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1. Introduction

Consider a pair (X, Y ) of continuous random variables whose joint and marginal cumulative distribution functions are
defined for all x, y ∈ R by

H(x, y) = Pr(X 6 x, Y 6 y), F(x) = Pr(X 6 x), G(y) = Pr(Y 6 y),
respectively. The transformed variables U = F(X) and V = G(Y ) are then uniform on [0, 1] and their joint distribution
function, defined at every u, v ∈ [0, 1] by

C(u, v) = Pr(U 6 u, V 6 v),
is the unique copula C associated with H . The two functions are related through the equation C(u, v) = H{F−1(u),G−1(v)},
where F−1(u) = inf{x ∈ R : F(x) > u} and G−1(v) = inf{y ∈ R : G(y) > v} for all u, v ∈ (0, 1). Inference on C is of interest,
as it characterizes the dependence in the pair (X, Y ); see, e.g., [1,2]. In particular, all margin-free concepts and measures
of association such as Kendall’s tau, Spearman’s rho, Blomqvist’s beta, Gini’s gamma and Spearman’s footrule depend only
on C .
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from H and write Ui = F(Xi), Vi = G(Yi) for all i ∈ {1, . . . , n}. When F and

G are known, a natural estimate of C is then given by the empirical distribution function of the sample (U1, V1), . . . , (Un, Vn),
defined at every u, v ∈ [0, 1] by

Cn(u, v) =
1
n

n∑
i=1

1(Ui 6 u, Vi 6 v).
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In fact, standard results from the theory of empirical processes [3] imply that Cn = n1/2(Cn − C) converges weakly, as
n→∞, to a centered Gaussian process C on [0, 1]2 with continuous trajectories and covariance function given by

cov{C(u, v),C(s, t)} = C(u ∧ s, v ∧ t)− C(u, v)C(s, t),

for all u, v, s, t ∈ [0, 1], with a ∧ b = min(a, b) for arbitrary a, b ∈ R.
When the margins F and G are unknown, as is generally the case in practice, they can be estimated by their empirical

counterparts, Fn and Gn. A surrogate sample from C is then given by the pairs (Û1, V̂1), . . . , (Ûn, V̂n), where Ûi = Fn(Xi) and
V̂i = Gn(Yi) for all i ∈ {1, . . . , n}. The corresponding empirical distribution function, defined at every u, v ∈ [0, 1] by

Ĉn(u, v) =
1
n

n∑
i=1

1(Ûi 6 u, V̂i 6 v),

is traditionally called the empirical copula [4], although it is not a copula stricto sensu. The function Ĉn provides a rank-based,
consistent estimate of C often used in practice for copula model selection and goodness-of-fit purposes; see, e.g., [5,6].
To be specific, let Ċ1(u, v) = ∂C(u, v)/∂u and Ċ2(u, v) = ∂C(u, v)/∂v denote the partial derivatives of an arbitrary

copula C , known to exist almost everywhere [2, Chapter 2]. Now assume that they exist in fact everywhere and that they are
continuous on (0, 1)2. Under these mild regularity conditions, it is then well known [7,8] that the empirical copula process
Ĉn = n1/2(Ĉn − C) converges weakly, as n→∞, to a centered Gaussian process Ĉ defined at every u, v ∈ [0, 1] by

Ĉ(u, v) = C(u, v)− Ċ1(u, v)C(u, 1)− Ċ2(u, v)C(1, v).

In fact, it is observed in [8, Theorem 4] that the assumption on the existence and continuity of the partial derivatives is
necessary for the empirical copula process to converge on [0, 1]2.
In the copulamodeling literature, the difference betweenC and Ĉ is often interpreted as ‘‘the price to pay for the fact that

themargins are unknown’’. This suggests that if F andGwere known, itwould be preferable to base the inference on Cn rather
than on Ĉn. It is shown here, perhaps surprisingly, that the opposite is true under weak positive dependence conditions on
C . When this happens, procedures based on Ĉ are thus more efficient than the analogous procedures based on C.
The key result is stated and illustrated in Section 2, along with a partial extension to the case of negative dependence.

