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On a Shrinkage Estimator of a Normal 
Common Mean Vector 
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Department of Statistics, Temple University, Philadelphia 

Communicaled by the Editors 

The problem of estimating the p x 1 mean vector 6’ based on two independent 
normal vectors Y, u N&f?, 021) and Y, a N,(f?, @I) is considered. For p > 3, when 
5 and u2 are unknown, it was shown by George (1991, Ann. Statist.) that under 
certain conditions estimators of the form 6, = q Y, + (1 -q) Y,, where q is a fixed 
number in (0, 1 ), are uniformly dominated by a shrinkage estimator under the 
squared error loss. In this paper, George’s result is improved by obtaining a simpler 
and better condition for the domination. 0 1992 Academic Press, Inc. 

1. INTR~OUCTI~N 

Let Y, be an observation from a p-variate normal population with mean 
8 and covariance matrix o*Z, NJ& 0~1). Let Y, be an observation from 
N,(0, <o’Z). Assume that CJ*, 5 are unknown positive scalars and Y1 and Y, 
are independent. Let YE { $: 8 E RP, 5 > 0, o2 > 0} denote the parameter 
space. In this situation George [2] has considered the problem of estimating 
6 based on (Y,, Y,) under the risk criterion of expected squared error loss, 

R($, 6) = E, 116 - Oil*. (1.1) 

Under this criterion, it has been shown in George [2] that the estimator 

&=rlY,+U-w2 (1.2) 

is dominated by the shrinkage estimator 

“fi= l-c”Y;;;“*)6,, 
( q 

(1.3) 
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where v is a fixed number in (0, l), K = min($, (1 - q)*), 0 < c < 2~/13 for 
p = 3 and 0 < c < 2(p - 2)~/(p + 8) for p 3 4. Based on strong simulation 
evidence, George [2] has conjectured that the upper bound for c can be 
increased to 2rc/6 for p = 3 and to 2(p - 2)tc/(p + 2) for p 3 4. 

In the following section we show that, for 6,’ to dominate 6,, the upper 
bound for c can in fact be increased to 2(p - 2)~/(p + 2) not only for p > 4 
but also for p = 3. 

We note that although some expectations that are needed to prove 
Theorem 2.1 are evaluated in George [2], we derive them in Section 2 in 
a relatively easy manner using some standard methods. Also the present 
form of these expectations simplified the proof of Theorem 2.1 to some 
extent. 

2. MAIN RESULTS 

We now state the main results of this paper in the following theorem. 

THEOREM 2.1. Let K = min(y*, (1 - q)*). Then for p > 3, q E (0, 1) and 
0 CC < 2(p - 2)~c/(p + 2), the estimator “; in (1.3) uniformly dominates 6, 
under the risk criterion (1.1). 

We need the following lemmas to prove the theorem. 

LEMMA 2.1. For a Poisson random variable Z with mean A, let b(q) 3 
E(q + 22) - ’ for q # 0, - 2, - 4, . . . . then 

(i) (4 + 21) d(4) b 1, 
(ii) 2Q(q+2)= 1 -q&q), for q#O, -2, -4, . . . . 

(iii) 2;lfj(q+2)Ql-qfj(q+2),for q>O, 

(iv) 5a[f$-l)-34(1)]+3a*[4(1)-2&-l)+d(-3)]<0, for OQ 
a< 1. 

Proof: (i) follows from Jensen’s inequality. For proofs of (ii) and (iii), 
see George [2]. 

(iv) As (2z-1)-‘-3(2z+1)~‘~0 for z=O, 1,2,..., and sac?, we 
have 

5a[(2z-1)~‘-3(2z+1)~1]+3a2[(2z+1)~’-2(2z-1)~’+(2z-3)~‘] 

< a*[5(4 - 4z)(2z - 3) + 24]/[(2z + 1)(2z - 1)(2z - 3)] 

= -4a*y(z), 

where y(z) = (lOz* - 252 + 9)/[(2z - 1)(2z + 1)(2z - 3)]. Thus, to prove 
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(iv), it suffices to show that E(y(Z)) >O. Observing that y(z) > 0 for 
nonnegative integers z # 2, we prove that 

E(y(Z))= 1 y(z)ec’A’/z!+ [(82/7)- l]e-“12/30>0 
z#2,3 

for 1> 7/8. Similarly, adding the terms corresponding to z = 0 and z = 2, 
we can show that E(y(Z)) > 0 for 0 < ,I 6 7/8. 

