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a b s t r a c t

This paper presents an attractive extension of multivariate mixed-effects models to allow
the modeling of correlated responses. By initiating a new multivariate multimodal dis-
tribution, the proposed strategy takes multimodality and the asymmetric structure into
account in a flexible way. It can also accommodate clustered random effects on multiple
longitudinal responses when data comprise various hidden sub-populations that are not
directly identifiable. We introduce an explicit stochastic hierarchical representation of
the proposed model to render its theoretical properties straightforward and to carry
out estimation processes easily. A fully Bayesian approach is proposed to compute
posterior distributions using MCMC techniques in modeling multivariate longitudinal
data. Moreover, we present an EM-based maximum likelihood estimation procedure. To
facilitate Bayesian computation, the estimation process of mixed models utilizes a data
augmentation scheme. We analyze two real-life data on the low-back pain study and
the height of school-girls to illustrate the usefulness of our proposed model in practical
applications.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

An important topic in statistical modeling is devoted to longitudinal data wherein a set of subjects are repeatedly
measured on specified conditions or periods. In the analysis of longitudinal data, any working model should allow
measurements of the same response for each subject to be correlated, while observations from different subjects are
independent. Furthermore, the correlation between measurements of different response variables should be considered
for each subject. This is often performed by using joint regression models with postulating random effects as shared-
parameter. A key disadvantage of shared parameter models is that they often involve very strong, sometimes unrealistic,
assumptions about the association between multiple responses. This restriction can be relaxed by amending a separate
mixed-effects model [20] for each response and combining them by allowing the random effects of assorted responses to
be correlated [11].

A routine assumption in mixed-effects modeling is the normality of random effects which makes the individual
response vector follow a multivariate normal. This conventional assumption can often be violated [35] mainly when
certain latent sub-populations exist in the data generating process [29], or, when some important categorical covariates are
omitted from the fixed part of the model. Hence, the implementation of suitable joint mixed-effects models is challenged.
In this case, to avoid misleading inference and to guarantee its robustness, a model-based clustering is typically suggested.
Consequently, the collected measurements can be classified based on the adoption of a multimodal distribution for

∗ Corresponding author.
E-mail address: i.kazemi@stat.ui.ac.ir (I. Kazemi).

https://doi.org/10.1016/j.jmva.2019.104533
0047-259X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmva.2019.104533
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2019.104533&domain=pdf
mailto:i.kazemi@stat.ui.ac.ir
https://doi.org/10.1016/j.jmva.2019.104533


2 Z. Mahdiyeh and I. Kazemi / Journal of Multivariate Analysis 174 (2019) 104533

random effects. A simple idea to set up a multimodal structure is according to fitting a mixture of multiple unimodal
distributions. Several cases of mixture distributions have been proposed in the literature for certain purposes. In particular,
the finite mixture distribution with normal components is widely used [1,31]. The application of normal mixtures as the
random-effects distribution in the linear mixed-effects (LME) models was proposed by [32] and described further by [33]
and [34].

As is documented, any continuous distribution may be well approximated by a finite mixture distribution [19].
However, in practical applications, there are several issues on using mixture distributions in fitting multivariate LME
models. One is the identifiability issue [14] as the unstructured form of covariance matrices generates a large number
of unknown parameters. It can make the use of basic estimation procedures complicated. Any mixture distribution also
needs convincing prior information on the choice of true number of components to perform effectively. Moreover, fixing
the number of components to avoid overfitting and the normality assumption of components about each cluster are rather
strong. It requires setting up some extra prior information.

These typical challenges motivated us to investigate alternative techniques. Consequently, we introduce a new family of
multivariate multimodal distributions which offers great flexibility in jointly modeling of responses with the multimodal
structure. This is originated from a mixing strategy addressed in the univariate case by [15] together with our initiation of
a multimodal extension of the multivariate normal distribution (see also [12,16,23]). While a mixture distribution tends
to impose additional components and parameters to capture more peaks, our proposed multivariate multimodal normal
(MMN ) distribution is able to cover most of the peaks through a limited number of parameters, without any requirement
of prior information.

To model joint responses with multimodal structures, we let random effects follow the MMN distribution. It is shown
that both joint and marginal distributions of responses belong to the class of multimodal distributions. Several main
advantages of this model include (i) presenting great flexibility to model correlations which often exist within subjects
and between multiple responses, (ii) covering various types of responses with multimodal and asymmetric behaviors,
(iii) acknowledging for highly unbalanced data, (iv) being available to model more than two responses, (v) being
simplifying the interpretation of parameter estimates, (vi) non-increasing the dimension of integration in the marginal
distribution of response vector and non-involvement the additional computational complexity, (vii) being useful of its
stochastic hierarchical representation for implementing easy estimation processes, (viii) dealing with the effect of hidden
sub-populations with different behavior in terms of peaks that cannot be directly observed through the value of responses,
(ix) being effective when a knowledge discovery of clusters is not available or choosing the number of clusters is not
visible, (x) avoiding misleading inference when the classification of responses occurs due to the omission of important
categorical covariates and violation of the normality assumption of error terms or random effects. To make the inference
of model parameters using the maximum likelihood approach, the corresponding likelihood function appears in a non-
closed form of known distributions, due to complicated integrals. Consequently, some advanced numerical integration
techniques, stochastic methods or analytically approximations must be implemented. In this paper, we utilize two
estimation approaches that are commonly used in practice. First, we focus on the Expectation–Conditional–Maximization
(ECM) algorithm [8,25]. Here, as is underlined in the related contexts, the unobserved random effects are treated as missing
values which makes the estimation process highly computationally intensive. However, in construction of the E-step,
deriving some associated conditional expectations of unobserved quantities, given the observed data, requires numerical
methods to approximate such terms.

A general Bayesian computational technique that is particularly designed for complex models that include the high-
dimensional integrals, is the Markov chain Monte Carlo (MCMC) approach. It has been developed extensively in situations
where the evaluation of the marginal posterior likelihood is computationally expensive. Specifically, we include data
augmentation strategies into the MCMC scheme to contribute random components in the joint likelihood function along
with gaining our proposed stochastic hierarchical representation for the MMN distribution to provide efficient MCMC.
Then, a combination of the Gibbs sampling and Metropolis–Hastings algorithms is used to facilitate the generation
of samples from specified full conditional posterior distributions of all unknown quantities. With these specifications,
underlying multivariate mixed-effects models with the MMN distribution can be readily fitted in the freely available
software packages, such as OpenBugs1 [21] , or JAGS in R2 [9,27]. Consequently, Bayesian inference of parameters is
performed using summarized MCMC outputs.

The rest of the article is organized as follows. In Section 2, we introduce univariate and multivariate multimodal normal
distribution and report their main properties. Section 3 presents in short, the specification of multivariate mixed effects
models. We also extend modeling strategies for analyzing multivariate multimodal responses. Section 4 demonstrates
how the parameters estimation process can be performed using Bayesian computing techniques. Section 5 conducts a
simulation study to evaluate the performance of our proposed model. Finally, Section 6 is devoted to highlighting the
usefulness of our methodological findings in real-life data analyses of the low-back pain measurements and the height of
school-girls magnitudes.

1 Release 3.2.3 of OpenBugs is freely available at http://www.openbugs.net/w/Downloads.
2 Release 4.3.0 of JAGS in R is available for free at https://mcmc-jags.sourceforge.net.

http://www.openbugs.net/w/Downloads
https://mcmc-jags.sourceforge.net
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2. A multimodal extension of the normal distribution

2.1. The univariate multimodal normal distribution

Let W be a univariate random variable defined on the real line with the probability density function (pdf)

fW (w) = 2h (w)G (w) , (1)

where h (·) is a symmetric pdf and G (·) is a Lebesgue measurable function, satisfying conditions 0 ≤ G(w) ≤ 1 and
G(w) + G(−w) = 1, almost everywhere [3]. The multimodal normal distribution is a special case of (1) that is addressed
by [6] and defined in the following definition.

Definition 1. The random variable W follows the multimodal normal distribution, denoted by W ∼ MN (µ, α, λ, σ ), if
its pdf is of the form

fW (w|µ, α, λ, σ ) = φ
(
w|µ, σ 2) {1 +

1
α

sin (λz)
}
, (2)

where φ
(
w|µ, σ 2

)
denotes the normal pdf with mean µ and variance σ 2, z = (w − µ) /σ , the location parameter µ ∈ R,

the shape parameter α ≥ 1, the dispersion parameter σ > 0 and the peak parameter λ ∈ R.

If λ = 0 or α → ∞ then the normal distribution is retrieved. The density plots of MN (0, α, λ, σ ) (not shown) show
that as λ increases, the number of peaks increases and for any λ between p − 1 and p, for p ∈ N, the number of visible
peaks is p. The peaks are obvious for α close to 1, but as α increases, peaks tend to flatten. It is clear that a range of shapes
are created by various values of σ .

