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1. Introduction

We study methods for the detection of a change-point in a high-dimensional covariance matrix and estimation of its
location based on a time series. The proposed procedures investigate estimated bilinear forms of the covariance matrix,
in order to test for the presence of a change-point as well as to estimate its location. The bilinear forms use weighting
vectors with finite ;- resp. £,-norms which may even grow slowly as the sample size increases. This approach is natural
from a mathematical point of view and has many applications in diverse areas: Analysis of projections onto subspaces
spanned by (sparse) principal directions, inferring the dependence structure of high-dimensional sensor data, e.g., from
environmental monitoring, testing for a change of the autocovariance function of a univariate series or financial portfolio
analysis, to mention a few. These problems have in common that the dimension d can be large and may be even larger
than the sample size n. The results of this paper allow for this case and do not impose a condition on the growth of the
dimension. Multivariate versions of CUSUM statistics are also considered.

The problem to detect changes in a sequence of covariance matrices has been studied by several authors and recently
gained increasing interest, although the literature is still somewhat sparse. Going beyond the binary segmentation
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approach, [7] propose a sparsified segmentation procedure where coordinate-wise CUSUM statistics are thresholded
to segment the second-order structure. But these results do not cover significance testing. To test for a covariance
change in a time series, [13], who also give some historical references, consider CUSUM and likelihood ratio statistics for
fixed dimension d assuming a parametric linear process with Gaussian errors. Their CUSUM statistics, however, require
knowledge of the covariance matrix of the innovations when no change is present. [3] studied unweighted and weighted
CUSUM change-point tests for a linear process to detect a change in the autocovariance function, but only for a fixed
lag. Further, their theoretical results are restricted to the null hypothesis of no change. Kernel methods for this problem
have been studied by [34] and [23]. [1] studied break detection in vector time series for fixed dimension and provide
an approximation of the limiting distribution of their test statistic, an unweighted CUSUM, if d is large. Contrary, the
approach studied in this paper allows for growing dimension d without any constraint such as d/n — y € (0, 1), as
typically imposed in random matrix theory, d = O(h(n)) for some increasing function h, e.g., exponential growth as in [2]
(which is, however, constrained to i.i.d. samples), or (again for i.i.d. samples) asymptotics for the eigenstructure under
the assumption d/(n};) = O(1) for the spiked eigenvalues A;, [39], which allows for d/n — oo provided the eigenvalues
diverge.

It is shown that, for the imposed high-dimensional time series model, (weighted) CUSUM statistics associated to the
sample covariance matrix can be approximated by (weighted) Gaussian bridge processes. Under the null hypothesis this
follows from [35] and one can also consider an increasing number of such statistics by virtue of the results in [36].
Extensions to several samples (one-factor design) with special emphasis on high-dimensional sensor data are studied
in [26]. The asymptotics under a change-point regime, however, is more involved and is provided in this paper. Both
single CUSUM statistics and multivariate CUSUM transforms corresponding to a set of projection vectors are studied. The
dimension of the time series as well as the dimension of the multivariate CUSUM transform is allowed to grow with the
sample size in an unconstrained way. The results of this paper extend [35,36], especially by studying weighted CUSUMs,
providing refined martingale approximations and relaxing the conditions on the projection vectors.

Further, consistent estimation of the unknown variance and covariance parameters is studied without the need to
estimate eigenstructures. As well known, this essentially would require conditions under which the covariance matrix
can be estimated consistently in the Frobenius norm, which needs the restrictive condition d = o(n) on the dimension
according to the results of [22] and [30], or requires to assume appropriately constrained models. Estimators for the
asymptotic variance and covariance parameters associated to a single resp. a set of CUSUM statistics have already been
studied under the no-change hypothesis in [35] and [36]. These estimators are now studied under a change-point model,
generalized to deal with two pairs of projection vectors describing the asymptotic covariance between pairs of (weighted)
CUSUMs and studied from a sequential viewpoint which allows us to propose stopped-sample estimators using the given
sample until the estimated change point. This is achieved by proving a uniform law of large numbers for the sequential
estimators.

Closely related to the problem of testing for a change-point is the task of estimating its location. It is shown hat
the change-point estimator naturally associated to the weighted or unweighted CUSUM statistic is consistent. As a
consequence, the well known iterative binary segmentation algorithm, dating back to [38], can be used to locate multiple
change points.

The organization of the paper is as follows. Section 2 introduces the framework, discusses several models appearing
as special cases, introduces the proposed methods and discusses how to select the projection vectors. The asymptotic
results are provided in Section 3. They cover strong and weak approximations for the (weighted) partial sums of the
bilinear forms and for associated CUSUMs as well as consistency theorems for the proposed estimators of unknowns.
Section 4 considers the problem to estimate the change-point. Simulations are presented in Section 5. In Section 6 the
methods are illustrated by analyzing the dependence structure of ozone measurements from 444 monitors across the
United States over a five-year-period. Main proofs are given in Section 7, whereas additional material is deferred to a
supplement.

2. Model, assumptions and procedures

2.1. Notation

Throughout the paper ap n<§ b,k for two arrays of real numbers means that there exists a constant C < oo, such that
ane < Chbyy for all n, k. (£2, A, Pr) denotes the underlying probability space on which the vector time series is defined. For
a logical expression E we let 1(E) denote the associated indicator function. If A is a set, then 14 is the usual characteristic
function, whereas 1, for n € N denotes the n-vector with entries 1 and 0, is the null n-vector. | - ||, is the vector-2 norm,
Il - lle,» p € N, the £,-norm for sequences and || - || the maximum norm for sequences or vectors. || - ||o, denotes the semi
norm ||T|lop = supy.s=1/(f, If) |l for a linear operator T on a Hilbert space with inner product (-, -). X, = X denotes
weak convergence of a sequence of cadlag processes in the Skorohod space D[0, 1] equipped with the usual metric.
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2.2. Time series model and assumptions

Let us assume that the coordinates of the vector time series Y,; = (Yr(”]), . Yr(f”))T are given by

v\ = Zamen,j, ie(l,....n}vefl,....d},n>1, (1)

for coefficients a = {a; S

two assumptions.

:j > 0,n > 1} and independent zero mean errors {e,; : i € Z,n > 1} satisfying the following

Assumption (D). An array a = {a;‘j) :j=>0,vefl,...,dy},n > 1} of real numbers satisfies the decay condition (D), if
for some 0 € (0, 1/2)

sup max |a( )| << min(1, j)~3/49/2, (2)

n>1 1<v<dp

Assumption (E). {¢,x : k € Z,n e N}, is an array of independent mean zero random variables with sup,.; sup,cz E
lenk|*t? < 0o and moment arrays Unk = E(e nk) Yk = E(€ nk) 1 <k <n,n> 1, satisfying

14

¢
1 . _ 1 . _
22 dlom—sml =00, 2B iy =yl = 0,
i=1 i=1
for some 8 > 1+ 6 and sequences {s,1} and {y;}.
The assumptions on anzi and y,; allow for a certain degree of inhomogeneity of the second and third moments.
Especially, under the change-point model described below, where the coefficients of the linear processes change after
the change-point T = 1, these assumptions cover weak effects of the change on the second resp. third moments. An
example satisfying the conditions is given by

P
2 2 i : 2 : 2
Opi =Spm T+ TA”Z‘”“ Ag2 i = 1(i < t)oy + 1(i > 1)o7,

for two positive constants of # o and «; € R, i > 1, with «; = o(i) and Z 1 kil ~ 1A
2.3. Spiked covariance model

The spiked covariance model is a common framework to study estimation of the eigenstructure for high-dimensional

data. Forr e Nlet Ay > --- > A, > O and let u,; = (ug))‘z:l e R4 je{1,...,r}, be orthonormal vectors with lunille, < C
forj e {1,...,r}. Assume that
r
En = Z)\jun]’u;’; +021dn' (3)
j=1
The r leading eigenvalues of X, under model (3) are A; +02,j € {1, ..., r}, and represent spikes in the spectrum, which

is otherwise flat and given by o2, The assumption that the eigenvectors are £;-bounded is common in high-dimensional
statistics, especially when assuming a spiked covariance model: [17] have shown that principal component analysis
(PCA) generates inconsistent estimates of the leading eigenvectors if d/n — y € (0, 1), which motivated developments
on sparse PCA. Minimax bounds for sparse PCA have been studied by [4] under £4-constraints on the eigenvectors for
0< q < 2. For example, the simple diagonal thresholding estimator u" of the jth leading eigenvector u,; of [17] satisfies
E|lu Aﬂj’TunjunjH% = O(n~"*) and the iterated version of [24] attams the optimal rate O(n('~%/2)), see also [28]. An ¢;
sparseness assumption on the eigenvectors is weaker than the (joint) k-sparseness condition on the row support of matrix
of eigenvectors imposed in [6], who study optimal estimation under the spectral norm.

Model (3) can be described in terms of (1): Let c,g r)+v =02 cr(u) 1= A].l/z ”),] e{1,...,r},and c(”) = 0, otherwise.
Then for ¢; i.i.d A(0, 1) the MA(r +d — 1) series Ym = Z c( )et _jtoe_—,vefl, ..., d}, have the covariance matrix
(3). The decay condition (D) follows from sup;., maxXi<,< Iu | < SUpPy>q ||un]||4;1

We may conclude that our methodology covers the above spiked covariance under which sparse PCA provides
consistent estimates of the leading eigenvectors, which are an attractive choice for the projection vectors on which the
proposed change-point procedures are based on. The literature on such consistency results is, however, not yet matured
and typically assumes i.i.d. data vectors, whereas the framework studied here considers time series.
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2.4. Multivariate linear time series and VARMA processes

The above linear process framework is general enough to host classes of multivariate linear processes and vector
autoregressive models with respect to a g-variate noise process, g € N. These processes are usually studied for a sequence
of innovations, but since our constructions work for arrays, we consider this setting.

Multivariate linear processes: Let 0 =r; <1, < -.- <14 be integers and define the g-variate innovations

eni=(6n.ifr1»~--»€nli7rq)-ry i>1,n>1,
based on {e,; : i > 1, n > 1}. If ¢;; have homogeneous variances, then E(enoe,ﬂ) #0iff. k € {rj—r; : 1 <1i,j < q}, k # 0,such
that for large enough 1j,j = 2, the innovations are arbitrarily close to white noise. Let Byj = (by; 1, . . ., byj 4, )T, be (d, x q)-
dimensional matrices with row vectors by;, = (bfq‘; ”, R b;‘]’ C”) v € {1,...,dy}, for j > 0. Then the d,-dimensional

linear process
[o ]
Z, = E Byj€n,ij
pars

has coordinates Z(") ZJ 0D b(r;’l)en,,-,rl,j, which attain the representation

ARES Z (Z 1k >r, bﬁf,fh@) €ni ks (4)

k=0

(v.£)

v e {1,...,d,}. If we assume that the elements b of the coefficient matrices By; satisfy the decay condition

max

v>1

R

then the coefficients ¢4 = Y9 1k > rg)b;”;f_)rl of the series (4) satisfy sup,.;max,=; |c3"| « k-3/40/2,
i.e., Assumption (D) holds In this construction the lags rq, ..., ry used to define the g-variate innovation process may
depend on n.

