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a b s t r a c t

This article is concerned with random objects in the complex projective space CPk−2. It
is shown that the Veronese–Whitney (VW) antimean, which is the extrinsic antimean of
a random point on CPk−2 relative to the VW-embedding, is given by the point on CPk−2

represented by the eigenvector corresponding to the smallest eigenvalue of the expected
mean of the VW-embedding of the random point, provided this eigenvalue is simple. We
also derive a CLT for extrinsic sample antimeans, and an asymptotic χ2-distribution of
an appropriately studentized statistic, based on the extrinsic antimean, which in the
particular case of a VW-embedding is then used to construct nonparametric bootstrap
confidence regions for the VW-antimean planar Kendall shape. Simulations studies and
an application to medical imaging are illustrating the proposed methodology.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

To date, Object Data Analysis (ODA) is the most inclusive type of data analysis, as far as sampling from distributions
on metric spaces is concerned. Early examples of object spaces were spaces of directions [28], direct similarity shape
spaces [14], axial spaces [2,9], and Stiefel manifolds [13]. In the infinite dimensional case, ODA leads to a nonlinear
extension of functional data analysis [21, Chapter 11].

Fréchet [10] noticed that for higher complexity data, such as the shape of a random contour, numbers or vectors
do not provide a meaningful representation. To investigate these kinds of data he introduced the notion of elements,
nowadays called objects. Fréchet’s visionary concepts, were nevertheless difficult to handle computationally during his
lifetime. It took many decades, until such data became the bread and butter of modern Statistics, including Image Analysis.
Nowadays, various types of shapes of configurations extracted from digital images are represented as points on projective
shape spaces [19,23], on affine shape spaces [24,27], or on Kendall shape spaces [8,14]. To analyze the mean and variance
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of the random object X on a smooth object space M with a metric ρ, Fréchet defined what we call now the Fréchet
function given by

F (p) = E(ρ2(p, X)) = F (p) =

∫
ρ2(p, x)Q (dx), (1)

where Q = PX is the probability measure on M , associated with X . If (M , ρ) is complete, the minimizers of the Fréchet
function form the Fréchet mean set. In general, if ρ = ρg is the geodesic distance associated with a Riemannian structure
g on a manifold M , there are no necessary and sufficient conditions for the existence of a unique minimizer of F in
(1), [21, Chapter 4]. Therefore, with the possible exception of complete flat Riemannian manifolds or complete simply
connected Riemannian manifolds of negative curvature, it is advisable to consider mainly the case when ρ = ρ(j) is the
‘‘chord’’ distance on M induced by the Euclidean distance in RN via an embedding j : M → RN , that is

ρ(p1, p2) = ∥j(p2) − j(p1)∥ = d(j(p1), j(p2)), ∀(p1, p2) ∈ M 2, (2)

where ∥ · ∥ is the Euclidean norm, and d is the corresponding Euclidean distance in RN . The Fréchet function becomes

F (p) =

∫
M

∥j(x) − j(p)∥2Q (dx). (3)

The spread of data on a compact manifold differs from data spread on a Euclidean space. Indeed, given the finiteness
of a probability measure, numerical data is spread thin outside a ball of sufficiently large radius; this is not the case with
data on a compact manifold, that can be even uniformly spread. Test for uniformity of data on compact homogeneous
spaces are well documented [1]. Therefore the mean of a distribution on a compact manifold is not interpretable as the
‘‘center’’ of data, as no such center exists, especially since the topology of such a manifold is nontrivial. Additional location
parameters are therefore necessary to describe such data. In this paper it is assumed that (M , ρ) is a compact metric space,
therefore the Fréchet function associated with the embedding j is bounded, and its extreme values are attained at two sets
of points on M : the lower bound – at the extrinsic mean set, and the upper bound – at the extrinsic antimean set [22].
In case the extrinsic mean set has one point only, that point is the extrinsic mean of X , and it is labeled µj,E(Q ), or simply
µE , when j and Q are known. If the extrinsic antimean set, has one point only, that point is the extrinsic antimean of X ,
and it is labeled αµj,E(Q ), or simply αµE , when j and Q are known.

Remark 1. The name of the new parameter, extrinsic antimean, is inspired from the case of a probability measure on
a round sphere, when the extrinsic antimean is the antipodal point of the extrinsic mean. Recall that a d-dimensional
sphere, is a set of points in the d + 1 dimensional Euclidean space, that are equidistant from a fixed point, known as
center of the sphere. The d-dimensional sphere admits infinitely many Riemannian structures. The round sphere is the
d-dimensional sphere with the Riemannian structure induced by the scalar product of the ambient d+1 Euclidean space.
This is an extreme case, given that the round sphere of dimension d, d ≥ 2 is the only simply connected compact d
dimensional Riemannian manifold that admits a group of isometries of dimension d(d+1)

2 , the highest possible degree of
symmetry [17].

Also, given X1, . . . , Xn i.i.d.r.o.’s from Q , their extrinsic sample mean (set) is the extrinsic mean (set), of the empirical
distribution Q̂n =

1
n

∑n
i=1 δXi ; their extrinsic sample antimean (set) is the extrinsic antimean (set) of Q̂n [21].