In Section 3, circumstances are delineated under which a dependence parameter, say θ = T (C), can be estimated more
efficiently by a rank-based estimate θ̂n = T (Ĉn) than by the analogous estimate θn = T (Cn)which exploits the knowledge
of the margins. Concluding remarks are given in Section 4, along with a partial multivariate extension of the main result. All
technical arguments are collected in the Appendix.

2. Main result

Following [9], suppose that the two continuous random variables X and Y are such that the mappings t 7→ Pr(X 6 x |
Y 6 t) and t 7→ Pr(Y 6 y | X 6 t) are both decreasing in t whatever x, y ∈ R. These tail monotonicity conditions, jointly
referred to as left-tail decreasingness (LTD), imply that the pair (X, Y ) satisfies the concept of positive quadrant dependence
(PQD). From [10], this means that for all x, y ∈ R,

Pr(X 6 x, Y 6 y) > Pr(X 6 x) Pr(Y 6 y).

Both PQD and LTD can be stated in terms of the underlying copula only. As shown, e.g., in [2, Chapter 5], PQD holds if and
only if C(u, v) > uv for all u, v ∈ [0, 1], while the LTD property is verified if for almost all u, v ∈ (0, 1),

Ċ1(u, v) 6
C(u, v)
u

, Ċ2(u, v) 6
C(u, v)
v

. (1)

Many bivariate models with positive dependence meet Conditions (1), including the bivariate Normal, Beta, Gamma,
Student and Fisher distributions. Other examples are provided by the Cook–Johnson bivariate Pareto, Burr and logistic
distributions, Gumbel’s bivariate exponential and logistic distributions, the Ali–Mikhail–Haq bivariate logistics, the Clayton,
Frank, Plackett and Raftery families of copulas.
As it turns out, the LTD property implies a dominance relation between the asymptotic covariance functions of the

empirical processes C and Ĉ. A formal statement of this fact is given below and proved in the Appendix.

Proposition 1. Suppose that C is an LTD copula whose partial derivatives Ċ1 and Ċ2 exist everywhere and are continuous on
(0, 1)2. Then for all u, v, s, t ∈ [0, 1],

cov{Ĉ(u, v), Ĉ(s, t)} 6 cov{C(u, v),C(s, t)}. (2)

Inequality (2) seems to have been intuited in [11] in the context of copula density estimation; a heuristic explanation
was offered, but a formal result was neither stated nor proved. Proposition 4.2 in [12] is also a forerunner of Proposition 1
in the case of extreme-value copulas. As shown in [13], the latter are monotone regression dependent in the sense of [10];
this concept of dependence is stronger than the LTD property.
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Fig. 1. Graph of var{Ĉ(u, v)} − var{C(u, v)} for the FGM copula with parameter θ = 1 (left) and θ = −1 (right); the middle graph shows the difference
between the two surfaces (left – right).

A simple application of Proposition 1 is in the case of independence, where
cov{Ĉ(u, v), Ĉ(s, t)} − cov{C(u, v),C(s, t)} = 2uvst − us(v ∧ t)− vt(u ∧ s)

is readily seen to be negative for all u, v, s, t ∈ [0, 1]. Here is another illustration.

Example 1. Consider the Farlie–Gumbel–Morgenstern (FGM) copula with parameter θ ∈ [−1, 1], which is defined for all
u, v ∈ [0, 1] by Cθ (u, v) = uv + θuv(1− u)(1− v). It is easy to check that Cθ is LTD when θ ∈ [0, 1]; hence Inequality (2)
holds for all u, v, s, t ∈ [0, 1]. Analytic expressions for the asymptotic covariances can be derived using Maple but even in
this relatively simple case, they are much too long to be displayed here. A graph of var{Ĉ(u, v)} − var{C(u, v)} is plotted
in Fig. 1 for the cases θ = 1 (left panel) and θ = −1 (right panel); as the two surfaces look quite similar, their difference
(left− right) is also shown in the middle panel.

