℓ=1

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

S2.

If f ∈ F 2
2,S and ψ ≥ 0, then the above estimate simplifies to

∥f − f ∗ ψ∥2 ≤
1
2


1 − ψ̂(1)


S. (A.21)

Proof. By (A.7) and (A.17) the convolution f ∗ ψ has the Fourier expansion

f ∗ ψ =

∞
ℓ=0

ℓ
k,k′=−ℓ

ψ̂(ℓ)f̂ (ℓ, k, k′)
√
2ℓ+ 1Dk,k′

ℓ .

Using Parseval’s identity (A.9) and the assumption ψ̂(0) = 1 we obtain the approximation error

∥f − f ∗ ψ∥
2
2 =

∞
ℓ=0

ℓ
k,k′=−ℓ

1 − ψ̂(ℓ)

2 f̂ (ℓ, k, k′)

2

=

∞
ℓ=1

ℓ
k,k′=−ℓ

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

ℓs(ℓ+ 1)s
f̂ (ℓ, k, k′)

2

≤ sup
ℓ∈N\{0}

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

∥f ∥2
2,s
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and, analogously,

∥f − f ∗ ψ∥
2
2 ≤


ℓ∈N\{0}

1 − ψ̂(ℓ)

2
ℓs(ℓ+ 1)s

∥f ∥2
∞,s.

The last sum is finite since we assumed s > 1
2 .

The proof for the case that ψ is nonnegative was adapted from [41]. First, we notice that for zonal functions ψ the
convolution f ∗ ψ can be written in terms of the integral means τt ,

f ∗ ψ(x) =


SO(3)

f (y)ψ(y−1x) dλ(y) =


SO(3)

f (xy)ψ(y) dλ(y)

=
1
π2

 1

0


S2

f (xRξ,2 arccos t)ψ(Rξ,2 arccos t) dσ(ξ)

1 − t2 dt

=
4
π

 1

0
τt f (x)ψ(t)


1 − t2 dt.

Together with ψ̂(0) = 1 this allows us to write

∥f − f ∗ ψ∥2 =

 4
π

 1

0
(f − τt f )ψ(t)


1 − t2 dt


2
.

Sinceψ ≥ 0 wemay apply Jensen’s inequality to interchange norm and integral. Using the estimate of the norm ∥f − τt f ∥2
found in Lemma 17 and formula (A.14) for the Chebyshev coefficients of ψ we obtain

∥f − f ∗ ψ∥2 ≤
4
π

 1

0
∥f − τt f ∥2 ψ(t)


1 − t2 dt

≤
4
π

 1

0
∥f ∥2,2


1
2

−
1
6

U2(t)


ψ(t)


1 − t2 dt

=
1
2


1 − ψ̂(1)


∥f ∥2,2 .

It should be noted that because of ψ ≥ 0 and Lemma 14 we have 1 − ψ̂(1) > 0. �

Eq. (A.21) of Theorem 18 allows us to find a lower bound of the L2-norm of a nonnegative zonal function in dependency
of its first Chebyshev coefficient.

Lemma 19. Let ψ ∈ L2(SO(3)) be a nonnegative zonal function with ψ̂(0) = 1. Then we have

∥ψ∥
2
2 ≥

64
√
2

105
(1 − ψ̂(1))−

3
2 .

Proof. By Theorem 18 we have for any function f ∈ L2(SO(3))with ∥f ∥2,s < ∞,

∥f − f ∗ ψ∥
2
2 ≤

(1 − ψ̂(1))2

4

∞
ℓ=0

ℓ
k,k′=−ℓ

ℓ2(ℓ+ 1)2
f̂ (ℓ, k, k′)

2 .
Setting for some ℓ ∈ N, f =

√
2ℓ+ 1Dk,k′

ℓ we obtain

(1 − ψ̂(ℓ))2 ≤
(1 − ψ̂(1))2

4
ℓ2(ℓ+ 1)2

and, hence,

ψ̂(ℓ) ≥ 1 −
(1 − ψ̂(1))

2
ℓ(ℓ+ 1).