Recall that a vector y ∈ RN for which there is a unique point p ∈ M , such that

d(y, j(M )) = inf
x∈M

∥y − j(x)∥ = d(y, j(p)), (4)

is said to be j-nonfocal. The point j(p) in (4) is the projection of y on j(M ). Thus if Pj, is the projection defined on the set
of j-nonfocal points, then Pj(y) = j(p). A vector y ∈ RN for which there is a unique point p ∈ M , such that

sup
x∈M

∥y − j(x)∥ = d(y, j(p)), (5)

is said to be αj-nonfocal (see [25]); and the point j(p) in (5), is the farthest projection of y on j(M ). Thus, if PF ,j is the
farthest projection defined on the set of αj-nonfocal points, and (p, y) are as in (5), then PF ,j(y) = j(p).

The extrinsic mean of X , exists if and only if the mean vector µ of j(X) is a j-nonfocal point, and in this case the extrinsic
mean is µE = j−1(Pj(µ)); the extrinsic antimean of X , exists if and only if µ is an αj-nonfocal point, and in this case the
extrinsic antimean is αµE = j−1(PF ,j(µ)).

Remark 2. Note that on a compact manifold, the extrinsic mean, when it exists, lacks the interpretability of center of
the data, as such ‘‘center’’ of data exists on a non-Euclidean compact space, when the data is not confined to a small
neighborhood, as no such center exists, especially when the topology of that manifold is nontrivial. For example any
distribution with a nonzero probability density w.r.t. the uniform measure on the complex projective plane CP2 has no
center, due to the nontrivial homology group H2(CP2) = Z. Indeed this is an algebraic topology obstruction insuring that
the complement of a point on CP2, does not have the topology of a disk [26]; therefore one cannot talk about its center.
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Remark 3. In general there are other helpful features of the extrinsic antimean as a useful population parameter, including
that (i) it may differentiate between two distributions having the same extrinsic mean, (ii) there are distributions having
an extrinsic antimean, that do not have an extrinsic mean, and, (iii) there are families of distributions with a sticky mean,
and varying non sticky antimeans. Examples of distributions enjoying any of the properties (i)–(iii), can be easily imagined,
since the existence of the extrinsic mean, or antimean is determined by the relative position of the mean of the distribution
related to the embedding of the object space in the ambient space. In the 1D case, such examples are given graphically
in [25].

This paper is specialized in random objects on the complex projective space CPk−2, which is a compact symmetric space
of dimension 2k − 4, that serves as manifold representation of the space of direct similarity shapes of k-ads (k labeled
points that are not all identical) in the Euclidean plane [14]. Recall that the complex projective space CPq is the set of all
one dimensional linear subspaces of Cq+1 and can also be represented as the set orbits of group action of S1 on the 2q+1
dimensional sphere S2k+1

= {z ∈ Ck+1, ∥z∥ = 1} given by scalar multiplications with complex numbers of modulus 1.
The complex projective space has a convenient embedding in the space of (k− 1)× (k− 1) self adjoint complex matrices,
that was introduced in shape analysis by Kent [15], and is often known as the Veronese–Whitney embedding. The VW
mean sets, and VW means and the VW antimean sets and VW antimeans are extrinsic mean sets, and extrinsic means,
respectively extrinsic antimean sets, and extrinsic antimeans of random points on CPk−2, relative to the VW embedding.
In Section 2 we give explicit formulas for VW means and VW antimeans, and their sample counterparts. That result
is used to give two examples of sample VW means and sample VW antimeans computations on planar Kendall shape
spaces, two synthetic, and one data driven. In anticipation of those results, note that the action of S1 on S2k+1 leaves the
volume measure invariant, therefore if f is density function on S2q+1, relative to the volume measure on the sphere, with
the property that f (ζ z) = f (z), ∀ζ ∈ S1, ∀z ∈ S2q+1, one may define a density function f̃ on CPq with respect to the
corresponding quotient volume measure ν on CPq, via f̃ ([z]) = f (z). Let Hq be the set of q × q Hermitian (selfadjoint)
complex matrices. Recall that a complex Bingham distributed random object Y on CPq has the probability density, with
respect to volume measure on CPq of the form fA, A ∈ Hq, where fA([z]) ∝ exp(z∗Az), where z∗ is the complex conjugate
of the transpose of z [16]. One can show that if a random object X has the complex Bingham distribution fA, then the
VW mean set, respectively the VW mean set of X are the sets {[z], z ∈ Vλmax}, respectively {[z], z ∈ Vλmin}, where Vλ is
the eigenspace of Cq+1 corresponding to the eigenvalue λ of A. Therefore, if the eigenvalue λmax has multiplicity two or
higher, while λmin is a simple eigenvalue, the random object X does not have a VW mean, and has a VW antimean.