The right panel of Fig. 1 suggests that Proposition 1 could possibly be extended to cases where the pair (X, Y ) is negative
quadrant dependent (NQD), i.e., such that Pr(X 6 x, Y 6 y) 6 Pr(X 6 x) Pr(Y 6 y) for all x, y ∈ R. A partial finding along
these lines is stated next for copulas that are ‘‘not too negatively dependent’’, in the sense that for all u, v ∈ (0, 1), one has
C(u, v) 6 uv and

Ċ1(u, v) 6 2
C(u, v)
u

, Ċ2(u, v) 6 2
C(u, v)
v

. (3)

Proposition 2. Suppose that C is an NQD copula whose partial derivatives Ċ1 and Ċ2 exist everywhere and are continuous on
(0, 1)2. Further assume that Conditions (3) hold for all u, v ∈ (0, 1). Then for all u, v ∈ [0, 1],

var{Ĉ(u, v)} 6 var{C(u, v)}. (4)

This result, which is proved in the Appendix, is considerably weaker than Proposition 1 because it only yields Inequality
(2) in the case u = s and v = t . Condition (3) does not correspond to any standard notion of negative dependence and it
may be insufficient to establish (2) in full generality. As the following example shows, however, if Condition (3) does not
hold, then the variance inequality (4) may be violated.

Example 2. Consider the Gumbel–Barnett copula with parameter θ ∈ (0, 1], which is defined for all u, v ∈ (0, 1) by
Cθ (u, v) = uv exp(−θ log u log v) 6 uv. ThenCθ is NQDand for allu, v ∈ (0, 1), one has bothuĊ1(u, v)/C(u, v) = 1−θ log v
andvĊ2(u, v)/C(u, v) = 1−θ log u. Itmay easily be checkednumerically that Condition (3) is not verified and that Inequality
(4) fails for u = v close to 0.

3. Consequences for inference

Proposition 1 has intriguing implications for inference about copula-based dependence parameters. To seewhy, consider
the estimation of Blomqvist’s medial correlation coefficient using a random sample (X1, Y1), . . ., (Xn, Yn) from a continuous
distribution H . A multivariate version of this problem was recently studied in [14].
When H is bivariate and has underlying copula C , Blomqvist’s beta is given by

T1(C) = −1+ 4C
(
1
2
,
1
2

)
.

If the margins F and G of H are known, one can then compute Ui = F(Xi) and Vi = G(Yi) for each i ∈ {1, . . . , n} and the
pairs (U1, V1), . . . , (Un, Vn) form a random sample from C . A natural estimator of θ = T1(C) is then given by

θn = T1(Cn) = −1+ 4Cn

(
1
2
,
1
2

)
= −1+

4
n

n∑
i=1

1
(
Ui 6

1
2
, Vi 6

1
2

)
.
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Fig. 2. Boxplots for estimates of Blomqvist’s beta, Spearman’s rho, Spearman’s footrule, andGini’s gamma computed from Cn and Ĉn , based on 1000 samples
of size 500 of the bivariate Normal distribution with correlation ρ = −0.5 (left) and ρ = 0.5 (right).