Proposition 1. If W ∼ MN (µ, α, λ, σ ), then the expectation, variance and characteristic function of W are

E (W ) = µ+
σλ

α
exp

(
−λ2

2

)
,

Var (W ) = σ 2
{
1 −

λ2

α2 exp
(
−λ2

)}
,

ψW (t) = exp
(

−
t2σ 2

2
+ itµ

){
1 +

1
α

exp
(

−λ2

2

)
sin (iλσ t)

}
.

Proof. Using usual statistical methods, these basic properties hold in which any clear proof is omitted. □

2.2. The multivariate multimodal normal distribution

We now introduce a multimodal extension of normal distribution for the p-dimensional random vector Y in Rp, p ≥ 1.
Denote φp (y|µ,V) the p-variate normal pdf with mean vector µ and covariance matrix V. Let δ be a p dimensional vector
with elements δ1, . . . , δp and scalar α ≥ 1. The multivariate multimodal normal (MMN ) distribution is obtained by the
following proposition.

Proposition 2. Let the random vector Y|W = w ∼ Np (µ + wδ,V) and W ∼ MN (0, α, λ, σ ). The marginal density of Y is
given by

f (y|δ,V,µ, α, λ, σ ) = φp
(
y|µ,Vy

) [
1 +

1
αy

sin
{
Λy (y − µ)

}]
(3)

where Vy = V + σ 2δδ⊤, αy = α exp
{
−λ2

(
2 + 2σ 2δ⊤V−1δ

)−1
}

and Λy = λσδ⊤V−1
(
1 + σ 2δ⊤V−1δ

)−1
. We denote

Y ∼ MMN p (δ,V,µ, α, λ, σ ) with the pdf given in (3).

Proof. The joint density function of Y and W is

f (y, w|δ,V,µ, α, λ, σ ) = φp (y|µ + wδ,V ) φ
(
w|0, σ 2) {1 +

1
α

sin (λw/σ)
}
.

Straightforward algebra yields

f (y|δ,V,µ, α, λ, σ ) =

∫
R
f (y, w|δ,V,µ, α, λ, σ ) dw

= φp
(
y|µ,V + σ 2δδ⊤

) ∫
R
φ
(
w|µw, σ

2
w

) {
1 +

1
α

sin (λw/σ)
}
dw,
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Fig. 1. The density plot of MMN 2 (δ, I, 0, 1, λ, 1) defined in Proposition 2 for δ = (4, 2)⊤ and λ = 0.5 (left) λ = 3 (center) λ = 5 (right).

Fig. 2. The density plot of MMN 2 (δ, I, 0, 1, 5, 1) defined in Proposition 2 for δ = (4, 3)⊤ (left) δ = (3, 1)⊤ (center) δ = (0.8, 0.5)⊤ (right).

Fig. 3. The density plot of MMN 2 (δ, I, 0, α, 5, 1) defined in Proposition 2 for δ = (4, 4)⊤ and α = 1 (left) α = 3 (center) α = 7 (right).

where µw = σ 2
wδ⊤V−1 (y − µ) and σ 2

w =
(
δ⊤V−1δ + 1/σ 2

)−1
. The integral can be computed using (2) and Proposition 6

in Appendix A. □

For δ = 0, the multivariate normal is retrieved and setting p = 1 coincides with the univariate case (2). However, if one
let the components of the random vector Y =

(
Y1, . . . , Yp

)⊤ be independent and each follows the univariate multimodal
normal distribution then the distribution of Y is not MMN . In the bivariate case, Figs. 1–3 show density (3) by setting µ

a null vector and V the identity matrix I2. Figures clearly indicate the multimodal feature of density functions for various
values of α, λ and δ = (δ1, δ2)

⊤. Fig. 1 shows that as λ increases, the number of peaks increases. While, the number of
peaks increases as λ increases when one or both values of δ1 and δ2 will not be close to one. Also, as δ1 or δ2 increases
the peaks become more visible and the range of densities increases (Fig. 2). Fig. 3 shows that the peaks are prominent for
α close to 1, but as α increases they tend to be smoother. The change of σ depicts that the peaks tend to smooth out as
σ tends to 0 and become more visible for σ close to 1. Also, the range of densities increases and peaks tend to smooth
out as σ increases. Some particular examples are:

1. As λ decreases or α increases αy → ∞ and thus f (y) → φp (y|µ,V) (Fig. 1 (left) and Fig. 3 (right)).
2. As λ → 0, or scale parameter σ decreases, Λy → 0 and thus f (y) → φp (y|µ,V) (Fig. 1 (left)).
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3. As δ → 0, or at least one elements of δ and the off-diagonal elements of V tend to zero, then Λy → 0 and thus
f (y) → φp (y|µ,V) (Fig. 2 (right)).

By using statistical techniques, the following properties of the multivariate multimodal normal distribution hold.

Proposition 3. Let Y ∼ MMN p (δ,V,µ, α, λ, σ ).

(i) The hierarchical representation of Y is given by

Y = µ + Wδ + V1/2Z,

where W ∼ MN (0, α, λ, σ ) and Z ∼ Np (0, I) are independent.
(ii) The expectation and covariance matrix of Y are

E (Y) = µ +
σλ

α
exp

(
−λ2

2

)
δ,

Cov (Y) = V + σ 2
{
1 −

λ2

α2 exp
(
−λ2

)}
δδ⊤.

(iii) The characteristic function of Y equals

ψY (t) = exp

{
it⊤µ −

t⊤
(
V + σ 2δδ⊤

)
t

2

}{
1 +

1
α

exp
(

−λ2

2

)
sin
(
iλσ t⊤δ

)}
.

(iv) Let Z = AY + b, where A is an q × p arbitrary matrix and vector b ∈ Rq. Then

Z ∼ MMN q
(
Aδ,AVA⊤,Aµ + b, α, λ, σ

)
.

Proof. The basic properties (i) and (ii) hold simply using usual statistical methods.
(iii) we have

ψY (t) = E
[
E
{
exp

(
it⊤Y

)
|W
}]

= exp
(
it⊤µ −

1
2
t⊤Vt

)
E
{
exp

(
iW t⊤δ

)}
= exp

(
it⊤µ −

1
2
t⊤Vt

)
ψW

(
δ⊤t
)
.

By replacing the characteristic function of W given by Proposition 1, the result is obtained.
(iv) The characteristic function of Z is ψZ (t) = exp

(
it⊤b

)
ψY
(
A⊤t

)
. After some algebra

ψZ (t) = exp
{
it⊤µz −

1
2
t⊤
(
Vz + σ 2δzδ

⊤

z

)
t
}{

1 +
1
α

exp
(

−
λ2

2

)
sin
(
iλσ t⊤δz

)}
,

where δz = Aδ, µz = Aµ + b and Vz = AVA⊤. Thus the proof is completed using part (iii). □

The following Proposition states that any marginal and conditional distribution of MMN belongs to this family.

Proposition 4. Let Y ∼ MMN p (δ,V,µ, α, λ, σ ). Consider the partition

Y =
(Y1
Y2

)
, µ =

(
µ1
µ2

)
, δ =

(
δ1
δ2

)
, and V =

(
V11 V12
V21 V22

)
,

where Y1, µ1, and δ1 are k dimensional while Y2, µ2, and δ2 are (p − k) dimensional vectors, V11 and V22 are k × k and
(p − k)× (p − k) positive definite matrices, respectively.

(i) Y1 ∼ MMN p (δ1,V11,µ1, α, λ, σ ).
(ii) Y2|Y1 = y1 ∼ MMN p−k

(
δ2.1,V2.1,µ2.1, α, λ, σ

)
, where δ2.1 = δ2 − V12V−1

22 δ1, V2.1 = V22 − V21V−1
11 V12 and

µ2.1 = µ2 + V12V−1
22 (y1 − µ1).

Proof. (i) The vector Y1 can be expressed as AY, where A =
(
Ik 0k×(p−k)

)
is a k × p matrix, Ik is an identity matrix

and 0k×(p−k) is a null matrix. Following Proposition 3(iv), Y1 follows a MMN distribution with parameters δ1 = Aδ,
V11 = AVA⊤, µ1 = Aµ, α, λ and σ .
(ii) The proof is done by using the conditional distribution Y|W = w ∼ Np (µ + wδ,V), where W ∼ MN (α, λ, σ ), so
that

Y2|Y1 = y1,W = w ∼ Np−k
(
µ∗,V2.1

)
with V2.1 = V22 −V21V−1

11 V12 and µ∗
= wδ2 +µ2 +V12V−1

22 (y1 − µ1 − wδ1) which can be simplified to µ∗
= µ2.1 +Wδ2.1.

