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Parametric families of continuous bivariate distributions with given margins that
include independence and perfect positive dependence are compared on the basis on
some important properties. Since many such families exist, the comparisons are
helpful for deciding on suitable models for multivariate data. The study of the
properties has motivation from applications in extreme value inference. One
property considered for bivariate families is whether they extend to multivariate
families, and extensions are given when possible. Several new bivariate and
multivariate families are included and some open research problems in the area of
multivariate families are mentioned. ¢ 1993 Academic Press. Inc.

1. INTRODUCTION

The purposes of this paper are to make contributions to the derivation
of parametric families of continuous multivariate distributions with given
univariate margins, to indicate how applications influence the type of
properties desired, and to point out open problems in this area. There are
{at least) two ways to look at parametric families of multivariate distribu-
tions. One approach is to take a characterizing property of a parametric
family of univariate distributions and extend the property to the multi-
variate case to get a multivariate family with all univariate margins of the
same class. Another approach is based on the well-known result of Sklar
[31]. If H(x,,.. x,) is a continuous p-variate cumulative distribution
function with univariate margins F(x,), j=1,.., p, then C(u,, .., u,)=
H(F [ '(uy), ..., F, '(u,)) is a copula or a multivariate distribution with
uniform (0, 1) margins and C(G(y,), .., G,(y,)) is a multivariate distribu-
tion with univariate margins G;, j=1,.., p, where G, are arbitrary
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continuous univariate distribution functions. This latter point of view is
taken in this paper and the author’s motivation for this approach is partly
based on multivariate extremes (Joe [17, 19]).

An interpretation of Sklar’s result is that, for continuous multivariate
distributions, the multivariate structure is in the copula C and is “inde-
pendent” of the univariate margins. Hence with the second approach, a
parametric multivariate family corresponds to a parametric family of
copulas and the parameters can often be interpreted as dependence
parameters. In Section 2, families of one-parameter bivariate copulas that
include independence, perfect positive dependence, and possibly perfect
negative dependence are listed and compared on the basis on several
properties. The properties include the potential extendability to a multi-
variate family with a wide range of dependence structures. The goal of
getting general dependent structures is different from that of the recent
book of Fang et al. [5] on symmetric multivariate distributions. In
Section 3, families of two-parameter bivariate copulas are given; in one
example, there is permutation asymmetry. In Section 4, a class of multi-
variate copulas with representations as mixtures is derived (compare
Theorem 2.1 of Marshall and Olkin [22]). Several of the bivariate families
extend to this class. However, the range of dependence structures for the
class is not as extensive as that for the multivariate normal distribution.
Section 5 consists of further discussion, applications, and some open
research problems motivated in part by the applications. Note that as a
result of the careful study in this paper, many relationships and similarities
among the families will be seen.

2. ONE-PARAMETER BIVARIATE FAMILIES

In this section, we consider one-parameter bivariate families H(x,, x,; 8)
with univariate margins F,(x,) and F,(x,) which include independence,
F,(x,) F5(x,), the Fréchet upper bound, min{F,(x,), F,(x;)}, and
possibly the Fréchet lower bound, max{0, F,(x,)+ F,(x,)—1}. Several
new families have been discovered since the paper of Kimeldorf and
Sampson [21] and a new family is included here. Because extendability to
the multivariate situation is one of our considerations, we do not insist on
the family including the Fréchet lower bound as in [21]. We consider only
families that have (i) absolutely continuous copulas except for the bounds,
and (ii) copulas with support on [0, 1]? for parameters corresponding to
positive dependence. We do not consider families, such as that of
Morgenstern [25], which are just perturbations of independence. Ellipti-
cally contoured families other than the normal are not included here
because they do not include independence.
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Because there are many families with the properties in the preceding
paragraph, we compare the families through other properties which should
help to decide on appropriate families as models for some given data. The
families are differentiated as they do not all satisfy the same properties.

For the eight one-parameter families listed below via their copulas, the
parametrization is such that the dependence increases as the parameter 0
increases, according to the concept of dependence in Property 2.
The bivariate normal copula is given first and then the others in
chronological order according to their discovery. We let C _(u, u,)=
max{u, +u,— 1,0}, Ci(u,, uy)=u,u,, and C, (u,, u,)=min{u,, u,} denote
the copulas of the Fréchet lower bound, independence, and the Fréchet upper
bound, respectively. There can be two associated family of copulas for each
given family. If C(u,, u,;8) is a family of copulas, then let C(u,, u,;0)=
1 —u; —uy+ C(u,, uy; 8) denote the bivariate survival function. Note that
Clluy, u;0)=u, +u,— 1+ C(1 —u,, 1 —u,; 0) is also a family of copulas
with survival functions C'(u,, u;; 0)=C(1 —u,, | —u,; ). This is different
unless the family has symmetry about the medians; that is, if (U,, U,)~ C,
then (1 — U,, 1 — U,) ~ C. Another related family of copulas is obtained by
considering uniform random variables U,, U, such that (1-U,, U,)
has the distribution C(-;8). This leads to the family C"(u,, u,;0)=
U, — C(1 — uy, uy; 0); the family u, — C(u,;, 1 — u,; 0) is not different for the
families below because of permutation symmetry of v, u, in C(u, u,; 0).

2.1. Let @ be the standard normal distribution function and let @
be the multivariate normal distribution function with mean vector zero and
covariance matrix 2. Then the bivariate normal copula is C(u,, u,;0)=
Do (® Yuy), @ (), Z(O)=[} Y], —1<0<1. The cases —1,0,1
correspond respectively to C_, C,, C, .

