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Abstract

We consider the estimation of the support of a probability density function with iid

observations. The estimator to be considered is a minimizer of a complexity penalized excess

mass criterion. We present a fast algorithm for the construction of the estimator. The

estimator is able to estimate supports which consists of disconnected regions. We will prove

that the estimator achieves minimax rates of convergence up to a logarithmic factor

simultaneously over a scale of Hölder smoothness classes for the boundary of the support. The

proof assumes a sharp boundary for the support.
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1. Introduction

We will present a method for the estimation of a support of a multivariate
probability density function. The method works also for the estimation of the
support of an intensity function of a Poisson process. The estimator is spatially
flexible, allowing us to estimate supports which consist of disconnected components.
The estimation of density support may be applied to the detection of abnormal

behavior of the system, plant, or machine. We may apply our estimator to define a
nonparametric multivariate method for statistical quality control, which could
extend the Shewart methodology based on tolerance regions, see Derman and Ross
[7]. Support estimation may also be applied to measure performance of an enterprise
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in terms of technical efficiency measured by distance from the observed productivity
to the boundary, see Deprins et al. [6]. We may apply our estimator to the estimation
of the support of a Poisson intensity. This may be applied for example to estimate
the boundary of a forest, when the location of individual trees is distributed
according to a planar Poisson process with unknown intensity function.
The previous methods for the support estimation may be classified at least to three

categories:

1. piecewise polynomial estimators,
2. estimators which are a union of balls centered at observations,
3. estimators which are based on the convex hull of sample points.

Piecewise polynomial estimators are defined for boundary fragments by
partitioning the fragment to intervals and by estimating the boundary on each
interval by a polynomial. For star-shaped sets, one may use piecewise polynomial
approximation on sectors. A piecewise constant estimator was proposed by Geffroy
[12]. Korostelev and Tsybakov [19] study piecewise polynomial estimator of
maximum likelihood type. They derive minimax rates of convergence when the
support has a sharp boundary. Härdle et al. [15] consider support estimation with a
piecewise polynomial estimator when the boundary of the support is not sharp.
The estimator which is a union of balls centered at observations amounts to

estimating the support of the density by the support of a kernel estimate whose
kernel has a ball-shaped support. These types of estimators were considered by
Devroye and Wise [8], Cuevas and Fraiman [5], Walther [31], Baı́llo et al. [1].
When the support is a convex set, it makes sense to estimate it by a convex hull of

sample points. This type of estimator was studied by Rényi and Sulanke [26,27],
Chevalier [4]. Ripley and Rasson [28] defines a blown-up version of the convex hull
in order to eliminate bias. A review is given by Schneider [29]. Korostelev and
Tsybakov [21] and Mammen and Tsybakov [22] derive the minimax rates of
convergence for the estimation of a convex set. Korostelev and Tsybakov [21]
establish 96% efficiency of a certain blown-up version of the convex hull estimator.
Korostelev et al. [18] consider sharp asymptotics for the case when the support is a
monotone boundary fragment. Gijbels et al. [13] consider estimation of a support of
a distribution when the support is a convex set or bounded by a monotone function.
Their problem arises in an econometric problem where the frontier functions of
production sets shall be estimated.
Korostelev and Tsybakov [20] contains results on estimators belonging to all three

categories. Hall et al. [14] consider a different type of estimator which is based on
order statistics. Mammen and Tsybakov [22] study density support problem under a
general setting of entropy conditions. Their set up includes regions with boundaries
that fulfill smoothness conditions (Dudley classes) and convex sets. Polonik [25]
derives rates of convergence for support estimation based on excess mass estimates.
We will define a new type of estimator which does not belong to any of the

previous groups. The closest relative is the group of piecewise polynomial estimators,
since the simplest form of our estimator may be seen as a histogram-type estimator
with a data-dependent partition. Our method is related to the classification and
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J. Klemelä / Journal of Multivariate Analysis 88 (2004) 274–297 275



regression trees as defined by Breiman et al. [3], and to dyadic CART as defined by
Donoho [9]. This type of method was first applied to boundary estimation in
Donoho [10], who studied the estimation of the boundary of two-dimensional
regression function with regular and fixed design.
The methods of category 1 in the above classification suppose that we know the

number and rough location of disconnected components of the support. The
methods of category 3 presuppose that the support is a convex set. Our method is in
this respect more flexible. The methods of category 2 are vulnerable to the curse of
dimensionality, since they are kernel-type methods based on local averaging. Our
estimator is based on economical splitting of the sample space, making it possible to
efficiently estimate high-dimensional supports.
In this article, we propose to estimate the support by minimizing a complexity

penalized excess mass functional. Excess mass functional is defined as �PnðAÞ þ
lmesðAÞ; where PnðAÞ is the empirical probability, mesðAÞ ¼

R
A

dx; ACRd ; and
l40: Excess mass functional was proposed to be applied in level set estimation by
Hartigan [16], Müller and Sawitzki [23], Polonik [25], Tsybakov [30]. Excess mass
functional is useful also for the support estimation when we choose l to be small.
The corresponding estimator is robust to outliers and we have feasible algorithms for
solving the minimization problem. Indeed, we may apply a dynamic programming
algorithm which solves the minimization problem for spatially localized subsets of
the support and then builds the global solution from the previously solved local
problems. When the boundary of the support is sharp, that is, the density has a jump
on the boundary, then by choosing l to be smaller than the jump, the level set at level
l is equal to the support of the density.
We will prove that the proposed method has nearly minimax rates of convergence

simultaneously over a scale of Hölder smoothness classes for the boundary. We will
consider cases when the Hölder smoothness index s is in interval ð0; 2�: The cases
sAð0; 1� and sAð1; 2� require different estimators. We will prove the results using the
oracle inequality approach. We have followed the approach of Donoho and
Johnstone [11] in that we choose both the basis and a model under that basis instead
of choosing only the best model in a single basis. The method of using exponentially
growing collection of bases has been applied for example in Donoho [9] for fixed
design regression, in Donoho [10] for fixed design boundary estimation, in Barron
et al. [2] for various density, regression, and boundary estimation problems, and in
Klemelä [17] for multivariate density estimation.
In the statements of theorems we will make certain assumptions concerning the