We may go beyond the above near white noise g-variate innovations and consider d,-dimensional linear processes

with mean zero innovations ey;, i > 1, with a covariance matrix close to some V > 0: Let

Zy= ZanPen,i—j, e = Ve, i1,neN, (3)
where

€ni = (Gn,i—rl» o €njiergy )T, i>1,neN, (6)
for0 =r < .-+ < rq, P is a full rank g x d, matrix and B, are d, x q coefficient matrices as above, i.e., with
elements satisfying the decay condition. P is used to reduce the dimensionality. Let PV'/? = Z?Z] nmlmrnTi be the
singular value decomposition of PV'/? with singular values my;, left singular vectors I,; € R? and right singular vectors
Tni = (Tnits - -+ » Tnid, )T € RY satisfying nille, = I*nille, = 1,i € {1,...,dy}, n > 1. Then ByP V1/2 17Tnan1’nzrm, and

the element at position (v, £) of the latter matrix is given by Y 7 | nmbnj nitaie which is & 34 9/2

and eigenvectors are bounded. Therefore, the class of processes (5) is a special case of (1).
The case ¢ = g, — 00, especially g = d,, leading to the usual definition of a d,-dimensional linear process, can be
allowed for when imposing the conditions

if the eigenvalues

n
) <+ 2',()73/27w7(9+w)(vlu)w(71/276) and sup Z r[3/4_6/2 < o0 ™)

max
v, u>1
n n>1 =1

with @ = 0 and assuming that the operators Bn,-Pvl/z, n > 1, are trace class operators in the sense that Y, [7y;| = 0(1),

with eigenvectors satisfying [[Lill¢,, |Tnille, 2<' 1. For ¢ = d, we let P = [ such that I,; = r, are the eigenvectors
and 7y the eigenvalues of V. Then sup,.; max,-; ‘c( “)’ & A0y AT« 34012 yerifying (D), as
shown in the supplement The ¢, constraint on the eigenvectors can be omitted when imposing the stronger condition
Sup,-; Z b%”k] rl & (k +1,)7>7% on the coefficient matrices. For details see the supplement.
VARMA Models Let us consider a d,-dimensional zero mean VARMA(p, 1) process
Yi=AnYnic1i+ - +ApYnip+Mpeni1+ -+ Mpé€y i + €,

with colored d,-variate innovations as in (5). Au1, ..., App and My, ..., My, are (d, x d,) coefficient matrices. Let us
assume that each of these coefficient matrices satisfies (7) with @ = 1 for some 6 > 0, when denoting its elements by
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bg’l), 1 < v, £ < d,. Recall that the process is stable, if det(ly, —An1z—- - - —AypzP) # 0 for |z| < 1. Then the operator A(L) =
I, — 5;1 Anij , where L denotes the lag operator, is invertible, the coefficient matrices, Dy;, of ®(L) = A(L)™! are absolutely
summable, and one obtains the MA representation Y, = (Zfio Dyll) (3 hei Muil¥) €niej = ZJZO ®j€nij. As well
known, the coefficient matrices, @, can be calculated using the recursion @, = ly,, Pnj = My + Z]k:] A ®nji,j>1,
where M,; = 0 for j > q. Using these formulas one can show that the coefficient matrices, @y, of the MA representation
satisfy (7) when denoting its elements by b(n‘;'l), and therefore the VARMA coordinate processes Yr(l}’), 1 <v <d,,
with innovations (6) satisfy the decay condition (D), i.e., if the elements of the coefficient matrices are of the order
(+ 2r,) /27 2%(v)~1/279 then the elements of the matrices of the MA representation are of the order (j + 2r,)~3/>7%,
Another interesting class of time series to be studied in future work are factor models, which are of substantial interest

in econometrics. For detection of changes resp. breaks we refer to [5,14] and [15], amongst others.
2.5. Change-point model and procedures

The change-point model studied in this paper considers a change of the coefficients defining the linear processes.
Nevertheless, all procedures neither require their knowledge nor their estimation. So let b = {b%’.) 1 j = 0,v €

{1,...,d,},n > 1} and ¢ = {c,(.;) :j = 0,v e {l,...,dy},n > 1} be two different coefficient arrays satisfying the
decay assumption and put

Yho = Xn(b) = Var(Y (b)), X = Xy(c) = Var(Ya(c)).
It is further assumed that b and ¢ are such that
b#c= X # X, neN. (8)

We will study CUSUM type procedures based on quadratic and bilinear forms of sample analogs of those variance-
covariance matrices, in order to detect a change from X, to X,1. Let Vy = {(%,, ¥,) € R x R - xT X0y, # 2] X1y, ).
Assumption (8) ensures that v, # @.

The change-point model for the high-dimensional time series is now as follows. For some change-point t € {1, ..., n}
it holds
Yo = Yu(0)1(i < 1) 4 Yai()1( > 1), 1<i<n, 9

with underlying error terms €,;, 1 < i < n, n > 1, satisfying Assumption (E). Our results on estimation of t, however,
assume that the change occurs after a certain fraction of the sample by requiring that

T = [n?], (10)
for some ¥ € (0, 1). We are interested in testing the change-point problem
Hy:7=n versus Hi:t <n,

which implies a change in the second moment structure of the vector time series Y1, ..., Y,, when H; holds, and in
estimation of the change-point to locate the change. Under the null hypothesis the covariance matrix of Y,;, 1 <i <n,
is given by Var(Y,1(b)) = X0, whereas it changes under the alternative hypothesis from X' to Var(Y, ;41(c)) = Y. If
(vn, wy) € Vy, then the change is present in the sequence of the associated quadratic forms, onz[k] = vnTVar(Ynk)wn, 1<k,
which change from vnTEnown to vnTZme,, if < n, and the change-point test below will be based on an estimator of
that bilinear form. A natural condition to ensure that this relationship holds asymptotically, yielding consistency of the
proposed test, is

in§|An| > 0, Ap = vnTZ'nown — vnTE'mwn. (11)
n>

We shall, however, also discuss in Section 3.2 more general conditions for the detectability of a change.
To introduce the proposed procedures, define the partial sums of the outer products Y ;Y.

ni’
Su= Yu¥py k=1,

i<k
such that k'S, is the sample variance-covariance matrix using the data Y, ..., Y. Let
Unk = vnTSnkwm k>1n>1.

Consider the CUSUM-type statistic,

Ch = Gy(vp, wy) = max —

1
1<k<n \/n

k
vnT (Snk - Esnn> Whp| .
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The large sample approximations for C, obtained in [35] under Hy, and generalized in this paper, imply that G, can be
approximated by a Brownian bridge process, B®. Hence, we can reject the null hypothesis of no change at the asymptotic
T, > K} T, = Ty(vn, wy) = max

level o € (0, 1), if
1 (s ks
[ P _z
1—a’ 1<ken &\n(b)\/ﬁ n nk n nn | Wn

where @,(b) is a consistent estimator for the asymptotic standard deviation «,(b) associated to the series vI Sqxwy, and
K, ! is the u-quantile, u € (0, 1), of the Kolmogorov distribution function, K(z) = 1 — Y = (—1)"!exp(—2i’*z?), z € R.

One may also use a weighted CUSUM test

k
§
= MmMaX ——— Sik——S w
zion /ng(k/m) | " ( " ) '

for some weight function g, whose role is to compensate for the fact that the centered cumulated sums get small near the
boundaries. The results of Section 3.2 provide large sample approximations for a large class of weighting functions. An
attractive choice would be the weight function g(t) = +/t(1 — t), but the corresponding supremum of the standardized
Brownian bridge, B’(t)/+/t(1 — ), 0 < t < 1, is not well defined due to the law of the iterated logarithm (LIL), requiring
then to use Gumbel-type extreme value asymptotics, [9], known to converge slowly, see, e.g., [ 12]. For a discussion of the
class of proper weight functions ensuring that B°(t)/g(t) is a.s. finite we refer to [8]. One may use the weight function
[t(1 = t)]? for some 0 < B < 1/2 or any weight function g satisfying

: (12)

Ca(g)

g(t) = CGg[t(1 — t))’, 0 <t <1, for some constant C. (13)
Therefore, one rejects the no-change null hypothesis, if

Ta(g) > qg(1 — ), (14)

where g, denotes the quantile function of the law of supy_,_; |BO(t)|/g(t). As studied in [12], one may also standardize
the unweighted CUSUM statistic by its maximizing point, i.e., substitute g(k/n) by +/7,(1 — 7). The associated Brownian
bridge standardized by its argmax attains a density which has been explicitly calculated in [12].

When the assumption that the vector time series has mean zero is in doubt, one may modify the above procedures by
taking the cumulated outer products of the centered series, Spk = >, (Yni — Yu)(Yni — Y,)", where Y, = % ZLI Y i
The associated weighted CUSUM statistics are then given by

i<k

~ 1 ke = o Glg)
G =max —— [v] (S — =S . T ==
(8) e J/ng(k/n) Un ( " nn) n (&) an(b)

and the null hypothesis is rejected using the rule (14) with T,(g) replaced by ?,,(g).
To estimate the unknown change-point 7, we propose to use the estimator

k
vI <S,,;< — ES""> Wy .

Based on the estimator 7, of the change-point, one may also estimate the nuisance parameter o2(b) by &%ﬂ(b).
For L pairs of projection vectors vy, wy;, j € {1, ..., L}, consider the associated CUSUM transform

Ch= (Cn(vnjs wnj))Jl-_Zl P T,= (Tn(vnj, wnj));zl .

Observe that this transform differs from the transform studied in [40], where the statistics are calculated coordinate-wise
and the transform is given by the corresponding d CUSUM trajectories.
We wish to test the null hypothesis of no change w.r.t. to {v,, w,}

T, = argmax
"2 glk/n)n

Ho : vy Var(¥ e Jwy; = vy Var(Yneot)wy.j € (1., L},

against the alternative hypothesis that, induced by a change at T < n, at least one bilinear form changes (assuming the
projections are appropriately selected),

Hy:3je(1,... L} vpVar(Yo Jwy # vyVar(Yo, o 1)wpy.