22. Thecopulais C(u,, uy; 0)=exp{ — [(—log u,)’ + (—log u,)?1'*},
0= 1. The cases 1, oo correspond respectively to C;, C, . This family is due
to Gumbel [11] in 1960.

2.3. The copula is C(u,, u;0)=(u; " +u;, "~ 1) "°, 8>0. The cases
0, oo correspond respectively to C;, C,. With appropriate margins, this
family for 6 = 1 becomes the bivariate logistic distribution of Gumbel [12],
the bivariate Pareto distribution of Mardia [23], and the bivariate Burr dis-
tribution of Takahasi [33]. The family appears in Clayton [1], Cook and
Johnson [3], and Oakes [26]. Ruiz-Rivas [29] and Genest and Mackay
[10] extend the family to C(u,, u,;0)=[max{0, u; *+u; *—1}]1" ",
—1<8<0 to allow for negative dependence; the case # = —1 corresponds
to C_.

24. The copula C(u,, u,;80) is defined through the equation 8=
Cluy, uy; 01 —uy—uy+ Cluy, uy; 0))/(uy—Cluy, uy; 0))uy— Cluy, uy; 6)),
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0> 0. The right-hand side of the equation is the odds ratio when [0, 1]°
is split into 4 quadrants with centre (u,, u,). The case 0, 1, oc correspond
respectively to C_, C,, C, . The solution to the equation can be written as
Cluy, uz;0) = 05(0—1)"" {1+(0—1)(u;+u,)— [(1+(0—1)(u; +u,))* +
46(1 — 0) u,u,]"?}, for 0 +# 1. This family is due to Plackett [28] in 1965.

25. The copula is Cluy, uy; 0) = u,u, exp{[(—logu,)~ " +
(—logu,) %1%}, 8=0. The cases 0, oo corresponds respectively to C,
C, . This family appears in Galambos [8] in 1975.

2.6. The copulais Clu,, uy; 0)=(—1/0) log{1—(1—e )" (1 —e~ %)
(1—e ™)}, —o0 <6< oc. The cases — oo, 0, oo correspond respectively to
C_, Cy, C, . This family is due to Frank [7] in 1979.

2.7. Let @ be defined as in Family 2.1. The copula is C(u,, u,;0)=
(—log us) exp{ —B(0 " + 0.50 log[(—log u,)/(—log u,)]) — (—log u,)
®(0"'+0.56 log[(—log u,)/(—logu,)])}, #>0. The cases 0, o« corre-
spond respectively to C,, C,. This family appears in Husler and Reiss
[15] in 1989.

2.8. The copulais C(u,, us;0)=1—[(1—u, )’ +(1 —uy)’ — (1 —u,)’
(1 —u,)?]1"% 0= 1. The cases 1, oo correspond respectively to Cy, C, . This
is a new family of copulas.

Next we list and discuss various properties that the families can possess.

Property 1: Permutation Symmetry. The family of copulas is permuta-
tion symmetric if C(u, v; 8) = C(v, u; 8) for all 0 <w, v < 1. This property is
satisfied by all of the above families. We later also use the term “permuta-
tion symmetric” for multivariate copulas that are symmetric in all
arguments.

Property 2. Ordered by Concordance. The family of copulas is
increasing in the concordance ordering of Yanagimoto and Okamoto [37]
and Tchen [35], if C(u,, u,;8) is nondecreasing in 8 for all u,, u,, or
equivalently, C(u,, u,; #) is nondecreasing in 8 for all u,, u,. It is known
and/or easily checked that all of the above families are ordered by
concordance.

For the associated families of copulas, the results are as follows.
C'(u,, u,; 0) is nondecreasing in 0 for all u,, u, and C"(u,, u,; 8) is non-
increasing in 8 for all u,, u,. If 8, is such that C(-;8,) corresponds to C,
(respectively, C,,C_), then C’'(-;8,) corresponds to C, (respectively,
C.,C_)and C"(;8,) corresponds to C, (respectively, C_, C,).

Property 3: Symmetry about Medians. The family of copulas has sym-
metry about medians if C(uy, u,;0)=u,+u,—1+C(1 —u,, 1 —u,;0)
This is satisfied for Families 2.1, 2.4, and 2.6.
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Property 4: Mixtures of Powers. The subset of the family of copulas
with positive dependence has a representation in terms of mixtures of
powers of distributions if

C(u,,uz;9)=J: Gluy: 0) G (s 0) dM (), 2.1

where M, is a distribution function with AM,(0)=0. Marshall and Olkin
[22] show that this representation necessarily implies that G,(u,; 0)=
exp[—¢ '(u;;0)], j=1,2, where ¢(s;0)=[,e **dM,(x) is the Laplace
transformation (LT) of the mixture distribution M.

Families 2.2, 2.3, 2.6 have this form with ¢(s;0)=exp(—s"?%
(corresponding to a positive stable distribution), é(s;0)=(1+s) "*
(corresponding to a gamma distribution), and ¢(s; 0)=(—1/8)log[1—
(1—e ?)e *] (corresponding to a logarithmic series distribution on
positive integers with mass (1 —e ?)/(i0) on the integer i), respectively.
The parameter « is interpreted as a frailty parameter in Oakes [27].
Genest and Mackay [10], with necessary and sufficient conditions on ¢,
write (2.1) as

Cluy uy) =94 1)+ ¢~ () (2.2)

and call copulas of this form Archimedean copulas. They showed that the
subset of Families 2.3 and 2.6 with negative dependence have the represen-
tation (2.2) even though ¢ is not a LT in this case. The three families with
this mixture representation are quite different based on Property 6 below.

