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Abstract

Nyblom (J. Multivariate Anal. 76 (2001) 294) has derived locally best invariant test for the

covariance structure in a multivariate linear model. The class of invariant tests obtained by

Nyblom [9] does not coincide with the class of similar tests for this testing set-up. This paper

extends some of the results of Nyblom [9] by deriving the locally best similar tests for the

covariance structure. Moreover, it develops a saddlepoint approximation to optimal weighted

average power similar tests (i.e. tests which maximize a weighted average power).
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1. Introduction

In a multivariate linear regression model

Y ¼ XB þ E; ð1Þ
where Y and E are n � m; X is n � p fixed and of rank p; and nXp þ m; B

is an p � m matrix of parameters, it is often assumed that the rows of E

are independent. Violations of this assumption occur in plausible situations, in
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particular in multivariate time series models (for references and examples see [4,9]).
It is, thus, important to develop powerful tests capable of detecting these possible
violations.
Nyblom [9] has considered the case where E has a multivariate normal distribution

with mean matrix 0 and covariance matrix OðyÞ#S; where OðyÞ and S are,
respectively, a known n � n matrix, and unknown m � m matrix, y is an unknown
scalar parameter, and Oðy0Þ ¼ In: Nyblom [9] analyses tests for H0 : y ¼ y0 against a
suitable alternative of the form H1 : yAY1; by focusing on tests invariant under the
group of transformations

Y-YP þ XA

for an arbitrary p � m matrix A and a positive definite m � m matrix P: Nyblom’s [9]
main contribution is the derivation of locally most powerful tests in the class of tests
invariant under the transformations above for one-tailed alternatives. Nyblom [9]
also identifies situations in which the locally best test does not depend on the
direction of the departure from the null hypothesis.
This paper extends the results of Nyblom [9] in two different ways. Firstly, we

derive the locally best similar test of H0 : y ¼ y0 versus H1 : y4y0 and H1 : yoy0:
The resulting test statistics have simple functional forms, and when the sample size n

is large the locally best similar tests coincide with the locally best invariant tests of
Nyblom [9]. Secondly, in order to allow for alternatives parameterized by a vector
yARq (rather than a scalar) and for two-tailed alternative, we discuss the
construction of optimal weighted average power similar tests. The contribution of
the paper here is in the use of the saddlepoint method to provide computable
expressions for such tests in quite general situations.
The remaining part of the paper is organized as follows. Section 2 characterizes the

class of similar test for H0 : y ¼ y0; and gives the density function of the matrix
characterizing all similar tests. Sections 3 and 4 derive, respectively, the locally best
similar test for one-tailed alternatives and an approximation for the optimal
weighted average power test. Section 5 modifies the locally best invariant/similar test
and the weighted average power test to make them invariant under permutations of
the columns of Y : Section 6 discusses the calculation of the critical values for all
tests. Possible applications are given in Section 7. Section 8 discusses Monte Carlo
simulations comparing the power of the tests suggested in the paper with the test of
Nyblom [9]. Finally the conclusions follow.

2. Characterization of similar tests

In this section, we assume that y is a q-dimensional vector. The following theorem
characterizes the class of similar tests for H0 : y ¼ y0 in (1).

Theorem 1. The class of similar tests for H0 : y ¼ y0 against any alternative

whatsoever is characterized by the vector V ¼ CYT�1 where T is an m � m
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upper triangular matrix with positive diagonal elements such that T 0T ¼ Y 0MX Y ;

MX ¼ In � XðX 0XÞ�1X 0 and C is an ðn � kÞ � n matrix such that C0C ¼ MX and

CC0 ¼ In�k:

Proof. Under the null hypothesis the statistics B̂ ¼ ðX 0X Þ�1X 0Y and S ¼ Y 0MX Y

are sufficient for the nuisance parameters ðB;SÞ [8, Theorem 10.1.1]. Moreover, they
are (boundedly) complete by Theorem 1, p. 144 of [7]. Let W ¼ CY : Theorem A9.8

of [8] guarantees that W can be uniquely written as W ¼ VT where V ¼ WT�1 is an
n � m matrix such that V 0V ¼ Im and T is an m � m upper triangular matrix with
positive diagonal elements such that T 0T ¼ S: &

The class of similar tests coincide with the class of invariant tests under a suitable
group of transformations as the following theorem makes clear.