)

As a global (omnibus) test one may reject Hy at the asymptotic significance level «, if

AB _
Q= (Tn— ;) (X)) (Tn — ) > Gum(1 — ). (15)
Here Q, is a non-standard quadratic form, as it is based on the CUSULMS instead of a multivariate statistic which
is asymptotically normal, p;; = (max15k<nEmax1§k<n |§O(k/n)/g(k/n)|>. , (2‘;)* is the Moore-Penrose generalized

inverse of 2‘: = (73\,3(] k)ﬁn‘](k, k)ﬁn‘](j,j)) <<t and gm,(p) denotes the p-quantile of the simulated distribution of Q,
k<L

1
1<
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using a Monte Carlo estimate of E maX;<xn Iﬁo(k/n)/g(k/n)l: the estimators B?,(j, k) of the asymptotic covariance of the
jth and kth coordinate of the CUSUM transform C, are defined in the next section and are calculated from a learning
sample. It is worth mentioning that the statistic Q, can be used to test for a change in the subspace span{v,1, ..., vy} by
putting wp; = vy, i € {1,...,n}.

2.6. Choice of the projections

The question arises how to choose the projection vectors v,, w,. Their choice may depend on the application and some
of the examples discussed in the supplement illustrate this. In some applications selecting them from a known basis
may be the method of choice. In low- and high-dimensional multivariate statistics it is, however, a common statistical
tool to project data vectors onto a lower dimensional subspace spanned by (sparse) directions (axes) v(n”, cees vqu). These
directions can be obtained from a fixed basis or by a Esparse) principal component analysis using a learning sample.
The projection is determined by the new coordinates vnl)TYn, i € {1,...,K}, for simplicity also called projections, and
represent a lower dimensional compressed approximation of Y,. The uncertainty of its coordinates, i.e., of its position
in the subspace, can be measured by the variances vS)TZ’nvg). Clearly, it is of interest to test for the presence of a
change-point in the second moment structure of these new coordinates by analyzing the bilinear forms vE,')TZ‘nvS,’),
1 < i,j < K. Also observe that one may analyze the spectrum, since for eigenvectors v(r,') the associated eigenvalue is
given by v\ T X, 0.

The question under which conditions PCA or sparse PCA is consistent has been studied by various authors. The classic
Davis-Kahan theorem, see [ 10] and [41] for a statistical version, relates this to consistency of the sample covariance matrix
in the Frobenius norm, which generally does not hold under high-dimensional regimes without additional assumptions,
and minimal-gap conditions on the eigenvalues. Standard PCA is known to be inconsistent, if d/n — y € (0, oo], where
here and in the following discussion a possible dependence of d on n is suppressed. Under certain spiked covariance
models consistency can be achieved, see [17] if d = o(n), [27] under the condition d/n — y € (0, 1) and [19] for n fixed
and d — oo. Sparse principal components, first formally studied by [18] using lasso techniques, are strongly motivated
by data-analytic aspects, e.g., by simplifying their interpretation, since linear combinations found by PCA typically involve
all variables. Consistency has been studied under different frameworks, usually assuming additional sparsity constraints
on the true eigenvectors (to ensure that their support set can be identified) and/or growth conditions on the eigenvalues
(to ensure that the leading eigenvalues are dominant in the spectrum). We refer to [32] for simple thresholding sparse
PCA when n is held fixed and d — oo, [4] for results on minimax rates when estimating the leading eigenvectors under
£4-constraints on the eigenvectors and fixed eigenvalues, whereas [6] provide minimax bounds assuming at most k entries
of the eigenvectors are non-vanishing and [39] derives asymptotic distributions allowing for diverging eigenvalues and
d/n — oo.

To avoid that a change is not detectable because it takes place in a subspace of the orthogonal complement of the
chosen projection vectors, a simple approach used in various areas is to take random projections. For example, one may
draw the projection vectors from a fixed basis or, alternatively, sample them from a distribution such as a Dirichlet
distribution or an appropriately transformed Gaussian law. Random projections of such kind are also heavily used in
signal processing and especially in compressed sensing, by virtue of the famous distributional version of the Johnson-
Lindenstrauss theorem, see [16]. This theorem states that any n points in a Euclidean space can be embedded into
0(s?log(1/8)) dimensions such that their distances are preserved up to 1 4 ¢, with probability larger than 1 — §. This
embedding can be constructed with £y-sparsity O(¢~!log(1/8)) of the associated projection matrix, see [20].

This discussion is continued in the next section after Theorem 2 and related to the change-point asymptotics
established there.

3. Asymptotics

The asymptotic results comprise approximations of the CUSUM statistics and related processes by maxima of Gaussian
bridge processes, consistency of Bartlett type estimators of the asymptotic covariance structure of the CUSUMs, stopped
sample versions of those estimators and consistency of the proposed change-point estimator.

3.1. Preliminaries

To study the asymptotics of the proposed change-point test statistics both under Hy and H;, we consider the
two-dimensional partial sums,

(1) T T
U Yoi(v, by)Yni(w, by)
U — nk — n n n n n n -16
n < U(nzk) > ;{: < Yni(v;lrcn)yni(w;cn) (16)
and their centered versions,

Dy = Uy — E(Unk)7 (]7)
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for k{, n ? 0, where for brevity Yni(vnTb ) and Ym(v c,) are defined by Yy;(z"a) Z] 0 ZU 1zm,a 61_] for z € {v, w} and
a € {b,c}.

Introduce the filtrations 7, = o(ey : i < k), k > 1, n € N. In Lemma 2 it is shown that D, can be approximated
by a Fy-martingale array with asymptotic covariance parameter B2(b, ¢) defined in Lemma 1, see (48). Denote by
aﬁ(a) = ﬂ,f(a, a), for a € {b, ¢}, the associated asymptotic variance parameter.

As a preparation, let B,(t) = (lel)(t), B;z)(t))T, t > 0, be a two-dimensional mean zero Brownian motion with
variance-covariance matrix

( Var((f)g;l))(z) cOv(Bg)Ez?;z))) _ ( ozgﬁ(b) ﬁg(2
Cov(B,’, B;”) Var(B;”’) Brb, ) o

For n > 1 define the Gaussian processes
Ga(t) = BU(O1(t < 7) + [B{(7) + (BP(t) = BP()IN(t > 7)., t=0, (19)
1
vn
Before the change, G, is the Brownian motion BEIU with variance «2(b) and after the change it behaves as the Brownian
motion B{? with start in B{"(t) and variance o?(c). Further define

c)c)), n>1. (18)

Gu(t) = Gn(tn), t [0, 1].

k
Gk = Gu(k) = —Gu(n),  k=nn=1,
40 — —
Golt) = Gu(t) = £Gu(1), £ € [0, 11.
The covariance functions can be explicitly calculated, for example,

min(s, t)e2(b), s,t<tors<t<tort<rt<s,

min(s — 7, t — t)a2(c), T <s,t.

Cov(Gy(s), Gn(t)) = {
but these expressions are not relevant. For further reference, denote

s, ) = Cov(Gy(s). Gu(t)). 5.t €0, 1]. (20)
3.2. Change-point Gaussian approximations

Closely related to the CUSUM procedures are the following cadlag processes: Define
Dn(t) 172 T(sn lnt] — LanE( nn))wm te [O, 1]3 n= 17

and the introduce the associated bridge process

D,?(t):pn<@> %Dn(l) t €0, 1].

n
Observe that its expectation is E(D2(k/n)) = ﬁ (Zf:] ol2[i] — % p af[i]) , and vanishes, if 62[1] = - -- = 02[n]. But a
non-constant series anz[i], ie{l,...,n}, may lead to E(D,?(k/n)) # 0. This particularly holds for the change-point model.

Our results show that Dy(t) (D(t)) can be approximated by a Brownian (bridge) process and lead to a FCLT under weak
regularity conditions, and the same holds true for weighted version of these cadlag processes for nice weighting functions

Define for k > 1,n > 1,

Unk = v;,rsnkwna
Dy = Unk — E(Unk) = v, (Snk E(Su))wy,

k k(n— r)A k<t
my(k) :=E <Unk - Eunn> = { v -

An, k>r.

and

The following theorem extends the results of [35,36] and justifies the proposed tests (12) and (14) when combined
with the results of the next section on consistency of the asymptotic variance parameters. This and all subsequent results
consider the basic time series model (1), but all results hold for the multivariate linear processes and VARMA models
introduced in Section 2 under the conditions discussed there.

Theorem 1. Suppose that {ey,; : i € Z,n > 1} satisfies Assumption (E). Let v,, w, be weighting vectors with £{-norms
satisfying

lonlle, llwnlle, = O(n"),  for 0 <n < (6 —6)/4 for some 0 < 6" <0, (21)
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and let b = {bf;)} and ¢ = {cf;)} be coefficients satisfying Assumption (D). If the change-point model (9) holds, then, for each
n, one may redefine, on a new probability space, the vector time series together with a two-dimensional mean zero Brownian
motion {By(t) : t € [0, 1]} with coordinates Bﬁ,’)(t), t € [0, 1], i = 1, 2, characterized by the covariance matrix (18) associated to
the parameters a2(b), a2(c), assumed to be bounded away from zero, and B2(b, c), such that for some constant C, the following

assertions hold true almost surely:

(i [|1Dpe — Bn(t)HZ = Cntl/z_)hv t>0.
(i) maxi<k<n |Dok — EDpn — [Bui — £Ba(n)lll2 < 2Gn'/>7*, n > 1.
maXi<k<n ﬁ|an - %Dnn - Gg(k” = Gﬁcnn_kv n= 1.

111

—_

‘maxlgm Ji1Dnic = 3 Din| — IMaXi<y<n ﬁlGﬁ(k)l‘ <6v2Gn n>1.
MmaXi<k<n ﬁu]nk - %Urm — [ma(k) + Gg(k)” =< Gﬁcnn_x. n>1
’maxlgk<n ﬁ”]nk - %Unn| — MaX1<k<n ﬁ“nn(k) + Gg(k”‘ =< Gﬁcnn_)\y n>1

(
(iv
(

\'

= =

(vi

If Can™ = o(1), then we also have
Du(t) — [a(t) + Ga(Lnt ] /n)]
DY(t) — [ualt) + Gy(Lnt /)]

where u,(t) = [nt]/n(1 — t/n)A1(t < t/n)+ t/n(1 — |nt]/n)A1(t > t/n), t € [0, 1]. Further, provided the weight
function g satisfies (13), the corresponding above assertions hold in probability, if C,n~* = o(1). Especially,

(Vii) sup;epo, 1) =o(1), as., as n - oo,

(viii) supy¢o 1

=o0(1), as., as n — oo,

max s = U [0+ GEC0] | = (1) (22)
and
max ——— |Upy — lﬁU,.,n — max . |ma(k) + GI(K)|| = ope(1). (23)
1<k<n /ng(k/n) n 1<k<n /ng(k/n) "

Remark 1. Provided the original probability space, (£2, A, Pr), is rich enough to carry an additional uniform random
variable, the strong approximation results of Theorem 1 can be constructed on (2, A, Pr).

When there is a change, the drift term m, yields the consistency of the test.