The right hand side is nonnegative whenever L :=


2

1−ψ̂(1)
− 1 ≥ ℓ. Applying Parseval’s identity (A.16) we obtain

∥ψ∥
2
2 ≥

L
ℓ=0

(2ℓ+ 1)2ψ̂(ℓ)2 ≥


2

1−ψ̂(1)
−1

ℓ=0

(2ℓ+ 1)2

1 −

(1 − ψ̂(1))
2

ℓ(ℓ+ 1)

2

≥
64

√
2

105
(1 − ψ̂(1))−

3
2 . �
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Appendix B. Proofs of Section 2

Proof of Lemma 1. First of all, we note that the mean of the kernel density estimator f ∗

ψ may be written as

Ef ∗

ψ (x) =
1
N

N
n=1

Eψ(X−1
n x) =


SO(3)

f (y)ψ(y−1x) dλ(y) = f ∗ ψ(x).

Inserting the mean of the kernel density estimator f ∗

ψ into the definition of the MISE and applying Fubini’s Theorem we
obtain

E∥f − f ∗

ψ∥
2
2 = E∥(f − Ef ∗

ψ )− (f ∗

ψ − Ef ∗

ψ )∥
2
2

= E∥f − f ∗ ψ∥
2
+ E∥f ∗

ψ − Ef ∗

ψ∥
2
2 − 2E


f − Ef ∗

ψ , f
∗

ψ − Ef ∗

ψ


= ∥f − f ∗ ψ∥

2
+ E∥f ∗

ψ − Ef ∗

ψ∥
2
2.

Using the independence of the random sample Xn, we have for any x ∈ SO(3)

E(Ef ∗

ψ (x)− f ∗

ψ (x))
2

=
1
N2

N
n=1

E(Eψ(X−1
n x)− ψ(X−1

n x))2

=
1
N2

N
n=1

E(ψ(X−1
n x)2 − (Eψ(X−1

n x))2)

=
1
N


(f ∗ ψ2)(x)− (f ∗ ψ)2(x)


,

and, hence, the variation term on the right hand side of the previous sum yields

E∥f ∗

ψ − Ef ∗

ψ∥
2
2 =


SO(3)

E(Ef ∗

ψ (x)− f ∗

ψ (x))
2 dλ(x)

=
1
N


SO(3)

(f ∗ ψ2)(x)− (f ∗ ψ)2(x) dλ(x)

=
1
N


SO(3)


SO(3)

ψ2(y−1x)f (y) dλ(y) dλ(x)−
1
N

∥f ∗ ψ∥
2
2

=
1
N

∥ψ∥
2
2 −

1
N

∥f ∗ ψ∥
2
2. �

Proof of Theorem 3. Since f ≥ 0, we have by Lemma 14 for all ℓ ∈ N the inequality 0 ≤ f̂ 2ℓ ≤ 1. Hence, each summand in
(6) is a quadratic polynomial with respect to ψ̂(ℓ)with minimum at

ψ̂f ,N(ℓ) =
Nf̂ 2ℓ

(N − 1)f̂ 2ℓ + 1
.

Since, f ∈ L2(SO(3))we have by Parseval’s identity (A.9) that

∞
ℓ=0

(2ℓ+ 1)2 f̂ 2ℓ =

∞
ℓ=0

ℓ
k,k′=−ℓ

f̂ (ℓ, k, k′)

2 = ∥f ∥2
2 < ∞,

which shows that the Chebyshev coefficients ψ̂f ,N(ℓ) ≤ Nf̂ 2ℓ are absolutely summable and, hence, square summable with
respect to the weights (2ℓ + 1)2. In particular, using Parseval’s identity for zonal functions (A.16) we conclude that the
Chebyshev coefficients ψ̂f ,N(ℓ), ℓ ∈ N define a zonal function ψf ,N ∈ L2(SO(3)) such that the MISE of the corresponding
kernel density estimator is optimal. A direct calculation of MISE(f ∗

ψf ,N
) shows (8).