Marginalizing over W gives the conditional distribution of Y2 given Y1 = y1 as stated in (ii). □
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3. Specification of multivariate multimodal linear mixed-effects models

The multivariate linear mixed-effects (MLME) models take advantage of describing variation in multiple responses that
is longitudinally measured on each subject in terms of a set of fixed covariates. These models are commonly constructed
by fitting separate mixed regression models for each response and being joined by specifying a joint distribution for their
underlying random effects. This familiar strategy generates efficiently an association structure between the measurements
of multivariate responses and takes into account the correlation within-subjects which often presents in repeated
measures [10].

Let us consider r responses and N subjects. Define the response vector yki =

(
yki1, . . . , y

k
ini

)⊤

for subject i ∈ {1, . . . , n}
corresponding to the kth (k ∈ {1, . . . , r}) response measurements at ni different time periods. For each response, consider
the linear mixed-effects (LME) model

yki = xki β
k
+ zki b

k
i + eki ,

where xki (ni × p) and zki (ni × q) are known covariate matrices related to the p-dimensional vector of unknown fixed
regression coefficients βk and the q-dimensional vector of random effects bk

i , respectively, and eki is the ni-dimensional
vector of within-subject error terms. In order to introduce the multivariate linear mixed model, we use the vec operator
for the ith response and error vectors as Yi = vec

(
y1i , . . . , y

r
i

)
and Ei = vec

(
e1i , . . . , e

r
i

)
, the vector of all fixed regression

coefficients as β = vec
(
β1, . . . ,βr) and the vector of all random effects as bi = vec(b1

i , . . . , b
r
i ). Denote the matrix

Xi = diag
(
x1i , . . . , x

r
i

)
for the fixed regression coefficients and Zi = diag

(
z1i , . . . , z

r
i

)
for the random effects. Thus, the

MLME model for r responses is specified by

Yi = Xiβ + Zibi + Ei.

where the repeated measures yki1, . . . , y
k
ini

for each k ∈ {1, . . . , r} are conditionally independent given bk
i . In practical

applications, it may be reasonable and convenient for the computational purposes to restrict the covariance structures
of random effects and error terms as some specific forms. This may also lead to more efficient parameter estimation
and statistical inference. In particular, two commonly used approaches are addressed by [11]. In the first approach a
multivariate distribution is specified for the error vector Ei to take into account correlated responses. Thus, the covariance
matrix of Ei is a blocked-diagonal structure of the form Ve = Vε ⊗ Ini , where Vε is a covariance matrix of size r , Ini
is a ni × ni identity matrix and the symbol ⊗ denotes the Kronecker product. Here, the random effects b1

i , . . . , b
r
i are

assumed to be independent with the covariance matrix Vb = Ir ⊗ G, where G is a covariance matrix of size q, where its
off-diagonal elements are constructed related to each random effects vector bk

i . In the second approach, all responses are
conditionally independent, given random effects and are joined by assuming that the vectors b1

i , . . . , b
r
i being correlated

and the covariance matrix of bi takes the form Vb = Ω ⊗ G, where Ω is a covariance matrix of size r with non-zero off-
diagonal elements. In this case, the errors e1i , . . . , e

r
i are usually assumed to be independent having covariance matrices

σ 2
e1 Ini , . . . , σ

2
er Ini . Thus, the covariance matrix of error vector Ei is Ve = Ini ⊗ Vε , where Vε is a diagonal matrix with

elements σ 2
e1 , . . . , σ

2
er .

Now, we propose an extension of MLME models based on utilizing the MMN distribution for the random effects.
Specifically, the new model is constructed by allowing the response vector Yi, conditioned on the effects bi, follows the
multivariate normal distribution with mean vector 0 and covariance matrix Ve, while the random effects follow a rq-variate
multimodal normal distribution. We introduce the hierarchical mixed model

Yi|bi
ind
∼ Nrni (Xiβ + Zibi,Ve) ,

bi|Wi = wi
ind
∼ Nrq (wiδ,Vb) , (4)

Wi
iid
∼ MN (µ, α, λ, σ ) ,

where ind denotes independent and iid stands for the independent and identically distributed. For δ = 0, the model
reduces to the commonly used linear mixed model, i.e., when bi ∼ Nrq (0,Vb). In (4), it is seen that E (bi) = µwδ and
cov (bi) = Vb +σ 2

wδδ⊤, where µw = µ−σλα−1 exp
(
−λ2/2

)
and σ 2

w = σ 2
−µ2

w . If all Ei’s are assumed to be independent
and normally distributed with mean vector 0 and covariance matrix Ve then the marginal expectation of Yi is given by
E (Yi) = Xiβ + µwZiδ.

In the regression modeling methodology, the marginal expectation of the response vector is commonly assumed to
depend only on the covariates, i.e., E (Yi) = Xiβ. It is desirable to keep this property even for our proposed model by
centralizing the latent variable Wi, i.e., by setting µ = σλα−1 exp

(
−λ2/2

)
, we have µw = 0 which implies E (bi) = 0 and

σ 2
w = σ 2. The covariance matrix of the response is given by cov (Yi) = Ve +Zi

(
Vb + σ 2δδ⊤

)
Z⊤

i . The marginal distribution
of the response vector Yi is obtained in the following proposition.

Proposition 5. Let Yi = Xiβ + Zibi + Ei, where Ei
ind
∼ Nrni (0,Ve) and bi ∼ MMN rq (δ,Vb, µ, α, λ, σ ) are independent. The

marginal distribution of Yi is given by

f (yi|θ) = φrni

(
Yi|µyi ,Vyi

) ∫
Rrq
φrq
(
bi|µbi ,Λbi

) [
1 +

1
αy

sin {δb (bi − µδ)}

]
dbi, (5)
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where θ = (β,Ve,Vb, δ, α, λ, σ ) and

µbi = µδ + ΛbiZ
⊤

i V
−1
e (yi − Xiβ − µZiδ) , µyi = Xiβ + µZiδ,

Λbi =

{(
Vb + σ 2δδ⊤

)−1
+ Z⊤

i V
−1
e Zi

}−1
, Vyi = Ve + Zi

(
Vb + σ 2δδ⊤

)
Z⊤

i ,

δb = λσ
(
1 + σ 2δ⊤V−1

b δ
)−1

δ⊤V−1
b , αy = α exp

{
−
λ2

2

(
1 + σ 2δ⊤V−1

b δ
)−1
}
.

Proof. See Appendix B. □

Note that the proposed model introduces a unimodal distribution for the within-subject errors Ei and a multimodal
distribution for the random effects bi. By using graphical techniques, the marginal distribution of Yi is shown to be in
the class of multimodal distributions. For illustration, we plot f (yi|θ) in a regression model with only random intercepts
in the univariate and bivariate cases. Results reveal that f (yi|θ) is multimodal with similar properties to the related
multimodal normal distribution. Also, the univariate marginal distribution of each response Yk

i , k = {1, 2}, is multimodal.
Some graphs are provided in Appendix D. In fact, from (4) and using the properties of the multivariate normal distribution,
the marginal distribution of each Yk

i , given bk
i , is multivariate normal Nni

(
Xk

i β
k
+Zk

i bk
i , σ

2k
e Ini

)
. Thus, by Proposition 5 the

marginal distribution of each response belongs to the class of multimodal distributions.
To carry out inference for the vector parameter θ, a direct maximization of the log-likelihood function ℓ (θ|y) =∑
i ln [f (yi|θ)] may involve solving complex integrals using advanced numerical techniques. The hierarchical structure

(4) allows better implementation of several estimation methods, such as the ECM algorithm of the frequentist approach
or the Markov chain Monte Carlo (MCMC) approach in a Bayesian perspective. In the next section we describe in detail the
MCMC approach to make inferences on model parameters. Some details of the ECM algorithm are given in Appendix C.