In Section 3 we derive confidence regions for VW antimeans. Here, the first part is dedicated to a central limit theorem
for sample extrinsic antimeans, and to a key asymptotic result for the norm of the studentized version of the tangential
component of the sample extrinsic antimean (Theorem 2). In Section 3.2 we introduce the concept of VW anticovariance
matrix, which is necessary in Theorem 3, to estimate the VW antimean based on a large sample of observations, which
we apply to the midface anatomic landmark configurations in Section 2. For an improved coverage error in the VW
mean estimation and of the VW antimean estimation, in Corollary 2, we give a nonparametric pivotal bootstrap based
confidence regions for the planar VW-antimean, with a computational example for the first simulated shape data in
Section 2. An interesting question is finding a relationship between simultaneous confidence intervals and the confidence
regions for VW antimeans given in Corollaries 1 and 2. Additional nonparametric antimean inference topics that parallel
nonparametric analysis of extrinsic means, are discussed in upcoming papers [18,20].

2. VW antimean

Direct similarity shapes of k-ads (set of k labeled points at least two of which are distinct) in the Euclidean space,
were introduced by Kendall [14], who showed that in the 2D case, these shapes can be represented as points on a
complex projective space CPk−2, which is the set of equivalence classes [z] of vectors z ∈ Ck−1

\{0k−1}, with respect
to the equivalence z ≃ λz, λ ∈ C\{0}. A standard shape analysis method, initiated by Kent [15], consists in using the now
so called Veronese–Whitney (VW) embedding of CPk−2 in the space of (k− 1)× (k− 1) self adjoint complex matrices, to
represent shape data in a Euclidean space. This VW embedding jk: CPk−2

→ S(k − 1,C), where S(k − 1,C) is the space
of (k − 1) × (k − 1) Hermitian matrices with the Euclidean distance (see proof of Theorem 1), is given by

jk([z]) = zz∗, z∗z = 1, (6)

where the ∗-operator, means taking the transpose followed by complex conjugation. This embedding is a SU(k − 1)
equivariant embedding, where SU(k − 1) is the special unitary group (k − 1) × (k − 1) matrices of determinant 1, since
jk([Az]) = Ajk([z])A∗, ∀A ∈ SU(k − 1). The corresponding extrinsic mean (set), respectively extrinsic antimean (set) of
a random shape X on CPk−2 is called the VW mean (set), respectively VW antimean (set). The VW mean, respectively
VW antimean, when they exist, will be labeled as µVW , respectively αµVW , and, given independent identically distributed
random objects (i.i.d.r.o.’s) X1, . . . , Xn from a distribution Q on CPk−2, their sample counterparts, when they exist, will be
denoted by X̄VW , respectively by aX̄VW . A probability distribution Q on CPk−2 is said to be VW nonfocal, respectively αVW
nonfocal, if Q is jk-nonfocal, respectively αjk-nonfocal. Necessary and sufficient conditions for a probability distribution
to be VW-nonfocal are given in ([21, p.174]). The following result provides necessary and sufficient conditions for αVW
nonfocality. A related result (for real projective spaces) can be found in [22].
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Theorem 1. Let Q = P[Z], Z∗Z = 1, be a probability distribution on CPk−2 and let {xi = [zi], ∥zi∥ = 1, i ∈ {1, . . . , n}} be a
random sample from Q .
(i) Q is αVW nonfocal iff λ1, the smallest eigenvalue of E[ZZ∗

] is simple, and in this case αµVW = [ν], where ν is an eigenvector
of E[ZZ∗

] corresponding to λ1, with ∥ ν ∥= 1.
(ii) If the empirical Q̂n =

∑n
i=1

1
nδxi is αVW nonfocal, the sample VW antimean aX̄VW = [m], where m is an eigenvector of

norm 1 of J =
1
n

∑n
i=1 ziz

∗

i , ∥zi∥ = 1, i ∈ {1, . . . , n}, corresponding to the smallest eigenvalue of J , provided this eigenvalue
has multiplicity one.

Proof. (i) The squared Euclidean distance induced from C(k−1)2 on the space S(k − 1,C) of Hermitian matrices is
d2(A, B) = Tr((A − B)(A − B)∗) = Tr((A − B)2). A random object X = [Z] on CPk−2, with Z∗Z = 1, has the associated
Fréchet function

F ([z]) = E(Tr(ZZ∗
− zz∗)2), z∗z = 1. (7)

The matrix A = E(ZZ∗) is positive semidefinite, having the eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk−1, and can be represented
as A = BΛB∗, where B ∈ SU(k−1) and Λ = Diagonal(λ1, λ2, . . . , λk−1). From (7), we get F ([z]) = Tr(A2)+1−2Tr(z∗Az),
thus F is maximized iff [z] → Tr(z∗Az) is minimized, or [v] → Tr(v∗Λv) is minimized, where v = Bz. Note that v∗v = 1,
and if vT

= (v1, . . . , vk−1), then Tr(v∗Λv) =
∑k−1

a=1 λa|va|
2

≥ λ1 = F ([u1]), where u1 is an eigenvector of A corresponding
to the eigenvalue λ1. If λ1 has multiplicity two or higher, [v1] and [v2] yield distinct points of minimum of F , thus Q is not
α VW nonfocal, proving (i), by contradiction. Part (ii) follows, by taking the empirical distribution, with the expectation
A from Part (i) being given by J = E(Q̂n) = n−1 ∑n

r=1 zrz
∗
r .