It will be shown in Section 3 that Family 2.8 is the limit of a two-
parameter mixture family but is itself not a mixture family.

Property 5: Extreme Value Copula. From Pickand’s result, which is in
Chap. 5 of Galambos [9], a necessary and sufficient condition for C(u,, u,)
to be an extreme value copula is that G{x, x,)=C(e ™™, e~ ) satisfy
log G(tx,, tx,)=tlog G(x, x;) for all t>0, x,, x,>20. Also, extreme value
copulas cannot have negative dependence. Families 2.2, 2.5, 2.7 are families
of extreme value copulas. With each margin being a generalized extreme
value distribution, these families are models for bivariate extremes. Family
2.7 results from an ingenious derivation involving a nonstandard limiting
extreme of the bivariate normal distribution.

Property 6: Tail Dependence. A family of copulas has wpper tail
dependence if C(u, u; 0)/(1 —u) converges to a constant ¢ in (0, 1] as u— 1.
An interpretation of this condition is that if (U,, U,) have bivariate sur-
vival function C(u,, u,; 6) then Pr(U, >u|U, >u) does not converge to
zero as u— 1. Equivalently, from Sibuya [30], the limiting (maxima)
extreme value distribution of C” (F,(a,,+b,.x,), F.(a,,+b,,x;)) does
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not consist of independent margins, where the sequences a,,, b,,, a,, b,
and F,, F, are such that marginal limiting extreme distributions
Fi(a,, + b,,x;) exist for j=1, 2. Because the limiting extreme value copula
does not depend on F|, F, (see Galambos [9]), the limiting copula is often
easily obtained from the limit of C"(1 —n"'e ¥, 1 —n~'e *?) followed by
the transforms —logu;=e™ %, j=1,2. Similarly, lower tail dependence
holds if C(u, u; 8)/u converges to a constant ¢ in (0, 1] as « — 0. We refer
to ¢ as a (bivariate) tail dependence parameter. A relation between the
families C(-; 8) and C’(-; 8) is that if one has upper tail dependence, then
the other has lower tail dependence.

For example, extreme value copulas have upper tail dependence; for
Families 2.2, 2.5, 2.7, the limits of C(u, u; 6)/(1 — u) are respectively 2 — 2!,
2°Y% and 2-2@(0"'). Family 2.8 also has upper tail dependence with
2 — 2" as the limit and Family 2.2 is the extreme value limit of Family 2.8.
In addition, Family 2.3 has lower tail dependence; the limit of C(u, u; 8)/u
is 27" Family 2.5 can be derived as an extreme value limit from
Family 2.3 in its alternate form, C'(u,, u5;0)=u, +u,— 1 +((1 —u,) "+
(1 —u,) %~ 1)""" The details are not given here, but it can be shown that
no other upper or lower tail dependence exists in Families 2.1 to 2.8,

Within mixture families that have the form of (2.2), lower tail
dependence essentially implies Family 2.3 and upper tail dependence
essentially implies Family 2.2. For lower tail dependence, (2.2) implies
#(2¢ ")) u~casu—-0(0<c<l)org (cuy~20 "(w)or¢ "(u)~u?,
u— 0, where > 0. Hence, ¢(s)~s~'"# as s » oc or ¢(s)=(1+s)" "% For
upper tail dependence, (2.2) implies 1 — 2u+ ¢(2¢ " '(u)) ~c(1 —u) as u — 1
org(v)=¢ '(1—0)~05¢""(1—-(2—c)v)=0.58((2—c)v) as v=1—u—0.
Hence ¢ '(1—v)~0v?, where f>1, or ¢(s)~1—s"P~exp[—s5"#] as
s—0.

Property 7: Extendability to Multivariate Family. A multivariate
extension of a given bivariate family would be such that each marginal
distribution or order 2 or more has the same form and each bivariate
margin is within the given bivariate family. Of special interest is whether
the extension allows copulas that are not permutation symmetric and
whether the extension allows negative dependence.

Family 2.1, of course, extends to the multivariate normal family with a
parameter for each bivariate margin. Hiisler and Reiss [15] also extend
their approach to obtain a multivariate distribution; since the distribution
is from a limit of multivariate normal distribution, there is a (bivariate)
parameter for each bivariate margin. The distribution involves a bit of
notation to write so it will not be repeated here.

No extension of Family 24 to 3 dimensions or higher is known.
Families 2.2, 2.3, and 2.6 extend to permutation symmetric copulas using
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Fig. 1. (a) Contours of density for Family 2.2 with normal margins, 6 = 2; (b) contours
of density for Family 2.6 with normal margins, 6 =5.7.
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the mixture representation. The result is C(u,, ..., u,) =¢(X7_, ¢ '(u;)). In
Section 3, a more general extension that allows copulas without permuta-
tion symmetry is given; the number of parameters is p — 1, so that there is
not a distinct parameter for each bivariate margin. By taking a limiting
extreme of the extension of Family 2.3, Family 2.5 also extends to a multi-
variate family with p — 1 parameters. Family 2.8 extends in a similar way
because it is a limit of mixtures.