4. Bayesian computation

The proposed multivariate multimodal mixed-effects model is very convenient to implement in a Bayesian framework,
since it can be reconstructed by the hierarchical form (4) which allows us to utilize the MCMC techniques straight-
forwardly. In this setting, to make inference from the posterior distributions and obtain a subsequent approximation
of moments for the model parameters, the Gibbs sampler method is usually implemented. The posterior distribution
combines the prior information regarding the parameter values with the information in data obtained directly from the
complete likelihood function associated with (y, b, w). It is given by

L (θ|y, b, w) =

N∏
i=1

φrni (yi|xiβ + zibi,Ve) φrq (bi|wiδ,Vb) φ
(
wi|µ, σ

2) h (wi) ,

where h (wi) = 1 + α−1 sin {λ (wi − µ) /σ } and µ = σλα−1 exp
(
−λ2/2

)
. To choose a joint prior distribution for the

unknown parameters θ, we adopt independent prior distributions, i.e.,

π (θ) = π (β) π (Ve) π (δ) π (Vb) π (α) π (λ) π (σ ) ,

where π (θ) is the prior density function of θ. We assume that β and δ, respectively, follow the normal distributions
Nrp

(
β0, Sβ

)
and Nrq (δ0, Sδ), the matrix Vb follows the rq-variate inverse-Wishart distribution IWrq (τb, Sb) and the

same prior for Ve = σ 2
e Irni , and the scale parameter σ 2

e follows the inverse-Gamma distribution IG (τe/2, τe/2). For
computational simplicity, we adopt uniform priors over their parameter spaces for α, λ and σ . All hyper-parameters
in the priors are assumed to be known. In this setting Bayesian computation is simply done, since the full conditional
posteriors involved in the Gibbs sampler are of known forms and hence easy to simulate. The joint posterior distribution
for θ is given by

π (θ, b,w|y) = π (θ) L (θ|y, b, w) . (6)

The Gibbs sampler proceeds by drawing samples iteratively from all full conditional posteriors deriving from (6). Under
the full model as previously described, the full conditional posteriors of θ and bi for i ∈ {1, . . . , n} are given by

β|Ve,Vb, δ, α, λ, σ , b, w, y ∼ Nrp
(
µβ ,Vβ

)
,

where µβ = Vβ
{
S−1
β β0 +

∑N
i=1 x

⊤

i V
−1
e (yi−zibi)

}
and Vβ =

(
S−1
β +

∑N
i=1 x

⊤

i V
−1
e xi

)−1
;

σ 2
e |β,Vb, δ, α, λ, σ , b, w, y ∼ IG

(
1
2
(τe + N) ,

1
2

(
τe +

N∑
i=1

r⊤i ri

))
,

with ri = yi − xiβ − zibi;

δ|β,Ve,Vb, α, λ, σ , b, w, y ∼ Nrq (µδ,Vδ) ,
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for Vδ =

(
S−1
δ + V−1

b
∑N

i=1wi

)−1
and µδ = Vδ

(
S−1
δ δ0 + V−1

b
∑N

i=1wibi

)
;

Vb|β,Ve, δ, α, λ, σ , y, w, y ∼ IWrq
(
τb + N, S−1) ,

with S = S−1
b +

∑N
i=1 (bi − wiδ) (bi − wiδ)

⊤, and

bi|β,Ve,Vb, δ, α, λ, σ ,wi, yi
iid
∼ Nrq

(
µbi , Sbi

)
,

where Sbi =
(
V−1
b + z⊤

i V
−1
e zi

)
−1 and µbi = Sbi

{
wiV−1

b δ + z⊤

i V
−1
e (yi−xiβ)

}
.

For most quantities, the simulation is straightforward since their associated full conditional posteriors are in closed
form following known distributions. For wi, we obtain

π (wi|β,Ve,Vb, δ, α, λ, σ , bi, yi) ∝ φ
(
wi|µwi , Sw

) [
1 +

1
α

sin
{
λ (wi − µ)

σ

}]
, (7)

where Sw =
(
δ⊤V−1

b δ+ σ−2
)−1

and µwi = µ + Swδ⊤V−1
b (bi − µδ). To sample wi from the non-closed form (7), the

Metropolis–Hastings (MH) algorithm can be implemented. To do it, a new value wnew
i is required to be generated from

a proposal distribution. In the current version of OpenBUGS, the Metropolis-within-Gibbs algorithm [7,21] is based on a
normal proposal distribution [22]. Moreover, for α, λ and σ , the full conditional posteriors were not in closed form. Thus,
a similar process could be embedded for drawing samples from these posteriors.

5. Simulation studies

We conduct our simulation studies with two scenarios for the distribution of the underlying random effects. The first
simulation is designed to assess the performance of our proposed modeling strategy in the case of multimodality. In the
second study, the random effects are randomly drawn by a commonly used bivariate normal distribution. We consider
the bivariate LME model

ykij = βk
0 + βk

1x
k
j + βk

2x
k
i + bki + ekij, (8)

for k ∈ {1, 2}, i ∈ {1, . . . , 100}, j ∈ {1, . . . , 6}, where e1ij
iid
∼ N (0, 2), e2ij

iid
∼ N (0, 1), values of each subject-level covariate

xki have been drawn from N (2, 3). Also, we let x1j and x2j be the same for all subjects while changing within subjects and
independently follow N (5, 2). True values of fixed parameters are given in the first column of Table 1. In the first scenario
we let the random intercepts b1i and b2i to accommodate multimodality by generating their values from the bivariate

mixture distribution
∑2

j=1 πjφ2
(
µj,Vb

)
. We set π1 = π2 = 0.5, µ1 = (3,−5)⊤, µ2 = (−3, 5)⊤, and Vb =

(
3 1
1 4

)
. In

the second scenario, we let b1i and b2i be bivariate normally distributed with mean 0 and the covariance matrix Vb. Then,

we generated 100 data sets and for each one, the model (8) was fitted by letting ekij
iid
∼ N

(
0, σ 2

ek

)
for k ∈ {1, 2}, and two

random intercepts b1i and b2i be distributed as:

M1: the bivariate normal N2 (0,Vb);
M2: the bivariate multimodal normal MMN 2

(
δ,Vb, σλα

−1 exp
(
−λ2/2

)
, α,λ, σ

)
;

M3: the mixture distribution
∑2

j=1 πjφ2
(
µj,Vb

)
, where

∑2
j=1 πj = 1. Here, the additional constraint

∑2
j=1 πjµj = 0 is

required to let the mean value of the random effects being zero. Also, it is necessary to assume a common covariance
matrix for all components to avoid an unbounded likelihood [32].

We adopt independent and non-informative priors for all models. In particular, we assign N (0, 1000) for each regression
coefficient and each peak parameter in δ, the inverse-Gamma IG(0.01, 0.01) for each σ 2

e1
and σ 2

e 2 , the uniform prior
U(−10, 10) for λ, U(1, 10) for α, U(0, 10) for σ , U(0, 1) for π1 and the inverse-Wishart IW2 (2, I2) for Vb. By implementing
the MCMC approach within the OpenBUGS software, we used 10000 iterations after discarding 2000 burn-in samples and
the lagged value of 5 to avoid autocorrelation that appeared in the generated chains (BUGS code is provided in Appendix E).
Convergence was assessed by the standard tools, such as trace plots [5]. To perform a comparative study, the parameters
estimate and their standard errors, averaged over the 100 data sets, are reported in Table 1.

The estimate of δ, α, λ and σ in the proposed model M2 are significant from zero since the associated 95% confidence
intervals do not include 0. For the first simulation, we obtain σ̂ = 0.917, λ̂ = 4.192, α̂ = 2.512, and δ̂ = (2.988, 3.014)
and for the second simulation σ̂ = 0.232, λ̂ = 0.549, α̂ = 10.472, and δ̂ = (0.231, 0.583).

It is seen that most parameter estimates are relatively close to each other for all fitted models. The efficiency of fixed-
effects estimates are nearly equal showing that the distribution of random effects does not considerably influence the
estimate of these parameters. Although, for the proposed model M2, the biases and standard errors are smaller than others
and the efficiency of most estimates have been improved in comparison with bivariate normally distributed random-
effects. This evidence reveals that our proposed model is useful in practical applications and the adoption of incorrect
assumptions (e.g., normality) for random-effects distribution may reduce the efficiency of regression parameter estimates.
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Table 1
Simulation results based on 100 generated data sets of model (8) when the random
effects have been generated from (a) mixture distribution and (b) bivariate normal. The
parameters estimate (Est) and their standard errors (SE), averaged over the 100 data
sets, are reported. M1: Bivariate normal, M2: Bivariate multimodal normal, M3: Mixture
distribution with 2 components.
Parameters M1 M2 M3

Est SE Est SE Est SE

(a) Multimodal random effects

β1
0 = 10 8.391 0.793 8.987 0.765 8.545 0.787

β2
0 = 20 18.624 0.665 18.402 0.544 17.832 0.612

β1
1 = 2 2.191 0.324 2.181 0.276 2.182 0.311

β2
1 = 4 4.321 0.432 4.217 0.324 4.219 0.376

β1
2 = 3 2.976 0.243 2.979 0.198 3.022 0.231

β2
2 = 5 4.968 0.321 4.974 0.288 5.024 0.290

σ 2
e1

= 2 2.074 0.143 2.031 0.125 2.032 0.132

σ 2
e2

= 1 1.110 0.189 1.056 0.146 1.059 0.155

(b) Normal random effects

β1
0 = 10 10.24 0.399 8.071 0.422 9.691 0.423

β2
0 = 20 19.512 0.302 18.213 0.312 19.776 0.317

β1
1 = 2 1.963 0.169 2.076 0.181 2.233 0.199

β2
1 = 4 4.027 0.289 4.031 0.310 4.132 0.315

β1
2 = 3 3.002 0.390 3.005 0.419 3.009 0.434

β2
2 = 5 5.040 0.101 5.042 0.111 5.046 0.119

σ 2
e1

= 2 2.029 0.203 1.964 0.210 1.942 0.217

σ 2
e2

= 1 1.018 0.122 1.019 0.132 1.031 0.149

Similar findings have been addressed in [24] and [32] in a specific linear mixed-effects model. The estimate of β1
0 , β

2
0 ,

and the scale parameters are not the same for the fitted models but are not comparable because of different statistically
meaning.