In the supplemental material we ran two simulations, and, using the VW embedding of a complex projective space
(manifold representation of a planar Kendall shape space), we compared the behavior of VW means and VW antimeans
for those data sets of landmark configurations.

2.1. Application

We are interested to determine how concentrated is the bootstrap distribution of the sample VW antimeans around
the sample VW antimean, in the case of shapes of landmark configurations extracted from medical imaging outputs. Our
data consists of shapes for a group of eighth midface labeled anatomical landmarks from X-rays of skulls of eight year old
and fourteen year-old North American children (36 boys and 26 girls), known as the University School Study data (see
[7, p. 400–405]). For immediate access of the data see http://life.bio.sunysb.edu/morph/data/Book-UnivSch.txt ). Each
child’s skull was imaged twice, at age 8 and next at age 14. The data set, collected to study anatomical changes during chil-
dren growth, represents coordinates of eight craniofacial landmarks, whose names and position on the skull are given in
[7, p. 400–405]. In [6] only part of this data set (boys only) was used. Here, we use only the University School Study data,
recorded at age 14, for both sexes. For graphic displays of planar Kendall shape data, a useful tool for ‘‘removing location’’
of a k-ad, is the multiplication by a Helmert sub-matrix H, consisting in the last (k− 1)× k rows of a full Helmert matrix.
The full Helmert matrix HF, commonly used in Statistics, is a square k × k orthogonal matrix with its first row equal to
1/

√
k1T

k , having the remaining rows orthogonal to the first row, with an increasing number of nonzero entries, as in (8).
We drop the first row of HF so that the resulting matrix H does not depend on the original location of the configuration [8].
The jth row of the Helmert sub-matrix H is given by

(hj, . . . , hj, −jhj, 0, . . . , 0), hj = {j(j + 1)}−1/2. (8)

One way of graphically representing planar k-ad shape data, or sample VW means or sample VW antimeans, is via
a Helmert registration, where for each shape, regarded as equivalence class of a labeled landmark configuration, one
selects a unique representative, by the same rule, equally applying to all shape observations, as follows: apply to each
configuration of k landmarks, as point in Ck, a Helmert sub-matrix in (8), and obtain a vector in Ck−1 of norm 1, whose
k − 1 components are affixes of points in the Euclidean plane, in a representation that ‘‘removes location and scaling’’.
In our application, the registered coordinates are displayed in Fig. 1. The shape variable is valued in a Kendall space of
planar octads, CP6 ( real dimension = 12 ), and is displayed in Fig. 2.

In Fig. 3 is displayed an icon of the sample VW mean of the Helmertized data, in a spherical representation (the
corresponding vector z ∈ C7 is of norm one). Like with the simulated data in the Appendix, one may notice that the VW
mean icon, has a fairly close shape to the shapes of the Helmertized cranial landmark data configurations.

Note that the sample size for the boys data only or girls data only is too small to be reliable in the estimation of the
VW-mean and VW-antimean shape based on a large sample result. Therefore we computed the nonparametric bootstrap
distribution of the sample VW means shapes in MATLAB, that we ran for 500 random re-samples, for the combined data.
An icon of the Helmertized spherical representation of the bootstrap distribution of the sample VW means is displayed
in Fig. 4. Note that the bootstrap distribution of the sample VW means is very concentrated around the sample VW mean
in Fig. 3, as theoretically predicted.

As for the sample VW antimean, its icon is shown in Fig. 5. Since the sample VW antimean is on average far from the
shape data, as expected, the relative location of the landmarks in the sample VW antimean icon looks quite different from
those in the configurations of the original anatomical landmark data.

http://life.bio.sunysb.edu/morph/data/Book-UnivSch.txt
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Fig. 1. Coordinates of eight mid-sagittal landmark configurations on midface children cranial data recorded from X-rays (University School Study
data).

Fig. 2. Coordinates of landmark configurations in Fig. 1 transformed via the Helmert sub-matrix H.

Fig. 3. Icon of the sample VW mean shape of the midface cranial landmark configuration data in Fig. 1 after applying the Helmert sub-matrix
transformation H.
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Fig. 4. Icons of 500 nonparametric bootstrap sample VW means for the midface cranial landmark configuration data in Fig. 1 after applying the
Helmert sub-matrix transformation.

Fig. 5. Icon of sample VW antimean shape of midface cranial landmark configuration data in Fig. 1, after applying the Helmert sub-matrix
transformation.