Theorem 2. Let Um�m be the group of m � m upper triangular matrices with

positive diagonal elements, and Mp�m be the group of p � m matrices. The

problem of testing H0 : y ¼ y0 versus H1 : yAY1 is invariant under the group of

transformations

G ¼ fðA;DÞ : AAUm�m;DAMp�mg;

with group operation ðA1;D1Þ ðA2;D2Þ ¼ ðA1A2;D1A2 þ D2Þ acting on Y by

ðA;DÞY ¼ YA þ XD:

Moreover, the maximal invariant under the action of G is the matrix V defined in

Theorem 1.

Proof. The invariance under the action of G can be easily verified. The fact that V is
a maximal invariant can be verified in two steps. First the action Y-Y þ D has as a
maximal invariant W ¼ CY ; where C is defined in the statement of the previous
theorem. Then the maximal invariant under the action W-WA is easily found to be

V ¼ WT�1: &

These results are analogous to those for the linear regression model derived
by King and Hillier [6] and are also hinted at in [9]. Nyblom [9] does not
investigate these tests further because they are deemed too complicated. However, we
will show in Section 3 that the functional forms for the locally best tests are
quite simple.
Under the null hypothesis the matrix V is uniformly distributed over the Stiefel

manifold V 0V ¼ Im: The distribution under the alternative hypothesis is given
by the following theorem. Note that when m ¼ 1; this reduces to Eq. (2) of King and
Hillier [6].
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Theorem 3. Under the alternative hypothesis

pdf ðV; yÞ ¼
Gm

n�p
2

� �
2pð Þ

ðn�pþ1Þm
2 p

ðn�pÞm
2

COðyÞC0j j�
m
2

� V 0ðCOðyÞC0Þ�1V
��� ����n�p

2
þmþ1

2
Ym
i¼1

jE0
iV

0ðCOðyÞC0Þ�1VEij�1;

where Ei is an m � i matrix such that Ei ¼ ðIi

0
Þ; i ¼ 1; 2;y;m:

Proof. Note that the n � p � m matrix W ¼ CYBNð0; ½COðyÞC0�#SÞ so that

pdf ðWÞ ¼ ð2pÞ�
ðn�pÞm

2 jCOðyÞC0j�
m
2 jSj�

n�p
2

� etr � 1

2
ðCOðyÞC0Þ�1WS�1W 0

� �

transform W to VT : The Jacobian is given by Theorem 2.1.13 in [8] as ðdW Þ ¼Qm
i¼1 t

n�p�i
ii ðdTÞðdHÞ where ðdHÞ denotes the unnormalized invariant Haar measure

on the Stiefel manifold V 0V ¼ Im: Then

pdf ðVÞ ¼ ð2pÞ�
ðn�pÞm

2 jCOðyÞC0j�
m
2 jSj�

n�p
2

�
Z

Um�m

etr � 1

2
V 0ðCOðyÞC0Þ�1VTS�1T 0

� �Ym
i¼1

t
n�p�i
ii ðdTÞ;

where Um�m is, as before, the space of all m � m upper triangular matrices with
positive diagonal elements. This integral can be evaluated using Lemma A.1 in the

appendix with r ¼ n � p; A ¼ V 0ðCOðyÞC0Þ�1V and D ¼ S: &

Knowledge of the density of V under the alternative hypothesis allows us to
construct optimal invariant/similar tests for H0 : y ¼ y0 against a specific alternative
of the form H1 : y ¼ y1 where y1 is a fixed q � 1 vector. In this case the optimal test
has the form: reject H0 if

jV 0ðCOðy1ÞC0Þ�1V j
n�p
2

�mþ1
2
Ym
i¼1

jE0
iV

0ðCOðy1ÞC0Þ�1VEijoka;

where ka is a suitable constant such that the size of the test equals a: In the context of
tests for on the covariance matrix for the linear regression model, King [5] has
argued that with a careful selection of y1; this test can be powerful against more
general alternatives. This choice, however, is problem dependent. In the rest of the
paper, we will consider two classes of similar/invariant tests which are optimal
according to two generally accepted criteria, and have general applicability.
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3. Locally best invariant/similar tests

