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Abstract

The authors provide sufficient and/or necessary conditions for classifying multivariate elliptical

random vectors according to the convex ordering and the increasing convex ordering. Their re-

sults generalize the corresponding ones for multivariate normal random vectors in the literature.
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1. Introduction

Stochastic orders offer more insights into the comparison of two random variables (vectors)

than only through their means and variances, which may not exist. Stochastic orders have been

applied successfully to queueing theory, reliability theory, economics, biomathematics, actuarial

science, risk management and other related fields. This is documented, e.g., in the monographs

of Denuit et al. [5], Müller and Stoyan [12], and Shaked and Shanthikumar [14].

It is natural to compare two normally distributed random variables (vectors) by some stochas-

tic orders. However, necessary and sufficient conditions for stochastic ordering of multivariate

normal random vectors could not be found until the work of Scarsini [13]. Müller [11] further

discussed stochastic ordering characterizations of multivariate normal random vectors. Arlotto

and Scarsini [1] unified and generalized several known results on comparisons of multivariate

normal random vectors in the sense of different stochastic orders by introducing the so-called

Hessian order. The formal definitions of the relevant stochastic orders are given in Section 2.

Theorem 1.1. Let X ∼ Nn(µ,Σ) and Y ∼ Nn(µ′,Σ′) be two n-dimensional normally dis-

tributed random vectors. Then
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(1) X ≤st Y if and only if µ ≤ µ′ and Σ = Σ′ (Müller [11]);

(2) X ≤cx Y if and only if µ = µ′ and Σ′ − Σ is non-negative definite (Scarsini [13]; Müller

[11]).

Elliptical distributions are generalizations of the multivariate normal distribution and, there-

fore, share many of its tractable properties. This class of distributions, which was introduced

by Kelker [9] and further discussed by Fang et al. [7], allows for the presence of heavy tails and

asymptotic tail dependence. Ding and Zhang [6] extended Theorem 1.1 from multivariate nor-

mal distributions to Kotz-type distributions. The latter forms an important class of elliptically

symmetric distributions. Besides, Landsman and Tsanakas [10] derived necessary and sufficient

conditions for classifying bivariate elliptical distributions through the concordance ordering. In

fact, the main results in Landsman and Tsanakas [10] are immediate consequences of the work

of Block and Sampson [2].

It remains an interesting open problem whether necessary and sufficient conditions exist for

stochastic ordering of multivariate elliptical distributions. Recently, Davidov and Peddada [4]

obtained the following necessary and sufficient conditions for the usual stochastic ordering of

multivariate elliptical random vectors.

Theorem 1.2. (Davidov and Peddada [4]) Let X ∼ En(µ,Σ, φ) and Y ∼ En(µ′,Σ′, φ) be two

n-dimensional elliptically distributed random vectors supported on Rn. Then X ≤st Y if and

only if µ ≤ µ′ and Σ = Σ′.

However, few results can be found in the literature that characterize the convex ordering

of multivariate elliptical distributions. The purpose of this paper is to obtain some sufficient

and/or necessary conditions for convex ordering and increasing convex ordering of multivariate

elliptical random vectors.

The rest of this paper is organized as follows. In Section 2, we recall some important

concerned concepts, including stochastic orders and elliptical distributions. Sections 3 and 4

present convex orderings of univariate and multivariate elliptical distributions, respectively.

2. Preliminaries

For ease of reference, in this section we recall the definitions of some stochastic orders and

elliptical random vectors. Throughout the paper, the terms “increasing” and “decreasing” are

used to mean “non-decreasing” and “non-increasing”, respectively. All integrals and expecta-

tions are implicitly assumed to exist whenever they are written.
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2.1. Stochastic orders

In this study, we will employ the following stochastic orders. Standard references for stochas-

tic orders include Denuit et al. [5], Müller and Stoyan [12], and Shaked and Shanthikumar [14].

Definition 2.1. For two random vectors X and Y on Rn, we say that X is smaller than Y

(1) in the (multivariate) usual stochastic order, denoted by X ≤st Y , if E{φ(X)} ≤ E{φ(Y )}
for all increasing functions φ;

(2) in the (multivariate) convex order, denoted by X ≤cx Y , if E{φ(X)} ≤ E{φ(Y )} for all

convex functions φ;

(3) in the (multivariate) increasing convex order, denoted by X ≤icx Y , if E{φ(X)} ≤
E{φ(Y )} for all increasing convex functions φ;

(4) in the (multivariate) linear convex order, denoted by X ≤lcx Y , if a⊤X ≤cx a⊤Y for all

a ∈ Rn;

(5) in the (multivariate) increasing linear convex order, denoted by X ≤ilcx Y , if a⊤X ≤icx

a⊤Y for all a ∈ Rn.