We computed the nonparametric bootstrap distribution using MATLAB, that we ran again for 500 random re-samples. A
spherical representation of the bootstrap distribution of the sample VW antimeans in Helmetrized coordinates is displayed
in Fig. 6. Here again, the icons of configurations for bootstrap distribution of the sample VW antimeans have a similar look
with the one of the VW sample antimean, however it is not as concentrated around the registered icon of the sample VW
antimean, as in the case of the bootstrap distribution of the VW means, partially due to computational rounding errors
for eigenvectors associated with the smallest eigenvalue of J∗. It turned out that the smallest and the second smallest
eigenvalue are clustered near one another, a fact that resulted in the eigenvectors being more sensitive to re-sampling
with repetition. That is why the bootstrap VW antimeans are not as concentrated as the bootstrap VWmeans. The standard
affine embedding: Ck−2

→ CPk−2 is (z1, . . . , zk−2) → [z1 : . . . : zk−2
: 1], leads to the notion of affine coordinates of a

projective point

p = [z1 : . . . : zk−1
], zk−1

̸= 0 (9)

to be defined as

(w1, w2, . . . , wk−2) = (
z1

zk−1 , . . . ,
zk−2

zk−1 ). (10)

Using simultaneous complex confidence intervals [6] for the affine coordinates of the VW antimean, we obtain the
following results: w1 : [-0.1804 − 0.1808i 0.0549 + 0.1365i], w2 : [0.4913 − 0.2301i 0.6136 − 0.0747i], w3 : [0.4455
+ 0.0385i 0.5885 + 0.2288i], w4: [0.1344 − 0.1923i 0.2346 − 0.0748i], w5: [0.2376 − 0.4823i 0.5682 − 0.1533i], w6:
[-0.2752 + 0.2558i 0.1936 + 0.8011i].
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Fig. 6. Icons of 500 nonparametric bootstrap sample VW antimeans for the midface cranial landmark configuration data in Fig. 1 after applying the
Helmert sub-matrix transformation.

3. Asymptotic distribution of extrinsic sample antimeans

In this section we will discuss the asymptotic distribution of sample antimeans in axial data analysis and in planar
shape analysis, after a review of a Central Limit Theorem for extrinsic sample antimeans. As a notational matter, in general,
if k : P → Q is a differentiable function between two manifolds, dxk is the differential of the function k evaluated at the
point x ∈ P .

3.1. Central limit theorem for extrinsic sample antimeans

In preparation, we are using the large sample distribution for extrinsic sample antimeans given in [22].
Assume j is an embedding of a d-dimensional manifold M such that j(M ) is closed in RN , and Q = PX is a αj-nonfocal

probability measure on M such that j(Q ) has finite moments of order 2. Let µ and Σ be the mean and covariance matrix
of j(Q ) regarded as a probability measure on RN . Let F be the set of αj-focal points of j(M ), and let PF ,j : F c

→ j(M )
be the farthest projection on j(M ). PF ,j is differentiable at µ and has the differentiability class of j(M ) around any αj
nonfocal point. In order to evaluate the differential dµPF ,j we consider a special orthonormal frame field that will ease
the computations.

A local frame field p → (e1(p), . . . , ek(p)), defined on an open neighborhood U ⊆ RN is adapted to the embedding j
if it is an orthonormal frame field and ∀x ∈ j−1(U), er (j(x)) = dxj(fr (x)), r ∈ {1, . . . , d}, where (f1, . . . , fd) is a local frame
field on M , and fr (x) is the value of the local vector field fr at x.

Let e1, . . . , eN be the canonical basis of RN and assume (e1(p), . . . , eN (p)) is an adapted frame field around PF ,j(µ) =

j(αµE). Then dµPF ,j(eb) ∈ TPF ,j(µ)j(M ) is a linear combination of e1(PF ,j(µ)), . . . , ed(PF ,j(µ)):

dµPF ,j(eb) =

d∑
a=1

(dµPF ,j(eb)) · ea(PF ,j(µ))ea(PF ,j(µ)) (11)

where dµPF ,j is the differential of PF ,j at µ. By the delta method, n1/2(PF ,j(j(X))−PF ,j(µ)) converges weakly to NN (0N , αΣµ),
where j(X) =

1
n

∑n
i=1 j(Xi) and

αΣµ = [

d∑
a=1

dµPF ,j(eb) · ea(PF ,j(µ))ea(PF ,j(µ))]b∈{1,...,N} × Σ[

d∑
a=1

dµPF ,j(eb) · ea(PF ,j(µ))ea(PF ,j(µ))]Tb∈{1,...,N}
. (12)

Here Σ is the covariance matrix of j(X1) w.r.t the canonical basis e1, . . . , eN .
The asymptotic distribution NN (0N , αΣµ) is degenerate and the support of this distribution is on TPF ,j j(M ), since the

range of dµPF ,j is TPF ,j(µ) j(M ). Note that dµPF ,j(eb) · ea(PF ,j(µ)) = 0 for a ∈ {d + 1, . . . ,N}.
The tangential component tan(v) of v ∈ RN , w.r.t the basis ea(PF ,j(µ)) ∈ TPF ,j(µ) j(M ), a ∈ {1, . . . , d} is given by

tan(v) = [e1(PF ,j(µ))Tv, . . . , ed(PF ,j(µ))Tv]
T . (13)
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Then, the random vector (dαµE j)
−1(tan(PF ,j((j(X))) − PF ,j(µ))) =

∑d
a=1 X

a
j fa has the following covariance matrix w.r.t the

basis f1(αµE), . . . , fd(αµE):

αΣj,E = ea(PF ,j(µ))TαΣµeb(PF ,j(µ))1≤a,b≤d

= [dµPF ,j(eb) · ea(PF ,j(µ))]a∈{1,...,d} Σ [dµPF ,j(eb) · ea(PF ,j(µ))]Ta∈{1,...,d},
(14)

which is the anticovariance matrix of the random object X . Similarly, given i.i.d.r.o.’s X1, . . . , Xn from Q , we define the
sample anticovariance matrix aSj,E,n as the anticovariance matrix associated with the empirical distribution Q̂n.