underlying distribution. This does not mean that the estimator would not behave
favorably also in cases where these assumptions are not satisfied. We will define
estimators without model assumptions, unlike in some cases where the support has
been assumed to be star shaped or convex.
In Section 2, we define two estimators. First one is optimal for Hölder smoothness

index sAð0; 1�; dX2 and second one for Hölder smoothness index sAð1; 2� for d ¼ 2:
In Section 2.3, we present algorithms for the construction of the estimates. In Section
3, we formulate theorems on the rate of convergence of the estimators. In Section 4,
we give three simulation examples. The proofs are given in Section 5.
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Simulations which were made for this article may be reproduced with an
R-package which is downloadable from http://www.denstruct.net.

We will denote mesðAÞ ¼
R

A
dx: With IA we denote the indicator of set ACRd :

IAðxÞ ¼ 1 when xAA and IAðxÞ ¼ 0 otherwise. Euclidean distance in Rd is denoted

by jj � jj:We apply the same notation for the Euclidean distance in Rd�1: The relation
anBbn means limn-Nðan=bnÞ ¼ 1: Generic positive constants will be denoted by
C;C1;C2;y Denote

Qd
i¼1½ai; bi� þ Z ¼

Qd
i¼1½ai � Z; bi þ Z� for ZX0:

2. Definition of the estimators

We will consider two types of estimators: (1) an estimator which is a union of
rectangles and (2) an estimator which is a union of rectangles and parts of rectangles,
resulting from a skew split. Estimators are minimizers of a complexity penalized
excess mass criterion among sets which can be represented as a union of sets in a
certain partition.

Let X1;y;XnARd be random vectors with density function whose support we
want to estimate.

2.1. Block estimator

Let us first consider an estimator which is a union of rectangles. We start with
defining the set of partitions with the help of which we define the class of sets on
which we search the minimizer. We will consider partitions which are a result of a
series of dyadic splits, when by a dyadic split of a rectangle we mean a split along
some coordinate axis which divides the rectangle to two equal parts.

2.1.1. Set of partitions

We will denote by PnðRÞ the set of dyadic partitions of R; where RCRd is a
rectangle. This set consists of partitions of R that result from of a series of dyadic
splits. We will give a recursive definition below.

Definition 1. We say that PnðRÞ is the set of dyadic partitions of R ¼
Qd

i¼1½ai; bi�; with
fineness parameter a40; if

1. fRgAPnðRÞ;
2. if PAPnðRÞ and P ¼

Qd
i¼1½ci; di�AP; and

di � ci4ðbi � aiÞ2�Jn

for some i ¼ 1;y; d; where

Jn ¼ Jaðd � 1Þ�1 log2 nn; ð1Þ

then ðP\fPgÞ,fP1;P2gAPnðRÞ where P1;P2 are the results of the dyadic split of
P in the ith direction.
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The definition implies a bound for the maximal fineness of partitions in set PnðRÞ:
at most Jn splits will be made to any direction and the rectangles in the finest

partition have volumes greater or equal to 2�dJn mesðRÞ:
For the choice of the rectangle R we apply two methods.

1. With a priori considerations one finds a rectangle which contains the support. We
make this assumption to analyze rates of convergence of the estimator.

2. Denote by R� the smallest rectangle containing observations whose sides are
parallel to the coordinate axes, and choose R ¼ R� þ Z; where ZX0 and we apply
notation

Qd
i¼1½ai; bi� þ Z ¼

Qd
i¼1½ai � Z; bi þ Z�: We choose R in this way in

simulation examples.

We will denote later Pn ¼ PnðRÞ:

2.1.2. Collection of sets

As the available class of sets from which we search a minimizer we consider

An ¼ AnðRÞ ¼ fAðP;WÞ: PAPnðRÞ;WAWðPÞg; ð2Þ

where WðPÞ is the set of 0–1-markers associated with partition P;

WðPÞ ¼ f0; 1gP ¼ fðwPÞPAP: wPAf0; 1gg ð3Þ

and AðP;WÞ is the set which is the union of those sets in partition P which are
marked with 1 by set of markers W ¼ ðwPÞPAP;

AðP;WÞ ¼
[

fPAP: wP ¼ 1g: ð4Þ

2.1.3. Complexity penalized excess mass criterion

Let the excess mass functional be

genðAÞ ¼ �1
n

Xn

i¼1
IAðXiÞ þ lmesðAÞ;

where IAðxÞ ¼ 1 when xAA and IAðxÞ ¼ 0 otherwise, and l40: We will define the
complexity of a set AAAn to be the number of sets in the corresponding partition.
Let

DðWÞ ¼ #fwP ¼ 1: wPAWg; ð5Þ

where WAWðPÞ with PAPn: Let the complexity penalized excess mass criterion be

EnðP;W ; aÞ ¼ genðAðP;WÞÞ þ aDðWÞ; ð6Þ

where PAPn; WAWðPÞ; AðP;WÞ is defined in (4), and a40:

2.1.4. The estimator

We define the block estimator with the excess mass criterion by

Âen ¼ Að #Pen; Ŵe
nÞ; ð7Þ
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where

ð #Pen; Ŵe
nÞ ¼ argmin

PAPn;WAWðPÞ
EnðP;W ; aÞ; ð8Þ

a40 is the smoothing parameter, and En is defined in (6). In addition to the
smoothness parameter a; this estimator depends on the ‘‘fineness’’ parameter a and
‘‘level set’’ parameter l: Theorem 2 gives conditions for the choice of these
parameters.