. P
Theorem 2. Under the assumptions of Theorem 1 and (11), maxXq<k<n ﬁ |U,1,< — %Unn| — oo, n = o0

Note that Theorem 1 holds without the conditions (10) and (11). To discuss conditions of detectability of a change,
observe that the drift of the approximating Gaussian process in (22) is given by

k(n—1) (n—k)
7n2g(k/n)1(k <7)+ rinzg(k/n)uk > r)]

If this function is asymptotically constant, especially if A, # 0 for all n but v/nA, = o(1) (which implies |o¢,21(b) — ozrzl(c)| =
o(1) by (8) and Lemma 1) and 7/n — ¥ € (0, 1), then the change is asymptotically not detectable, since the asymptotic
law is the same as under the null hypothesis. Now assume t/n — #. A change ¢ located in a measurable set A C (0, 1)
with positive Lebesgue measure is detectable and changes the asymptotic law, if H, — h*, n — oo, for some function

h* # 0 on A, since then the asymptotic law is given by sup,_,_; |[F*(t) + B°(t)]/g(t)|, or if H, X oo, n — oo, on [, 1), cf.
Theorem 2. The case H, — h* corresponds to a local alternative such as X', = X0+ A,/+/n for some d, x d, matrix A,
such that lim;,_, « vnTA,,wn exists. For example, if in the spiked covariance model (3) a new local spike term of the form
n=1Y2), 11y, 141 appears after the change-point, then Ay, = Ay 1ty 41 and Ay = Ar1v,) Uy 1w, Uy 1. Condition (11) is
then satisfied, if the weighting vectors are not asymptotically orthogonal to the direction of the new spike.

Observe that Hy(-, T, Ay; g) is linear in A, = vnT(ZJnO — X1)wy. Clearly, |A,| is maximized if v, = w, is a leading
eigenvector of X, — X,;. This can be seen from the spectral decomposition A, = Zf;l gb,,,ﬁm-é;, where §,; are the
eigenvectors and ¢p; the eigenvalues. When there is no knowledge about the change, e.g., in terms of the ¢, and/or
8y or in terms of the model coefficients C,E}’), it makes sense to select v,, w, from a known basis or as leading (sparse)
eigenvectors of X, estimated from a learning sample, in order to obtain a procedure which is capable to react, if the
dominant part of the eigenstructure of the covariance matrix changes. Clearly, a change in the orthogonal complement
of chosen projection vectors is not detectable. This can be avoided by considering, in addition, random projection(s).

For the CUSUM statistics based on the centered time series we have the following approximation result.

Hy(k/n) = Hu(k/n; T/n, Ap, g) = \/ﬁAn |:

Theorem 3. Let the original probability space be rich enough to carry an additional uniform random variable. Assume the
conditions of Theorem 1 and the strengthened decay condition sup,; maXi<,<d, |C£}’)| < (v 1) for some & > 0 hold.
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Suppose that the vector time series is centered at the sample averages j1, = % Z?:l Y,Sf ), before applying the CUSUM procedures,

leading to the statistics En(g) and Tn(g). Then assertions (i) and (ii) of Theorem 1 hold true with an additional error term op(n'/?)
and (iii)-(vi) with an additional op,(1) term. Finally, (vii) and (viii) hold in probability, if C;n™* = o(1).

The above theorems assume that the projection vectors v, and w, have uniformly bounded £;-norm. When standard-
izing by a homogeneous estimator @, = o,(vy,, wy), i.e. satisfying
6?n(xvm ywn) = Xy&n(vm wn) (24)

for all x, y > 0, one can relax the conditions on the projections v,, wy,.

Theorem 4. Suppose that {e,; : i € Z, n > 1} satisfies Assumption (E). Assume that

1/2 1/2

supd, “llvnlle,, supd; llwnlle, < 00 (25)
n>1 n>1

or there are non-decreasing sequences {a,}, {b,} C (0, co) with

-1 -1
supan ”vH”Z]’ Supbn ||wn||/é1 < 00. (26)
n>1 n>1

Suppose that the estimator &, = an(vy, wy) used by T,(g; v,, wy) is ratio consistent and homogeneous. Further, let b = {bE;)}
and ¢ = {c,(;)} be coefficients satisfying Assumption (D). If the change-point model (9) holds, then, under the construction of
Theorem 1 with Cun~* = o(1), (vi) holds and we have for any weight function g satisfying (13)

T,(g) — max ! (k)
e g(k/n)| /n

where Bo(t) = a ' (B)Go(t), t € [0, 1],

+ B (k/n)|| = op(1), (27)

By Theorem 1, statistical properties of the CUSUM statistic C,(g) can be approximated by those of
MaX<k<n m |ma(k) 4+ GO(K)|. In view of Theorem 4, for the standardized CUSUM statistic T,(g) one replaces GO by a

process which is a Brownian bridge with covariance function min(s, t)—st up to T and (min(s, t)—st)a2(c)/a2(b) after the
change. Especially, under the null hypothesis Hy of no change, we have m,(k) = 0, for all k and n, and |cx§(b) —a?(¢)| = o(1)
by (8) and Lemma 1. Then the asymptotics of the change-point procedures is governed by a standard Brownian bridge.
Theorems 1, 3 and 4 (under the strengthened decay condition) imply FCLTs.

Theorem 5 (FCLT). If B2(b, ¢) — B%(b, ¢), a2(a) = &*(a) > 0 fora € {b,c}, Ay > A >0and t/n— ¥ € (0, 1), as n — o0,
then under the conditions of Theorem 1 (viii) or Theorem 4 it holds
D)= +c n— 0o,

with pu(t) = t(1 — 3)A1N(t < 9)+ 31 — )ALt > ), t € [0, 1], in the Skorohod space D[O, 1], for some Gaussian
bridge-type process G defined on [0, 1], which is a Brownian bridge with variance parameter o*(b) under Hy. Further, if
vy, Wy are weighting vectors satisfying (21), (25) or (26) and if the constructions of Theorems 1 and 4, respectively, hold with
C.n~* = o(1), then for any Lipschitz weight function g which satisfies (13) we have
40
~ |u(t) + B (L)l

, n — oo, inDI[O0, 1],
O<t<1 g(t)

where EO = é)/a(b). Especially, under the null hypothesis the limiting law is given by sup,_,_|B°(t)|/g(t) for some standard
Brownian bridge B°.

3.3. Multivariate CUSUM approximation

Let us now consider L = L, € N CUSUM statistics C,(g) = (Cn1(g), - .., Cu,,(£))" where
= max v (S kS Wy
= max ﬁg(k/n) nj nk n nn nj
je{1,..., Ly}, defined for L, pairs (vyj, wy), j € {1, ..., Ly}, of projection vectors. When using no weights, i.e., g(x) = 1,

x € [0, 1], the corresponding quantities are denoted C, = (Cps, . . ., Gur, )T,

Let B, (t) = (BE,”(t), cee, BEIZL"))T, t > 0, be a 2L,-dimensional mean zero Brownian motion with covariance matrix

an(g) = Cn(vnjv Whpj; g)

)

Sln; = (25,]) 1<i<Ip (28)

1=j=<ln
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with blocks

2 . . 2 . .
g _ [ Bib,i,b,j) Bib,i,cj) ..
g = <ﬂ5(c,i,b,1) Bleieg) ) =M=

where, for brevity, B2(b, i, ¢, j) = L;*B2(b, Vni, Wni, ¢, Vyj, Wyj) With ¢ = 1(L, — 00), i,j € {1,...,L}. Also put a(a,i) =
L;‘ﬁ,f(a, Upi, Wi, @, Ui, Wyi), a € {b, ¢}, i€ {1,...,L}, see (48). Define the processes

Gu(t) = Bt < ) + [B(r) + (BH(t) — BP(e))](t > ©), t>0,

k
Gk = Gulk) — ~Gu(n),  k<nmn=1,
n

where B'(t) = (Buj1(1)),", BZ(t) = (Basi(t)),", and G(k) = (G5(K))"".

j=1
Theorem 6. Suppose that {e,; : i € Z, n > 1} satisfies Assumption (E). Let vy, wyj, j € {1, ..., Ly}, be weighting vectors
satisfying (21) uniformly in j, and let b = {b } and ¢ = {c(“ be coefficients satisfying Assumption (D). Then, under the change-
point model (9), one can redefine, for each n, on anew proﬁablllty space, the vector time series together with a 2L,-dimensional
mean zero Brownian motion B, = (an) _'| with covariance function given by (28), such that

Ly
L;*C, — | max |mn] (k) + Gpi(k)|, < 6+v2C,.n7%, (29)
1<k<n L‘/Z X
=10
and for a weight function g satisfying (13), for any 6 > 0
1
PLl/ S o) (k) — GO.(K 8) =o(1
max r( Ca(nj, Wyj; &) max NG k/n)lmn,( k) — G (K)]| > ) o(1), (30)
where my(k) = U AL )k < 7) + 75K AT < k < n) with Ay() = (v Znownj — v Zniwn). j € (1., L},
Observe that under Hy the asymptotic covariance matrlx of the approx1mat1ng process and hence of C, 1s given by
Z",f,_, = Var( D) = Z‘B( b), whose diagonal is given by o2(b, 1), ..., a2(b, L,) and off-diagonal elements by o2(b, i, b, j),

1 < i # j < L,. For fixed L the results of the next section show that Ef(b) can be estimated consistently, providing a
heuristic justification for the test (15) when Z‘g(b) is regular.

3.4. Full-sample and stopped-sample estimation of oz,%(b) and ﬁﬁ(h, c)

Let us now discuss how to estimate the parameter «2(b) for one pair (v,, w,;) of projection vectors, which is
used in the change-point test statistic for standardization, and the asymptotic covariance parameters ﬂn(l k) =
ﬂn(b Unj> W, b, vy, Wyi) for two pairs (v, wy;) and (vuk, wak), which arise in the multivariate test for a set of projections.
If there is no change, one may use the proposal of [35]. But under a change these estimators are inconsistent. The common
approach is therefore to use a learning sample for estimation. Alternatively, one may estimate the change-point and use
the data before the change. The consistency of that approach follows quite easily when establishing a uniform weak of
large numbers of the sequential (process) version of the estimators which uses the first k observations, Y1, ..., Y,
where k is a fraction of the sample size n so that k = |nu] for u € (0, 1]:

Fix 0 < ¢ < 1 and define for u € [¢, 1]

m
@2(u) = To(u; 0)+2 ) wanIn(us h),
h=1
where
|nuj—h
In(u; h) = Tl Z [0y Yoiwy Yo = Cloa 1[0 Yoy Wy Yo — Clg 1,

for |h| < m, with Cjpy) = [nu] ™" ZL"”J v Y w] Y, The estimators B2(j, k) and Ty(u; h, j, k), 1 < j, k < K, corresponding
to two pairs of projection vectors, are defined analogously, i.e.,

B2t k) = Th(u; 0,j, k) + 2 Z W T (1 b J, k) (31)
h=1
with
[nuj—h
Fn(u; h?js k) = m Z [vnTaniwnTani _?Lnuj,j][v;rkyn,iﬂmw;,rkyn,iﬂh\ _a_nuj,k] (32)

i=1

for 1 <i,j < L with Clpyyj = Lnu) ™" " ol Vw [ Yo j € {1,... L),
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The weights are often defined through a kernel function w(x) via wy, = w(h/by,) for some bandwidth parameter by,.
For a brief discussion of common choices see [35].