If, in addition, rank αΣµ = d, then αΣj,E is invertible and if we define the j-standardized antimean vector

Z j,n =: n
1
2 αΣj,E

−
1
2 (X̄1

j , . . . , X̄d
j )

T , (15)

using basic large sample theory results, including a generalized Slutsky’s lemma ([21, p.65]), one has:

Theorem 2. Assume {Xr}r∈{1,...,n} is a random sample from the αj-nonfocal distribution Q , and let µ = E(j(X1)). Let
(e1(p), e2(p), . . . ., eN (p)) be an orthonormal frame field adapted to j. Then (i) the tangential component at the extrinsic
antimean αµE of dαµE j

−1tanPF ,j(µ)(PF ,j((j(X))) − PF ,j(µ)) has asymptotically a multivariate normal distribution in the tangent
space to M at αµE with mean 0d and covariance matrix n−1αΣj,E , (ii) if αΣj,E is nonsingular, the j-standardized antimean

vector Z j,n = αΣ
−

1
2

j,E tanPF ,j(µ)(PF ,j((j(X))) − PF ,j(µ)) converges weakly to a random vector with a Nd(0d, Id) distribution, and
(iii) under the assumptions of (ii)

∥(aSj,E,n)−
1
2 tanPF ,j(µ)(PF ,j((j(X))) − PF ,j(µ))∥2

→d χ2
d . (16)

Remark 4. In Theorem 2, no assumption on the finiteness of certain moments of the distribution Q is needed, since the
manifold M is compact, thus all moments of a distribution with support on j(M ) are finite.

3.2. VW anticovariance matrices for data in CPk−2

A complex vector z = (z1, z2, . . . , zk−1) of norm 1 corresponding to a given configuration of k landmarks, with the
last landmark removed, after centering this configuration, with the identification described in [5], can be displayed in the
Euclidean plane (complex line) with the superscripts as labels.

Lemma 1. Assume xr = [zr ], z∗
r zr = 1, r ∈ {1, . . . , n} is a random sample from a α VW-nonfocal probability measure Q

with a non-degenerate VW anticovariance matrix on CPk−2. If λ̂a, a ∈ {2, . . . , k − 1} are eigenvalues of J in Theorem 1, in
their increasing order and ma, a ∈ {2, . . . , k − 1} are corresponding linearly independent unit eigenvectors. Then the sample
VW-anticovariance matrix aSVW ,n, as a complex matrix, has the entries

(aSVW ,n)ab = n−1(λ̂a − λ̂1)
−1

(λ̂b − λ̂1)
−1

n∑
r=1

(ma · zr )(mb · zr )∗|m1 · zr |2, a, b ∈ {2, . . . , k − 1}. (17)

Proof. The proof is based on the equivariance of the VW embedding jk: CPk−2
→ S(k − 1,C), with respect to actions

of the special unitary group SU(k − 1), of non-negative semi-definite self-adjoint complex matrices [5]. First we need to
assume that J :=

1
n

∑n
r=1 zrz

∗
r is a diagonal matrix, the smallest eigenvalue corresponding complex eigenvector of norm

1 of J is a simple root of the characteristic polynomial over C, with m1 = e1. The tangent space T[m1]jk(CPk−2) has an
orthobasis m′

a = iea, a ∈ {2, . . . , k− 1}, where ma = ea are eigenvector corresponding to the largest eigenvalue. Here we
define a path ηz(t) = [cos tm1 + sin tz], where z is orthogonal to m1 ∈ Ck−1. TPF ,jk (J)

jk(CPk−2) is generated by the vectors
tangent to such paths ηz(t) at t = 0. Such a vector, has the form zm∗

1 + m1z∗, as a matrix in S(k − 1,C). Thus we take
z = ma, a ∈ {2, . . . , k−1}, or z = ima, a ∈ {2, . . . , k−1} based on the eigenvectors of J are orthogonal w.r.t. the complex
scalar product. We normalize these vectors to have unit length to obtain the orthonormal frame.

ea(PF ,jk (J)) = d[m1]j(ma) = 2−1/2(mam∗

1 + m1m∗

a),

e′

a(PF ,jk (J)) = d[m1]j(ma) = i2−1/2(mam∗

1 + m1m∗

a).