2.2. Half block estimator

Let us consider an estimator which has the form of a union of rectangles and
halves of rectangles resulting from a skew split. We will call this estimator half block
estimator. We will use a ‘‘library’’ of sets resembling the one defined in Donoho [10]
with the help of wedgelets. In this section, we will restrict ourselves to the case d ¼ 2:
The definition of the half block estimator differs from the definition of the block

estimator only in that we consider a different set of partitions which will define the
class of sets from which we search a minimizer.
We will consider partitions which are a result of a series of dyadic splits, with

possibly a split not parallel to the coordinate axes at the final stage. We will give a
recursive definition below.

Definition 2. We say that PD
n ðRÞ is the set of dyadic partitions of R ¼

Qd
i¼1 ½ai; bi�

which contains skew splits, with fineness parameters a40 and b40; when d ¼ 2; if

1. fRgAPD
n ðRÞ

2. if PAPD
n ðRÞ and P ¼

Qd
i¼1½ci; di�AP; and

di � ci4ðbi � aiÞ2�J̃n

for some i ¼ 1;y; d; where

J̃n ¼ Jad�1 log2 nn; ð9Þ

then ðP\fPgÞ,fP1;P2gAPD
n ðRÞ; where P1;P2 are the results of the dyadic split of

P in the ith direction,

3. if PAPD
n ðRÞ and P ¼

Qd
i¼1 ½ci; di�AP; and

di � ciXðbi � aiÞ2�J̃n

for some i ¼ 1;y; d; then ðP\fPgÞ,fP1;P2gAPD
n ðRÞ; where P1;P2 are a result

of a skew split of P whose endpoints are on the boundary of the rectangle P; and
the set of possible endpoints forms a grid with stepsize

di ¼ ðbi � aiÞ2�Ln ; Ln ¼ Jbðd þ 1Þ�1 log2 nn

in ith direction. The grid is such that it contains the four vertices of P as grid
points.
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The definition allows splits not parallel to coordinate axes only for the rectangles:
once this kind of split is made, it is not anymore possible to split results of this skew

split. To be able to do skew splits we need that Ln4J̃n:
We define the half block estimator with the excess mass criterion by

Ãen ¼ Að *Pen; W̃e
nÞ; ð10Þ

where AðP;WÞ is defined in (4):

ð *Pen; W̃e
nÞ ¼ argmin

PAPD
n ;WAWðPÞ

EnðP;W ; aÞ;

WðPÞ is as defined in (3), En is defined in (6), and a40 is the smoothing parameter.
In addition to the smoothness parameter a; the estimator depends on the ‘‘fineness’’
parameters a and b; and ‘‘level set’’ parameter l: Theorem 3 gives a result on the rate
of convergence of this estimator.

Remark 1. The half block estimator is related to the wedgelet estimator as defined in
Donoho [10], who considers the estimation of the boundary of a regression function
when the design is fixed and regularly spaced.

The wedgelet estimator has the binwidth n�1=2 in the finest rectangular partition.
This corresponds to the choice a ¼ 1: The wedgelet estimator allows ‘‘subpixel’’
splits of the rectangles, and these splits have discretization step n�2=3: This
corresponds to the choice b ¼ 2:
The partition in the definition of the wedgelet estimator is slightly more restrictive

than the partition of the half block estimator. The partition of the wedgelet estimator
is defined by the condition that every rectangle will be split by a ‘‘quad-split’’: a
split which will result in four rectangles. The partition of the half block estimator
grows with dyadic splits. This will add flexibility and computational complexity, see
Section 2.3.

2.3. Solving the minimization problem

Let us discuss algorithms for solving the minimization problem in the definition of

estimators Âen and Ãen which were given in (7) and (10).

One may solve the minimization problem by first building a large multitree whose
terminal nodes represent bins of the rectangle containing the support. A path leading
to a bin will represent a possible way of choosing splits. Thus, to each bin of the
initial rectangle R corresponds many terminal nodes of the tree. The minimization
problem is solved by pruning the tree.

2.3.1. Growing the tree

Construct a multitree with a single root node and at most 2d children for every
node. The root node will correspond to the initial rectangle R containing the
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support. We have d ways of choosing the splitting direction and each binary split will
result in two bins. Thus, 2d children will represent the rectangles resulting from
binary splits in d directions.
For the case of block estimator at most Jn splits will be made for each direction;

thus, the tree will have dJn levels where Jn is defined in (1). The half block estimator

will have dJ̃n levels, where J̃n is defined in (9).
We will record the number of observations in each bin. When some bin is empty

we will not split it anymore. The resulting tree will have at most

XdJn

i¼0
ð2dÞi ¼ Oðð2dÞdJnÞ ¼ Oðnad log2ð2dÞ=ðd�1ÞÞ

nodes for the case of block estimator and Oðð2dÞdJ̃nÞ nodes for the case of half block
estimator. In the case of half block estimator, we have to record also the frequencies
at the results of a skew split. Note that in the case of the wedgelet estimator defined
in Donoho [10] the tree would have

XJ̃n

i¼0
ð2dÞi ¼ Oð2dJ̃nÞ

nodes.

2.3.2. Pruning the tree

To prune the tree, we start from the next to the highest level, and travel to the
root node one level at a time. For each node, we find out whether the split to
some of the d directions helps (whether it results to a smaller complexity penalized
excess mass criterion). If the split does not help, we will cut the tree below the
node.
We will formulate a lemma which formalizes the idea that we may solve the global

minimization problem (8) by first solving localized subproblems, and building the
global solution from the previously solved local problems. This lemma is given for
the block estimator.

Lemma 1. Let R be the initial rectangle of the estimator and let R0CR be a rectangle.