When the margins are unknown, however, it is still possible to estimate θ using

θ̂n = T1(Ĉn) = −1+ 4Ĉn

(
1
2
,
1
2

)
= −1+

4
n

n∑
i=1

1
(
Ri
n
6
1
2
,
Si
n
6
1
2

)
,

where for fixed i ∈ {1, . . . , n}, Ri = nÛi denotes the rank of Xi among X1, . . . , Xn and Si = nV̂i denotes the rank of Yi among
Y1, . . . , Yn.
It follows from the asymptotic behavior of the processes Cn and Ĉn that the estimators θn and θ̂n are asymptotically

unbiased and Gaussian. In other words, there exist centered Normal random variables Θ1 and Θ̂1 such that, as n → ∞,
n1/2(θn − θ)  Θ1 and n1/2(θ̂n − θ)  Θ̂1, where denotes weak convergence.
Clearly, θn cannot be used if F and G are unknown. But if they are known, should θn be preferred to θ̂n? Surprisingly

perhaps, Proposition 1 implies thatwhen C satisfies Conditions (1), the rank-based estimator is asymptoticallymore efficient
than its competitor. In other words,

var(Θ̂1) = 16 var
{

Ĉ
(
1
2
,
1
2

)}
6 16 var

{
C
(
1
2
,
1
2

)}
= var(Θ1).

For example if C is the FGM copula with parameter θ > 0, one gets

var(Θ̂1) =
(
1+

θ

4

)(
1−

θ

4

)
6

(
1+

θ

4

)(
3−

θ

4

)
= var(Θ1).

The inequality remains valid for θ < 0, as per Proposition 2. In particular, var(Θ̂) = 1 and var(Θ) = 3 at independence.
The difference is substantial!
Similar conclusions can be drawn for other copula functionals, such as Spearman’s footrule, Spearman’s rho and Gini’s

gamma, respectively defined by

T2(C) = −2+ 6
∫ 1

0
C(t, t) dt,

T3(C) = −3+ 12
∫ 1

0

∫ 1

0
C(u, v) du dv,

T4(C) = −2+ 4
∫ 1

0
{C(t, t)+ C(t, 1− t)} dt.

In each case, the rank-based estimator θ̂ = T (Ĉn) is more efficient asymptotically than the plug-in estimator θn = T (Cn),
as long as C satisfies Conditions (1). The efficiency ratio at independence is 5 for T2 and T4, and 7 for T3.
To illustrate the extent of the improvement in cases of dependence, estimators Ti(Cn) and Ti(Ĉn) of parameters Ti(C)

were computed for each i ∈ {1, . . . , 4} from 1000 random samples of size 500 from the bivariate Normal distribution with
correlation ρ = ± 0.5. Boxplots showing the variation in the estimates are shown in Fig. 2. As one can see, the rank-based
estimators are preferable in all cases.
This observation can be extended as follows by treatingT as a functional on the spaceD of càdlàg functions ξ : [0, 1]2 →

R, equipped with the sup-norm.



C. Genest, J. Segers / Journal of Multivariate Analysis 101 (2010) 1837–1845 1841

Proposition 3. Suppose that T : D → R is non-decreasing and Hadamard differentiable at any copula C, tangentially to the
subspaceC ⊂ D of continuousmaps. Further assume that as n→∞, n1/2{T (Cn)−T (C)}  Θ and n1/2{T (Ĉn)−T (C)}  Θ̂ .
If C satisfies the conditions in (1), then var(Θ̂) 6 var(Θ).

The conditions of Proposition 3 are very general and easily verified for many concordance measures [15], including
functionals T1 to T4. However, they do not extend beyond the comparison of plug-in estimators based on non-decreasing
functionals T .
To illustrate this point, consider the functional

T5(ξ) = 1+ 3
∫ 1

0
{2ξ(t, t)− ξ(t, 1)− ξ(1, t)} dt.

AsT5 fails to be non-decreasing, one cannot conclude that θ̂n = T5(Ĉn)has greater asymptotic efficiency than θn = T5(Cn) as
an estimator of θ = T5(C). In otherwords, ifΘ5 and Θ̂5 are theweak limits of n1/2(θn−θ) and n1/2(θ̂n−θ), respectively, one
can then have either var(Θ̂5) 6 var(Θ5) or var(Θ̂5) > var(Θ5). For instance, if C is the FGM copula, then both inequalities
occur for different choices of the parameter θ > 0, as can be checked readily using the formulas

var(Θ̂5) =
2
5
+
3
70
θ −

11
150

θ2, var(Θ5) =
1
2
−
1
10
θ −

1
25
θ2.