The following implications are well known (see, e.g., Scarsini [13]):

X ≤cx Y =⇒ X ≤lcx Y
⇓ m

X ≤st Y =⇒ X ≤icx Y 6=⇒ X ≤ilcx Y .

Moreover, if X ≤icx Y and E(X) = E(Y ), then X ≤cx Y .

2.2. Elliptical distributions

Elliptical distributions, introduced by Kelker [9] and further discussed by Fang et al. [7],

constitute generalizations of the multivariate normal family. We briefly recall below the basic

definition of an elliptical distribution.

Definition 2.2. Let X = (X1, . . . ,Xn)⊤ be an n-dimensional random vector. We say that

X has a multivariate elliptical distribution, denoted by X ∼ En(µ,Σ, φ), if its characteristic

function can be expressed as

E
(
eit⊤X

)
= exp(it⊤µ)φ

(
1
2

t⊤Σt

)
,

where φ is an n-dimensional characteristic function.
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Besides multivariate normal distributions, obtained by choosing φ(t) = e−t, Laplace dis-

tributions, t-Student distributions, Cauchy distributions, logistic distributions and symmetric

stable distributions are examples of elliptical distributions.

One useful characterization of the elliptical distribution is as follows. Let X ∼ En(µ,Σ, φ),

and let A be an n × n matrix such that AA⊤ = Σ. Then X has the following stochastic

representation

X
d= µ + RAU , (2.1)

where d= means equality in distribution, U is uniformly distributed on the unit hypersphere

Sn−1 =
{
u ∈ Rn : u⊤u = 1

}
, and R is a non-negative random variable, independent of U . The

distribution function F0 of R is related to φ by the following relation: for any r ∈ R+,

F0(r) =
∫

B(r)
dG(y), (2.2)

where B(r) = {y ∈ Rn : y⊤y ≤ r}, and G is the distribution function of a random vector whose

characteristic function is given by g(t) = φ(t⊤t) for t ∈ Rn (see the proof of Theorem 2.2 in [7]).

For any X ∼ En(µ,Σ, φ), it is easy to see from (2.1) that E(X) = µ if and only if E(R) < ∞.

When Σ 6= 0, all components of X have finite second moment if and only if E(R2) < ∞. From

Theorem 4 in Cambanis et al. [3], it follows that the covariance matrix of X exists if and only

if the right-hand derivative of φ(u) at u = 0, denoted φ′+(0), exists and is finite, in which case

cov(X) = −2φ′+(0)Σ. The characteristic generator φ can be chosen such that −2φ′+(0) = 1, so

that cov(X) = Σ. The random vector X does not, in general, possess a density but if it does,

it is given, for all x ∈ Rn, by

fX(x) =
cn√
|Σ|

gn

{
(x− µ)⊤Σ−1 (x− µ)

}
,

where the non-negative function gn is called the density generator and cn is a normalizing

constant. For simplicity, we denote X ∼ En(µ,Σ, gn). We refer to Fang et al. [7] for more

details about elliptical distributions.

Throughout this paper, all elliptical distributions are assumed to be non-degenerate, i.e.,

Pr(R > 0) > 0, where R is given in (2.1). Also, assume that E(R2) < ∞.

3. Convex ordering for univariate elliptical distributions

In this section, we discuss the characterization of the convex ordering for univariate elliptical

distributions with the same generator.

Theorem 3.1. Let X ∼ E1(µ, σ2, φ) and Y ∼ E1(µ′, (σ′)2, φ). Then X ≤cx Y if and only if

µ = µ′ and σ ≤ σ′.
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Proof. Given that X and Y have the same characteristic generator φ, it follows from (2.1)

and (2.2) that they have the following stochastic representations:

X
d= µ + σRU, Y

d= µ′ + σ′RU, (3.1)

where R is a non-negative random variable, independent of U with Pr(U = ±1) = 1/2. Denote

by F0 the distribution function of R. Then, for all convex functions g : R → R, we have

E{g(Y )} − E{g(X)} = E
{
g

(
µ′ + σ′RU

)}
− E{g(µ + σRU)}

=
∫ ∞

0

[
E

{
g

(
µ′ + σ′rU

)}
− E{g(µ + σrU)}

]
dF0(r)

=
∫ ∞

0

1
2

{
g(µ′ + σ′r)− g(µ + σr) + g(µ′ − σ′r)− g(µ − σr)

}
dF0(r).