When yAR and no uniformly most powerful test exists, one often appeals to a
locally best invariant/similar test. This is a test which maximizes the slope of the
power in a neighbourhood of y ¼ y0; and, for the testing set-up under consideration,
it is characterized in the following theorem and corollary.

Theorem 4. The locally best invariant test for H0 : y ¼ y0 versus H1 : y4y0 has the

form: reject H0 if

trfV 0Oð1ÞVDg4ka;

where ka is a suitable constant, D is a diagonal matrix with diagonal elements equal to

ðn þ m � p þ 1Þ=2� i; i ¼ 1; 2;y;m; and dOðyÞ ¼ Oð1ÞðyÞdy; Oð1Þðy0Þ ¼ Oð1Þ: The

locally best invariant test for H0 : y ¼ y0 versus H1 : yoy0 has the form: reject H0 if

trfV 0Oð1ÞVDgok0
a;

where k0
a is a suitable constant, and Oð1Þ and D are defined as above.

Proof. Since the logarithm is a strictly monotonic increasing function, the class of
locally best invariant/similar test for H0 : y ¼ y0 versus H1 : y4y0 has the form:
reject H0 if

lim
y-0þ

@ lnðpdf ðVÞÞ
@y

� �
4ka:

Let Oð1Þ be defined as above and Û ¼ MX Y : Then the derivative of ln ðpdf ðVÞÞ at
y ¼ y0 is

lim
y-0þ

@ lnðpdf ðVÞÞ
@y

	 

¼ � m

2
trfCOð1ÞC0g þ n � p

2
� m þ 1

2

	 

trfðV 0Oð1ÞVÞg

þ
Xm

i¼1
trfE0

iV
0Oð1ÞVEig

¼ � m

2
trfCOð1ÞC0g

þ tr V 0Oð1ÞV
n � p

2
� m þ 1

2

	 

Im þ

Xm

i¼1
EiE

0
i

 !( )
:

The first part of the theorem follows from here. The second part can be obtained

similarly by evaluating limy-0�
@ lnðpdf ðVÞÞ

@y

� �
: &

Corollary 1. For large n; the locally best invariant test H0 : y ¼ y0 versus H1 : y4y0 is

approximately: Reject H0 if

trfV 0Oð1ÞVg4ka;
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where ka is a suitable constant. Analogously when H1 ¼ yoy0 the locally best invariant

test is approximately: Reject H0 if

trfV 0Oð1ÞVgok0
a;

where k0
a is a suitable constant.

Note that these correspond to the locally best invariant tests derived by Nyblom [9].

4. Optimal weighted average invariant/similar tests

Locally best invariant/similar tests can be constructed only if yAR: This restricts
the class of problems to which this criterion can be successfully applied. Moreover,
nothing guarantees the optimality of such tests for non-local alternatives. As an
alternative to locally best invariant/similar test we consider weighted average
invariant/similar tests of the form: Reject H0 : y ¼ y0; against the alternative H1 :
yAY1 if

TðpÞ ¼
Z
Y1

pðyÞpdf ðV; yÞ dV4ka;

where, once more, ka is a suitable constant, and pðyÞ is a suitable weighting function.
In the case under consideration TðpÞ has the formZ

Y1

pðyÞjCOðyÞC0j�
m
2 jV 0ðCOðyÞC0Þ�1V j�

n�p
2

þmþ1
2

�
Ym
i¼1

jE0
iV

0ðCOðyÞC0Þ�1VEij�1dy ð2Þ

and if n is large this integral can be approximated by using the saddlepoint method.