A subtlety arises in that although T5 is not monotone, its restriction to the class of copulas coincides with Spearman’s
footrule. This is because if C is a copula, C(t, 1) = C(1, t) = t for all t ∈ [0, 1]. Accordingly,T5(Cn) andT5(Ĉn) are estimators
of θ = T2(C) = T5(C) which differ from T2(Cn) and T2(Ĉn), respectively. Thus if Θ2 and Θ̂2 denote the weak limits of
n1/2{T2(Cn) − θ} and n1/2{T2(Ĉn) − θ}, respectively, then var(Θ̂2) 6 var(Θ2) whereas the same inequality may not hold
for T5. For instance if C is the FGM copula with parameter θ > 0, one gets

var(Θ̂2) =
2
5
+
3
70
θ −

11
150

θ2 6 2+
2
5
θ −

1
25
θ2 = var(Θ2),

in accordance with Proposition 1.
The fact that var(Θ̂2) = var(Θ̂5) is not a coincidence. It occurs because∫ 1

0
Ĉn(t, 1) dt =

∫ 1

0
Ĉn(1, t) dt =

n− 1
2n

,

so the rank-based estimators T5(Ĉn) and T2(Ĉn) are asymptotically equivalent. To see that T5(Cn) and T2(Cn) are not
asymptotically equivalent, note that

T2(Cn) = 4−
6
n

n∑
i=1

max(Ui, Vi)

while

T5(Cn) = 1−
6
n

n∑
i=1

max(Ui, Vi)+
3
n

n∑
i=1

Ui +
3
n

n∑
i=1

Vi.

Therefore, n1/2{T5(Cn)− T2(Cn)} converges weakly to a non-degenerate centered Normal random variable as n→∞.
More generally if T and T ∗ are smooth functionals that coincide on the class of copulas, then the rank-based plug-in

estimators T (Ĉn) and T ∗(Ĉn) are asymptotically equivalent, while T (Cn) and T ∗(Cn) are not necessarily so. Indeed if C@
n is

the checkerboard copula associated with Ĉn (see, e.g., [16]), then for all u, v ∈ [0, 1],

|Ĉn(u, v)− C@
n (u, v)| 6

1
n
.

Furthermore, asC@
n is a bona fide copula,T (C

@
n )= T ∗(C@

n ) for every integern > 1. If themappingsT andT ∗ are differentiable
in a neighborhood around C , one may conclude that the difference between T (Ĉn) and T ∗(Ĉn) is Op(1/n).
Finally, note that Kendall’s tau is an example of a statistic such that T (Cn) = T (Ĉn) for all choices of copula C . This

is because the concordance or discordance status of pairs (Xi, Yi) and (Xj, Yj) is the same, whether it is determined from
(Ui, Vi) and (Uj, Vj), or from (Ûi, V̂i) and (Ûj, V̂j). Accordingly, the use of ranks does not lead to any efficiency gain or loss in
estimating Kendall’s tau statistic, whatever C is.

4. Discussion

Proposition 1 provides weak and easy-to-check conditions on a copula C which ensure that the asymptotic covariance of
the empirical copula process Ĉn = n1/2(Ĉn−C) is uniformly smaller than the asymptotic covariance of the empirical process
Cn = n1/2(Cn − C) based on a random sample from C . As a consequence, it is shown in Proposition 3 that if a copula-based