In the second simulation study, the estimate of fixed-effects parameters in the proposed model is extremely close
to the normal model. Furthermore, there is no efficiency loss associated when using the bivariate multimodal normal
distribution. This evidence illustrates that the proposed model still provides reasonable estimation results. It reveals that
our proposed model deserves to be used in practical applications as a reliable alternative even if the classical model is
correct.

6. Two illustrative empirical applications

In this section, two real-life data sets are analyzed to illustrate the usefulness of our proposed model. The first data are
taken from a prospective cohort study on low back pain conducted by [26]. The main aim of this study was to investigate
the effects of the treatments package composed of herbal medicine, acupuncture, bee venom acupuncture, and a Korean
version of spinal manipulation (Chuna) on low back pain. This data set has been analyzed in [18] using a simple bivariate
mixed-effects model. We show that a complex structure involving the multimodality of bivariate responses is more
realistic. The second data set, collected originally by [13], comprises the height of school girls to explain the significantly
difference of the height course of girls according to the category of height of their mother (small, medium and tall). This
data set appeared in several published papers using a univariate mixed-effects model and a finite mixture of normal
distributions for the random-effects [32]. We re-analyze the data set using our methodology to model the multimodal
behavior of the response and compare our findings with previous cited results. To obtain the results, in the Bayesian
setting, we assign conjugate but non-informative priors, e.g., a normal prior with a large variance, to ensure that they are
flat enough over a realistic range of parameter values. Model selection is done by the deviance information criterion (DIC)
[30] to select the best fitted model. Smaller values of the DIC indicate a better fit. Other model selection criteria, such as
the deviance, D

(̂
θ
)

= −2 ln
{
L
(̂
θ|y
)}

is also computed, where θ̂ is the vector of parameters estimate.

6.1. The low back pain study

The data set was collected from a research study conducted by an institutional review board at Jaseng hospital in
Korea from November 2006 to October 2007. The University of North Carolina managed the study. Eligible cases were
127 patients who had not been previously treated for low back pain. The treatment was performed at baseline followed by
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Fig. 4. The low back pain study. Histogram of predicted random intercepts b1i (left) and b2i (right) for the normal model.

weeks 4, 8, 12, 16, 20, and 24. Two responses are the visual analogue scale (VAS) (0−10) of back pain [17] and Oswestry
disability index (ODI) [4]. These are influenced by several medical and demographic factors. In our current study, we only
consider the influence patients’ age, sex, body mass index (BMI), surgery recommendation (0 = recommended and 1 = not
recommended), baseline values of responses and two covariates mental and physical health that indicate the quality of life.

A preliminary descriptive analysis shows that the number of patients who are in the normal BMI category (18.5−23),
overweight (> 23) and underweight (< 18.5) are, respectively, 63(42%), 37(24.7%) and 48(32%). Based on these categories
and other unmeasured factors, a hidden classification may exist in the structure of collected data. Thus, without any prior
put on the groups structure, we may utilize a multimodal distribution for the random intercepts to reflect the clustering
scheme of responses.

The profile plot, not shown here, shows that both ODI and VAS levels increase over time for most patients and
substantial inter-patient variation exists. Thus, we first fit two separate univariate normal random-intercepts for each
response VAS and ODI with normality assumption of error terms. Then, we observed that the correlation between VAS
and ODI at subsequent periods was close to one. Thus we fitted a bivariate mixed-effects model which may significantly
be better than fitted separate models. Consider the following random-intercept model

ODIij = Xijβ
1
+ b1i + e1ij, (9)

VASij = Xijβ
2
+ b2i + e2ij,

for i ∈ {1, . . . , 127} and j ∈ {1, . . . , 6}, where ekij
iid
∼ N

(
0, σ 2

ek

)
for k ∈ {1, 2} and bi =

(
b1i , b

2
i

)⊤ iid
∼ N2 (0,Vb). Results

of the fitted model show that the correlation between the prediction of random intercepts of two separated models for
the ODI and the VAS is close to one (0.83), which may suggest that a model with one shared random intercept should
also fit well. Using the DIC value, we compared two fitted models with shared and separated random-intercepts. Findings,
however, indicated that the sharing strategy did not substantively improve the data analysis.

Figs. 4 and 5 (left) show the marginal and joint distribution of predicted random intercepts related to VAS and ODI.
Histograms demonstrate visually the deviation from normality and clearly multimodal shape of the distribution of each
random intercept b1i and b2i . Furthermore, the distribution surface and scatter plot of predicted random intercepts, in Fig. 5
(left), show that the bivariate normality of random intercepts is unrealistic and suggest a multimodal structure for the
joint distribution of random intercepts.

The above evidence motivates us to examine the ability of our proposed model to the data analysis. Because the
multimodal structure of the joint distribution of random intercepts may also suggest fitting a finite mixture model, we
fit a bivariate LME model by assuming a finite mixture distribution with normal components for random intercepts. For
model comparison, we fit the mixed-effects model (9) by letting the underlying random intercepts be distributed as those
previously specified in cases M1–M3.

For the sake of comparison, the non-informative priors are adopted for all fitted models, similar to the simulation study.
Results are given in Table 2. Using the values of the model selection criteria shown in the last row of Table 2, model M2
fits better. The Bayes estimate of δ, α, λ and σ in the preferred model are (5.81, 2.46), 1.67, 2.76 and 1.34, respectively,
and parameters differ significantly from zero. For model M2 the variance and correlation between random effects can be
estimated from Vb + σ 2

{
1 − λ2 exp

(
−λ2

)
α2
}
δδ⊤. It is seen that the variance components σ 2

e1
and σ 2

e 2 in multimodal
models, and in particular for M2, are smaller than those in the normal model. Furthermore, Fig. 5 (right) displays the
scatter plot of predicted random effects with the superimposed contour plots of the fitted bivariate multimodal normal
density and shows that the additional flexibility afforded by the MMN is sufficient to capture more possible peaks of
the random-effects distributions.
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Fig. 5. The scatter plot and surface plot of predicted random intercepts b1i and b2i for the normal model (left and center) in the low back pain study.
The super imposed contour plots of the fitted bivariate multimodal normal density (right).

Table 2
Posterior means and 95% confidence intervals of parameters under three models M1–M3 for the low back pain study. M1: Bivariate normal, M2:
Bivariate multimodal normal, M3: Finite mixture distribution with 2 components.
Parameters M1 M2 M3

Mean Probability interval Mean Probability interval Mean Probability interval

Fixed effects estimates

BaselineODI 0.32 (0.23, 0.51) 0.31 (0.29, 0.39) 0.31 (0.19, 0.38)
FemaleODI 2.64 (−2.32, 7.65) 3.85 (−0.71, 5.85) 3.5 (0.11, 6.45)
AgeODI 0.32 (0.05, 1.69) 0.26 (0.01, 0.54) 0.31 (−0.04, 0.67)
Body mass indexODI 0.35 (−4.15, 5.02) −2.68 (−5.96, 2.34) −1.68 (−7.96, 3.14)
Surgery recommendationODI 1.18 (0.16, 3.92) 2.28 (1.79, 2, 65) 1.22 (0.09, 2.05)
Physical healthODI

−0.03 (−0.24, 0.01) −0.12 (−0.14,−0.11) −0.11 (−0.19,−0.08)
Mental healthODI

−0.15 (−0.29,−0.03) −0.14 (−0.18,−0.13) −0.14 (−0.19,−0.13)
BaselineVAS 0.19 (0.01, 0.36) 0.15 (0.12, 0.19) 0.18 (0.11, 0.22)
FemaleVAS 0.34 (−0.42, 0.88) 1.32 (−0.12, 0.45) 0.92 (−0.22, 0.47)
AgeVAS 0.02 (−0.01, 0.08) 0.07 (0.01, 0.09) 0.01 (−0.01, 0.06)
Body mass indexVAS −0.23 (−0.93, 0.47) −0.27 (−0.43, 0.21) −0.47 (−0.62, 0.35)
Surgery recommendationVAS 0.32 (0.11, 45) 0.28 (0.22, 0.33) 0.19 (0.14, 0.39)
Physical healthVAS 0.1 (−0.12, 0.18) −0.02 (−0.04,−0.01) −0.09 (−0.19,−0.01)
Mental healthVAS