Property 8: Contours. A way to compare families is through contours
of the density. Since the elliptic contours of the bivariate normal density are
familiar, we make comparisons of contours of densitics when the marginal
distributions F,, F, are standard normal, that is, for the densities
A D(x,), P(x,); 0) P'(x,) P'(x,), where &’ is the standard normal density
and c(uy, u,; 0)=[8*u, du,] Clu,, uy; 0). To compare different families,
we used 0's such that Kendall's tau, 4 [ C(u,, u,) dC(u,, uy) — 1, is fixed.
Figure 1 shows the contours of the (normal) density when Kendall’s tau is
0.5 for Families 2.2 and 2.6. Note that the contours for Family 2.2 are more
pointed in the upper quadrant. All families with upper tail dependence have
densities with contours like those for Family 2.2. Family 2.3, which has
lower tail dependence, has contours with the pointed ends in the opposite
direction. The contours for the density of Family 2.6 are a bit more
rounded compared with ellipses; the contours for the density of Family 2.4
are closer to ellipses.

3. TwWO-PARAMETER BIVARIATE FAMILIES

In this section, we consider two-parameter bivariate families with given
margins that include some of the one-parameter families of Section 2 as
special cases. With one-parameter families, the parameter should be inter-
pretable as a dependence parameter and this is the case in Section 2. With
two-parameter families, the second parameter could be an additional
dependence parameter or a parameter representing permutation asym-
metry. Examples are given for both cases.

3.1. A New Family with Two Dependence Parameters

We present a two-parameter family C(-;6,J) that is increasing in
concordance as 6 or d increases and that includes Families 2.6 and 2.8 on
boundaries of the parameter space. The family is

Clu,,u:;0,8)=6""[1—-{1—[1—(1—-8)"F "[1—(1—du,)’]
x [1—=(1-06uy)’1}"], 0<8<1,021.  (3.1)

68346 2-7
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The limit as - 0 or 8 — 1 corresponds to Cy; Family 2.8 is obtained when
d=1, and Family 2.6 is obtained as 6 — oc with y=1—(1—48)° held
constant (or with 6 =1— (1 —y)"%). The family was derived as a power
mixture family with the LT ¢(s)=3 '[1—{I—-[1—-(1-8)]e *}"*].
This is the LT of a discrete power series distribution and it appears in a
different parametrization in Family 4.3 in Section 4. The proof of the
concordance ordering is nontrivial and is outlined in the appendix.
Considering other properties in Section 2, (3.1) is permutation symmetric
and the family does not have tail dependence except when 6 =1. This
family extends to the multivariate case for each fixed é (Family 4.4).

3.2. Another Family with Two Dependence Parameters

Another two-parameter family of LT’s is ¢(s) = exp{ — (ax +5)"? + 2'/*},
220, 0> 1. The resulting family of copulas is

Cluy, uy; 0, x) =exp{ — [(a" —logu,)’ + (""" —log u,)* —a]"" +a'?}.
(3.2)

It is not difficult to check that (3.2) is increasing in concordance as either
# increases or as a decreases. C; is obtained as x — oc or for #=1, and C,
is obtained as @ — oc. Family 2.2 is a subfamily when « =0. The upper tail
dependence parameter is 2 —2"", independently of «. Therefore for fixed 6,
as o increases, measures of concordance, such as Kendall's tau, decrease
but the tail dependence remains the same.

3.3. Other Mixture Families

The approach in Section 4.3 of Marshall and Olkin [22] leading to
something like their Eq.(4.7) is a general way of adding a second
dependence parameter to one-parameter power mixture families. The
mixture form of the families, generalizing (2.1), is

Cluy, w33 6,0)= | * K(G3(,30), G3(uz: 0:0) dMy(a).  (33)

where K(-; ) is a family of copulas that is increasing in concordance as ¢
increases. Whether (3.3) is increasing in § would have to be checked on an
individual basis.

3.4. Families with Bivariate Permutation Asymmetry

In the context of bivariate extremes, Smith [32] and Joe et al. [20] have
used an extreme value copula that generalizes Family 2.2 and that does not
have permutation symmetry except when the two parameters are equal. We
derive a similar extreme value copula that generalizes Family 2.5. These



PARAMETRIC FAMILIES OF DISTRIBUTIONS 271

families do not have closed forms and are more simply given in a form with
exponential survival functions for the univariate margins.
The two-parameter family that generalizes Family 2.2 is

1
H(x,, x;;a, B)=exp { —L max[x, g,(z), x,8,(2)] d-’-’}» (3.4)

with g, (2)=(1—a)z % g.(z)=(1—B)(1 —z) * where 0<a, f< 1. From
the representation of deHaan [13] for multivariate extreme value distribu-
tions, the general conditions on g,, g, are that they are probability density
functions on [0, 1]. Hence the range of «, f can actually be extended to
2<0, f<0. The family with ay=—a>0 and f;=—F>0 is a two-
parameter extension of Family 2.5. Families 2.2 and 2.5 result when x=f.
To study properties of (3.4), alternative forms are given next. For positive
parameters, expansion of the integral in (3.4) leads to

H(x,, xy;a, By =exp{ — (x, + x;) A(x,/(x, + x3): 2, f)},
O<a<1,0<f<l, (3.5)

where A(w; 2, B)=(1—w)u' *+w(l —u)' "2, 0<w< 1, and u=u(w; 2, B)
is the root of the equation (1 —a){(l —w)(1 —u)— (1 —BYwu*=0. For
negative parameters in (3.4), one obtains

H(x,, x3; 024, Bo) ZCXP{ — (xy + x3) A(x2/(x, + X3); %o, ﬂo)},
25> 0, fo>0, (3.6)

where A(w; 2y, Bo)=1—w(l —u)' " P — (1 —w)u'*™ 0<w< 1, and
u=u(w; ay, ) is the root of the equation (1 + oo)(1 —w) u™ —
(14 Bo) w(l —u)fe=0.