1842 C. Genest, J. Segers / Journal of Multivariate Analysis 101 (2010) 1837–1845

dependence parameter T (C) is expressed in terms of a non-decreasing functional of C , the plug-in rank estimator T (Ĉn)
has a smaller asymptotic variance than the corresponding estimator T (Cn) which assumes knowledge of the marginal
distributions. A numerical illustration further suggests that the gain in efficiency can be substantial, even in finite samples.
These findings are interesting from a theoretical perspective. They provide broad conditions under which inference on

copula-based parameters can be improved when raw observations are replaced by ranks. The gains in efficiency come from
the estimation of themarginal distributions, which are nuisance parameters in this context. The present results thus provide
a new illustration of the paradoxical effect that nuisance parameters sometimes have on the efficiency of estimators; for
additional discussion and examples arising in regression, see [17] and references therein.
At the moment, however, the practical implications of the results remain unclear. As mentioned by a referee, no

procedures are currently available for testing that data arise from an LTD copula. The only contribution along these lines
seems to be [18],where a test of theweaker condition PQD is considered.While the development of an LTD testwould clearly
be of interest, it is beyond the scope of the present work. But it may be worth pointing out that whatever the underlying
copula, Inequality (2) cannot be reversed. For, the limit Ĉ of the empirical copula process is a ‘‘tucked Brownian sheet’’ that
vanishes everywhere on the border of [0, 1]2, whereas the limitC of the empirical process is identically zero only on the set
{(u, v) : u = 0 or v = 0 or u = v = 1}. Thus for an arbitrary copula C and for all u, s ∈ (0, 1), one has

0 = cov{Ĉ(u, 1),C(s, 1)} < cov{C(u, 1),C(s, 1)} = u ∧ s− us.
By continuity, one must also have cov{Ĉ(u, v),C(s, t)} < cov{C(u, v),C(s, t)}when v and t are sufficiently close to 1.
In future work, it would be of interest to find appropriate conditions under which Inequality (2) holds for negatively

dependent dependence structures. The conclusion from Proposition 2 is considerably weaker. An extension of Proposition 1
to arbitrary dimension d > 2 would also be valuable but seems difficult. For, the proof detailed in the Appendix uses the fact
that for all u, v, s, t ∈ [0, 1],

cov{Ĉ(u, v), Ĉ(s, t)} − cov{C(u, v),C(s, t)} =
4∑
i=1

Ai(u, v, s, t)−
4∑
i=1

Bi(u, v, s, t) (5)

for specific choices of functions Ai, Bi, i ∈ {1, . . . , 4}. Under the conditions of Proposition 1, one can show that the right-hand
side of (5) is non-negative by matching each Ai with a specific Bi, depending on the relative position of u, v, s, t ∈ [0, 1].
In the d-variate case, however, there are d2 terms of type A but only 2d terms of type B, making it impossible to extend the
technique used in the proof.
Nevertheless, it is shown in the Appendix that Inequality (2) continues to hold at independence in higher dimensions.

This final result is formally stated below. By a continuity argument, one can thus expect that Proposition 1 can be extended
to multivariate copulas in an appropriate neighborhood of independence.

Proposition 4. Let Cd be the d-variate pinned π-Brownian sheet whose covariance function is given for all u, v ∈ [0, 1]d
by cov{Cd(u),Cd(v)} = π(u ∧ v) − π(u)π(v), where for u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ [0, 1]d, u ∧ v =
(u1 ∧ v1, . . . , ud ∧ vd) and π(u) = u1 × · · · × ud. For arbitrary u ∈ [0, 1]d, let also

Ĉd(u) = Cd(u)−
d∑
k=1

π̇k(u)Cd(uk),

where π̇k(u) = ∂π(u)/∂uk and where uk denotes a vector whose jth coordinate is uk if j = k and 1 otherwise. Then for all
u, v ∈ [0, 1]d,

cov{Ĉd(u), Ĉd(v)} 6 cov{Cd(u),Cd(v)}.
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Appendix. Proofs

Proof of Proposition 1. It is obvious from the definition of the limiting process Ĉ that Eq. (5) holds with