−0.05 (−0.11, 0.19) −0.24 (−0.18,−0.27) −0.25 (−0.19,−0.27)

Estimate of variance and correlation components

σ 2
b1

34.23 (10.56, 47.32) 18.67 (12, 67, 24.52) 29.67 (13.35, 37.59)

σ 2
b2

21.03 (14.54, 35.12) 6.56 (2.23, 11, 78) 16.16 (10.99, 27.12)
σb12 16.33 (11.19, 19.49) 7.92 (5.39, 9.41) 13.43 (10.33, 15.57)
σ 2
e1

7.52 (0.15, 0, 93) 7.54 (5.23, 9.12) 7.55 (3.99, 9.82)

σ 2
e2

1.89 (0.87, 2.56) 1.87 (1.64, 2.06) 1.88 (1.62, 2.17)

Model selection criteria

DIC 7879 7776 7854
D
(̂
θ
)

5967.5 5888 5910

We report our findings only based on the best-fitted model to show the effect of different covariates on the ODI and
VAS. We should mention that the ODI represents an index for indicating the disability of a patient and the VAS as an
index for indicating pain severity. Results show that there is no development in the VAS or ODI according to the sex and
the body mass index since the associated 95% confidence intervals include 0. A large amount of pain or disability at the
beginning of the study without any intervention may be significantly associated with the degree of patient improvement
according to the VAS and ODI changes in follow-up values. Furthermore, the relationship between the physical and the
mental health is negative and significant due to the 95% confidence interval which includes 0. A similar result observed
for the relationship between the ODI and VAS.

6.2. The height of school girls

The data set includes the growth curve of 20 pre-adolescent school girls with height measured on a yearly basis from
age 6 to 10. The girls were classified according to the height of their mother into three categories as short, medium and
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Fig. 6. Histogram of predicted random intercept (left) and random slope (right) for the normal model in the analysis of height of school girls.

Fig. 7. The scatter plot and surface plot of predicted random intercept and random slope for the normal model (left and center) in the analysis of
height of school girls. The super imposed contour plots of the fitted bivariate multimodal normal density (right).

tall mothers. The data have been previously analyzed by [32] who fitted a univariate linear mixed model by assuming
that the random effects are sampled from a mixture of g ∈ {1, 2, 3} normal components. Similar results have been also
reported in some literature, e.g., [28], to illustrate that the distribution of growth curves is multimodal. As addressed in
the literature of mixture models, the choice of number of clusters and mixture components is challenging. Thus, we utilize
our proposed methodology as an alternative data analysis to deal with such issue.

Let heightij and ageij be the height and age of the ith (i ∈ {1, . . . , 20} girl at the time j ∈ {6, . . . , 10}). Consider the
linear mixed model

heightij = β0 + β1ageij + b0i + b1iageij + eij, (10)

where β0 and β1 are the overall average intercept and linear age effect, respectively, and b0i and bi1 are the random
intercept and slope, respectively. The usual linear mixed model assumes that the error terms eij are independent and

normally distributed with mean 0 and variance σ 2
e and bi = (b0i, b1i)⊤

iid
∼ N2 (0,Vb).

Prediction of b0i and bi1 in fitting the simple mixed model, shown in Figs. 6 and 7 (left and center), illustrates the
non-normality structure and multimodal pattern of the marginal and joint distributions of the random effects. Further
evidence is illustrated in these Figures on the number of sub-populations for random effects. Thus, a multimodal bivariate
distribution seems to be adequate for the random-effects distributions. This motivates us to use theMMN distribution for
b0i and bi1. Using this idea, the girls can be classified into some latent clusters without any recognition of sub-populations.

To make a comparative study, we fit (10) by imposing the bivariate distributions specified in cases M1–M3 together
with the following distribution

M4:
∑3

j=1 πjφ2
(
µj,Vb

)
,
∑3

j=1 πj = 1,
∑3

j=1 πjµj = 0.

A number of 10000 samples was generated after discarding 3000 burn-in samples, and the lag value was fixed to 6
to avoid the correlation issue in the generated chains [5] . Results, after the convergence of the algorithm are given in
Table 3.
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Table 3
Posterior mean and 95% confidence interval of parameters under four models M1 to M4 for the height of school girls data. M1: Bivariate normal,
M2: Bivariate multimodal normal, M3: Mixture distribution with 2 components, M4: Mixture distribution with 3 components.
Parameters M1 M2 M3 M4

Mean Probability interval Mean Probability interval Mean Probability interval Mean Probability interval

Fixed effects estimates

β0 79.78 (64.54, 85.45) 80.97 (77.79, 82.56) 75.18 (68.54, 79.15) 74.62 (63.54, 78.45)
β1 3.63 (1.28, 8.72) 4.92 (2.41, 6.28) 4.27 (2.72, 8.28) 5.23 (1.32, 7.28)

Estimate of variance and correlation components

σ 2
e 0.47 (0.06, 0.69) 0.46 (0.19, 0.56) 0.47 (0.24, 0.72) 0.47 (0.22, 0.77)

σ 2
b0

7.21 (0.12, 10.63) 2.53 (1.19, 5.49) 6.74 (2.32, 6.54) 6.38 (2.89, 6.65)

σ 2
b1

0.59 (0.06, 6.01) 0.18 (0.09, 2.99) 0.37 (0.18, 1.98) 0.32 (0.24, 1.77)

σb01 0.29 (0.09, 0.79) 0.16 (0.10, 0.58) 0.12 (0.01, 0.82) 0.34 (0.09, 0.89)

Model selection criteria

DIC 178.6 175.8 176.1 176.9
D
(̂
θ
)

135 121 128 127

It is seen that the age is statistically significant in all models since the associated 95% confidence intervals do not
include 0. The Bayes estimate of standard deviation of age, for the normal model are larger than those model assuming
multimodality, and are smaller in our proposed model. The same is true for the estimate of random-effects variances. Also,
δ̂ = (1.45, 2, 45) and

(̂
α, λ̂, σ̂

)
= (1.54, 3.61, 1.44) are significant. Results, shown in Table 3, illustrate that the proposed

model performs satisfactory to this data analysis. Based on the model selection criteria MMN is the best fitted model,
while the mixture model with three components is the second-best model.

Another advantage of estimating the random effects density by MMN distribution is appreciated by Fig. 7 (right)
that displays the scatter plot of predicted effects with the super imposed contour plots of the fitted bivariate multimodal
normal density. This figure demonstrates that the additional flexibility afforded by the MMN is sufficient to capture
accurately the multimodal underlying feature of the random effects.

7. Concluding remarks and discussion

Multivariate linear mixed-effects models provide flexible tools for the analysis of multiple correlated response
variables. In this paper, we proposed a new modeling strategy based on utilizing the MMN distribution to handle the
joint analysis of repeatedly measured responses over time-periods with multimodal structures. Our strategy was initiated
by combining separate LME models for each response together in a single model through imposing a MMN distribution
on the random effects associated with the responses.

The modeling methodology can produce greater flexibility in designing mixed-effects models and analyzing real
empirical data. It is useful when several peaks exist on both joint and marginal distributions of responses but are not
directly identifiable. The proposed model is convenient for analyzing heterogeneous data when several sub-populations
exist. It is an attractive alternative to multivariate mixture modeling settings. The reason is that our model, analogous
to the finite mixture model, can cover most hidden peaks in the distribution of responses but with a few numbers
of parameters. Moreover, it is unnecessary to employ any selection method of detecting the number of mixture
components.

We argue that although experimental results show that our model performs better than other competitive models, a
further comparative study is required to highlight its strengths and weaknesses in comparison with finite mixture models.
This is the aim of our future study that will specifically focus on real-data analysis situations wherein common normality
assumption of mixture components can possibly be violated. Moreover, an extension of the modeling strategy is required
to research studies with aims concentrated on classification, clustering, and discrimination of population.

As illustrated with the paper, the associated likelihood function was complex to carry out statistical inference. The
analyst may use the Gauss–Hermite quadrature approach or the Laplace approximation to approximate integral equations
involved in the marginal likelihood. To our best experiences, the computation is somehow time-consuming and estimation
results are disappointing for slightly large dimensional integrals. Thus, for the computational convenience, we provided a
hierarchical representation to facilitate the implementing of iterative estimation approaches, such as the ECM algorithm
and the MCMC method in the Bayesian perspective. As extensively discussed in the literature, the MCMC scheme is more
effective and direct to use in practice. The estimation procedure can be easily proceeding by accessible software packages,
such as OpenBugs, or JAGS in R.