Theorem 5. Suppose jV 0ðCOðyÞC0Þ�1V j has an absolute minimum y� in the interior of

Y1; i.e. y� solves

dy� ln jV 0ðCOðyÞC0Þ�1V j ¼ tr ½V 0ðCOðyÞC0Þ�1V ��1dy� ½V 0ðCOðyÞC0Þ�1V �
n o

¼ 0;

with

d2y� ln jV 0ðCOðyÞC0Þ�1V j40

for all yAY1; where dy denotes the differential at y ¼ y: Then

TðpÞB 2p
n

	 
q
2
pðy�ÞjOðy�Þj�

m
2 jX 0O�1ðy�ÞX j�

m
2 jX 0X j

m
2 jV 0ðCOðy�ÞC0Þ�1V j�

n�p
2

þmþ1
2

�
Ym
i¼1

jE0
iV

0ðCOðy�ÞC0Þ�1VEij�1jDðy�Þj�
1
2 þ Oðn�q

2
�1Þ; ð3Þ

where Dðy�Þ is the n � n Hessian matrix of ln jV 0ðCOðyÞC0Þ�1V j at y ¼ y�:
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Proof. This result follows from Theorem 9.5.1 in [8]. The order of convergence is
given by Estrada and Kanwal [3]. A simplification is achieved by noting that

jCOðyÞC0j ¼ jOðyÞjjX 0O�1ðyÞX j=jX 0X j: &

Extension to the case of a maximum on the boundary can be done but are much
more involved numerically.

Often O�1ðyÞ has a simpler structure than OðyÞ: This is the case, for example, if
O�1ðyÞ ¼ In þ

Pm
i¼2 oiðyÞOi; where Oi are fixed n � n symmetric matrices, oiðyÞ are

smooth functions of y; m is a fixed number, and oið0Þ ¼ 0: Also, the presence of the
matrix C in the approximation makes the computations difficult. The following
result simplify the calculations in many situations.

Lemma 1. Let Ê ¼ MX Y ; then

jV 0ðCOðyÞC0Þ�1V j ¼ jÊ 0½OðyÞ�1 � OðyÞ�1X ðX 0OðyÞ�1XÞ�1X 0OðyÞ�1�Êj=jÊ 0Êj:

Moreover, let jjAjj2 be the spectral norm of the matrix A: Then if for every y; matrix

jjÊ 0O�1ðyÞÊjj2 ¼ jjE0MXO�1ðyÞMX Ejj2 diverges for almost every E; as n goes to

infinity, then

jV 0ðCOðyÞC0Þ�1V jBjÊ 0OðyÞ�1Êj=jÊ 0Êj

for almost every E:

Proof. Let H ¼ ðC; X̃Þ; where X̃ ¼ XðX 0XÞ�1=2: Then the matrix H is orthogonal

and H 0OðyÞ�1H ¼ ðH 0OðyÞHÞ�1: From the inverse of a partition matrix it follows
that

ðC0OðyÞCÞ�1 ¼C0OðyÞ�1C � C0OðyÞ�1X̃ðX̃ 0OðyÞ�1X̃Þ�1X̃ 0OðyÞ�1C

¼C0½OðyÞ�1 � OðyÞ�1XðX 0OðyÞ�1XÞ�1X 0OðyÞ�1�C

and the first statement of the lemma follows.

Let X̃ ¼ OðyÞ�1=2X and Ẽ ¼ OðyÞ�1=2Ê: Then

jV 0ðCOðyÞC0Þ�1V j ¼ ðjẼ 0Ẽj=jÊ 0ÊjÞjIm � Ẽ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽ½Ẽ 0Ẽ��1j:

We need to show that jjẼ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽ½Ẽ 0Ẽ��1jj2-0 when the conditions stated in

the lemma hold. Because of the submultiplicative property and the fact that Ẽ 0Ẽ is a
square matrix:

jjẼ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽ½Ẽ 0Ẽ��1jj2pjjẼ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽjj2=jjẼ 0Ẽjj2:

Write X̃ðX̃ 0X̃Þ�1X̃ 0 ¼ HðIk 0
0 0

ÞH 0 where H is an orthogonal matrix, then

jjẼ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽ½Ẽ 0Ẽ��1jj2p
jjẼ0HðIk 0

0 0
ÞH 0Ẽjj2

jjẼ0HH 0Ẽjj2
¼ jj

Pk
i¼1 wiw

0
ijj2

jj
Pn

i¼1 wiw
0
ijj2

;
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where wi denotes row i of H 0Ẽ: Note that

Xk

i¼1
wiw

0
i

�����
�����

�����
�����
2

p
Xk

i¼1
jjwiw

0
ijj2 ¼

Xk

i¼1
w0

iwioN

because this is the norm of a finite sum of positive semidefinite matrices. Since the
denominator diverges, the ratio tends to zero as the sample size increases and

jjẼ 0X̃ðX̃ 0X̃Þ�1X̃ 0Ẽ½Ẽ 0Ẽ��1jj2-0: Since the determinant is a continuous function the
second part of the lemma follows. &

When the sample size is large, y� can often be approximated by the value of y
which minimizes

jÊ0OðyÞ�1Êj=jÊ0Êj ¼ Ê0Ê þ
Xm

i¼2
oiðyÞÊ0OiÊ

�����
�����=jÊ0Êj ð4Þ

and this is a simple optimization problem in most cases. Once y� has been found we

can use it in (3) to calculate jV 0ðCOðy�ÞC0Þ�1V j�
n�p
2

þmþ1
2 : Note that, in general,

replacing jV 0ðCOðy�ÞC0Þ�1V j with jÊ0OðyÞ�1Êj=jÊ0Êj in this expression does not lead
to a good approximation for TðpÞ because small approximations errors are amplified
by the fact that jV 0ðCOðy�ÞC0Þ�1V j is raised to the power � n�p

2
þ mþ1

2
in (2).

However, (4) can often be used to approximate jV 0ðCOðy�ÞC0Þ�1V j in Dðy�Þ since
this term does not depend on n:

5. Invariance to the order of the columns of Y

Some people may feel uneasy with the fact that pdf ðV; yÞ in Theorem 3, and thus
the locally best tests of Theorem 4, the weighted average power test in Eqs. (2) and
(3) are not invariant under permutations of the columns of Y (and V ) (see [1,9]). The
tests proposed above can be easily modified to take this into account. Let m ¼
ðm1; m2;y; mmÞ be a permutation of the integers ð1; 2;y;mÞ; and let Pm be an m � m

matrix in which all components are zero except the elements in position ðmi; iÞ;
i ¼ 1; 2;y;m which are 1. Then we can construct the weighted average power test by
also averaging over all possible permutations of the columns of V ;

TiðpÞ ¼
X
m

Z
Y1

pðyÞpdf ðVPm; yÞ=m!dV ;

where the summation is over all permutations m of ð1; 2;y;mÞ:We can also use the
density of V averaged over all permutations of ð1; 2;y;mÞ to derive the locally best
tests. Then we have the following results analogous to Theorems 4 and 5,
respectively.
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Theorem 6. If y is a scalar, the locally best invariant tests for H0 : y ¼ y0 versus one

tailed alternative, which is also invariant to permutations of the columns of V coincide

with the locally best tests of Nyblom [9] given in Corollary 1.

Theorem 7. Suppose that yARq; jV 0ðCOðyÞC0Þ�1V j has an absolute minimum y� in the

interior of Y1

TiðpÞB 2p
n

	 
q
2
pðy�ÞjOðyÞj�

m
2 jX 0O�1ðyÞX j�

m
2 jX 0X j

m
2

� jV 0ðCOðy�ÞC0Þ�1V j�
n�p
2 þmþ1

2 jDðy�Þj�
1
2ð1=m!Þ

�
X
m

Ym
i¼1

jE0
iP

0
mV 0ðCOðy�ÞC0Þ�1VPmEij�1 þ O n�q

2
�1

� �
;

where Dðy�Þ has been defined in Theorem 5.

6. Calculation of the critical values

The tests considered are similar so the critical values for the tests suggested can be
easily calculated by a Monte Carlo simulation:

1. Generate Y by setting B ¼ 0 and EBNð0; In#ImÞ in (2).
2. Compute a value of the locally best similar test or the optimal weighted average
similar test and save the result.