A1(u, v, s, t) = Ċ1(u, v)Ċ1(s, t)cov{C(u, 1),C(s, 1)},
A2(u, v, s, t) = Ċ1(u, v)Ċ2(s, t)cov{C(u, 1),C(1, t)},
A3(u, v, s, t) = Ċ2(u, v)Ċ1(s, t)cov{C(1, v),C(s, 1)},
A4(u, v, s, t) = Ċ2(u, v)Ċ2(s, t)cov{C(1, v),C(1, t)}
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and

B1(u, v, s, t) = Ċ1(u, v)cov{C(u, 1),C(s, t)},
B2(u, v, s, t) = Ċ2(u, v)cov{C(1, v),C(s, t)},
B3(u, v, s, t) = Ċ1(s, t)cov{C(u, v),C(s, 1)},
B4(u, v, s, t) = Ċ2(s, t)cov{C(u, v),C(1, t)}.

By symmetry, it can be assumed without loss of generality that u 6 s. Two cases must be distinguished, according to
whether v 6 t or v > t . If v 6 t , then

A1(u, v, s, t) = Ċ1(u, v) Ċ1(s, t) u(1− s),
A2(u, v, s, t) = Ċ1(u, v) Ċ2(s, t){C(u, t)− ut},
A3(u, v, s, t) = Ċ2(u, v) Ċ1(s, t){C(s, v)− sv},
A4(u, v, s, t) = Ċ2(u, v) Ċ2(s, t) v(1− t),

and

B1(u, v, s, t) = Ċ1(u, v){C(u, t)− u C(s, t)},
B2(u, v, s, t) = Ċ2(u, v){C(s, v)− v C(s, t)},
B3(u, v, s, t) = Ċ1(s, t)C(u, v)(1− s),
B4(u, v, s, t) = Ċ2(s, t)C(u, v)(1− t).

As it happens,

A1 6 B3, A2 6 B1, A3 6 B2, A4 6 B4, (A.1)

where the dependence on u, v, s, t has been suppressed for clarity. Indeed, A1 6 B3 occurs if and only if Ċ1(u, v)Ċ1(s, t) u(1−
s) 6 Ċ1(s, t)C(u, v)(1− s), which is equivalent to (1). Similarly, A4 6 B4.
To get A2 6 B1, one must check that Ċ2(s, t){C(u, t) − ut} 6 C(u, t) − uC(s, t). Using (1) and the fact that C(u, t) > ut ,

one finds

Ċ2(s, t){C(u, t)− ut} 6
C(s, t)
t
{C(u, t)− ut}

=
C(s, t)
t

C(u, t)− uC(s, t) 6 C(u, t)− uC(s, t),

where the last inequality is justified because C(s, t) 6 t . A similar argument yields A3 6 B2, and hence (A.1) is established.
Now assume that v > t . Then

A1(u, v, s, t) = Ċ1(u, v)Ċ1(s, t) u(1− s),
A2(u, v, s, t) = Ċ1(u, v)Ċ2(s, t){C(u, t)− ut},
A3(u, v, s, t) = Ċ2(u, v)Ċ1(s, t){C(s, v)− sv},
A4(u, v, s, t) = Ċ2(u, v)Ċ2(s, t) t(1− v),

and

B1(u, v, s, t) = Ċ1(u, v){C(u, t)− u C(s, t)},
B2(u, v, s, t) = Ċ2(u, v)C(s, t)(1− v),
B3(u, v, s, t) = Ċ1(s, t)C(u, v)(1− s),
B4(u, v, s, t) = Ċ2(s, t){C(u, t)− tC(u, v)}.

In that case, it turns out that

A1 6 B1, A2 6 B4, A3 6 B3, A4 6 B2. (A.2)

Indeed, A1 6 B1 is equivalent to Ċ1(s, t) u(1− s) 6 C(u, t)− uC(s, t). But by (1),

Ċ1(s, t) u(1− s) 6
C(s, t)
s

u− uC(s, t).