Another interesting topic for our future research is to utilize other families of multivariate distributions to allow for
jointly accommodating multimodality, asymmetry, and heavy tails in longitudinal studies.
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Appendix A. A useful lemma and propositions

Lemma 1. Let Y|X = x ∼ Np (µ + Ax,V) and X ∼ Nq (η,Ω). Then

φp (y|µ + Ax,V) φq (x|η,Ω) = φp
(
y|µ + Aη,V + AΩA⊤

)
φq
(
x|η + ΛA⊤V−1 (y − µ − Aη) ,Λ

)
where Λ =

(
Ω−1

+ A⊤V−1A
)−1.

Proof. See [2]. □

Proposition 6. The function f (x) = φ
(
x|µ1, σ

2
1

)
sin {λ (x − µ2) /σ2} for σ1, σ2 > 0 is integrable in R and∫

R
f (x) dx = exp

(
λ2σ 2

1

2σ 2
2

)
sin
{
λ (µ1 − µ2)

σ2

}
.

Proof. The integral can be computed using mathematical relations, or, in a computational software, such as Maple or
Mathematica. □

Proposition 7. Consider Yi and other quantities as in Expression (4). The conditional density of Wi|bi,Yi is given by

f (wi|bi, yi) = φ
(
wi|µwi , Swi

) [
1 +

1
α

sin {λ (wi − µ) /σ }

]
where Swi =

(
δ⊤V−1

b δ+ σ−2
)−1

and µwi = µ+ Swiδ
⊤V−1

b (bi − µδ).

Proof. The proof is conducted after some simple algebraic manipulations and using Lemma 1 for deriving the joint
distribution

f (yi, bi, wi|θ) = φrni

(
Yi|Xiβ + Zibi,V e

)
φrq (bi|wiδ,Vb) φ

(
wi|µ, σ

2) [1 +
1
α

sin {λ (wi − µ) /σ }

]
. □

Appendix B. Proof of Proposition 5

From Expression (4) and Definition 1 together with using Lemma 1 in Appendix A, the marginal density of Yi is
obtained by computing the following integral

f (yi|θ) =

∫
Rrq

∫
R
f (yi|bi, θ) f (bi|wi, θ) f (wi|θ) dwidbi

=

∫
Rrq
φrni (Yi|Xiβ + Zibi,V e)

∫
R
φrq (bi|wiδ,Vb) φ

(
wi|µ, σ

2) [1 +
1
α

sin {λ (wi − µ) /σ }

]
dwidbi

=

∫
Rrq
φrni (Yi|Xiβ + Zibi,V e) φrq

(
bi|µδ,Vb + σ 2δδ⊤

) ∫
R
φ
(
wi|µw, σ

2
w

) [
1 +

1
α

sin {λ (wi − µ) /σ }

]
dwidbi,

where µw = µ+ σ 2
wδ⊤V−1

b (bi − µδ) and σ 2
w =

(
σ−2

+ δ⊤V−1
b δ
)−1

. Using Proposition 6 in Appendix A and replacing µw
and σ 2

w we have∫
R
φ
(
wi|µw, σ

2
w

)
sin {λ (wi − µ) /σ } dwi = exp

(
λ2σ 2

w

2σ 2

)
sin {∆b (bi − µδ) /σ } ,

where δb = λσ 2
wσ

−1δ⊤V−1
b . Then, by using Lemma 1 in Appendix A

f (yi|θ) = φrni

(
Yi|µyi,Vyi

) ∫
Rrq
φrq
(
bi|µbi,Λbi

) [
1 +

1
αy

sin {δb (bi − µδ)}

]
dbi,

with αy = α exp
{
−λ2/2

(
1 + σ 2δ⊤V−1

b δ
)}

and

µyi = Xiβ + µZiδ, µbi = µδ + ΛbiZ⊤

i V
−1
e (yi − Xi β− µZiδ) ,

Vyi = Ve + Zi
(
Vb + σ 2δδ⊤

)
Z⊤

i , Λbi =

{(
Vb + σ 2δδ⊤

)−1
+ Z⊤

i V
−1
e Zi

}−1
.
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Appendix C. The ECM algorithm

To implement the EM algorithm, we set yi as the observed data, ymiss,i = (bi, wi) as the missing data, and yC,i =

(ymiss,i, yi) as the complete data on the ith subject. It follows from (4) that the log-likelihood function of complete data,
ignoring the terms that are free of θ, is of the form ℓc (θ|yC ) = −1/2

∑N
i=1 ℓi (θ), where

ℓi (θ) = ln |Ve| + (yi − xiβ − zibi)
⊤ V−1

e (yi − xiβ − zibi)+ ln |Vb| + (bi − δwi)
⊤ V−1

b (bi − δwi)+ h (wi) , (C.1)

with h (wi) = ln
(
σ 2
)
+ (wi − µ)2/σ 2

− 2 ln
[
1 + α−1 sin {λ (wi − µ) /σ }

]
and µ = σλα−1 exp

(
−λ2/2

)
.

The expected complete-data log-likelihood, in the (h + 1)th iteration, given the current estimate θ = θ̂
(h)

in the E-step
can be written as

Q
(
θ|̂θ

(h)
)

= E
{
ℓc (θ|yC ) |y, θ̂

(h)
}

= −
1
2

N∑
i=1

{
Q1i

(
β,Ve |̂θ

(h)
)

+ Q2i

(
δ,Vb |̂θ

(h)
)

+ Q3i

(
α, λ, σ |̂θ

(h)
)}
,

with

Q1i

(
β,Ve |̂θ

(h)
)

= ln
⏐⏐̂V(h)e

⏐⏐+ (
yi − xiβ̂

(h)
)⊤ (̂

V(h)e

)−1
(
yi − xiβ̂

(h)
)

− 2
(
yi − xiβ̂

(h)
)⊤ (̂

V(h)e

)−1 zîb(
h)
i + trace

{(̂
V(h)e

)−1 zib̂ib⊤

i

(h)
z⊤

i

}
,

Q2i

(
δ,Vb |̂θ

(h)
)

= ln
⏐⏐⏐̂V(h)b

⏐⏐⏐+ trace
{(

V̂(h)b

)−1
(
b̂ib⊤

i

(h)
− 2ŵibi

(h)
δ̂
⊤(h)

+ ŵ2
i

(h)
δ̂
(h)

δ̂
⊤(h)

)}
,

Q3i

(
α, λ, σw |̂θ

(h)
)

= ln
{
σ̂ 2(h)}

+
1

σ̂ 2(h)

(
ŵ2

i

(h)
− 2µ̂(h)ŵi

(h)
+ µ̂2(h)

)2
− 2l̂w(

h)
i ,

where trace {.} indicates the trace of a matrix and µ̂(h) must be replaced by σ̂ (h)̂λ(h)/̂α(h) exp
(
−λ̂(h)2/2

)
. The calculation

of these functions require expressions for b̂ib⊤

i

(h)
= E

(
bib⊤

i |yi, θ̂
(h)
)
, b̂(h)i = E

(
bi|yi, θ̂

(h)
)
, ŵibi

(h)
= E

(
wibi|yi, θ̂

(h)
)
,

ŵ2
i

(h)
= E

(
w2

i |yi, θ̂
(h)
)

and l̂w(
h)
i = E

[
ln
{
1 + α−1 sin (λ (wi − µ) /σ)

)
|yi, θ̂

(h}
]
which can be evaluated from (C.1) and

(4), after some algebraic manipulation as following.
From Expression (4), we have

f (yi, bi, wi|θ) = f (yi|bi, θ) f (bi|wi, θ) f (wi|θ) .

Using successively Lemma 1 in Appendix A it is noted that

bi|Wi = wi,Yi = yi
ind
∼ Nrq

(
Ω

−1
i

{
z⊤

i V
−1
e (yi − xiβ)+ wiV−1

b δ
}
,Ωi

)
,

where Ωi =
(
z⊤

i V
−1
e zi + V−1

b

)−1
. Now, we use the law of iterated expectations and the necessary conditional expectations

to show that

E (bi|yi, θ) = E {E (bi|yi, wi, θ)} = Ω
−1
i z⊤

i V
−1
e (yi − xiβ)+ ŵiV−1

b δ,

E
(
bib⊤

i |yi, θ
)

= E
{
E
(
bib⊤

i |yi, wi, θ
)}
,

E
(
bib⊤

i |yi, wi, θ
)

= cov (bi|yi, wi, θ)+ E (bi|yi, wi, θ) E
(
b⊤

i |yi, wi, θ
)
,

E (wibi|yi, θ) = E {wiE (bi|yi, wi, θ)}

= ŵiΩ
−1z⊤

i V
−1
e (yi − xiβ)+ ŵ2

i Ω
−1
i V−1

b δ.