We mention some properties next, some of which are easier to determine
numerically. The distributions in (3.5) are increasing in concordance as «
or f decreases; the Fréchet upper bound obtains in the limit as a=f—0
and independence obtains as « = f — 1. The distributions in (3.6) are also
increasing in concordance as o, or S, decreases; the Fréchet upper bound
obtains in the limit as a,=f,—0 and independence obtains as
#, = Bo — c0. Independence obtains more generally as one of «, § (or 2,
Bo) is fixed and the other approaches 1 (c0). A different limit occurs as one
of the parameters approaches 0. For examples, as -0,

1—w, if 0<w< (1 —a)/(2—a),

Alws . f) = {w+ alw/(1—a)]' (1 =w)'s if (1—a)2—a)<w<],



272 HARRY JOE

and as f, — 0,

1 —w+ag[w/(1+oy)] 0 (1 —w) V=
A(w; o, fo) = if 0w <(1+0)/(2+ag),
W, if (1+2,)/(2+x)<w< L.

The following parametrization is useful to interpret the parameters.
From theory for min-stable bivariate exponential distributions, in (3.5)
and (3.6), 4 is convex and bounded above by 4=1 and below by
A(w)=max{w, | —w} (corresponding to the Fréchet upper bound). For
both families, let y =w,— 0.5 and 0 =2(1 — A(w,)), where w, is the point
at which 4 is minimized. # takes value in [0, 1] and is a dependence
parameter since through implicit derivatives it can be shown that (3.5) and
(3.6) are increasing in concordance as € increases with y fixed. The
parameter y takes values in a subinterval of (8 —1,1—6)/2 with 8 fixed
and can be interpreted as a permutation asymmetry parameter since it can
be shown numerically that E[X,/(X,+X,)], with (X,, X,) having
distribution (3.5) or (3.6), increases as y increases with 6 fixed. (Note
that E[X,/(X, + X,)] = [o Pr(X,/(X, + X;)>s)ds= [y {5 Pr((1 —5) X,>
syl X, =y)e "dyds=0.5—{)s(1—5)[A4'(5)/A(s)] ds.) The inverse trans-
forms from 8, y to «, f and «,, B, are the following. For given w,=17+0.5,
let u, be the root of (1 —wy)(1 —u)log(l —u)—woulogu=0. Then for a
feasible (0, y), 1 —ax =log(1 —6/2)/log u, and 1 — f =log(1 —8/2)/log(1 —u,)
for (3.5), and 1 + o, =log(6/2)/log u, and 1+ B,=1og(8/2)/log(1 — u,) for
(3.6). For fixed 6, as y increases over its possible range, u, increases,
o decreases and f increases for (3.5), and «, increases and f, decreases
for (3.6).

The multivariate extension of (3.4), (3.5), or (3.6) has a parameter for
each dimension, which makes the parameters hard to interpret for
dependence.

Several questions arise from the study of the families given by (3.5) and
(3.6). First, there is no general known way of adding a permutation asym-
metry parameter to a bivariate family. Second, the measure of asymmetry
used, E[X,/(X; + X,)], was chosen mainly for convenience because of the
form of the distributions. There is the question of how to choose a measure
of asymmetry and whether there are inequalities like those resulting from
the concordance ordering for dependence. In the multivariate case, there
are even more problems with permutation asymmetry, since there is
even the problem of constructing families with a wide range of dependence
structure (see the next section).
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4. MULTIVARIATE MIXTURE FAMILIES

A nontrivial generalization of Property 4 of Section 2 is given in this
section. We give details for three dimensions and state the generaliza-
tions to four dimensions from which the p-variate result will be apparent.
The notation to state everything in p dimensions would be too messy.
A condition and a theorem needed for the generalization are given first.

Condition A. Let t be a monotone increasing function on [0, o) that
satisfies 7(0)=0 and lim, _, , 7(s)= o0. The function t is such that ¢ "*" is
a LT for all x>0.

From Feller [6], condition A is satisfied if y*=e¢ * is completely
monotone for all x> 0; that is, (—1)* (d*x*(s)/ds*)=0 for k=1,2,...
A condition that may be easier to verify is given in the following theorem.

THEOREM B. x> is completely monotone for all «>0 if and only if
log x = —1 is completely monotone.

Proof. First suppose that — 1 is completely monotone. Then it is easily
checked that dy*(s)/ds <0 and that, by induction, the derivative of each
summand of ( — 1)* (d*y*(s)/ds*) is opposite in sign. Hence sufficiency has
been proved.

Next we show necessity. Let o= —1. (y*) =ac'y* and (¢*)?=
ac”y* + 2*(6')? x* which has the form xa®'y* + a?%* Y, Cyy(s) a™ for k=2
with m,, being nonnegative integers for all . Suppose the 4 th derivative of
¥* has this form; then the (k+ 1)st derivative of x* is ag**Vy*+
o™y + a6y L, Culs) a™ + o2y* T, Ciy(s) 2™ which has the form
ac® Ny 4 a2y Y, Cryy g(s) ™+, where my, ,>0 for all /. Therefore
lim, _,(3*)*/a=0"% for k=1, 2, ... Hence the complete monotonicity of
o = —1 is necessary for y* to be completely monotone for all 2 near 0. §