If µ = µ′ and σ ≤ σ′, then X ≤cx Y holds due to the convexity of g. On the other hand, if

X ≤cx Y , then µ = E(X) = E(Y ) = µ′ and

σ2 =
var(X)
var(RU)

≤ var(Y )
var(RU)

=
(
σ′

)2
.

Therefore, the desired result follows.

From the representation (3.1), it is known that a univariate elliptical random variable is

distributed symmetrically about its mean. Davidov and Peddada [4] proved that, under the

assumption of Theorem 3.1, X ≤st Y if and only if µ ≤ µ′ and σ = σ′. They also gave an

example to show that, for the usual stochastic ordering, this result may not be true when X and

Y have finite supports. However, the next example shows that Theorem 3.1 may hold when X

and Y have finite supports.

Example 3.2. If R ∼ U(0, 1) in (3.1), then X ∼ U(µ− σ, µ + σ) and Y ∼ U(µ′ − σ′, µ′ + σ′).

It is easy to see that X ≤cx Y if and only if µ = µ′ and σ ≤ σ′.

Theorem 3.3. Let X ∼ E1(µ, σ2, φ) and Y ∼ E1(µ′, (σ′)2, φ). Then X ≤icx Y if and only if

µ ≤ µ′ and σ ≤ σ′.

Proof. First, X and Y have the stochastic representation (3.1) with Pr(R > 0) > 0. If X ≤icx Y ,

then µ = E(X) ≤ E(Y ) = µ′ and, for all t,

E(X − t)+ ≤ E(Y − t)+. (3.2)

Note that

E(X − t)+ =
∫ ∞

t
Pr

(
RU >

x− µ

σ

)
dx ≥

∫ ∞

t
Pr

(
RU >

x− µ′

σ

)
dx,
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E(Y − t)+ =
∫ ∞

t
Pr

(
RU >

x− µ′

σ′

)
dx.

If σ > σ′, there exists x0 > µ′ such that

Pr
(

RU >
x0 − µ′

σ

)
> Pr

(
RU >

x0 − µ′

σ′

)
,

which implies E(X − µ′)+ > E(Y − µ′)+, violating (3.2). Therefore, σ ≤ σ′.

On the other hand, suppose that Z ∼ E1(µ′, σ2, φ). If µ ≤ µ′ and σ ≤ σ′, then

X ≤st Z ≤cx Y,

implying X ≤icx Y . This completes the proof of the theorem.

4. Convex ordering for multivariate elliptical distributions

In this section, we mainly discuss characterizations of the convex ordering between two

n-dimensional elliptically distributed random vectors X and Y , where X ∼ En(µ,Σ, φ) and

Y ∼ En(µ′,Σ′, φ).

From (2.1) and (2.2), X and Y have the following stochastic representations:

X
d= µ + RAU , Y

d= µ′ + RA′U . (4.1)

Here Σ = AA⊤, Σ′ = A′(A′)⊤, R is a nonnegative random variable, independent of U , and

U is uniformly distributed on the unit hypersphere Sn−1 ≡
{
u ∈ Rn : u⊤u = 1

}
. Given that

E(R2) < ∞, φ′+(0) < 0 exists and thus

cov(Y )− cov(X) = −2φ′+(0) (Σ′ − Σ).

Then Σ′−Σ is positively semi-definite if and only if cov(Y )−cov(X) is positively semi-definite.

The main result of this section is the following theorem, which generalizes Theorem 3.3 from

the univariate to the multivariate case.

Theorem 4.1. Let X ∼ En(µ,Σ, φ) and Y ∼ En(µ′,Σ′, φ). Then the following statements are

equivalent:

(1) µ = µ′ and Σ′ − Σ is positively semi-definite;

(2) X ≤lcx Y ;

(3) X ≤cx Y .