The following theorem establishes the uniform law of large numbers. Especially, it shows that &@2(¢/n) is consistent
for a?(b) if £ < 7, whereas for £ > 7 a convex combination of «?(b) and o?(¢) is estimated. A similar result applies to the
estimator of the asymptotic covariance parameter.

Theorem 7. Assume that m — oo with m?/n = o(1), as n — oo, and the weights {wy;,} satisfy

(i) wmp — 1, as m — oo, for all h € Z, and
(ii) 0 < wmp < W < o0, for some constant W, for allm > 1, h € Z.

o) _

If the innovations €,; = €; are i.i.d. with E(e?) < 00, Cy cj(“), for all j and n > 1, satisfy the decay condition

sup |cj(”)| < (jv 1) 0+
1<)

for some § > 0, and v, w € ¢4, then under the change-in-coefficients model (9) with t = [n?¥], ¥ € (0, 1), it holds for any
O<e<?

sup [G2(u) — ()] - 0,
uele,1]

as n — oo, where a®(u) = a®(u; b, ¢) = 1(u < 9)a?(b) + 1(u > 9)((9/u)o?(b) + (1 — ¥ /u)(c)), for u € [e, 1]. Further,
sup [B2(u.j. k) — B*(u.j. k)| = 0,

uele, 1]

where for u € [e, 1] B2(u,j, k) = B2(u; ], k, b, ¢) = 1u < 9)B2(b,j, k) + 1(u > 9)((9/u)B?(b,j, k) + (1 — ¥ /u)B*(c, j, k)).
for 1 <j,k <L, as defined in Lemma 1.

Let us now suppose we are given a consistent estimator 7, of the unknown change-point; in the next section we make
a concrete proposal. In order to estimate the parameter o?(b) it is natural to use the above estimator using all observations
classified by the estimator as belonging to the pre-change period. This means, we estimate «?(b) by &%n. The following
result shows that this estimator is consistent under weak conditions.

~ . . C % P
Theorem 8. Suppose that T, is an estimator of t satisfying T,/n € [e, 1] a.s. and |%" - 15‘| = 0, as n — oo. Then
e P
|oz%l — a?(b)| =0, n— oo.
4. Change-point estimation

In view of the change-point test statistic studied in the previous section, it is natural to estimate the change-point 7,
by
N —~ ~ 1 k
T, = argmax |Uy(k)I, Un(k) = ———— | Uk — =Um } , 1<k<nn>1
1<k<n g(k/n)n n

(By convention, argmax,.p f(x) denotes the smallest maximizer of some function f : D — R.)
The expectation m,(k) of Uy, — L—‘Unn is a function of A,, and we assume that the limit

A= lim A, (33)

n—oo

exists. To proceed, we need further notation. Put

k(n—1) A . k <7,
Unl(k) = E(@ (k) = [ e (34)
T Stk An, k>rt,
and introduce the associated rescaled functions
To(t) =Un(Int]),  te€[0,1], (35)
Un(t) = Un(Lnt]), t €10, 1], (36)
and
t 1—t
ut) = —(1— A1t <)+ ——A1(t > ), t € [0, 1]. (37)

g(t) g(t)
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If g = 1, then for A > 0 the function u(t) is strictly increasing on [0, #] and strictly decreasing on [¢}, 1], and for A < 0
the same holds for |u(t)|. The same applies for any weight function g such that

g is continuous, t/g(t) increasing on [0, ¥] and (1 — t)/g(t) decreasing on [, 1]. (38)

Obviously, this holds for a large class of functions g whatever the value of the true change-point. Hence, we expect that
the maximizers of |u,(t)], t € [0, 1], and its estimator [U,(t)|, t € [0, 1], converge to the true change-point ©. But the
maximizers T, of |i,| and t, of [i,| are related by

T, = argmax Uy, (k) = argmaxi,(k/n) = n argmax T,(t) = nt, (39)
1<k<n 1<k<n te{1/n,...,1}
Therefore, since 1, is constant on [k/n, (k+1)/n), k € {1, ..., n— 1} and vanishes on [0, l/n),?n L ¥, as n — oo implies
LrnJ Pr

— ¥, as n — oo.
A martingale approximation and Doob’s inequality provide the following uniform convergence.

Theorem 9. Let g be a weight function satisfying (13) and (38). If (33) holds, then

max [T(k) = Un(k) 2o, n-o oo (40)
<k<n
sup [t,(t) — u(t)] il 0, n— 00. (41)
te[0,1]

The consistency of the change-point estimator 7, follows now easily from the above results.

Theorem 10. Under the assumptions of Theorem 9 and the change-point alternative model (9) with t = |n¥ ], ¥ € (¢, 1)
for some ¢ € (0, 1), we have
E Pr

— U, n— oo.
n

5. Simulations

To investigate the statistical performance of the change-point tests a change from a family of AR(p,) serles to a family
of (shifted) MA(r) series, which are, at lag 0, independent, was examined: We assume that these series, Ym , are defined
as follows. Fix r € N and let

pre-change (i < t): Y,E:-}) = /OVY(U) 1 +e€i—1, after-change (i > 1) Y(v) ZQ(U €ij—(v=1)r>

with p, = 0.5v/d, for v € {1,...,d} and n > 1, iid. standard normal ¢ and Gj(") = (1-0.1-j),/(1 —pf)”/sg,

= Z::O(l —0.1-k)?,j e {0,...,r = 4}, so that the marginal variances of the d time series do not change. The
asymptotic variance parameter, o, was estimated with lag truncation m = [n'/37 justified by simulations not reported
here, using three sampling approaches: (i) Learning sample of size L = 500, (ii) full in-sample estimation and (iii) stopped
in-sample estimation using the modified rule 7, = max(|n/4|, min(1.15 - 7,, n)). Although this modification may lead to
some bias, the actual number of observations was increased, since otherwise the sample size for estimation may be too
small.

Both a fixed and a random projection were examined. The case of a fixed projection vector was studied by using

v, = w, = (1/d, ..., 1/d)". Random projections were generated by drawing from a Dirichlet distribution, such that the
projections have unit £; norm and expectation d—'1, in order to study the effect of random perturbations around the fixed
projections.

Table 1 provides the rejection rates for n = 100 and dimensions d € {10, 100, 200} when the change-point is given
by = [n¢] with & € {0.1,0.25,0.5,0.75, 0.9}, to study changes within the central 50% of the data as well as early
and late changes. First, one can notice that the power is somewhat increasing in the dimension but quickly saturates.
The results for stopped-sample and in-sample estimation are quite similar. The unweighted CUSUM procedure has very
accurate type I error rate if a learning sample is present, whereas the weighted CUSUM overreacts somewhat under the
null hypothesis. For stopped-sample and in-sample estimation the unweighted procedure is conservative, whereas the
weighted CUSUM keeps the level quite well with only little overreaction. Although the unweighted CUSUM operates at a
smaller significance level, it is more powerful than the weighted procedure when the change occurs in the middle of the
sample, but the weighted CUSUM performs better for early changes. The results for a random projection are very similar.
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Table 1
Simulated power for the sample size n = 100 for fixed projection and a random projection for dimension d = 10, 100, 200 and different change-point
locations. The entries for # = 1 provide simulated type I error rates.

Fixed projection

2 10 100 200 D2 10 100 200
Method Unweighted CUSUM Weighted CUSUM
2 10 100 200 D2 10 100 200
0.10 0.03 0.02 0.02 0.10 0.15 0.14 0.14
0.25 0.31 0.34 0.34 0.25 0.35 0.37 0.38
L =500 0.50 0.70 0.75 0.77 0.50 0.55 0.59 0.61
0.75 0.39 0.46 0.46 0.75 0.33 0.40 0.38
0.90 0.07 0.08 0.08 0.90 0.09 0.08 0.09
1.00 0.05 0.06 0.05 1.00 0.09 0.11 0.10
0.10 0.14 0.14 0.09 0.10 0.79 0.98 0.99
0.25 0.79 0.88 0.88 0.25 0.86 0.93 0.92
stopped-sample 0.50 0.90 0.93 0.93 0.50 0.70 0.72 0.71
0.75 0.29 0.30 0.29 0.75 0.17 0.17 0.18
0.90 0.03 0.02 0.02 0.90 0.04 0.03 0.04
1.00 0.02 0.01 0.01 1.00 0.07 0.07 0.08
0.10 0.14 0.13 0.11 0.10 0.79 0.98 0.99
0.25 0.79 0.87 0.86 0.25 0.86 0.93 0.92
in-sample 0.50 0.90 0.92 0.93 0.50 0.69 0.73 0.72
0.75 0.29 0.30 0.29 0.75 0.17 0.17 0.18
0.90 0.03 0.02 0.02 0.90 0.04 0.04 0.04
1.00 0.02 0.02 0.02 1.00 0.08 0.08 0.07
Random projection
Method Unweighted CUSUM Weighted CUSUM
s 10 100 200 9 10 100 200
0.10 0.02 0.02 0.02 0.10 0.14 0.14 0.14
0.25 0.32 0.36 0.36 0.25 0.36 0.39 0.39
L =500 0.50 0.71 0.77 0.76 0.50 0.54 0.60 0.61
0.75 0.39 0.46 0.46 0.75 0.33 0.39 0.39
0.90 0.08 0.08 0.08 0.90 0.09 0.09 0.10
1.00 0.05 0.05 0.05 1.00 0.10 0.10 0.09
0.10 0.13 0.15 0.11 0.10 0.80 0.98 0.99
0.25 0.80 0.86 0.87 0.25 0.85 0.92 0.92
stopped-sample 0.50 0.90 0.93 0.93 0.50 0.70 0.72 0.72
0.75 0.28 0.29 0.30 0.75 0.18 0.17 0.17
0.90 0.03 0.03 0.03 0.90 0.04 0.04 0.04
1.00 0.02 0.02 0.02 1.00 0.08 0.07 0.07
0.10 0.14 0.14 0.11 0.10 0.80 0.98 0.98
0.25 0.79 0.87 0.87 0.25 0.86 0.92 0.92
in-sample 0.50 0.91 0.93 0.93 0.50 0.71 0.72 0.73
0.75 0.28 0.30 0.30 0.75 0.17 0.18 0.16
0.90 0.03 0.03 0.02 0.90 0.04 0.04 0.04
1.00 0.02 0.02 0.02 1.00 0.08 0.07 0.08

6. Data example

To illustrate the proposed methods, we analyze n = 1826 daily observations of 8 h maxima of ozone concentration
collected at d = 444 monitors in the U.S.. The data corresponds to the 5-year-period from January 2010 to December 2014.
We analyze mean corrected data, see [31], namely residuals obtained after fitting cubic splines to the log-transformed
data, in order to correct level and seasonal ups and downs. The aim of the analysis is to check whether there is evidence
for a change in the dependence structure over time.