Let PnðR0Þ be defined in Definition 1. Define the set which solves the minimization

problem when we localize to the rectangle R0:

ÂenðR0Þ ¼ Að #PenðR0Þ; Ŵe
nðR0ÞÞ;

where

ð #PenðR0Þ; Ŵe
nðR0ÞÞ ¼ argmin

PAPnðR0Þ;WAWðPÞ
EnðP;W ; aÞ:
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Let R0CR be now fixed and denote with R1;i and R2;i the left and the right rectangle

resulting from dyadic split of R0 in ith direction, i ¼ 1;y; d: Let

M ¼minfEnðfR0g; aÞ;

Enð #PenðR1;iÞ; Ŵe
nðR1;iÞ; aÞ þ Enð #PenðR2;1Þ; Ŵe

nðR2;iÞ; aÞ;

Enð #PenðR1;iÞ; Ŵe
nðR1;iÞ; aÞ;

Enð #PenðR2;iÞ; Ŵe
nðR2;iÞ; aÞ: i ¼ 1;y; dg:

Then,

ÂenðR0Þ ¼

R0; when M ¼ EnðfR0g; aÞ;
ÂenðR1;iÞ,ÂenðR2;iÞ; when M ¼ Enð #PenðR1;iÞ; Ŵe

nðR1;iÞ; aÞ
þ Enð #PenðR2;iÞ; Ŵe

nðR2;iÞ; aÞ;
ÂenðR1;iÞ; when M ¼ Enð #PenðR1;iÞ; Ŵe

nðR1;iÞ; aÞ;
ÂenðR2;iÞ; when M ¼ Enð #PenðR2;iÞ; Ŵe

nðR2;iÞ; aÞ:

8>>>>>>><
>>>>>>>:

Proof. Let the collection of setsAnðR0Þ from which we search a minimizer be defined
in (2). We may express AnðR0Þ recursively:

AnðR0Þ ¼ fR0g,fA1,A2: AkAAnðRk;iÞ; k ¼ 1; 2; i ¼ 1;y; dg

,
[2
k¼1

[d
i¼1

AnðRk;iÞ:

On the other hand, when PkAPnðRk;iÞ; WkAWðPkÞ; k ¼ 1; 2; i ¼ 1;y; d; then

EnðP1,P2;W1,W2; aÞ ¼ EnðP1;W1; aÞ þ EnðP2;W2; aÞ:

Indeed, this follows directly from definition (6) since P1 and P2 are partitions of
disjoint rectangles. We have proved the lemma. &

In particular, when we choose R0 ¼ R in Lemma 1, then ÂenðRÞ ¼ Âen is the global

solution defined in (7).
We give in the following the pseudo-code for the pruning algorithm in the case of

the block estimator.

* Input for the algorithm is the smoothing parameter a40 and a multitree,
whose nodes represent certain bins. We will denote by leftiðmÞ and rightiðmÞ
the pointers to the left and the right child of node m; when the split is in the
ith direction, i ¼ 1;y; d: Assume that for each node m we have calculated

ARTICLE IN PRESS
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emCompðmÞ ¼ �freqðmÞ=n þ lmesðmÞ þ a; where freqðmÞ is the number of
observations in the set corresponding to m:

* Output of the algorithm is a binary tree. This binary tree is pruned from
the original multitree. We represent this subtree by giving for each node
pointers ‘‘left’’ and ‘‘right’’, which point to the left and the right child of
the node.

* An internal data structure of the algorithm is the decoration S which gives for
every node of the tree the minimal excess mass complexity for the collection of
sets localized to the rectangle associated with this node.

1. set maxdep ¼ dJn (maxdep is the maximum level of the multitree).
2. go through levels starting from the next to the highest level: for dep ¼

ðmaxdep � 1Þ to 1
(a) go through the nodes m at level dep
(b) if m is leaf node then SðmÞ ¼ emCompðmÞ
(c) else

i. let M ¼ minfEi;Elefti ;E
right
i : i ¼ 1;y; dg; where we denote

Ei ¼ SðleftiðmÞÞ þ SðrightiðmÞÞ;

Elefti ¼ SðleftiðmÞÞ;

E
right
i ¼ SðrightiðmÞÞ:

ii. if emCompðmÞoM then make m terminal node:
(A) SðmÞ ¼ emCompðmÞ;
(B) leftðmÞ ¼ NIL; rightðmÞ ¼ NIL;

iii else if M ¼ Ei then node m will be split to ith direction and it has two
children:
(A) SðmÞ ¼ Ei;
(B) leftðmÞ ¼ leftiðmÞ; rightðmÞ ¼ rightiðmÞ;

iv else if M ¼ E
right
i then node m will be split to ith direction and it has only

the right child:
(A) SðmÞ ¼ E

right
i ;

(B) leftðmÞ ¼ NIL; rightðmÞ ¼ rightiðmÞ;
v else if M ¼ Elefti then node m will be split to ith direction and it has only

the left child:
(A) SðmÞ ¼ Elefti ;
(B) leftðmÞ ¼ leftiðmÞ; rightðmÞ ¼ NIL

(d) end if

(e) end go

3. end go

In the case of the half block estimator one has to make more comparisons at each
node to find out whether some of the skew splits will be better than the splits along
the coordinate axis.
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3. Rates of convergence of the estimators

We consider estimation of the support of a uniform density f : Rd-R;

f ¼ IA=mesðAÞ;

where dX2; AC½0; 1�d ; IAðxÞ ¼ 1 when xAA and IAðxÞ ¼ 0 otherwise, and

mesðAÞ ¼
R

A
dx:

We will denote by f the true underlying density and for BCRd we will denote
gB ¼ IB=mesðBÞ: We will denote by SðgÞ the support of function g so that for
example f ¼ gSð f Þ:

Boundary fragments have been a prototype model for studying set estimation. We
will assume the boundary fragment model in analyzing the behavior of the block
estimator defined in Section 2.1. To analyze half block estimator defined in Section
2.2 we assume that the support of the density is star shaped. In the case of half block
estimator we have assumed also that d ¼ 2:

3.1. Block estimator

To prove a result for the rates of convergence of the block estimator, we define a
scale of Hölder smoothness classes for smoothness index 0osp1 for the boundary
fragment model.
Let Hs be the Hölder class of functions of smoothness 0osp1 and radius L40

on ½0; 1�d�1: That is,

jhðtÞ � hðuÞjpLjjt � ujjs

for all t; uA½0; 1�d�1 and hAHs: We assume also that for hAHs;

gphðtÞp1

for a fixed g40: Denote by Ah the boundary fragment whose boundary is given by h;

Ah ¼ fx ¼ ðx1;y; xdÞA½0; 1�d : 0pxdphðx1;y; xd�1Þg:

A class of uniform densities whose support is a smooth boundary fragment is
defined by

Fs ¼ fgAh
: hAHsg; ð11Þ

where gAh
¼ IAh

=mesðAhÞ:
Consider the loss function

d1ðÂ;Sð f ÞÞ ¼ mesðÂDSð f ÞÞ;

where Sð f Þ is the support of the true density f and D denotes symmetric difference:
ADB ¼ ðA\BÞ,ðB\AÞ: Notation for the loss function reflects the fact that in terms of
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the boundary functions the loss is equal to the L1 error. Let

r ¼ s

s þ d � 1
be the exponent of the minimax rate of convergence.

Theorem 2. Let estimator Âen be defined in (7) based on iid observations X1;y;Xn:
Choose the fineness parameter aX1; parameter of the excess mass functional

0olo1; and initial rectangle R ¼ ½0; 1�d : Consider class Fs defined in (11) where

0osp1: Let

a ¼ Ca
loge n

n
; ð12Þ

where 0oCaoN: When Ca is sufficiently large, then

lim sup
n-N

ðn=logeðnÞÞ
r sup

fAFs

Ef d1ðÂen;Sð f ÞÞoN:

A proof of Theorem 2 is given in Section 5. For the choice of a; see Eq. (28).

Remark 2. A proof that rate nr is the minimax rate of convergence for Hölder
boundary fragments is given in Korostelev and Tsybakov [20, Section 7.3].

Remark 3. Estimator Âen does not depend on the smoothness parameter s: Thus,
Theorem 2 shows that the estimator is adaptive in the sense that it achieves nearly
minimax rates simultaneously over a scale of smoothness classes.

Remark 4. To achieve optimal balance between bias and variance we need blocks

with width n�1=ðsþd�1Þ: On the other hand, to achieve minimax rate the finest
partition should have blockwidth smaller than the minimax rate of convergence:

n�s=ðsþd�1Þ: When 0osp1; then n�1=ðsþd�1Þ satisfies

n�1=ðd�1Þon�1=ðsþd�1Þ

and minimax rate satisfies

n�1=dpn�s=ðsþd�1Þ:

We want to achieve minimax rates simultaneously over scale sAð0; 1� and thus the
finest partition should have blockwidth

minfn�1=ðd�1Þ; n�1=dg ¼ n�1=ðd�1Þ: ð13Þ

That is why we choose in Theorem 2 the finest binwidth to be n�a=ðd�1Þ; where aX1:

Remark 5. We have considered iid observations with n as the sample size. When
considering regression function estimation with regular fixed design, then the

corresponding step of the regular grid is n�1=d :
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When 0osp1; then by (13), one needs the binwidth of the finest partition to be
smaller or equal to n�1=ðd�1Þ: Thus, since n�1=ðd�1Þon�1=d ; with fixed regular design

we are not able to estimate the support with the rate n�s=ðsþd�1Þ: This was pointed out
by Korostelev and Tsybakov [20].

3.2. Half block estimator

To prove a result for the rates of convergence of the half block estimator, we
define a scale of Hölder smoothness classes with smoothness index 1osp2 for sets
with star-shaped boundaries.
Let Hs be the Hölder class of functions of smoothness 1osp2 and radius L40

on ½0; 2pÞ: That is,
jh0ðtÞ � h0ðuÞjpLjt � ujs�1

for all t; uA½0; 2pÞ and hAHs: We assume that for hAHs;

gphðfÞp1
2

for g ¼ 0:1: Denote by Ah;m the star-shaped set centered at mAR2 whose boundary is

given by h:

Ah;m ¼ fx ¼ mþ ðr cos f; r sin fÞ: 0prphðfÞ;fA½0; 2pÞg:
A class of uniform densities whose support is a star-shaped set is defined by

*Fs ¼ fgAh;m : Ah;mC½0; 1�2; hAHs; mAR2g; ð14Þ
where gA ¼ IA=mesðAÞ:

Theorem 3. Let estimator Ãen be defined in (10) based on iid observations X1;y;Xn:

Choose the fineness parameters aX1 and bX2; parameter of the excess mass functional

0olo1; and initial rectangle R ¼ ½0; 1�2: Consider class *Fs defined in (14), where

1osp2: Let

a ¼ Ca
loge n

n
; ð15Þ

where 0oCaoN: When Ca is sufficiently large, then

lim sup
n-N

ðn=logeðnÞÞ
r sup

fA *Fs

Ef d1ðÃen;Sð f ÞÞoN;

where r ¼ s=ðs þ d � 1Þ; d ¼ 2:

A proof of Theorem 3 is given in Section 5. For the choice of a; see Eq. (33).

Remark 6. A proof that rate nr is the minimax rate of convergence is given in
Korostelev and Tsybakov [20, Section 7.3], for the boundary fragments. A
consequence of this is that the same rate is minimax for the star-shaped sets.

ARTICLE IN PRESS
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Remark 7. When 1osp2 (and d ¼ 2), then blocksize n�1=ðsþd�1Þ for the optimal
bias–variance balancing satisfies

n�1=don�1=ðsþd�1Þ:

Thus, we choose in Theorem 3 the finest blocksize to be n�a=d ; where aX1: For

1osp2; the minimax rate n�s=ðsþd�1Þ satisfies

n�2=ðdþ1Þpn�s=ðsþd�1Þ:

We have that

minfn�1=d ; n�2=ðdþ1Þg ¼ n�2=ðdþ1Þ:

That is why we choose in Theorem 3 the finest stepsize of skew splits to be n�b=ðdþ1Þ;
where bX2:
Note the difference from the case 0osp1; where the minimum blocksize from the

bias–variance balancing was smaller than the minimum blocksize from the rate of
convergence. See Eq. (13).