To prove Theorem 4.1, we need the following two lemmas.
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Lemma 4.2. Let U = (U1, . . . , Un)⊤ be a random vector uniformly distributed on the unit

hypersphere Sn−1 ≡
{
u ∈ Rn : u⊤u = 1

}
. Then, for any fixed r = (r1, . . . , rn) ∈ [0, 1]n,

(r1U1, . . . , rnUn)⊤ ≤cx U .

Proof. It suffices to prove that, for all r ∈ [0, 1],

(rU1, U2, . . . , Un)⊤ ≤cx U (4.2)

and for any random vector U with the property

U
d= (−U1, U2, . . . , Un)⊤. (4.3)

To see it, define θ = (1 + r)/2. Note that, for any r ∈ [0, 1],

(rU1, U2, . . . , Un)⊤ = θU + (1− θ)(−U1, U2, . . . , Un)⊤.

Then, for any convex function φ : Rn → R, we have

E{φ(rU1, U2, . . . , Un)} ≤ θE{φ(U)} + (1− θ)E{φ(−U1, U2, . . . , Un)} = E{φ(U)},

where the equality follows from (4.3). This implies (4.2). This completes the proof.

It should be pointed out that Lemma 4.2 holds for all random vectors U which are such

that, for all δ = (δ1, . . . , δn)⊤ ∈ {−1, 1}n,

U
d= (δ1U1, . . . , δnUn)⊤.

Recall that an n × n matrix C is said to be a contraction if σ1(C) ≤ 1, where σ1(C) is the

largest singular value of C.

Lemma 4.3. (Horn and Johnson [8], Theorem 7.7.3) Let A and B be two non-negative definite

n × n matrices. Then A2 − B2 is non-negative definite if and only if there exists a contraction

matrix C such that B = AC.

Proof of Theorem 4.1. Since “(3) ⇒ (2)” is obvious, we only need to prove “(2) ⇒ (1)” and

“(1) ⇒ (3)”.

For “(2) ⇒ (1)”, X ≤lcx Y means that a⊤X ≤cx a⊤Y for all a ∈ Rn and, hence, a⊤µ =

a⊤µ′ and

a⊤cov(X)a = var(a⊤X) ≤ var(a⊤Y ) = a⊤cov(Y )a.

Thus, µ = µ′ and cov(Y )− cov(X) is non-negative definite. That is, statement (1) holds.
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For “(1) ⇒ (3)”, without loss of generality assume that µ = µ′ = 0. First note that X and

Y have the stochastic representation (4.1) with A = Σ1/2 and A′ = (Σ′)1/2. By Lemma 4.3,

there exists a contraction matrix C such that A = A′C. By the singular value decomposition,

there exist two orthogonal n× n matrices S1 and S2 such that

C = S1∆S2,

where ∆ = diag(σ1, . . . , σn) with 0 ≤ σn ≤ · · · ≤ σ1 ≤ 1. For any convex function h : Rn → R,

define, for all x ∈ Rn,

g(x) = h(A′S1x).

Then g is convex. Given that U is uniformly distributed on Sn−1, it follows that

U
d= S2U

d= S⊤1 U .

Then

E{h(X)} = E{g(R∆S2U)} = E{g(R∆U)}
= E [E{g(R∆U)|R}]
≤ E [E{g(RU)|R}] (by Lemma 4.2)

= E
{
g(RS⊤1 U)

}
= E{h(Y )}.

That is, X ≤cx Y and statement (3) holds. This completes the proof of the theorem.

Since X ≤cx Y is equivalent to X ≤icx Y and E(X) = E(Y ) (Shaked and Shanthikumar

[14]), we have the following corollaries of Theorem 4.1.

Corollary 4.4. Let X ∼ En(µ,Σ, φ) and Y ∼ En(µ,Σ′, φ). Then

X ≤cx Y ⇔ X ≤lcx Y ⇔ X ≤ilcx Y ⇔ X ≤icx Y .

Corollary 4.5. Let X ∼ En(µ,Σ, φ) and Y ∼ En(µ′,Σ′, φ). Then

X ≤ilcx Y ⇒ X ≤icx Y .

For general random vectors, there is no relationship between the orders ≤icx and ≤ilcx.

Example 3.5.4 in Müller and Stoyan [12] shows that X ≤ilcx Y ; X ≤icx Y . It is shown

in Example 4.7 below that the order ≤icx does not imply the order ≤ilcx even for elliptical

distributions. Before we state Example 4.7, we first give a sufficient condition for the increasing

convex order.