The data of the first year was used to calculate a sparse PCA. We use the method of [11] to get sparse directions
v; instead of [6], since, according to the latter authors, their estimators leading to minimax rates are computationally
infeasible, for details see the supplement. This analysis shows that the supports S; = {j : v; # 0} of the leading six
projections, where v; = (v;1, ..., viq)' forie {1,...,6}, correspond to a spatial segmentation which eases interpretation.
The data of the years 2011 to 2014, providing the test sample Y1, ..., Y, with n = 1462, was now analyzed using the
leading directions as projection vectors.

The proposed change-point tests were applied to test for the presence of changes in the (co-) variances
Cov(vaYm-, vZTY,,,-), ie{l,...,n},for1 < k < £ < 7. The asymptotic variance parameter was estimated using both
the full in-sample and stopped-sample approach. Using the algorithm of [25] to compute the distribution function and
the associated quantile function of the Kolmogorov distribution there is no evidence for a change.



A. Steland / Journal of Multivariate Analysis 177 (2020) 104582 15

7. Proofs

The proofs are based on martingale approximations, which require several additional results and technical preparations.
These results extend and complement the results obtained in [35].

7.1. Preliminaries

For an arbitrary array of coefficients a = {af;) :j>0,1<v <d,,n > 1} and vectors v, = (v, - ..,vndn)T and
wy = (Wnt, . . ., Wna,)" With finite £4-norm, i.e., ||vy |, , ||w,1||z] < 00, define
fo(.no)(a’ Vp, Wy) Z U"vwnuaj ;IJU (n) Z vm,w,m[a a&f‘j)ﬂ +a(") Eluj)H]
v,u=1 v,u=1

forje{0,1,...}andl € {1,2,. }Putfl':)(a Vn, Wy) = D 1f( (a, vy, wy), for £,i€{0,1,2,...}.
Introduce for coefficients a satlsfymg Assumption (D) and vectors v, and w, the Fy- martmgales

k

k
M, vn, wy) = fio(a, vn, wa) Y (€ — 02)+ Y emi Yy fio(a, vn, Wadenij, k=0,

i=0

which start in Mé") = 0, for each n > 0. Put

m'+n’
Sy (8 Vn, W) = D (Yai(vy @)Wy, @) — E[Vyi(v, @)Yoi(w, @,)]),  m',n' > 0.
i=m’'+1
Notice that, by definitions (16) and (17),
5;&"8(57 Up, wn) = D(n]k)’ s}({n())(c’ Un, wn) = ka)v (42)

for k > 1 and n > 1, where D, = (Dgllk), fok)). For brevity introduce the difference operator

SM™. (a, vy, wn) = M (a, vn, wy) — Mf"",)(a, Uy, Wy)

m'+n’ m'+n’
m'+n’ m'+n’ o0
Fn) 2 2 2 :"(n)
=f0,0(a, Vn, W) E (6m~ - O'm‘) + E €ni fz’o(aa Vn, Wn)én,i—¢, k,n>1,
i=m’'+1 i=m'+1 (=1

which takes the lag n’ forward difference at m’. Notice that for m’ =0

k

(SM}({n)(a, Vp, Wy) zf(’)(jlo)(a, Un, wn)Z(fgi - m )+ me ngo a, Un, Wy)en i—¢, k,n>1,
i=1

i=1
coincides with the martingale M(")(a vy, Wy). A direct calculation shows that

Cov(8M(), (b, vn, wn), SMY, (¢, B, Bn)) (43)

m'+n’

n

n oo
Fn) 4 2
fo (b, vmwn)oo(c vn’wn)Z(Vn.m’Jrj+Gn,m/+j)+Zngo (b, vp, wy fzo(c vnvwn)anm_ﬂ n,m—
j=1 j=1 (=1

forn,m>0andn> 1.
7.2. Martingale approximations

The following lemma provides an explicit formula for the asymptotic covariance parameter related to the two
CUSUMs, B2(b, vy, wy, ¢, Uy, Wy), using different pairs (v,, wy,) and (9,, w,) of weighting vectors, abbreviated as B2(b, ¢) =
ﬂn(b U, Wy, ¢, Uy, Wy). Especially, it follows from these results that the asymptotic variance of a single CUSUM detector
under the no-change null hypothesis, o?(a) = 82(a, a), satisfies

1
aﬁ(a) ~ EVar(Dnn).
The following general results hold under a mild condition on the error terms and especially show that (43) can be
approximated by n'B2(b, vy, wy, ¢, Up, Wy) at the rate (n')!~?, uniformly in n and m’, cf. [35, (3.18)] and [21]. The proof
extends these latter results and improves the bounds, but it is technical and thus deferred to the supplement. The

improved bounds show that the £;-norms of the weighting vectors may grow slowly without sacrificing the convergence
of the second moments, cf. the verification of (II) and (IIl) in the proof of Theorem 1.



16 A. Steland / Journal of Multivariate Analysis 177 (2020) 104582

Lemma 1. Let €, i € Z, be independent with variances anz,. and third moments yy; satisfying

1 il . nn _

— 2 ilog —sml < ()7, (44)
i=1

1 il . nn N—p

— D il =yl < () (45)
i=1

for constants sil € £O, oo)and y, € R for some 1 < B < 2 with 1+ 6 < B. Then for n,n’ > 1, with K, =
lonlle; lwnlle; Onlle, 0nlle;,

nn

<L Ka(n')'™°, (46)

|CovM{ (6, vn, wa), M, T, 0)) = (W)B2(E. v W, <, B, )

and forn,n’ > 1and m’ > 0

(n) (n) ~ o~ N2 — e | nnm 1o
Cov(8M,, (b, v, wy), SM, " (¢, Uy, Wn)) — (n)B(0, Vn, Wy, ¢, By, Wy)| < Kn(n')' 7, (47)
if
o0
55(57 Un, Wy, <, Uy, Wp) —N(n)(b U, Wy ~(0n0)( X(¥n +541 Z 2,0 " (b, vo, wy)f, /g(t, Uy, Wy). (48)

=1

Lemma 2. Let {€; : k > 1,n > 1} be independent mean zero random variables with variances anzk and third moments yp
satisfying Assumption (E). Let a be coefficients satisfying the decay condition (D). Then we have forn’,m’ > 0and n > 1

nm',n _
(0, O, wp) — MUy (0, v, ) [lwall?, llwnll?, ()7 (49)

m'+n’

E(s™

n’,m’

Further, fork > 1 and n > 1

nk _
E(D}y, — 8M{"(6)) <K llwall? llwall? k' (50)
n,k _
E(DS) — sM{ () < llonll?, w2 k'~ 51)
such that
n,k _
E[[Dn — SM|3 < [[onl1Z, l1wn |2, n' . (52)

(50)-(52) also hold (with obvious modifications), 1fDn1,<) = S,(("é(b, vy, Wy) and ka) = S,(:é(c, U, Wy) for two pairs of weighting

vectors, where the bound in (52) becomes max{||v |17, lwall? . [Tnll7, 1105117 }n'~°.

Proof. See supplement. O

The next lemma studies the conditional covariances of the approximating martingales. It generalizes [36, Lemma 2.2]
to the change-point model and two different pairs of projection vectors.

Lemma 3. Suppose that the conditions of Lemma 1 hold and (b, ¢) is as defined there. Then it holds for m’,n’ > 0 and
n > 1with Ky = [[vnlle, [lwnlle, [Onlle 1Wnlle,

n,m’,n’

B = | [OM, (0, 00, XM, (6T, o)) | P | = 020, 00w, )| "< Ko}

m'+n’

Ly

and

" k()02

Ly

B[S0 (0. v w6 B ) | Frw | = B2, B, W T, )
Proof. See supplement. O

7.3. Proofs of Section 3.2

After the above preparations, we are now in a position to show Theorem 1.



A. Steland / Journal of Multivariate Analysis 177 (2020) 104582 17

Proof of Theorem 1. Put

(n) __ a(n), T T _ Yni(v;rbn)yni(w;,rbn) - E[Yni(vnTbn)Yni(wnTbn)]
gi - si (l)n s Un €n) = ( Yni(UTcn)Yni(chn) - E[Yni(vTCn)Yni(wTCn)] ’ (53)

such that Dy, = Z,<k 1;'(") for k > 1 and n > 1. Let us consider the bivariate extension of the sums Sn, e

m'+n’
Sh =60 sy @t = Y & mon' =0
k=m'+1

Introduce the conditional covariance operators

C(n)

W ) =E's S(”m,l}‘n wl, ueR* nn,m>1,
and the unconditional covariance operator associated to the Brownian motion B™,
T™(u) = E(u'B,B,), ucRk? n>1.
We shall verify [29, Th. 1], namely the validity of the following conditions: For m’ > 0, n’ > 1,
(I) supjs E||E(” I3° < oo for some &8 > 0.
(II) For some ¢ > 0 it holds
EIESY | Fum)l " ()12
(IlI) There exists a covariance operator C, namely T™, such that the conditional covariance operator C(n'f?m, converges to
C in the semi-norm || - ||op in expectation in the sense that for some 6’ > 0.

n'm'
E[Cr(- | Fam) —C(llop K (1) .

n',m’
Remark. As the construction is for fixed n, one could consider <« in (II) and (III). But since we are interested in
n — oo and (II) and (Ill) yield the moment convergence with rate for the partial sum S(”z) of interest (for large n),

n, n m
we show <« and consider the case n’ > n. This includes the real sample size n and (21) then ensures the bound

loall?, lwall?, ()72 = 0((n')~"'/?) we shall use.

write £&" = (&, £&2)T, i > 1, and observe that 155].") = |[valle, llwalle, &;; where & is obtained from EE}” by replacing
vy by vy = vy /llvalle, and wy, by w; = wy/||wylle,. The G-inequality and Cauchy-Schwarz yield

2+
EIEDS™ < 0all25 lwa 2 E(1 Y 05T B Yo} By )|+E|Yn,-(v:Tbn)Ym(szbn)|)”5
< 10alZF w2022 E| Yo (03 T )YaiCw} Tba)|
< a2 12523 Bt T2 B0 T B)[

and the second component is estimated analogously. Following the arguments in [21, p. 343], for §' € (0, 2) and x = 4'/2,
one can show that for a € {b, ¢} and u, € {v};, w}}

22+x) 2 2 | & o)

X

ElYai(ujan)| " < sup E|snk|Z| v supOE(eﬁk)[ sup E(e m} > lagl [Ziai,% ] :
</

n,k>0 =0 n,k> =0 =0
where a(“) = Zd” ]a%unv <& (max(¢, 1))73/4=9/2 uniformly in uniformly ¢;-bounded u, and n > 1, such that
22