Remark 8. Previously, Barron et al. [2] have proved a similar type of result. Instead
of excess mass functional they propose to apply a different contrast function. Their
estimator is of piecewise polynomial type and is not able to adapt to the case when
the support of the density has a number of disconnected components.

4. Simulation examples

We give simulation examples for the block estimator. In simulation examples, we
consider examples which do not satisfy the conditions of Theorem 2. The definition
of the estimator does not depend on these conditions and we may conjecture that the
estimator is usable in a wide range of different situations.
The simulation examples are mixtures of standard two-dimensional Gaussian

densities whose support is in fact the whole R2:
We chose the initial rectangle R for the simulation examples by first choosing R�

to be the smallest rectangle containing observations whose sides are parallel to the
coordinate axes, and then taking R ¼ R� þ Z; where Z ¼ 0:1: The finest partition of
R was chosen to contain 642 bins. The parameter l of the excess mass criterion was
chosen l ¼ 0:1 in all examples.
The first example is the standard Gaussian density in R2 centered at ð0; 0Þ: We

generated a sample of 100 observations from this density. Fig. 1 shows three block
estimates with excess mass criterion. In Fig. 1(a), we took a ¼ 0:0006; in (b) we took
a ¼ 0:00065; and in (c) we took a ¼ 0:0008: The choice of the smoothing parameter
as a ¼ 0:00065 gives the best result.
The second example is an equal mixture of two standard Gaussians in R2: Means

of the components of the mixture are (0,0) and (8,0). We generated a sample of 125
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observations from this density. Fig. 2 shows three block estimates with excess mass
criterion. In Fig. 2(a) we took a ¼ 0:0001; in (b) we took a ¼ 0:0005; and in (c) we
took a ¼ 0:0007: The choice of the smoothing parameter as a ¼ 0:0005 gives the best
result.

The third example is an equal mixture of three standard Gaussians in R2: Means
of the components of the mixture lie in vertices of a triangle with sidelength D ¼ 8;
that is, the means are

ð0; 0Þ; ðD; 0Þ ¼ ð8; 0Þ; ðD=2;D
ffiffiffi
3

p
=2ÞEð4; 6:9Þ:

We generated a sample of 150 observations from this density. Fig. 3 shows three
block estimates with excess mass criterion. In Fig. 3(a), we took a ¼ 0:00005; in (b)
we took a ¼ 0:0006; and in (c) we took a ¼ 0:0009: The choice of the smoothing
parameter as a ¼ 0:0006 gives the best result.
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Fig. 1. Estimates for a Gaussian density.
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Fig. 2. Estimates for a mixture of two Gaussian components.
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5. Proofs

We will give proofs for Theorems 2 and 3. The proofs are organized by giving in
Section 5.1 oracle inequalities, giving in Section 5.2 bounds for the theoretical error
complexity, and finishing proofs in Section 5.3. The proof of oracle inequalities is
almost the same for both block estimator and half block estimator but the
approximation theoretic considerations in Section 5.2 are different for the two
estimators.

5.1. Oracle inequality

For PAPn or PAPD
n and WAWðPÞ; let KðP;W ; aÞ be the theoretical error

complexity,

KðP;W ; aÞ ¼ d1ðAðP;WÞ;Sð f ÞÞ þ aDðWÞ; ð16Þ

where Sð f Þ is the support of the true density f : Let A0ð f Þ and A0;Dð f Þ be the best
approximations to Sð f Þ in terms of theoretical error complexity, when we search
over sets used in the definition of the block estimator and half block estimator:

A0ð f Þ ¼ AðP0;W 0Þ; ð17Þ

where

ðP0;W 0Þ ¼ argmin
PAPn;WAWðPÞ

KðP;W ; aÞ

and

A0;Dð f Þ ¼ AðP0;D;W 0;DÞ; ð18Þ

where

ðP0;D;W 0;DÞ ¼ argmin
PAPD

n ;WAWðPÞ
KðP;W ; aÞ:
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Fig. 3. Estimates for a mixture of three Gaussian components.
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We have an upper bound for the theoretical error complexity of complexity

penalized excess mass estimators Âen and Ãen: This upper bound consists of theoretical
error complexity of best approximation with an additional stochastic term.

Lemma 4. Let Âen and Ãen be defined in (7) and (10). Let 0olo1 be the parameter of

the excess mass functional. We have for fAFs; when 0osp1;

Kð #Pen; Ŵe
n; aÞpCbðKðP0;W 0; aÞ þ nnðÂenÞ � nnðA0ð f ÞÞÞ

and for fAFs; when 1osp2;

Kð *Pen; W̃e
n; aÞpChðKðP0;D;W 0;D; aÞ þ nnðÃenÞ � nnðA0;Dð f ÞÞÞ

for positive constants Cb;Ch; where

nnðAÞ ¼ 1
n

Xn

i¼1
IAðXiÞ � Pf ðAÞ ð19Þ

for ACRd :

Proof. The proof is same for Âen and Ãen:We will write the proof for Âen:We have by

the definition of Âen that

Knð #Pen; Ŵe
n; aÞpKnðP0;W 0; aÞ: ð20Þ

Also, excess mass functional may be written as

genðAÞ ¼ lmesðAÞ � nnðAÞ � Pf ðAÞ: ð21Þ

Denote by Slð f Þ the level set of density f at level l:

Slð f Þ ¼ fxARd : f ðxÞXlg:

Then, for ACRd ;

lmesðAÞ � Pf ðAÞ

¼ lmesðSlð f ÞÞ � Pf ðSlð f ÞÞ þ
Z

j f ðxÞ � ljIADSlð f ÞðxÞ dx: ð22Þ

From (20) and (21) we have

lmesðÂenÞ � nnðÂenÞ � Pf ðÂenÞ þ aDðÂenÞ

plmesðA0ð f ÞÞ � nnðA0ð f ÞÞ � Pf ðA0ð f ÞÞ þ aDðA0ð f ÞÞ:

Combining this with (22) impliesZ
j f ðxÞ � ljI

ÂenDSlð f ÞðxÞ dx þ aDðŴe
nÞ

p
Z

j f ðxÞ � ljIA0ð f ÞDSlð f ÞðxÞ dx þ aDðW 0Þ þ nnðÂenÞ � nnðA0ð f ÞÞ: ð23Þ
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J. Klemelä / Journal of Multivariate Analysis 88 (2004) 274–297290



The minimal jump size of the densities over considered classes at the boundary of the
support is 1. Thus,Z

j f ðxÞ � ljI
ÂenDSlð f ÞðxÞ dxXminfl; 1� lgd1ðÂen;Slð f ÞÞ:

All densities in considered classes are bounded by M ¼ g1�d : Thus,Z
j f ðxÞ � ljIA0ð f ÞDSlð f ÞðxÞ dxpmaxfl;Mgd1ðA0ð f Þ;Slð f ÞÞ:

These two inequalities and (23) imply the lemma, because for 0olo1; the level set
Slð f Þ is equal to the support of the density: Slð f Þ ¼ Sð f Þ: &

We will need an upper bound for the cardinality of the class of all sets in all
partitions.

Lemma 5. Set of partitions Pn for the block estimator is defined in Definition 1. We

have that

#
[

PAPn

P

 !
pN ¼def ð2dÞ

dJnþ1 � 1
2d � 1 ¼ Oðnad log2ð2dÞ=ðd�1ÞÞ:

Set of partitions PD
n for the half block estimator is defined in Definition 2. We have

that

#
[

PAPD
n

P

0
@

1
ApÑ ¼def 42 � 22Lnþ1 ðd=2Þ

dJ̃nþ1 � 1
ðd=2Þ � 1 ¼ Oðn2b=ðdþ1Þna log2ðd=2ÞÞ:

Proof. For the case of block estimator cardinality is bounded by the number of
nodes in a tree with dJn levels, with one root node, and 2d children for every node.
To the root node corresponds initial rectangle R and every rectangle may be split to
two children in d directions, which results to 2d children. Thus, we have bound

XdJn

i¼0
ð2dÞi ¼ ð2dÞdJnþ1 � 1

2d � 1 ¼ Oð2log2ð2dÞdJnÞ:

For the case of the half block estimator, each rectangle may be split with a skew

split whose endpoints lie in a grid with cardinality 4 � 2�i=d; where 4 � 2�i is the length

of boundaries of rectangles in ith level, and d ¼ 2�Ln is the stepsize of the grid. Thus,

we have at most 2ð4 � 2�i=dÞ2 children resulting from a skew split. Thus, the total
number of sets is bounded by

XdJ̃n

i¼0
2 � 42ð2�i=dÞ2ð2dÞi ¼ 42 � 22Lnþ1 ðd=2Þ

dJ̃nþ1 � 1
ðd=2Þ � 1 : &
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Now we may prove that the risk of estimators may be bounded by the theoretical
error complexity. We will start with the block estimator.

Lemma 6. Consider estimator Âen defined in (7). Let a be defined in (28). We have that

Ef d1ðÂen;Sð f ÞÞpC½KðP0;W 0; aÞ þ n�1�

for a positive constant C:

Proof. We have

Ef d1ðÂen;Sð f ÞÞpCbKðP0;W 0; aÞ þ Ef V ;

where

V ¼ maxfd1ðÂen;Sð f ÞÞ � CbKðP0;W 0; aÞ; 0g

and Cb is from Lemma 4. It remains to prove that

Ef V ¼ Oðn�1Þ: ð24Þ

Denote

Bn ¼ sup
PAPn

sup
WAWðPÞ

wðAðP;WÞÞ�1jnnðAðP;WÞÞ � nnðA0ð f ÞÞjpx

 !
;

where x ¼
ffiffiffi
8

p
; nn is defined in (19), and we define with an abuse of notation

wðAÞ ¼ wðAðP;WÞÞ ¼ n�1ðx þ LDðWÞÞ

with x40 and

L ¼ logeðNÞ; ð25Þ

where N is defined in Lemma 5. First we prove that on Bn; VpxCbn
�1x; that is

ðV4xCbn
�1xÞCBc

n: ð26Þ

Secondly, we prove that

PðBc
nÞpC expf�xg: ð27Þ

We have that

EV ¼ xCbn
�1
Z

N

0

PðV4xCbn
�1xÞ dx

and thus (24) follows from (26) and (27).

Proof of (26). By the definition of Bn we have that on Bn; nnðÂenÞ � nnðA0ð f ÞÞ
pxwðÂenÞ: Thus, by Lemma 4, on Bn;

Kð #Pen; Ŵe
n; aÞpCb½KðP0;W 0; aÞ þ xwðÂenÞ�

¼Cb½KðP0;W 0; aÞ þ xn�1ðx þ LDðŴe
nÞÞ�:
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We choose

a ¼ xCbn
�1L; ð28Þ

where L is defined in (25), x ¼
ffiffiffi
8

p
; and Cb comes from Lemma 4. Thus, on Bn;

d1ðÂen;Sð f ÞÞpCb½KðP0;W 0; aÞ þ xn�1x�:

We have proved (26).