LEMMA 2.2. Let U and V be p x 1 random vectors such that (U’, V’)’ w 
N2pW’, r-l’)‘, C,A with 2, = (;I p,‘, and - 1~ /? < 1. For a Poisson random 
variable Z with mean A = Ilflll 2/2, as in Lemma 2.1, let d(q)-E(q+2Z)-‘. 
Then, for p 2 3, 

0) E(IIUIIW~*=W(P-~+~~)+PI~(P-~)-~~ 

(ii) ~OI~l1411W2) = C(P+~)+B~(P-~+~,J)I ~(II~l1211W2)- 
CWB”~ - VP + P) &P - 2) + P’(P - V’)l. 

(iii) E(U’VIIVll-‘)=p(p-2)4(p-2). 

Prooj All these expectations can be evaluated using the well-known 
identity that 

EllVII-2=E(p-2+2Z)-‘. (2.1) 

Letf(U,V;~,C)=(2n)-Pexp{-1/2[U’,(V-~)’]~~1[U’,(V-~)‘]‘}. 

(i) First we note that for a real t, 

Et II VI2 II VII -*I 

=-- ~t{tl-P2)epi2~ IIW2e-‘u’uf(U v;p,Pp)dudv}~ 
1=0 

=-- it {U -Bz)P”*~ IIW’fVL V;K &&Wv)~ 3 (2.2) 
1=0 

where 

cbJ= 
(1+2t)-‘I B(l + 2t)-‘I 

/?(1+2t)-‘I > (1+2t(l -/P))(1+2t)-‘I . 

Noting that IL’,,1 = (1 - 8’)” (1 + 2t)-P, it follows from (2.2) that 

EWl12 IIW2)= -;i(l+zr)p p’2+1 (1 +2t(l -fl’))-’ EI~V,~~2}~,=0, 

(2.3) 

683/40/l-8 



112 K. KRISHNAMOORTHY 

where V, N N,(p,,Z) and ~,=(1+2t)1’Z(1+2t(l-~2)))1’2~. Thus, we 
obtain 

JwUI12 IIW’) 

= -; {(1+2t)- ’ p2+1 (1 +2t(l-p2))F E(p-2+22,)y}l,=o 

where Z, in the first equality is a Poisson random variable with mean 
1, = pjpL,/2. Now, using the fact that E(2Z(p - 2 + 22))‘) = 1 - (p - 2) 
&-2), we prove (i). 

(ii) As in (i), we can write 

EC II Ul14 II VII -2) 

(2.4) 

where (U,!, I’,‘)’ N N2J(0’, pi)‘, C,,), and C, equal to C, with p replaced by 
/?, = j?( 1 + 2t( 1 - /?2))-1’2. Thus, using (i) in (2.4), taking derivative at t = 0, 
and after some simplification, we get (ii). 

(iii) E(U’VIIVII-2)=EE((U’VIIVI(-2)lV)=BE((V-~)’VIIVII-2)= 
P(1-WUIW2) and JWUW~) = ~l’~~l~~~~II~I/~~+ll~ll~~ll~II~~ 
= E(2Z(p - 2 + 22)-l). Thus, we prove (iii). 

We are now ready to prove Theorem 2.1. 

Proof of Theorem 2.1. Using the Stein’s [3] identity that 
E(X- p) h(X) = o’Eh’(X) for X- N(p, a’) and changing the variables, 
George [2] has expressed the risk difference as 

R(vk q-R($, 6,)=ca;(cA, -2(p-2)A,-4+4,), (2.5) 

where 
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B=ku-“)tb ~,~~j , ~=e/l(r’l’ ~~=(vr2+(1-~)2r)a2. 