Yco |ane < oo and, in turn, Y ;2 |a (“)l G+ oo. Eventually, we obtain for any n

maxsupE|s(”) OCllvall lwall7F). (54)

l
1+68/2 248

Now Jensen’s inequality yields EJ|£™ (2" = 21+5/2E< ZJ:LZ[‘;‘EJ-")]Z) < 22y, El‘g'(--") < oo, verifying
(I). To show (II) recall that the martingale approximation for SEI'/I)TH/ = (51(1',’),",([1) SS," m,(c)) is given by (SM(") =
(SMY(T;’Ln,( ), (SM]:)H/( )T, see Lemma 2. Using

E(sM™)

m'+n’

(6) | Fam) =0, and hence ESY | Fow) = ESY,, — MY | Fom).
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and the contraction property of conditional expectation, it follows that

n.n ’
BIES®, | Funlle " Ioal?, w2, ()22 " (ny1202,

by virtue of Lemma 2 and (21), such that (II) holds with ¢ = 6’/2. It remains to show (III). Observe that

(n) T T
1 S /S e C B B .
(n) (n) _ ul n',m “n',m oV(By1, nj)
—Cw—T = sup E | For | U — u,-( A u
‘ n op  uek?,fuly=1 |: VnooW/n j;,z CoV(Bna, Byj)
DEORMM()
= sup Uity | Famr | — Cov(Bpi, Byj) | | -
ueR?, |ul,=1 ,]2:1 ( [ vV

Noting that |u;u;| < maxi uk < 1, we obtain

() (n) s
1 S (D) Sy G)
(n) (n) n’,m n',m
—C, , —T <4 max |E Fam' | — Cov(Byi, Byi)| -
‘ non.m op = Ti<ij<2 |: /—n/ ﬁ | n,m ( ni nj)

Therefore, (1) follows from

M 1y ) s
S / /(l) S / /(]) n.n’,m’ _
E |: n\,}’nﬁ n\,}’nﬁ | ]:n,m/ - COV(Bm’a an) < ”vn”%1 ”wn”z(n/) 6/2»

nn’,m ,
a.s., which is shown in Lemma 3, since then assumption (21) ensures the estimate << (n’)~?/2. Hence, from [29], we
may conclude that there exists a constant C, and a universal constant A > 0, such that

[Dye — Bu(t)ll2 < Gt £ >0, (55)
a.s., which implies

DY) — BO(1)] < v2CtV> 7+, £ >0, (56)
a.s., for i = 1, 2. Recalling that D,; = vnT(S,,[ — E(Sy))w, where S, = ngt Ym»Y; satisfies

w=1t=<t Zym Y il + 1t > 1) |:Z Y ni(0)Y i h)T + Z Yni(c)yni(c)—ri| s

i<t i<t i=t4+1

we have the following crucial representation in terms of Dy,

Dne = DiP1(t < 1)+ DV + DY — DP(t > 1),
for all t. Since

Due — {B(01(t < 7) + [B() + BY(¢) — BY(2)])

= (Dift) - Bg”(t)) 1t <7)+ (Dﬁfg —B(t)+DE — BY(t) - D3 (7) + BEP(r)) 1t > 1),
(56) yields, by definition of G,, see (19),

|Dni = Galt)] = |Dne — {B()U(t < ) + [B(7) + BY(t) — BP()}] < 3v2G,t ">,

for t > 0, a.s.. This implies

1
— Dy — Ga(k <—c k2% < 342Cn™*, 57
77 15 1P = Galld] < 2 Co max, V26 (57)
as n — 00, a.s., which in turn leads to (iii), since
1 k 1 k k
— max |Dpy — —Dyp — Gg(k) = — max |Dyx — —Dpn — |:Gn(k) - fGn :| < 6v2C,n,
n 1<k<n n ﬁ 1<k<n n

as n — 09, a.s., and (iv) follows from the reverse triangle inequality. Recalling that Uy, = E(Uyx) + Dpx and Uy — %U,m =
(k) 4 Do — £Dyy, we obtain

k
Unk — —Unpn — [ (k)+GO k] <6\fcn )L7
n

max
1<k<

7
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as n — oo, a.s., which shows (v). (vi) now follows easily from the reverse triangle inequality. For a weight function g
satisfying (13) the arguments are more involved and as follows: Let y;, be a non-decreasing sequence specified later. Then,
using g(t)/[t(1 —t)]? > C; and n?/(k(n — k)) < 2n/k for 1 < k < n/2, we obtain a.s.

<C' max nn ’ 1
= 8 enjyasksn2\kn—k/) /n

k
an - EDrm - Gg(k)

k

k
an - EDnn - Gg(k)

an - HDnn - Gg(k)

max _—
en/yn<k<n/2 \/ng(k/n)

_ 1
<G '2/e)fy) max —=

1=ken /0
<3v2¢ 2/ yfCin

The maximum over n/2 < k < (1 — &/y,)n is estimated analogously leading to

non \’ 1
max -— ) —
enfyn<k=(l-e/ym \kn —k J /n

The right-hand side is o(1), a.s., if we put y, = n®'*/#_ Further, the technical results of the supplement and the Hijek-Rényi
inequality for martingale differences yield for any § > 0 the tail bound

>5>_O( n2b- 1”%1 2ﬁ>+0< nl- e>
= (8/2) 82
=0((e)"* 2’3 "(log(ne/ya) + 1) + o(1)
=0((e)"* Omﬁ DB (log(n) + 1)*#) + o(1).
The first term tends to 0, as ¢ — 0, uniformly in n, since 8 < 1/2. Let B® be a Brownian bridge and note that
{a,;](b)éﬂ(r) c0 <t <o)L (Bt): 0 <t < ). Using the estimates v£/t# < (¢/yn)>* and log,(1/t) < log,(n)

ont e G, ={1/n,...,en/y,]/n} the law of the iterated logarithm for the Brownian bridge, [33, p. 72], entails for § > 0
and e/y, < v (thus for large n)

B I~ 2GH(k)| |B°(¢)| s
Pr{ max (7> —— = >4 ) <Pr{sup > =o0(1),
i<ksne/yn \k ay(b) teGn /2t 10g,(1/t)  ap(b)y/21og,(n)(e/yy)/2—F

by our choice of y;, and since 8 < 1/2. The corresponding tail probabilities for the maximum over (1 —¢/y,)n <k <n
are treated analogously, observing the Gg is a linear combination of Brownian motions and using the LIL for Brownian
motion. Combining the above estimates shows (22). O

k _
Dny — HDM — G(k)| = o(yPCcin™), as..

k
nk — *Dnn
n

Pr ma ( n ) r
X )
1<k<ne/yn \ Kk \/ﬁ

Proof of Theorem 2. See supplement. O
Proof of Theorem 3. See supplement. O

Proof of Theorem 4. Since 7, = a,'v, and W, = b; 1w,1 satisfy property (21) and Duy(g; a; vy, by 'w,) =
a,j]b,j]D,,k(g; vy, Wy), We may conclude that T,(g; vy, wy) = T g; Uy, wy). Consequently, all approximations for T, carry
over. In particular, we obtain under the conditions of Theorem 1, cf. (23),

1
l<k<n g(k/n)

my (k)
NG

Note that Eﬁ = 1(b)5n(t) is a standard Brownian bridge on [0, ©}] and thus on the whole unit interval under the null
hypothesis, whereas the scale factor changes from 1 to o(c)/an(b) on (¢, 1]. This shows (27) for £,-bounded projections.
The proof for uniformly £,-bounded projections uses the scaling a, = b, = d,, and the fact that by Jensen’s inequality
gives [[Vqlle, < i ijozl v2 ), where the sum is finite by assumption and the factor cancels by standardization, see
also [36]. O

Tal(g; O, W) — + Bo(k/n)|| = op(1).

Proof of Theorem 5. Here is a sketch of the proof: The conditions on g ensure that sup,_,_; |B°(t)|/g(t) is well defined,
see [8]. Further, {GS(¢)/a?(b) : 0 < t < 7} L (B%t) : 0 < t < 7} and hence a standard Brownian bridge under

Hp. The conditions on g ensure that for any (a.s.) bounded functions h one has sup;;<,<u-— 1)/n|hEZ) g({r’l(u”f/n)l 0
40

(a.s.). Further, since the drift is piecwise monotone and converges pointwise, one gets u,([nuj/n) + B,(Lnu]/n)|—

0 as. uniformly, recall Lévy’s modulus of continuity, wgo(a) = supg<; <4 |BO(t) — B%s)|, of a Brownian bridge B°,

ie. limgo wpo(a)/+/2alog(1/a) = 1, as.. Using the fact that maxq<x<n Ho(k/n) = supq/p<y/ie(n—1)n Hn(u) for Hp(u) =
un(nu]/n) +Eﬂ( |nu]/n) and estimating the remaining tails of the limiting process by the LIL, the result follows. (23) O
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Proof of Theorem 6. Let us stack the statistics Dn(vyj, wyj), as defined in (17), yielding the 2L,-dimensional random
vector

an(vnl’ wnl) Ln
an=< )ZZEW, k=10 8= (s00) "

an(ann s wnLn) i<k

Also put Sn”)m, =y & W, m' > 0,n > 1. For sparseness of notation, we use the same symbols Dy, S0, and &"
and note that the quantities studled here coincide with the previous definitions if L, = 1. We work in the Hllbert space
R?» and show (I) - (IIl) when L, — oo, so that the additional scaling with L, 12 , which can be attached to the 51 's or
put in front of the sums, is in effect. The equivalence of the vector norms || - || and || - || - recall that || - |0 < || - |2 and
Il - ll2 < +/Lall - oo - and Jensen’s inequality yield, in view of (54),
| (248)/2
sup E[lL, & 1537 = supE | = > 11§13 < sup — Z ENEMI3 <

i>1 i>1 i i>1 Ly

”)||2+8

since the bounds for E||; obtained above and leading to (54) are uniform in i > 1 and uniform over the considered
o0
E (S0 (01 1 F )| 4 [E (S900 (02 | o)
1<tal ' m n,m n.m' n,m

sets of projection vectors and coefficient arrays. This shows (I). (II) follows from
= LPE(|E (ST 170w )|+ |E (553?,11,(-)2 7))

E HE (s(” | Fom ) H < LI/2E HE (sff, ] ]-',Lm/)
n,n',m / .
such that E ‘ E (L;‘/Zs;’}fm, [ }‘n’m/) H2 & vall?, llwa 7, (n')1/2~ 62" << (n’)“/2‘9 /2 by the assumptions on the growth

<L’E (max
of ||v,1||§1 ||wn||§1. Next consider the conditional covariance operators