3. Repeat (1) and (2) M times.
4. Order the saved values of the locally best similar test or the optimal weighted
average power similar test and, to estimate the critical value of size a; take the
observation in position aM:

The accuracy of the method obviously increases as the number of repetitions M

increases. Alternatively, the techniques of Monte Carlo tests can be used to calculate
the p-values efficiently (see among others [2]).

7. Applications

The largest class of models to which we can apply the tests developed above
consists of multivariate linear models for which there is separability between the n

(time, say) and the m (individuals or space, say) dimensions. Harvey [4] call these
models seemingly unrelated time series equations. In this case O represent the
temporal covariance matrix. Nyblom [9] has considered the case where each rows of
Y follows the same AR(1) or MA(1) process. The optimal weighted average power
test can be easily constructed for more general cases in which the columns of Y

follow common higher order AR, MA or ARMA models.
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There are situations in which the tests developed above can be applied even
though the covariance matrix of the multivariate linear model has a more complex
structure than OðyÞ#S: In fact, it is sometimes possible to achieve this by first
reducing the problem using further invariance arguments. For example, consider the
mixed effects model

Y ¼ ZD þ VU þ W ; ð5Þ

where Z is a fixed n � p1 matrix, WBNð0;OðyÞ#SÞ; V is an n � p2 fixed matrix
ðp1 þ p2 ¼ pÞ; UBNðG; Ip2#CÞ and is independent of E; and S andC are unknown

m � m matrices and D and G are, respectively, a p1 � m and p2 � m matrix of

unknown parameters. This is equivalent to (1) with X ¼ ðZ;VÞ; B ¼ ðD0;G0Þ0 and an
error

E ¼ VU þ WBNð0;VV 0#Cþ OðyÞ#SÞ:

The testing problem is invariant under the group of transformations G defined in
Theorem 2, so the maximal invariant is given by the matrix V defined in Theorem 1.
By noting that the matrix C (defined in Theorem 1) is orthogonal to X ; and thus, to
V ; it is easy to check that under the null hypothesis V is uniformly distributed over
the Stiefel manifold, and under the alternative its density is given in Theorem 3.
In a random effects model G equals the zero matrix, and the matrix V does not

appear among the regressors. The invariance considered in Theorem 3 is not enough
to reduce the problem to the one analysed. However, we can note that the testing
problem is also invariant to the transformation Y-Y þ VU where U is any
NðG; Ip#CÞ random matrix, and the problem becomes analogous to the mixed

effects model just considered.

8. A numerical example

In order to compare the performance of the locally best invariant/similar
and the optimal weighted average power test with that of Nyblom’s [9] test we
consider a Monte Carlo experiment. The regressors are generated according to the
model:

xti ¼ c1i þ c2ixt�1;i þ eti; i ¼ 2;y; p

and

xt1 ¼ 1;

where c1i and c2i are uniformly distributed on the interval ð0; 1Þ and eti is normally
distributed with mean zero, variance generated from a chi-square distribution with p

degrees of freedom, and e0i are independent w2p: The random variables c1i and c2i are

independent of each other and of eti; e0i and the variance of eti: After generating the
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regressors we construct model (1) and EBNð0;OðyÞ#SÞ: Because of the invariance
arguments we can set B ¼ 0 and S ¼ Im without loss of generality.
We consider the case where the rows of Y form an AR(1) process with zero

start-up value. The critical values are generated using 50,000 replications and
the power is calculated using 10,000 replications for any value of y under the
alternative.
Two phenomena are always observed. Firstly, the power function of the locally

best invariant/similar tests is indistinguishable from the power function of the
Nyblom’s [9] test. The power functions of the weighted average power tests TðpÞ and
TiðpÞ are basically equal.
Fig. 1 shows a typical result when testing for H0 : y ¼ 0 versus y40 (with n ¼ 0;

p ¼ 4 and m ¼ 3). The locally best invariant/similar test (LBI) and Nyblom’s test
have identical power functions. The power functions of Tð1Þ and Tið1Þ are also
exactly alike. They are below the power functions of the locally best similar/invariant
test and Nyblom’s test (note that tests based on Tð1Þ and Tið1Þ; with pðyÞ ¼ 1 for all
y; are in fact two-tailed tests). By taking the weighting function as the indicator
function Ify40g which is equal to 1 for y40 and zero everywhere else, the resulting

tests TðIfy40gÞ and TiðIfy40gÞ are indistinguishable from the locally best tests (see