Since, we assumed f ∈ L2(SO(3)) to be not constant and nonnegative almost everywhere we conclude from Lemma 14
that there is a polynomial degree ℓ0 ∈ N \ {0} such that 0 < f̂ 2ℓ0 < 1. Hence, there is a constant C > 0 such that

MISE(f ∗

ψf ,N
) ≥ (2ℓ0 + 1)2

f̂ 2ℓ0(1 − f̂ 2ℓ0)

(N − 1)f̂ 2ℓ0 + 1
= (2ℓ0 + 1)2

f̂ 2ℓ0(1 − f̂ 2ℓ0)
N−1
N f̂ 2ℓ0 + N−1

N−1
≥ CN−1. �
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Proof of Theorem 5. We start by deriving an asymptotic expression for the L2-norm of the Jackson type kernel ψ J
L,s,

∥ψ
J
L,s∥

2
2 =

⌊L⌋
ℓ=0

(2ℓ+ 1)2

1 −

ℓs/2(ℓ+ 1)s/2

Ls/2(L + 1)s/2

2

≤ O(L2)+ 4
⌊L⌋
ℓ=0

ℓ2

1 −

ℓs

Ls

2

= O(L2)+ 4
 L

0
ℓ2 − 2

ℓ2+s

Ls
+
ℓ2+2s

L2s
dℓ = O(L2)+ CL3,

and, analogously,

∥ψ
J
L,s∥

2
2 ≥ O(L2)+ 4

⌊L⌋
ℓ=0

(ℓ+ 1)2

1 −

(ℓ+ 1)s

(L + 1)s

2

= O(L2)+ CL3, (B.1)

where C = 4
 1
3 −

2
s+3 +

1
2s+3


=

8s2
3(s+3)(2s+3) . Inserting this asymptotic expression into (10) we can bound the MISE for any

function f ∈ F 2
s,S by

MISE(f ∗

ψ
J
L,s
) ≤ L−2sS2 + (CL3 + O(L2))N−1,

which is asymptotically minimized by

L2s+3
opt =

2s
3
C−1S2N.

Hence, we arrive at the upper bound

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F 2

s,S

MISE(fψ ) · N
2s

2s+3 ≤


2s
3

−
2s

2s+3

+


2s
3

 3
2s+3


C

2s
2s+3 S

6
2s+3 .

Next we want to show that this upper bound is strict. Therefore we consider an arbitrary kernel function ψ with
Chebyshev coefficients satisfying 0 ≤ ψ̂(ℓ) ≤ 1 for all ℓ = 1, . . . ,∞. Let ℓ0 ∈ N and L ∈ R, L > 0 such that

ℓ0 = argmax
ℓ∈N\{0}

1 − ψ̂(ℓ)

ℓs/2(ℓ+ 1)s/2

and

L−s/2(L + 1)−s/2
=

1 − ψ̂(ℓ0)

ℓ
s/2
0 (ℓ0 + 1)s/2

. (B.2)

Then the Chebyshev coefficients of the Jackson type kernel ψ J
L,s satisfy for all ℓ = 1, . . . , L,

ψ̂
J
L,s(ℓ) = 1 − ℓs/2(ℓ+ 1)s/2

1 − ψ̂(ℓ0)

ℓ
s/2
0 (ℓ0 + 1)s/2

≤ 1 − ℓs/2(ℓ+ 1)s/2
1 − ψ̂(ℓ)

ℓs/2(ℓ+ 1)s/2
= ψ̂(ℓ),

where equality is attained for ℓ = ℓ0. In particular, we have by Parseval’s equality (A.16) ∥ψ
J
L,s∥2 ≤ ∥ψ∥2.

For S > 0 sufficiently small the function f = 1 + Sℓ−s/2
0 (ℓ0 + 1)−s/2

√
2ℓ+ 1D0,0

ℓ0
∈ F 2

s,S is nonnegative and we have by
Parseval’s equality (A.9), (A.17) and (B.2)

∥f ∥2
2 = 1 + S2ℓ−s

0 (ℓ0 + 1)−s
≤ 1 + S2

and

∥f − f ∗ ψ∥
2
2 = f̂ (ℓ0, 0, 0)2(1 − ψ̂(ℓ0))

2
= S2ℓ−s

0 (ℓ0 + 1)−s ℓ
s
0(ℓ0 + 1)s

Ls(L + 1)s
= S2L−s(L + 1)−s.