The generalization of representation (2.2) to three dimensions is

Cluy, uy, us) =9y =9l ") +¢ 'w)1+y '(w3)),  (41)

where ¢, ¢ are Laplace transforms (LT) and t=y 'o¢ satisfies

Condition A. The mixture representation for (4.1) that generalizes (2.1) is
Clur iz )= [ [ Gha) Gha) dM, (B 2) G3 () dM (), (42)

where the relationships with (4.1) and the definitions of G, G., G,, M|,
M, will be seen from the derivation given below. Since ¢ '(1)=
¢ ~'(1)=0, note that the (1, 2) bivariate margin has form (2.2) with LT ¢
and the (1, 3) and (2, 3) have form (2.2) with LT .
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Before the derivation, we state the two generalizations or nestings of
LT’s for four dimensions. In higher dimensions, there are many possible
nestings. At each level of nesting, Condition A must be satisfied in order for
the result to be a multivariate distribution. Let ¢,, ¢,, ¢ be LT’s. The first
LT representation is

Cluy, uy, s, ug) =3[, ' ¢,(d; 29, [¢, (1)) + 0, '(uy)]
+ ¢, Huz))+ 5 us)], (4.3)

where ¢, '-¢, and ¢, ' ¢, satisfy Condition A. A second distinct LT
representation is

Cluy, uy, Uy, uy) = o4, T ¢1[¢| l(“1)+¢1 l(uz)]
+: g2l s+ 5 ua)]), (4.4)

where ¢, '-¢, and ¢; ' ¢, satisfy Condition A. Note that all trivariate
margins of (4.3) and (4.4) have form (4.1) and all bivariate margins of (4.3)
and (4.4) have form (2.2). For (4.3), the (i, j) has LT ¢, | for i< . For
(4.4), the (1, 2) margin has LT ¢,, the (3, 4) margin has LT ¢,, and the
remaining four bivariate margins have LT ¢,. Clearly the idea of (4.3) and
(4.4) generalizes to higher dimensions.

The mixture representations for (4.3) and (4.4) are respectively

fo‘ J;) | J.OM GG, dM,(y; B) G5 dM, (B ) G5 dM ()
and
J«Ox j«o’« G{’ngMz(ﬂ,a}j7 GLGy dMy(y; 1) dM ().
0

Derivation for (4.1) and (4.2). Equation (4.1) has the formal
representation

J, ol uz) G3us) dM (a),

where M | is the distribution corresponding to W, G5 (u3) = exp[ —y ~'(u3)],
Gy (uy, u))=exp{—t[¢ '(u)+¢ '(4,)]}, and 1=y '-¢. Note that
in the bivariate case, the power of a distribution function need not be a
distribution function (a necessary and sufficient condition for all powers to
be distributions is that the distribution is max-infinitely divisible), so that
it must be proved that G, is a distribution function. We show this by
giving F, = G}, the mixture representation in (4.2).
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The univariate margins of F, are F,(u;)=exp{—ay Yu,), j=1,2.
Hence u,=y(—a 'log F,,), j=1,2, F,=exp{—oar[t '(—x 'log F,,) +
t '(—a 'log F,,)]}, and

T (—a"log F)=1t""(—a " 'log F,)+t (—a 'logF,,).
Let x, be defined by x. '(z)=1 '(—« 'logz) so that
FJ(:Zz [K;I(le)+7.1 l(F21)]' (45)

Therefore y,=e *=yx* where y=y,. From (2.1) and (2.2), (4.5) is a
distribution function for all x>0 if y, is a LT for all « > 0 or if Condition A
holds.

Assuming Condition A holds, representation (4.2) holds with M,(-; «)
being the distribution with LT y* and, for all x>0 and j=1,2,
Gi=exp[—x; '(Fu)] =exp[—t '(—a 'log F,)] =exp[—t 'oy ']=
exp[—¢ ']

Some examples of parametric families of the form (4.1) are listed next;
these generalize Families 2.2, 2.3, 2.6, and 3.1.

4.1. A Generalization of Family 2.2

Let ¢(s; 8) =exp{ —s""}, 8> 1. For §, <8,, by Theorem B, Condition A
is satisfied for 7(s)=¢ ~'(#(s; 6,); 8,) = s*, where p=8,/68,. Equation (4.1)
becomes

C(uy, uy,u3;0,,8,)
=exp{ — ([(—log u,)* + (—log u;)*]*"** + (—log u;)*")""'}.  (4.6)

The LT x*(s) is exp{—as”} corresponding to a scaled positive stable
random variable. The generalizations to higher dimensions are such that
the parameter which is further nested is always larger. Family (4.6) has
been used recently as a model for multivariate extremes (Tawn [34], Coles
and Tawn [2], Joe [19]). The mixture represention via positive stable
random variables is given in Hougaard [14]. The family also appears in
McFadden [24].

42. A Generalization of Family 2.3

Let ¢(s;0)=(145)"", 6=20. For 6,<60,, Condition A is satisfied
for 7(s)=¢ " '(¢(5;0,);8,)=(1+5)" —1, where p=8,/0,. Equation (4.1)
becomes

Cluy, us,us; 0,,0,)=[(u;2+u, 1) 4y o0 _13-V0 (4.7)
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The LT y*(s) is exp{—a[(l+s)’—1]} which also corresponds to a
positive stable random variable. As in Family 4.1, the generalizations to
higher dimensions are such that the parameter which is further nested is
always larger. The multivariate extreme value limit from using (4.7) as
a copula for survival functions leads to a generalization of Family 2.5
(Joe [19]). This multivariate extreme value family has also been useful for
multivariate extreme value data.

4.3. A Generalization of Family 2.6

Family 2.6 fits within the same form as Families 2.2 and 2.3, and it turns
out that it generalizes in the same way to the multivariate case, although
the proof that Condition A holds is more difficult.