As we assume J being diagonal, in this case ma = ea, ea(PF ,jk (J)) = 2−1/2Ea
1 and e′

a(PF ,jk (J)) = 2−1/2F a
1 , where Eb

a has the
positions (a, b) and (b, a) that are equal to 1 and all other entries zero, and F b

a has all the positions (a, b) and (b, a) that are
equal to i, respectively −i and other entries zero. We have the differential dJPF ,jk (E

b
a ) = dJPF ,jk (F

b
a ) = 0, ∀1 < a ≤ b ≤ k−1,

and

dJPF ,jk (E
a
1) = (λ̂a − λ̂1)

−1
ea(PF ,jk (J)),

dJPF ,jk (F
a
1 ) = (λ̂a − λ̂1)

−1
e′

a(PF ,jk (J)).
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We evaluate the VW sample anticovariance matrix aSE,n in formula (25) in [22] using the real scalar product in S(k−1,C),
namely, U · V = ReTr(UV ∗). Note that,

dJPF ,jk (E
b
1) · ea(PF ,jk (J)) = (λ̂a − λ̂1)

−1
δba,

dJPF ,jk (E
b
1) · e′

a(PF ,jk (J)) = 0
(18)

and

dJPF ,jk (F
b
1 ) · e′

a(PF ,jk (J))
T

= (λ̂a − λ̂1)
−1

δba,

dJPF ,jk (F
b
1 ) · ea(PF ,jk (J)) = 0.

(19)

Thus we may regard aSVW ,n as a complex matrix,and in this particular case, we obtain the following entries of this
matrix:

(aSVW ,n)ab = n−1(λ̂a − λ̂1)
−1

(λ̂b − λ̂1)
−1

n∑
r=1

(ea · zr )(eb · zr )∗|m1 · zr |2, (20)

thus proving (17) when J is diagonal. The general case follows by equivariance. □

Next we consider the statistic

T (aX̄VW , αµVW ) = n∥(aSVW ,n)−1/2tan(PF ,jk (jk(X)) − PF ,jk (µjk(X1)))∥
2

given in [22], in our context of i.i.d.r.o.’s on a complex projective space, to get:

Theorem 3. Let Xr = [Zr ], Z∗
r Zr = 1, r ∈ {1, . . . , n}, be i.i.d. random objects from a αVW nonfocal probability measure Q

on CPk−2. Then the random variable T given by

T ([m], [ν]) = n[(m · νa)a∈{2,...,k−1}](aSVW ,n)−1
[(m · νa)a∈{2,...,k−1}]

∗ (21)

where [m] = aX̄VW and ν2, . . . , νk−1 yield an orthogonal basis over C in the tangent space T[ν1]CPk−2, has asymptotically a
χ2
2k−4 distribution.

Proof. Since the VW embedding jk is by definition isometric, and (ν2, . . . , νk−1, ν
∗

2 , . . . ν
∗

k−1) is an orthogonal basis in
the tangent space T[ν1]CPk−2, the first elements of the adapted orthogonal moving frame are ea(PF ,jk (µ)) = (d[ν1]jk)(νa),
e∗
a(PF ,jk (µ)) = (d[ν1]jk)(ν∗

a ). Then the ath tangential component of PF ,jk (jk([m]))−PF ,jk (µj(X1)) w.r.t. this basis of TPF ,jk (µ)CPk−2

equals up to a sign to the component of m − ν1 w.r.t. the orthobasis ν2, . . . , νk−1 in T[ν1]CPk−2, which is νT
am; and the

a∗th tangential components are given by ν∗
a
Tm, and together(in complex multiplication) they yield the complex vector

[(m · νa)a={2,...,k−1}]. The result follows by taking [m] = PF ,jk (jk(X)) = jk(aX̄VW ) □

Remark 5. Note that the original VW embedding used in Applied Statistics, was for the complex projective space CPk−2

case [15], given its interpretation as a Kendall planar shape space. We added the Veronese embedding of RPm−1, without
specifying the VW subscript in the extrinsic sample anticovariance matrix, to distinguish it from the complex case, and
also, for future considerations, since the space of projective shapes of k-ads in general position can be represented as a
product of real projective spaces [21, p.149].

We derive large sample confidence regions for the VW-antimean planar Kendall shape. Assume χ2
s,β is a positive

number, such that Pr(U > χ2
s,β ) = β , where U has a χ2

s distribution. Given that the extrinsically studentized tangential
component of PF ,jk (jk([m])) − PF ,jk (µj(X1)) yields an error of order O(n−

1
2 ), its norm gives an error of order O(n−1), leading

to the following result.

Corollary 1. Assume xr = [zr ], z∗
r zr = 1, r ∈ {1, . . . , n}, is a random sample from a αVW nonfocal probability measure Q

on CPk−2. An asymptotic (1 − β)−confidence region for αµVW (Q ) = [ν] is given by Rβ (X) = {[ν] : T ([m], [ν]) ≤ χ2
2k−4,β},

where T ([m], [ν]) is given in (21). If Q has a nonzero absolutely continuous component w.r.t. the volume measure on CPk−2,
then the coverage error of Rβ (X) is of order O(n−1).