Hence, we obtain by Lemma 1, the fact ∥f ∗ ψ∥2 ≤ ∥f ∥2 ≤ 1 + S2, and (B.1) the following lower bound for the MISE of the
function f ,

MISE(f ∗

ψ ) ≥ ∥f − f ∗ ψ∥
2
2 + N−1 

∥ψ∥
2
2 − ∥f ∥2

2


≥ S2L−s(L + 1)−s

+ N−1

∥ψ

J
L,s∥

2
2 − 1 − S2


≥ S2(L + 1)−2s

+ N−1(CL3 + O(L2)).
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Minimizing the last termwith respect to Lwe see that the lower bound coincides asymptotically with the upper bound. �

Proof of Theorem 6. Let f ∈ F ∞

s,S and ψ ∈ L2(SO(3)) be a zonal kernel function. Setting the partial derivative of the upper
bound (14) for each Chebyshev coefficient ψ̂(ℓ), ℓ ∈ N \ {0} to zero we obtain that the optimal kernel function ψF ∞

s,S ,N
is

defined by the Chebyshev coefficients

ψ̂F ∞
s,S ,N

(ℓ) =
NS2

NS2 + (2ℓ+ 1)2ℓs(ℓ+ 1)s
, ℓ ∈ N. (B.3)

Given s > 1
2 the corresponding Chebyshev series converges in L2(SO(3)). Plugging in the kernel function ψF ∞

s,S ,N
into the

upper bound we obtain

MISE(f ∗

ψF ∞
s,S ,N

) ≤

∞
ℓ=1


(1 − ψ̂F ∞

s,S ,N
(ℓ))2

ℓs(ℓ+ 1)s
S2 + (2ℓ+ 1)2ψ̂F ∞

s,S ,N
(ℓ)2N−1



=

∞
ℓ=1

(2ℓ+ 1)4ℓs(ℓ+ 1)sS2 + (2ℓ+ 1)2NS4
NS2 + (2ℓ+ 1)2ℓs(ℓ+ 1)s

2 .

Next we make use of the fact(ℓ+ 1)s − ℓs
 ≤ O(ℓs−1)

and of the integral (cf. (3.241.5) in [19])
∞

0

xa−1
A + xb

2 dx = A
a
b −2π(b − a)

b2 sin aπ
b

, a ≤ 2b, A > 0

to conclude

MISE(f ∗

ψF ∞
s,S ,N

) ≤


∞

0

(16ℓ2s+4
+ O(ℓ2s+3))S2 + (4ℓ2 + O(ℓ))NS4

NS2 + 4ℓ2s+2
2 dℓ

=
2

s−2
s+1π

(s + 1) sin 3π
2s+2

S
6

2s+2 N−
2s−1
2s+2 + O


N−

2s
2s+2


.

In order to prove that the upper bound is asymptotically sharp we consider the function f ∈ F ∞

s,S ,

f = 1 + S
∞
ℓ=1

ℓ−s/2(ℓ+ 1)−s/2
√
2ℓ+ 1D0,0

ℓ ,

which is a density function for S sufficiently small. Then for any zonal kernel functionψ ∈ L2(SO(3)) the bias term becomes

∥f − f ∗ ψ∥
2
2 =

∞
ℓ=1

(1 − ψ̂(ℓ))2S2ℓ−s(ℓ+ 1)−s
= S2

∞
ℓ=1

(1 − ψ̂(ℓ))2

ℓs(ℓ+ 1)s
,

and, hence, the MISE evaluates to

MISE(f ∗

ψ ) =

∞
ℓ=1


(1 − ψ̂(ℓ))2

ℓs(ℓ+ 1)s
S2 +

ψ̂(ℓ)2

N


(2ℓ+ 1)2 −

S2

ℓs(ℓ+ 1)s


.