Let ¢(s;0)=—0 '"log(1—(1—e %) e *), 820 For 8, <8,, we show
that Condition A holds by showing that y(s)=e¢ ™ is a LT of an
infinitely divisible discrete distribution, where t(s)=4¢ '(¢(s;0,);0,)=
—log{(1=[1—ce *]1")/(1—e")}, p=8,/8,, and c=1—e¢ . Replacing
e ' by z, y(=logz)=(1—-[1—=cz]")/(1—e ") is the probability
generating function of a power series discrete distribution on 1,2, .... The
probability mass at the positive integer i is p,=pc/(1 —e ) for i=1 and
pIT,_  G—p)]c/Lil(1—e )] for i>1. Now, g(z)=y(—logz)/z is a
probability generating function of a discrete random variable with mass
piv, at i, i=0,1,2,... By the sufficient condition of Warde and Katti
[26], since p,, ,/p;=(i—p)c/(i+ 1) is increasing in i, g corresponds to an
infinitely divisible distribution and, for 2>0, g*(z) is the probability
generating function of a discrete random variable on the integers 0, 1, 2, ....
Therefore y*(—log z)==zg*(z) is the probability generating function of a
discrete random variable on a,a+1,a+2,... Hence Condition A is
satisfied.

The family (4.1) becomes

C(uls Uy, Uy, 919 02)= _91 ! lOg{l —('Iﬁl(l — [1 -, l([ —e qul)
x(I—e B2 ]0)(1—e M)}, (48)
where ¢, =1—¢ %and c,=1—¢"*.
4.4. A Generalization of Family 3.1

With é fixed in (0, 1), Family 3.1 generalizes in the same way to the
multivariate case. Let ¢(s;0)=0 '[1—(1—c(8)e *)'], 0>1, where
(@) =1~ (1-29)" For 6, <8, x(s)=exp{—¢ '(4(s:0,);0,)} =
[c(8,)] ' {1=[1—c(8,)e *)"}, where p=8,/0,. This is the LT of an
infinitely divisible discrete distribution that appears in the Family 4.3 and
hence Condition A is satisfied. Equation (4.1) becomes
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Cluy, uy, uy; 8y, 6,)
=61 —[1={1=[1—A(u,, 0,) Au,, 0,)/c(8,)]""}
x A(uy, 6,)/c(6,)1""), (4.9)

where A(u, 0)=1— (1 ~du)’. The limit as 6 — 1 results in the family

Cluy, ty, uy; 01, 0,)=1— {[o(1 =)+ 071" (1 — o)+ 05}V,
(4.10)

where v;=1—u,, j=1,2,3. The copula resulting from the extreme value
limit of (4.10) is (4.6).

In each of the families given in this section and their multivariate exten-
sions, the parameters can be interpreted as dependence parameters since
the bivariate margins are increasing in concordance as the parameters
increase. Joe [ 18] defines a multivariate concordance ordering generalizing
that of Yanagimoto and Okamoto [37], with two multivariate distribu-
tions being ordered if the cumulative distribution functions and the survival
functions are both ordered. However, the inequalities and monotonicities
involved in the multivariate concordance ordering are difficult to check
analytically, because for a family given via cumulative distributions func-
tions, the survival functions are sums of marginal cumulative distributions
with alternating signs.

5. APPLICATIONS, DISCUSSION, AND OPEN PROBLEMS

[t should be apparent from the presentation here that it is difficult to
come up with a multivariate family that covers a wide range of dependence
structure. This is partly due to the possibly unsolvable problem of con-
structing a multivariate family with given compatible bivariate margins. The
successful application of the multivariate normal copula or distribution is
really because of its flexibility in dependence structures rather than for
physical reasons or as an approximation from the Central Limit Theorem.
It is well known that the multivariate normal distribution is maximum
entropy (maximizing —|{ f log f over multivariate densities /') subject to
constraints of given (compatible) means, variances, and covariances.
Perhaps less well known is the fact that the multivariate normal distribu-
tion is also the maximum entropy distribution given its set of bivariate
margins.

The use of multivariate extreme value distributions is based on an
asymptotic approximation, where it is assumed that extremes are
componentwise maxima (or minima) of a “large” number of observations.
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This is a natural application of a multivariate non normal distribution. The
Hiisler—Reiss family, which is constructed from the multivariate normal dis-
tribution, has almost as much flexibility in dependence as the multivariate
normal distribution. There is a simpler form for the family than that given
in Hiisler and Reiss [15] to make numerical implementation of the
likelihood easier, but dimensions greater than 5 would be too time-
consuming because of computations involving the integrals of multivariate
normal distribution functions. Joe [ 17] has studied families of multivariate
extreme value copulas (with univariate exponential margins) that have a
parameter for each marginal distribution of order 2 or more and that have
the Marshall-Olkin multivariate exponential distributions at the boundary.
However, these models have not been successfully applied to multivariate
extremes (Joe [197]), and the reason seems to be that the parameters
represent partly dependence and partly permutation asymmetry and they
change for marginal distributions even though the copulas for the margins
are within the same multivariate family. Hence it seems important that the
parameters of a multivariate distribution have simple interpretations, which
is a reason for the emphasis on properties in Section 2.