Theorem 4.6. Let X ∼ En(µ,Σ, φ) and Y ∼ En(µ′,Σ′, φ).
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(1) If µ ≤ µ′ and Σ′ − Σ is positively semi-definite, then X ≤icx Y .

(2) If X ≤icx Y , then µ ≤ µ′ and Σ′ − Σ is copositive, i.e., a⊤(Σ′ − Σ)a ≥ 0 for all a ≥ 0.

Proof. (1) Let Z ∼ En(µ′,Σ, φ). Then X ≤st Z. By Theorem 4.1, we have Z ≤cx Y . Due to

Theorem 7.A.3 in Shaked and Shanthikumar [14], we have X ≤icx Y .

(2) On one hand, it is easy to see that µ ≤ µ′ given that the functions gi(x) = xi are in-

creasing and convex. On the other hand, ga(x) = g(a⊤x) is increasing convex for any increasing

convex function g and a ≥ 0. Since X ≤icx Y implies a⊤X ≤icx a⊤Y , it follows that

var(a⊤X) = a⊤var(X)a ≤ a⊤var(Y )a = var(a⊤Y ),

implying a⊤(Σ′ − Σ)a ≥ 0.

It is known from Arlotto and Scarsini [1] that, in Theorem 4.6, the conditions that µ ≤ µ′

and Σ′ −Σ is copositive characterize an order called the completely positive order between two

multivariate normal distributions. It is still unknown whether such a characterization holds for

multivariate elliptical distributions.

Example 4.7. (The order ≤icx does not imply the order ≤ilcx) Let R in (2.1) have a uniform

distribution on the interval [0, 1], i.e., U(0, 1), and let

X =
(

X1

X2

)
∼ E2

([
0
0

]
,

[
1 0
0 1

]
, φ

)
,

Y =
(

Y1

Y2

)
∼ E2

([
3
3

]
,

[
4 0
0 4

]
, φ

)
.

Then, by Theorem 4.6, X ≤icx Y . Due to (2.1), we have

X
d=

(
R cos Θ
R sin Θ

)
, Y

d=
(

2R cos Θ + 3
2R sin Θ + 3

)

with R ∼ U(0, 1) and Θ ∼ U(0, 2π). Set a⊤ = (−1, 0) and g(x) = max(x, 0). Then

E
{

g(a⊤X)
}

= E{g(−R cos Θ)} > 0 = E{g(−2R cos Θ− 3)} = E
{

g(a⊤Y )
}

,

which means X 6≤ilcx Y .

Acknowledgements

The authors would like to thank Dr. Tiantian Mao for helpful comments on the proof of Lemma

4.2 of this paper. The first author was supported by the NNSF of China (No. 11401558), and

the third author was supported by the NNSF of China (Nos. 11371340, 11301500, 11471303).

9



References

References

[1] A. Arlotto, M. Scarsini, Hessian orders and multinormal distributions, Journal of Multi-

variate Analysis 100 (2009) 2324–2330.

[2] H.W. Block, A.R. Sampson, Conditionally ordered distributions, Journal of Multivariate

Analysis 27(1988) 91–104.

[3] S. Cambanis, S. Huang, G. Simons, On the theory of elliptically contoured distributions,

Journal of Multivariate Analysis 11(1981) 368–385.

[4] O. Davidov, S. Peddada, The linear stochastic order and directed inference for multivariate

ordered distributions, The Annals of Statistics 41(2013) 1-40.

[5] M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas, Actuarial Theory for Dependent Risks:

Measures, Orders and Models, John Wiley & Sons, West Sussex, 2005.

[6] Y. Ding, X. Zhang, Some stochastic orders of Kotz-type distributions, Statistics and Prob-

ability Letters 69(2004) 389–396.

[7] K.T. Fang, S. Kotz, K.W. Ng, Symmetric Multivariate and Related Distributions, Chapman

and Hall Ltd., London, 1990.

[8] R.A. Horn, C.R. Johnson, Matrix Analysis (2nd edition), Cambridge University Press,

Cambridge, 2013.

[9] D. Kelker, Distribution theory of spherical distributions and location-scale parameter gen-

eralization, Sankhyā 32(1970) 419–430.
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