Minimizing the MISE with respect to ψ̂(ℓ)we obtain a similar result as in (B.3), i.e., with (2ℓ+ 1)2 replaced by (2ℓ+ 1)2 −

S2
ℓs(ℓ+1)s ,

ψ̂(ℓ) =
NS2

NS2 +


(2ℓ+ 1)2 −

S2
ℓs(ℓ+1)s


ℓs(ℓ+ 1)s

=
NS2

(N − 1)S2 + (2ℓ+ 1)2ℓs(ℓ+ 1)s
ℓ ∈ N.

Performing a similar calculation of the MISE as above shows that the upper bound is asymptotically sharp. �

References

[1] B.L. Adams, S.I. Wright, K. Kunze, Orientation imaging: the emergence of a new microscopy, J. Metall. Mater. Trans. A 24 (1993) 819–831.
[2] F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2D and 3D EBSD data—specification of theMTEX algorithm, Ultramicroscopy 111 (2011)

1720–1733.
[3] T. Baudin, J. Jura, R. Penelle, J. Pospiech, Estimation of the minimum grain number for the orientation distribution function calculated from individual

orientation measurements on Fe–3Si and Ti–4Al–6V alloys, J. Appl. Crystallogr. 28 (1995) 582–589.



R. Hielscher / Journal of Multivariate Analysis 119 (2013) 119–143 143

[4] T. Baudin, R. Penelle, Determination of the total texture function from individual orientationmeasurements by electron backscattering pattern,Metall.
Trans. A 24 (1993) 2299–2311.

[5] M.A. Bingham, S.B. Vardeman, D.J. Nordman, Bayes one-sample and one-way randomeffects analyses for 3-Dorientationswith application tomaterials
science, Bayesian Anal. 4 (2009) 607–630.

[6] N. Bozzolo, F. Gerspach, G. Sawina, F. Wagner, Accuracy of orientation distribution function determination based on EBSD data—a case study of a
recrystallized low alloyed Zr sheet, J. Microsc. 227 (2007) 275–283.

[7] H.J. Bunge, Texture Analysis in Material Science, Butterworths, 1982.
[8] H.-J. Bunge, F. Haessner, Three-dimensional orientation distribution function of crystals in cold-rolled copper, J. Appl. Phys. 39 (1968) 5503–5514.
[9] P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, Volume 1, Birkhäuser, 1971.

[10] P. Eisenlohr, F. Roters, Selecting sets of discrete orientations for accurate texture reconstruction, Comput. Mater. Sci. 42 (2008) 670–678.
[11] O. Engler, G. Gottstein, J. Pospiech, J. Jura, Statistics, evaluation and representation of single grain orientation measurements, Mater. Sci. Forum

157–162 (1994) 259–274.
[12] I.M. Gelfand, R.A. Minlos, Z.Y. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications, Pergamon Press, Oxford, 1963.
[13] D.M. Healy Jr., H. Hendriks, P.T. Kim, Spherical deconvolution, J. Multivariate Anal. 67 (1998) 1–22.
[14] H. Hendriks, Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansion, Ann. Statist. 18 (1990) 832–849.
[15] R. Hielscher, MTEX 3.0—a texture calculation toolbox. http://mtex.googlecode.com.
[16] R. Hielscher, D. Potts, J. Prestin, H. Schaeben, M. Schmalz, The Radon transform on SO(3): a Fourier slice theorem and numerical inversion, Inverse

Problems 24 (2008) 025011.
[17] R. Hielscher, J. Prestin, A. Vollrath, Fast summation of functions on SO(3), Math. Geosci. 42 (2010) 773–794.
[18] R. Hielscher, H. Schaeben, A novel pole figure inversion method: specification of theMTEX algorithm, J. Appl. Crystallogr. 41 (6) (2008) 1024–1037.
[19] A. Jeffrey, D. Zwillinger (Eds.), 3–4 Definite integrals of elementary functions, in: Table of Integrals, Series, and Products (Sixth Edition), sixth ed.,