Fig. 2) even ignoring the problem that the maximum occurs at the boundary in some
cases. These conclusions hold for different values of n; m and p:
When testing for H0 : y ¼ 1 versus yo1 the situation is very different. A typical

result is reported in Fig. 3 (n ¼ 30 and p ¼ 4 and m ¼ 3). In this case the weighted
average power tests Tð1Þ and Tið1Þ seem to perform much better than the locally
best tests even though the weighted average power tests are in fact two-tailed tests.
Again, this conclusion holds for different values of n; m and p:

ARTICLE IN PRESS

Fig. 1. Typical pattern for the power functions for the weighted average power ðTð1ÞÞ; the weighted
average power test with invariance under permutations of the columns of V ðTið1ÞÞ; the locally best
invariant/similar (LBI) and Nyblom’s (Nyblom) tests for H0 : y ¼ 0 versus H1 : y40 at the 5%

significance level for n ¼ 30; m ¼ 3 and p ¼ 4:
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Fig. 2. Typical pattern for the power functions for the weighted average power ðTðIfy40gÞÞ; the weighted
average power test with invariance under permutations of the columns of V ðTiðIfy40gÞÞ; the locally best
invariant/similar (LBI) and Nyblom’s (Nyblom) tests for H0 : y ¼ 0 versus H1 : y40 at the 5%

significance level for n ¼ 30; m ¼ 3 and p ¼ 4:

Fig. 3. Typical pattern for the power functions for the weighted average power ðTð1ÞÞ; the weighted
average power test with invariance under permutations of the columns of V ðTið1ÞÞ; the locally best
invariant/similar (LBI) and Nyblom’s (Nyblom) tests for H0 : y ¼ 1 versus H1 : yo1 at the 5%

significance level for n ¼ 30; m ¼ 3 and p ¼ 4:
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9. Conclusions

When constructing tests for the covariance matrix of the multivariate linear
regression model, it is natural to simplify the problem using invariance or similarity
arguments, and to construct locally best invariant/similar tests. These can be used to
test one-sided alternatives when the covariance matrix is parameterized in terms of a
scalar parameter. For more complex models, optimal weighted average power
similar/invariant tests can be employed, but often require the evaluation of
complicated multivariate integrals, which limits their practical use. However, in
the set-up under consideration, a saddlepoint technique can be used to approximate
the test statistics on which optimal weighted average power similar/invariant tests
are based. Simulations suggests that the weighted average power tests perform at
least as well as locally best invariant/similar tests, and in some situations they
perform significantly better.

Appendix A

Lemma A.1. Let Um�m be the space of all m � m upper triangular matrices with

positive diagonal elements, A be m � m; and D be m � m; mpr: Then
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Let S ¼ BT ; and B0B ¼ A; the Jacobian is ðdSÞ ¼
Qm

i¼1 bmþ1�i
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If we write Ai as Ai ¼ B0
ðiÞBðiÞ where BðiÞ is the i � i upper triangular with positive

diagonal elements and BðmÞ ¼ B; then

b2ii ¼ aii � a0
iA

�1
i�1ai

¼ jAi�1j�1jAij:

So

Ym
i¼1

b2i
ii ¼ jA1jðjA1j�1jA2jÞ2ðjA2j�1jA3jÞ3yðjAm�1j�1jAmjÞm

¼ jA1j�1jA2j�1yjAmj�1jAmjm

¼ jAmjmþ1Ym
i¼1

jAij�1:

Note that Am ¼ A: Since we have
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The lemma is proved. &
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