Example 1. In regards with the application in Section 2, the sample size n = 62, is large even if the complex projective
space dimension is d = 14, since the factor behind the shape variable considered is over time environmental adaptation
(essentially a univariate variable), and the only restriction is having non-degenerate VW-sample covariance or VW-sample
anticovariance matrices, which mathematically is n−d−1 being large in the univariate statistics sense, say n−d−1 > 40,
an inequality that holds true when n = 62 and d = 14. From Corollary 1, one may construct large sample confidence
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regions for the VW-antimean. Using Eq. (20), one obtains the sample VW-anticovariance matrix aSVW ,n, given below:⎛⎜⎜⎜⎜⎜⎝
0.44 + 0.00i 0.08 + 0.06i 0.05 + 0.09i −0.10 − 0.05i −0.03 + 0.04i −0.01 − 0.02i
0.08 − 0.06i 0.02 + 0.00i 0.02 + 0.01i −0.03 + 0.01i 0.00 + 0.01i −0.01 − 0.00i
0.05 − 0.09i 0.02 − 0.01i 0.03 + 0.00i −0.02 + 0.02i 0.00 + 0.01i −0.01 + 0.00i

−0.10 + 0.05i −0.03 − 0.01i −0.02 − 0.02i 0.03 + 0.00i 0.00 − 0.01i 0.01 + 0.00i
−0.03 − 0.04i 0.00 − 0.01i 0.00 − 0.01i 0.00 + 0.01i 0.01 + 0.00i −0.00 + 0.00i
−0.01 + 0.02i −0.01 + 0.00i −0.01 − 0.00i 0.01 − 0.00i −0.00 − 0.00i 0.00 + 0.00i

⎞⎟⎟⎟⎟⎟⎠
Note that the sample VW antimean aX̄VW = [m], where mT , in spherical coordinates, is given by the row matrix.(

0.12 + 0.03i 0.41 − 0.054i 0.33 + 0.03i 0.10 − 0.06i 0.74 + 0.00i 0.17 − 0.21i 0.21 + 0.16i.
)

When the sample size is small, the coverage error could be quite large, and a nonparametric bootstrap analogue of
Theorem 3 is preferred [12]. We recall the steps that one takes to obtain a bootstrapped statistic from a pivotal statistic. If
{Xr}r∈{1,...,n} is a random sample from the unknown distribution Q , and {X∗

r }r∈{1,...,n} is a random sample from the empirical
Q̂n, conditionally given {Xr}r∈{1,...,n}, then the statistic T (X∗, Q̂n) is obtained from T (X,Q ), by substituting X∗

1 , . . . .., X∗
n for

X1, . . . ..Xn, for jk(X) for µ and jk(X)
∗

for jk(X). Typically the number of re-samples M should be at least 1000, however
often times, a few hundreds of re-samples suffice to derive confidence regions. The following result follows from Theorem
2.2. in [18]. Since CPk−2 is compact, all the moments of jk(X) are finite, which along with an assumption of a nonzero
absolutely continuous component, suffices to ensure an Edgeworth expansion up to order O(n−2) of the pivotal statistic
T (aX̄VW , αµVW ) [3,4,11]). We then obtain the following result:

Corollary 2. Let Xr = [Zr ], Z∗
r Zr = 1, r ∈ {1, . . . , n}, be a i.i.d.r.o.’s from a αVW-nonfocal distribution Q on CPk−2, such that

X1 has a nonzero absolutely continuous component w.r.t. the volume measure on CPk−2. If jk is the VW embedding, and the
restriction of the covariance matrix of jk(X1) to T[ν]jk(CPk−2) is non-degenerate, where αµE(Q ) = [ν] be the extrinsic antimean
of Q . For a bootstrap re-sample {X∗

r }r∈{1,...,n} from the given sample, consider the matrix J∗ := n−1 ∑
Z∗
r Z

∗
r

∗. Let (m∗
a)a∈{1,...,k−1}

be the unit complex eigenvectors, corresponding to the eigenvalues (λ̂∗
a)a∈{1,...,k−1} in increasing order. Let (aSVW ,n)∗ be the

matrix obtained from aSVW ,n by substituting all the entries with ∗-entries. Then, (i) bootstrap distribution function of

T ([m]
∗, [m]) = n[(m∗

1 · ma)a∈{2,...,k−1}](aS
∗

VW ,n)
−1

[(m∗

1 · ma)a∈{2,...,k−1}]
∗ (22)

approximates the true distribution function of T ([m], [ν]) given in Theorem 3 with an error of order OP (n−2) and (ii) a
nonparametric bootstrap (1 − β)−confidence region for αµVW (Q ) = [ν] is given by R∗

β (X) = {[ν] : T ([m], [ν]) ≤ T ∗
},

where T ([m], [ν]) is given in (21), and T ∗ is the 1−β quantile of the bootstrap distribution of T ([m]
∗, [m]). If Q has a nonzero

absolutely continuous component w.r.t. the volume measure on CPk−2, then the coverage error of R∗

β (X) is of order O(n
−2).

Based on the simulated data displayed in Fig. 1 in the supplementary material, we re-sampled for 1000 times, and we
got the .95 quantile cutoff value from Corollary 2 to be T ∗

= 8.4785.
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