Academic Press, San Diego, 2000, pp. 243–614.
[20] J. Keiner, S. Kunis, D. Potts, Using NFFT3—a software library for various nonequispaced fast Fourier transforms, ACM Trans. Math. Software 36 (2009)

1–30. Article 19.
[21] P.T. Kim, Deconvolution density estimation on SO(N), Ann. Statist. 26 (1998) 1083–1102.
[22] P.T. Kim, J.Y. Koo, Z.M. Luo, Weyl eigenvalue asymptotics and sharp adaptation on vector bundles, J. Multivariate Anal. 100 (9) (2009) 1962–1978.
[23] J.Y. Koo, Optimal rates of convergence for nonparametric statistical inverse problems, Ann. Statist. 21 (1993) 590–599.
[24] J.Y. Koo, P.T. Kim, Asymptotic miinmax bounds for stochastic deconvolution over groups, IEEE Trans. Inform. Theory 54 (2008) 289–298.
[25] P.J. Kostelec, D.N. Rockmore, FFTs on the rotation group, J. Fourier Anal. Appl. 14 (2008) 145–179.
[26] K. Kunze, S.I. Wright, B.L. Adams, D.J. Dingley, Advances in automatic EBSP single orientation measurements, Textures Microstruct. 20 (1993) 41–54.
[27] V. Luzin, Optimization of texture measurements. III. Statistical relevance of ODF represented by individual orientations, Mater. Sci. Forum 273–275

(1998) 107–112.
[28] S. Matthies, K. Helming, K. Kunze, On the representation of orientation distributions in texture analysis by sigma-sections. II. Consideration of crystal

and sample symmetry, examples, Phys. Status Solidi (B) 157 (1990) 489–507.
[29] S. Matthies, G. Vinel, K. Helmig, Standard Distributions in Texture Analysis, Volume 1, Akademie-Verlag, Berlin, 1987.
[30] C. Müller, Spherical Harmonics, Springer, Aachen, 1966.
[31] B. Pelletier, Kernel density estimation on Riemannian manifolds, Statist. Probab. Lett. 73 (2005) 297–304.
[32] J. Pospiech, K. Lücke, The rolling textures of copper and [alpha]-brasses discussed in terms of the orientation distribution function, Acta Metall. 23

(1975) 997–1007.
[33] D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group, Numer. Algorithms 52 (2009) 355–384.
[34] M. Reiß, Asymptotic equivalence for nonparametric regression with multivariate and random design, Ann. Statist. 36 (2008) 1957–1982.
[35] A. Tsybakov, Introduction to Nonparametric Estimation, Springer Verlag, Berlin, 2009.
[36] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.
[37] D. Varshalovich, A. Moskalev, V. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing, Singapore, 1988.
[38] N. Vilenkin, Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence, RI, USA, 1968.
[39] F. Wagner, S. Matthies, O. Van Landuyt, Processing individual orientation data to calculate ODFs, Mater. Sci. Forum 273–275 (1998) 89–98.
[40] M.P. Wand, M.C. Jones, Kernel Smoothing, Chapman & Hall/CRC, 1995.
[41] M. Wehrens, Legendre–Transformationsmethoden und Approximation von Funktionen auf der Einheitskugel im R3 , Dissertation, Institut für

Mathematik, Technische Hochschule Aachen, 1980.

http://mtex.googlecode.com

	Kernel density estimation on the rotation group and its application to crystallographic texture analysis
	Introduction
	Lower and upper bounds for kernel density estimators
	Basic properties of the MISE
	Optimal kernel functions and rates of convergence
	Nonnegative kernel functions
	General lower bounds

	Numerical experiments
	Drawing a random sample from a distribution on  SO (3) 
	Numerical computation of the kernel density estimator
	Numerical results
	Application to crystallographic texture analysis

	Acknowledgments
	Harmonic analysis on the rotation group
	Harmonic functions
	Zonal functions
	Sobolev spaces and integral means

	Proofs of Section 2
	References