Moreover

b̂(h)i = Ω̂
(h)
i

{
ŵ
(h)
i

(
V̂(h)b

)−1
δ̂
(h)

+ z⊤

i

(̂
V(h)e

)−1
(
yi − xiβ̂

(h)
)}
,

with Ω̂
(h)
i = cov

(
bi|yi, θ̂

(h)
)

=

{(
V̂(h)b

)−1
+ z⊤

i

(
V̂(h)e

)−1
zi
}−1

and ŵi
(h)

= E
(
wi|yi, θ̂

(h)
)
,

b̂ib⊤

i

(h)
= Ω̂

(h)
i +

(
Ω̂
(h)
i

)−1
Λ̂
(h)
i

(
Ω̂
(h)
i

)−1
,

where

Λ̂
(h)
i = z⊤

i

(̂
V(h)e

)−1
(
yi − xiβ̂

(h)
)(

yi − xiβ̂
(h)
)⊤ (̂

V(h)e

)−1 zi

+ ŵ2
i

(h) (
V̂(h)b

)−1
δ̂
(h)

δ̂
⊤(h)

(
V̂(h)b

)−1
− 2ŵi

(h)z⊤

i

(
V̂(h)b

)−1 (
yi − xiβ̂

(h)
)

δ̂
⊤(h)

(
V̂(h)b

)−1
,
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and

ŵibi
(h)

= ŵi
(h)
(
Ω̂
(h)
i

)−1
z⊤

i

(̂
V(h)e

)−1
(
yi − xiβ̂

(h)
)

+ ŵ2
i

(h) (
Ω̂
(h)
i

)−1 (
V̂(h)b

)−1
δ̂
(h)
.

To compute l̂w(
h)
i , ŵi

(h) and ŵ2
i

(h)
, first we need to compute the expectation of ln

[
1 + α−1 sin {λ (wi − µ) /σ }

]
, wi

and w2
i conditioned on (yi, bi), using the density f (wi|yi, bi) (Proposition 7 in Appendix A) and then average it over

the conditional distribution of bi|yi. The one-dimensional integral involved in this averaging required to be computed
numerically. All expectations are evaluated at θ = θ̂

(h)
.

Each iteration of the EM algorithm increases the likelihood function lc (θ|yC ) and the algorithm typically converges to
a local or global maximum of the likelihood function. When the M-step is difficult to implement, it is useful to replace
the maximization of Q

(
θ|̂θ

(h)
)
by several simpler conditional maximization (CM) steps. The sequence of the CM-steps is

such that the overall maximization is over the full parameter space. This leads to a simple extension of the EM algorithm,
called the ECM algorithm [25]. In this work, we implemented the ECM algorithm to obtain the ML estimate of θ as follows:

E-step: Given θ = θ̂
(h)

, compute b̂(h)i , b̂ib⊤

i

(h)
, ŵib

(h)
i , ŵi

(h) and ŵ2
i

(h)
for i ∈ {1, . . . ,N}.

CM-steps: Conditionally maximize Q
(
θ|̂θ

(h)
)
over θ, which leads to the following new estimates θ̂

(h)
.

CM-step 1: Fix Ve = V̂(h)e and update β̂
(h)

by maximizing
∑N

i=1 Q1i

(
β,Ve |̂θ

(h)
)
over β, yielding

β̂
(h+1)

=

{
N∑
i=1

x⊤

i

(̂
V(h)e

)−1 xi

}−1 N∑
i=1

x⊤

i

(̂
V(h)e

)−1
(
yi−zîb(

h)
i

)
.

CM-step 2: Fix β = β̂
(h+1)

and update V̂(h)e by numerically maximizing
∑N

i=1 Q1i

(
β̂
(h+1)

,Ve |̂θ
)
over Ve. Under the

common situation Ve = σ 2
e Irn, this step is reduced to get the following closed form for the estimation of σ 2

e ,

σ̂ 2(h+1)
e =

1
rn

N∑
i=1

(
yi − xiβ̂

(h+1)
)⊤ (

yi − xiβ̂
(h+1)

)
− 2

(
yi − xiβ̂

(h+1)
)⊤

zîb(
h)
i + trace

(
zib̂ib⊤

i

(h)
z⊤

i

)
.

CM-step 3: Update δ̂
(h)

by maximizing
∑N

i=1 Q2i

(
δ,Vb |̂θ

(h)
)
over δ, yielding δ̂

(h+1)
=
∑N

i=1 ŵibi
(h)
/
∑N

i=1 ŵ
2
i

(h)
.

CM-step 4: Fix δ = δ̂
(h+1)

and update V̂b by numerically maximizing
∑N

i=1 Q2i

(̂
δ
(h+1)

,Vb |̂θ
(h)
)
over Vb. Under the

unstructured situation for Vb, the distinct elements V̂(h+1)
b get the following closed form,

V̂(h+1)
b =

1
N

N∑
i=1

(
b̂ib⊤

i

(h)
− 2ŵibi

(h)
δ̂
⊤(h+1)

+ ŵ2
i

(h)
δ̂
(h+1)

δ̂
⊤(h+1)

)
.

CM-step 5: Update α̂, λ̂, σ̂ by numerically maximizing
∑N

i=1 Q3i

(
α, λ, σ |̂θ

(h+1)
)

over α, λ, σ to get α̂(h+1), λ̂(h+1)

and σ̂ (h+1).

Note that, in the last CM-step a numerical maximization is needed. This can be easily implemented using statistical
software packages, such as optim routine in R software. Also, the starting values are often corresponding to the estimates
under the normal assumption. Moreover, as mentioned in the related literature, one needs to run the ECM-algorithm with
several starting values to ensure the convergence of algorithm to a nearly global optimum. In practice, a standard strategy
is to compute the associated log-likelihood functions and select the one with the largest value.

Appendix D. The multimodal feature of the marginal distribution

Consider the following hierarchical random-intercept model

y|b ∼ N2
(
β0 + b,Ve

)
,

b|w ∼ N2 (wδ,Vb) ,

w ∼ MN (µ, α, λ, σ ) ,

where y =
(
y1, y2

)⊤, β0 =
(
β1
0 , β

2
0

)⊤, b =
(
b1, b2

)⊤, δ =
(
δ1, δ2

)⊤, Ve = I2, µ = σλα−1 exp
(
−λ2/2

)
and Vb with

components {1, ρ, 1}. Then using Maple software, we plot

f (y) = φ2
(
y|µy,Vy

) ∫
R2
φ2
(
b|µb,Λb

) [
1 +

1
αy

sin {δb (b − µδ)}

]
db1 db2, (D.1)
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Fig. D.8. The density plot of (5) (left), the marginal density plot of y1 (center), and the marginal density plot of y2(right).

where µy = β0 + µδ, Vy = I2 +
(
Vb + σ 2δδ⊤

)
, µb = µδ + ΛbV−1

e

(
y − β0 − µδ

)
, Λb =

{(
Vb + σ 2δδ⊤

)−1
+ I2

}−1
,

δb = λσ
(
1 + σ 2δ⊤V−1

b δ
)−1

δ⊤V−1
b and αy = α exp

{
−λ2/2

(
1 + σ 2δ⊤V−1

b δ
)}

.
We also plot two marginal density f

(
y1
)

=
∫
R f (y) dy2 and f

(
y2
)

=
∫
R f (y) dy1. Fig. D.8 indicates the multimodal

feature of density functions for β0 = (1, 1)⊤, δ = (4, 2)⊤, λ = 3, α = 1.5, σ = 1 and Vb = I2.

Appendix E. BUGS code for model M2 in the simulation study

model{for(i in 1:Ntot) {y1[i] ~ dnorm(mu.e[i,1] , tau.e[1])
mu.e[i,1] <- beta[1]+ beta[2]* x1[i]+ beta[3]* x2[i]+ b[sub[i],1]
y2[i] ~ dnorm(mu.e[i,2] , tau.e[2])
mu.e[i,2] <- beta[4]+ beta[5]* x1[i]+ beta[6]* x2[i]+ b[sub[i],2] }
# MMN random effects
for(i in 1:N) {b[i,1:2]~dmnorm(mu.b[i,1:2],tau.b[1:2,1:2])
for(k in 1:2) {mu.b[i,k]<-delta[k]*w[i]}
w[i] ~ dloglik(logLike[i])
logLike[i] <- -0.5*log(2*pi*sigma*sigma)-0.5*(w[i]-muw)*(w[i]-muw)/(sigma*sigma)

+log(1+sin(lambda*(w[i]-muw)/sigma)/alpha)}
pi <- arccos(-1)
muw <- -lambda*sigma*exp(-lambda*lambda/2)/alpha
# Priors
for(k in 1:6) {beta[k] ~ dnorm(0,0.001)}
for(k in 1:2) {delta[k] ~ dnorm(0,0.001)}
for(k in 1:2) {tau.e[k] ~ dgamma(0.01,0.01)}
tau.b[1:2,1:2] ~ dwish(omega[1:2,1:2],2)
lambda ~ dunif(-10,10); alpha ~ dunif(1,10); sigma ~ dunif(0,10) }
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