Proof of (27). Define with an abuse of notation,

ZA ¼ 1

wðAÞ ðIA � IA0ð f ÞÞ;

where A ¼ AðP;WÞ; A0ð f Þ ¼ AðP0;W 0Þ; PAPn and WAWðPÞ: We have that
�wðAÞ�1pZAðXiÞpwðAÞ�1: Thus, by Hoeffding’s inequality, see for example
Pollard [24, p. 191],

Pf

1

n

Xn

i¼1
ZAðXiÞ � Ef ZAðX1Þ

�����
�����4x

 !
pexp �nx2wðAÞ

8

� �
: ð29Þ

Since x ¼
ffiffiffi
8

p
; we have

nx2wðAÞ
8

¼ x þ LDðWÞ: ð30Þ

Now, for A ¼ AðP;WÞ;

nnðAÞ � nnðA0ð f ÞÞ ¼ wðAÞ 1

n

Xn

i¼1
ZAðXiÞ � Ef ZAðX1Þ

 !
:

Then, by (29) and (30),

PðBc
nÞp

X
PAPn

X
WAWðPÞ

expf�½x þ LDðWÞ�g: ð31Þ

Denote

CðkÞ ¼ fðP;WÞ: PAPn;WAWðPÞ;DðWÞ ¼ kg

so that #CðkÞ is equal to the number of ways we may choose k sets from the set of
all sets in all partitions. Now, defining N as in Lemma 5, by Stirling’s formula,

#CðkÞp
N

k

 !
p

Nk

k!
p

eN

k

� �k

:
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J. Klemelä / Journal of Multivariate Analysis 88 (2004) 274–297 293



Thus, continuing from (31),

PðBc
nÞp

XN
k¼1

X
ðP;W ÞACðkÞ

expf�ðx þ LkÞg

p
XN
k¼1

eN

k

� �k

expf�ðx þ LkÞg

pC expf�xg; ð32Þ

by the choice of L in (25). We have proved (27) and thus the lemma. &

We may prove a similar lemma for the half block estimator.

Lemma 7. Consider estimator Ãen defined in (10). Let a be defined in (33).We have that

Ef d1ðÃen;Sð f ÞÞpC½KðP0;D;W 0;D; aÞ þ n�1�

for a positive constant C:

Proof. The proof is similar to the proof of Lemma 6. The difference is that we set

a ¼ xChn
�1L; ð33Þ

where x ¼
ffiffiffi
8

p
; Ch comes from Lemma 4,

L ¼ logeðÑÞ;

and Ñ is defined in Lemma 5. &

5.2. A bound for the theoretical error complexity

So far the proofs have been similar both for the boundary fragment model and for
the star-shaped sets. In this section, we give a separate treatment for the two cases.

Let A0ð f Þ be defined in (17). We will give a bound for the error-complexity
of A0ð f Þ:

Lemma 8. Let Fs be defined in (11) for 0osp1 and let K be defined in (16). We have

that

sup
fAFs

KðP0;W 0; aÞpC
loge n

n

� �s=ðsþd�1Þ

for a positive constant C; when a is defined in (12).

Proof. Let fAFs and let h : ½0; 1�d�1-½0; 1� be the function defining the boundary of
the support of f : That is, f ¼ gAh

¼ IAh
=mesðAhÞ: Let us choose N0 so that

2N0Bðn=logeðnÞÞ
1=ðsþd�1Þ:
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Let Q be a partition of ½0; 1�d�1 to rectangles whose sidelength is 2�N0 (and volume is

2�ðd�1ÞN0 ). We may construct a function h0 : ½0; 1�d�1-R; which is piecewise constant
on partition Q; that is,

h0 ¼
X
PAQ

aPIP;

where aPA½g; 1�; and with the propertyZ
½0;1�d�1

jh � h0j ¼ Oð2�sN0Þ:

This construction may be done with a piecewise constant interpolation of h: On the
other hand, Sð f Þ ¼ Ah and thus

d1ðSð f Þ;Ah0Þ ¼ d1ðAh;Ah0Þ ¼
Z
½0;1�d�1

jh � h0j:

Now choose N1 so that 2
N1Bn1=d : Make a grid 0 ¼ q1o?oqM ¼ 1; where the

distance between gridpoints is 2�N1 : Define function h̃0 which approximates h0:

h̃0 ¼
X
PAQ

ãPIP;

where ãP are the gridpoints closest to aP:

jãP � aPj ¼ minfjb � aPj: bAfq1;y; qMgg:

We have thatZ
½0;1�d�1

jh0 � h̃0j ¼ Oð2�N1Þ:

Then

d1ðSð f Þ;Ah̃0
Þ ¼ Oð2�sN0 þ 2�N1Þ:

We have that 2�N1 ¼ Oð2�sN0Þ for all 0osp1: We have proved that

d1ðSð f Þ;Ah̃0
Þ ¼ Oð2�sN0Þ: ð34Þ

Now, because fineness parameter aX1; then Ah̃0
AAn; where An is defined in (2). See

the discussion leading to Eq. (13). Let DðAh̃0
Þ be the complexity of set Ah̃0

(with an

abuse of notation). By construction, DðAh̃0
Þ ¼ 2ðd�1ÞN0 : Thus,

aDðAh̃0
Þ ¼ O

loge n

n

� �s=ðsþd�1Þ
 !

: ð35Þ

Eqs. (34) and (35) imply the lemma since the bounds are uniform with respect to
fAFs: &

Consider secondly the case of star-shaped sets.
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Lemma 9. Let *Fs be defined in (14) for 1osp2; and let d ¼ 2: We have that

sup
fAFs

KðP0;D;W 0;D; aÞpC
loge n

n

� �s=ðsþd�1Þ

for a positive constant C; when a is defined in (15).

Proof. We may apply Lemma 8.5 (Edgel approximation), Lemma 8.6 (Edgelet
approximation), and Lemma 8.7 (Counting ancestors) from Donoho [9] to prove the

required bound. Indeed, by Remark 1 the set of partitions PD
n is larger than the

corresponding set of Donoho [9]. Thus, we have at least the same approximation
properties. &

5.3. Finishing the proofs

Proof of Theorem 2 follows from Lemmas 6 and 8. Proof of Theorem 3 follows
from Lemmas 7 and 9.
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