In terms of these expectations, (2.5) may be expressed as 

= c( 1 + 5) 02[c( 1 + 5) 020i2E( II UJ14 II VII -‘) 

-2(p-2)EW12 lIw’)-4B~(~‘~II~II -‘)I. (2.6) 

As (1+t)a2a,2<~-1, for 0 < c < 2(p - 2)rc/(p + 2), it can be easily seen 
that R(+, S&) - R($, 6,) < 0 if 

dvl, r, 0) = Et/I Ul14 II V/I -2) - (P + 2) Et/I UI12 II VII -‘I 

-2B(p-2)~‘(p+2)E(U’VI(VII-2)~0 

for all q, t, and 0. Using Lemma 2.2 and setting c( =/I*, g(q, c, 0) can be 
written as 

gh 4,e) = C2 + a(~ - 6 + 2A)l E II VI 2 II VI/ -* - dp - 2.7.) 

-2(2c?-clp+p)qh(p-2)-2c((p+2)&-2). (2.7) 

We now show that g(q, [, 0) < 0 for all q, 5, and 8, separately for p 2 4 and 
p= 3. 

Let ~24. We first note that 2+a(p-6+2J)>O as O<a<l. Using 
Lemma 2.l(iii) in Lemma 2.2(i), we obtain E/l Ul12 II VII -2 < p&p - 2). 
Using this inequality in (2.7) and, after some minor simplification, we 
obtain 

gh, 5,e) G 4~ - 4 + 21) P~(P - 2) - 4a~~ - 2) - RP 

+ 2a2 - 2a(p + 2) $(p - 2) 

< -4cr2Aqqp - 2) + 2ct2 - 2L?(p + 2) qqp - 2) 

= 2a2 - 8a’qqp - 2) - 2c?(p - 2 + 2/l.) qqp - 2). (23) 

The second inequality in the above expression follows from Lemma 2.l(iii) 
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and the relation ~12 CC’. Now the desired result follows from (2.8) and the 
fact that (p-2+22)&-2)> 1 (Lemma 2.1(i)). 

For p = 3, using Lemma 2.l(ii) in Lemma 2.2(i), we obtain 
E 11 UIj * 1) VII -* = a& - 1) - c$( 1) + 3& 1). Substituting this equality in (2.7) 
and, after some simplification, we can write 

g(v], 5, e) = 2a& - 1) - 15a& 1) + 3&j( 1) - 3c?#( - 1) - 3fx 

+ 201~ - 6a21& 1) + 6a&5( 1) + 21x’1& - 1). (2.9) 

Again from Lemma 2.1 (ii), we obtain 2@( 1) = 1 + #( - 1) and 2@( - 1) = 
1 + 3#( -3). Uing these identities in (2.9), we can express 

S(% t, ~)=5~C~(-l)-3~(1)1+3~‘c~(1)-2~(-1)+~(-3)1. 

Now, Lemma 2.l(iv) completes the proof. 

Remark 2.1. Noting that CI becomes zero when q = [/( 1 + <), it 
can be easily verified that R(t,b, S,‘)- R($, 6,) =0 when l= 1 and 
c=2(p-2)~/(p+2). This implies that, for ~5; to dominate 6,, the least 
upper bound for c in S; is 2(p - 2) rc/(p + 2). 

Remark 2.2. For p > 3, it follows from (2.5) that an optimal choice for 
c in S; is (p-2)fc/(p+2). 

Remark 2.3. The positive part version of ~5;, that is, (1 - c 11 Y, - Y, )I * 
116, I/ -*)+ S,, where a+ = max(O, a) improves 6’ uniformly. The proof, 
noting the fact that g(Y,, Y,)=(l-cllY,- YZII1 /16fl~l-2)=g(TY1,TY2) 
for any orthogonal matrix I’, is similar to the one given for one sample 
James-Stein estimation problem (for example, see Anderson [l, Lemma 
3.5.2, p. 911). 
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