() Trr—1/2¢n) —1/2¢(n) 2L
cn () = (u" (1, 28Y), L, 2SS A o)) . we RO

and the covariance operator T"™(u) = E(u” B,B,), u € R?». We need to estimate the operator norm of thelr difference and
use Lemma 3 and similar arguments as in the proof of Theorem 2.2 of [36]. Denote the vth coordinate ofS( o correspond-
ing to the weighting vectors v,(v) and w,(v) by Sg,’) ,(v) and let C(") (v, 1) = E((L _1/25(" " (WL _1/2551'7)”[,( ) Fnm))- By
Lemma 3 "

E max
1<v,u<2ly

(v, ) — E(Bn(v)an»\ < LKV < L) 2,

where E(B,(v)Bn(i)) = L;'B2(0, va(v), wp(v), ¢, va(i), wy(p)). Using the estimate 1> qixixil < Ln||x]|2 max; |a;| for

X=(X1,....X,) € R* and aj € R, 1 <i,j < L,, we therefore obtain
E H(n’)’lcrm, T =E sup |u' (( n)~'c, — T(”)) ‘ <mye,
op ueR?n jlujy=1

which establishes condition (III). Hence, from [29], we may conclude that there exists a constant C, and a universal
constant A > 0, such that on a new probability space for an equivalent version of D,; and a Brownian motion as described
in the theorem

IDpe — Ba(t)|l2 < Cut V2™t >0,

a.s.. The proof can now be completed along the lines of the proof of Theorem 1 with (G, Gﬂ) instead of (G, G%) by arguing
coordinate-wise leading to

L;Uzcn(vnjv Wpy) — 1n<11?<xn f|mnj )| =< Gﬁcnnik,
where the upper bound does not depend on j, which establishes (29). For a positive weight function a similar bound
applies when considering CUSUMs taking the maximum over {ny, ..., ny} for n; = |nt;], i = 1, 2. For a weight function
g satisfying (13) and CUSUMs taking the maximum over {1, ...,n — 1} the required LIL tail bound and the martingale
approximation used to apply the Hajek-Rényi inequality do not depend on 1 <j < L, or L,, such that

1
Pr ( |L;172C8 (v, wry) — ————|mp(k) — G(k)| > § | = o(1),
max r( 2 2CE (v, wyp) max N0 [mnj(k) — Gp(k)| > o(1)

forany § > 0. O
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7.4. Consistency of nuisance estimators

Proof of Theorem 7. Fix 0 < ¢ < ¥. We can and will assume that n is large enough to ensure that [ng| > 1and [n#] > h.
Denote by I',(h; d) the estimator I5,(h) regarding the dimension d as a formal parameter such that I',(h) = Fn (h; d) ] dmdy®

In the same vain we proceed for Eﬁ and all other statistics arising below and write ﬁf(d) etc. The assertion will then follow
by showing that the consistency is uniform in the dimension d. By assumption zr(l’;) = vnTij‘wnTij-—E(v,1 Yn,w Ym-) satisfies
20 = van,(b)wnijm(b) =290 )fori <tandzl = v Yu(ow] V(o) = 28(c)if i > 7. Put£Y = 29— E(z 0)) and again let

Eﬁ’,( b) = Em ,ifi < 7, and srg)( )= sm ,if T <i < n. BylLemmas 1and 2, ﬁn(; k) = n‘lCov(vTSnnwnj, vnkS,mwnk)+Rn with
E(R2) = O(n~?). Combining this with (59), we obtain 82(j, k) = Y henE ( "k‘)h‘> + R, + o(1). Without loss of generality
we fix (j, k) = (1, 2) and show that Zhez (h,1,2)= >, E ,i-‘no (2) )= 0(1), as n — oo, where

n,|h|
|nuj—h

Fotus by = s . d) = LnuJ Z 5:511)5,521)+h-

Here and in the sequel we omit the dependence of T’n(u; h) and related quantities (namely fn(u; h,d) and I'(u; h, d)
introduced below) on 1, 2, for sake of readability.
Observe that for h > 0

Fous b, d) = 1(u < 9)—— Lnih D), (0) + 1w > oy} L] Wih ()2, ()
u; u |_ u_] — ‘i:m SH i+h u> LnuJ Lnﬁj _ h — Em sn i+h
R T - S lnu) — (nd] —h 1 ",
T I A T O R e e ey Py D DR G )sn,+h(c)}
i=|n¥]—h+1 i=|nv]+1
Define for |h| < m, and a € {b, c}
I(hd, @) = E (8 (@17 1y ()
Then for 0 < h < m,,
~ B lnu] —h (nd] —h h o
BTy d)) = 1u < 9) =0 (h d )+ 10> 19)(7Lm” P(hd.0) + o (gm ()@, (¢ ))
+ M[ﬂh d, c)).
Lnu]

Using |h| < m, = o(n) and |% —a/b| = O(b||lna]/n —a| + a|[nb]/n —b|) = O(1/n) = o(mg‘) for0 < ¢ < a,b,
uniformly in a, b, we obtain

E(Th(u: h)) = 1(u < 9)I'(h, b) + 1(u > 9)(# /)l (h, b) + (1 — ¢ /u)I"(h, ¢) + o(m, "),
as n — oo, for |h| < my, where the o(1) term is uniform in |h| < m, and u € [e, 1]. Consequently,

D wmE(Ta(us b, ) =1u < 9) Y wunl(h,d, b)

[hl<mp [h|<mp

+1u>9) [ @/w) Y wanl(h.d.b)+ (1= 9/u) Y wal(h.d,c) | +0(1),

[h|<mp [h|<mp
as n — oo, where the o(1) term is uniform in d € N and u € [¢, 1], such that
sup sup max | " wmE(Th(u; h,d)) = Y wmal(us b, d)| = o(1), (58)

h|<m
uele.1] deN l=mn | A= lh|<my

as n — oo, where
I'(u;h,d)=1u < 9)(h,d, b))+ 1(u > 9)(¥/u)(h,d,b)+ (1 —9/u)l(h,d,-c))
for u € [e, 1]. As in [35, Th. 4.4] one can show that

( (@ Z4(0)[ < o0 (59)
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for a € {b, c} as well as B%(b) = Y., I'(h,d, b) and p2(c) = Y_,_, I'(h, d, ¢). This implies
sup supZ |(u; h, d)| < oo, (60)
uele, 1] d>1 hez

since ) ., [I(u; h,d)l <2, | (h,d, b)| + >, |(h,d, c)|. Therefore, we may further conclude that

B(u; d) =) E(Ty(u; h,d)) =1u <)) I'(hd,b)

hez heZ

+1(u> o) ((ﬁ/u)ZF(h, d,b)+(1—0/u)>_ I'(hd, c)> + o(1),

heZ hezZ

yielding the representation

Bi(u; d) = ZFuhd—i—o) (61)
heZ
as well as
B(u; d) = B(u; d) + o(1), (62)

as n — oo, uniformly in d € N and u € [, 1], where
B*(u; d) = o(u: d, b, ¢) = Wu < #)B(b) + Wu > ¥ )(&/u)B>(b) + (1 — ¥ /u)B(c)).

The arguments used in the proof of [35, Th. 4.4] to obtain (A.11) therein show that, if applied to the subseries {é,g) 1<
i< [no]}and (g9 : n9] +1<i<n—h,

LI 2 b 2
Y &9 =cluju<o. and | Y 90| =) - o)) .u> 0, (63)
i=1 L i=|n9 | +1 L

for constants C;, C; < oo not depending on h, j = 1, 2. Hence
lnuj—h

@
2 &
i=1 Ly

for j =1, 2, and in turn

<G (max(\/LnuJ, o] + /) — (9] — h)) , (64)

sup sup max ||Ty(u; h, d) — E(Tn(u; h, d))|l, < Can™"/?, (65)
ue(e, 1] deN [hl<mn
for constants C3, Cs < oo. Now observe that Th(u; h,d) = M ZL"“J h(f;‘ml) En )("Er(,zx)+h — 5512)) where Eg)(u) =
Lnu) =P Y D = 1,2, 1t holds

[nuj—h |nu|—h Lnu)

Lnu| (Th(us h, d) — Th(u; h, d)) _5511) Z gth gf)(u) Z Séjl) (1) ZS
=1

9 |+1
using (63), we obtain E (n|F (u; h,d) — (u h, d)|) 0(1), uniformly over |h| < m,, d € N and u € [e, 1]. For example,
forO <h<m,

[nuj—h Lnu] |nu|—h
[nu]/|nu| —
w3 | < pE Ll 3 af| s oa (M) <o

Again decomposing the sums as ZL"”J "= < )Y T I > ) [ZWJ e } and

i=1 j=1

We may conclude that supgey SUPye(e. 1 Mn MaXjhj<m, E|F (u; h,d) — (u h,d)| = O(m,/n) = o(1), as n — oo, and by
boundedness of the weights it follows that

SUpE| > wmnln(hid)— Y waln(h: d)| = o(1).

&N <m, Ihi<my

Now, having in mind (61) and (62), decompose
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D wanTn(u; hyd) = a?(u, b,0) = > won [Tn(u; h,d) = F(us b, d)] = Y wpnM(u; b, d),

|h|<mp |h|<mp [h|>mp

and combine (58), (60) and (65), see the supplement for details. O
7.5. Consistency of the change-point estimators

Proof of Theorem 9. Observe that, by the definitions of Uy, D, and 5nk,

R B 1 ~ Kk~ Rnk
Un(k) — Un(k) = ak/mn (D"k P ) * g(k/n)’

with remainder Ry, = % (an — %Dm, — [Bnk — %5,1,,]). By Eq. (21) in the supplement, we have for k < n/2

2 2

Ruk ny# n o —1-6
max E <2 max E (7> R ) <n
1<k<n/2  \ g(k/n) 1<k<n/2 k

and the same bound holds for n/2 < k < n. Therefore for any § > 0

R "/ Ru \°
Pr( max IR >8) <Pr Z nk >8) «n?.
1<k<n g(k/n) g(k/n)

k=1

Hence, it suffices to show that for all § > 0 Pr(|5,m| > 6n) = o(1) and Pr (max<<n |§nk| > 8n) = o(1), where the
first assertion follows from the latter maximal inequality. Of course E(Dﬁn) = O(n), since Dy, is the sum of n martingale

. c o . . . . ~ 2 D2
differences. Now an application of Doob’s maximal inequality entails Pr(maXj<g<p [Duk|” > 82n2> = % = O(%)

which establishes Pr (maxi<x<n D] > én) = o(1) and in turn (40). Next consider

sup [ta(t) — u(t)] < max |Un(k) — Un(K)l + sup |un(t) — u(t)] = sup [up(t) — u(t)| + op(1),

te[0,1] I<k<n te[0,1] te[0,1]
as n — oo, by (40). Clearly, u,(t) — u(t) for each fixed t, and by monotonicity on [0, ©#}] and [¢, 1] this implies uniform
convergence, since g is continuous, which completes the proof. O

Proof of Theorem 10. Since ¥ € (0, 1) is an isolated maximum of u and U, converges uniformly to u, the consistency
follows from well known results, see, e.g., [37], by virtue of Theorem 9 and (39). O
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