For the families given in this paper that have closed forms for the
cumulative distribution functions, we remark here that likelihood inference
is straightforward given computer resources. The density function for a
copula can be obtained with a symbolic manipulation software and the log
likelihood can then be maximized with a quasi-Newton routine. For
the multivariate families in Section 4, the parameters retain their inter-
pretations for margins, so that the estimates based on separate bivariate
likelthoods can be used as initial guesses for the multivariate likelihood
(see Joe [19] for further details). Since likelihood inference can be
straightforward, the further research problems are to construct multivariate
families that have desirable properties.

As a further application to demonstrate the importance of properties,
note that a Markov chain stationary time series model (of order 1) can be
derived from each bivariate family. Let F be the univariate marginal
distribution of the time series X, X,, .. and assume that F is absolutely
continuous. Let C(-;60) be a family of bivariate copulas and let
H(x, yv;0)= C(F(x), F(y); 8). The density is h(x, y; 8)=c(F(x), F(y); 0)
f(x) f(»), where c is the density corresponding to C and f = F'. A Markov
transition function can be defined as p(x,|x,_ ;8)=h(x,_,, x,;0)/f(x,_,)
for t > 1. (Note that this is a simple construction of a stationary times series
that can have an arbitrary univariate marginal. This family of times series
generalizes the normal AR(1) time series since the latter obtains when F is
normal and the copula is bivariate normal.) Some environmental time
series exhibit the behaviour of clustering of consecutive observations above
high thresholds. This behaviour is expected for a Markov chain stationary
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time series where the family of copulas has upper tail dependence (see Joe
[16]). Hence to model a time series for extreme value inference, the
copulas with strong tail dependence as well as the extreme value copulas
are useful.

Possibly a Markov chain time series of order 1 is enough for some
extreme value inferences. However, if a Markov chain time series of order
p—1, p>2, based on a p-dimensional copula is desired, then the families
of copulas in Section 4 probably do not provide adequate dependence
structure. Certainly a p-dimensional copula with permutation symmetry is
not a reasonable model. So for both multivariate extremes and Markov
chain stationary time series, the first problem given in the next paragraph
is important.

In conclusion, some difficult open problems are:

1. Are there families of absolutely continuous multivariate copulas
that have (i) simple forms, (ii) all bivariate margins in the same family, (iii)
a wider range of dependence structures than those given in Section 4, and
(iv) bivariate tail dependence?

2. Is there a simple family of bivariate copulas with both upper and
lower tail dependence?

3. Are there general approaches other than the mixture or Laplace
transform approach? Note that for the Laplace transform approach,
there does not seem to be a way to tell from a family of LT's whether the
resulting family of copulas will interpolate between independence and the
Fréchet upper bound.

For Problem 1, the family of multivariate distributions in Cuadras
and Augé [4] satisfies all the conditions except absolute continuity. The
limiting multivariate extreme value distribution from this family is not
interesting. Using an approach different from that in this paper, the
author has obtained families that satisfy all but one of the conditions in
Problem 1; the multivariate families have only p — 1 of p(p — 1)/2 bivariate
margins in the same bivariate family.

As several new families of multivariate distributions with given margins
were discovered for this paper, there is no doubt that more will be found
in the future.

APPENDIX: OUTLINE OF PROOF THAT (3.1) 1S INCREASING IN € AND &

We first fix 6 and show that (3.1) is increasing in 8, and then fix 8 and
show that (3.1) is increasing in 4.
With § fixed, let A,(u)=1—(1—du)? so that (3.1) becomes

C(ul,uz;g,(s):é’l[l _ {1 _ [A()(l)]71 Ao(ul)Ag(uz)}lm]-
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Note that 84, (u)/60 = — (1 —du)" log(1 —du). Let v,= (1—6u,)’, §;=1 —v,,
j=1,2, and let c=1—(1-6)". Then 6[8C/30]=0 *(1 —0,0,/c)"" !
glvy, vy), where g(v,, v;) = (1 —0,5,/c) log(1 —6,0,/c)—c '(v,7,log v, +
Ty logey)+ ¢ 0,,(1 —¢)log(l —¢), 1—e¢<wv,, r,<1. At the boun-
daries with v, =1—-c¢ and v, =1, g(1 — ¢, v,)=g(1,v,)=0, and g(-, v,) is
concave since ¢*g/dv? <0. Hence g =0 and 8C/d0 > 0.

With 6> 1 fixed, an indirect method is needed to show that (3.1) is
increasing in J. Let 0<d,<d,<! and define inverse LT's ¢, '(z)=
—log{[1—=(1-8,2)"Y[1—-(1-6,)"]}, j=1, 2. By the lemma in the
Appendix of Genest and Mackay [10], it suffices to show that x,(z)/x,(z)
is increasing in z, where «,(z)=—0 'd¢, "(z2)/dz=5,(1-9,2)" !/
[1—(1-90,2)"]. The monotonicity of «,/x, is satisfied if S(w,)/S(w,) is
increasing in =z, where w,=1-¢z and S(w)=w" '/(1—-w"). The
derivative of S(w,)/S(w,) is nonnegative if

SO0} w3 /S0w;) < S'0vy) wi/S(w,), (A1)

where w/=wj(z)=—4, and S'(w)=(1—-w")"2w’ 3(0—1+w"). The
inequality (A1) holds if T(3)=68[0—1+(1-6z)"]J(1—-dz) '[1-
(1—0z)"] ' is increasing in d€ (0, 1). Straightforward calculations yield
that T'(4) is equal to sign to A4(B, w)=0—-1+2-0—-0) w? + 80"+ -
w? where w=1—0z. Based on analyzing h at the boundaries =1,
#— o, w=0 and w=1 and numerically computing # otherwise, it has
been shown that 2> 0.
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