Thus one can see that

C(s, t)
s

u− uC(s, t) 6 C(u, t)− uC(s, t)
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whenever C(s, t)/s 6 C(u, t)/u. The latter holds true because u < s and the mapping u 7→ C(u, t)/u is non-increasing by
the LTD property. Similarly, A4 6 B2.
Finally, A2 6 B4 is equivalent to Ċ1(u, v){C(u, t) − ut} 6 C(u, t) − tC(u, v). Given that C(u, t) > ut , one can invoke (1)

to write

Ċ1(u, v){C(u, t)− ut} 6
C(u, v)
u

C(u, t)− tC(u, v) 6 C(u, t)− tC(u, v),

where the last inequality is valid because C(u, v) 6 u. The proof that A3 6 B3 is similar. The conjunction of (A.1) and (A.2)
implies the desired conclusion. �

Proof of Proposition 2. Upon setting s = u and t = v in the formulas presented above, one finds

A2 = A3 = Ċ1(u, v)Ċ2(u, v){C(u, v)− uv} 6 0

for all u, v ∈ [0, 1]. Thus it suffices to see that A1 6 B1 + B3 and A4 6 B2 + B4. This is clearly the case, because A1 =
(1 − u)uĊ21 (u, v) and B1 = B3 = (1 − u)C(u, v)Ċ1(u, v), while A4 = (1 − v)vĊ22 (u, v) and B2 = B4 = (1 − v)
C(u, v)Ċ2(u, v). �

Proof of Proposition 3. As in [19, Chapter 20], Hadamard differentiability is taken to mean that there exists a continuous
linear functional ṪC : C → R such that for every ξ ∈ C ,

lim
n→∞

T (C + hnξn)− T (C)
hn

= ṪC (ξ)

whenever hn ↓ 0 and ξn → ξ as n → ∞ uniformly. An application of the Functional Delta Method thus implies that, as
n→∞,

n1/2{T (Cn)− T (C)} = n1/2{T (C + n−1/2Cn)− T (C)}  ṪC (C).

Consequently,Θ = ṪC (C) in distribution. Similarly, Θ̂ = ṪC (Ĉ) in distribution.
Now because the functional ṪC belongs to the dual of C , the Riesz Representation Theorem implies the existence of a

bounded Borel measure µC on [0, 1]2 such that ṪC (ξ) =
∫
ξ dµC for all ξ ∈ C . Accordingly,

var(Θ) =
∫
[0,1]2

∫
[0,1]2

cov{C(u, v),C(s, t)} dµC (u, v) dµC (s, t),

var(Θ̂) =
∫
[0,1]2

∫
[0,1]2

cov{Ĉ(u, v), Ĉ(s, t)} dµC (u, v) dµC (s, t).

Finally, the assumption that T is non-decreasing means that ξ 6 ξ ∗ ⇒ T (ξ) 6 T (ξ ∗), where the inequality between
functions is understood to hold pointwise. It then follows that ṪC (ξ) > 0 whenever ξ > 0. Thus the measure µC must be
positive and var(Θ̂) 6 var(Θ) occurs as soon as Inequality (2) is verified for all u, v, s, t ∈ [0, 1]. �

Proof of Proposition 4. A simple calculation shows that

Ck(v)cov{Cd(u),Cd(vk)}
Ck(u)cov{Cd(uk),Cd(v)}
Ck(u)C`(v)cov{Cd(uk),Cd(vk)}

}
= π(u)π(v)

uk ∧ vk − ukvk
ukvk

.

Given that cov{Cd(uk),Cd(v`)} = 0 whenever k 6= `, one gets

cov{Ĉd(u), Ĉd(v)} − cov{Cd(u),Cd(v)} = −π(u)π(v)
d∑
k=1

uk ∧ vk − ukvk
ukvk

,

which is clearly negative for all u and v ∈ [0, 1]d. �

References

[1] H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall, London, 1997.
[2] R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, Berlin, 2006.
[3] G.R. Shorack, J.A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986.
[4] P. Deheuvels, La fonction de dépendance empirique et ses propriétés: Un test non paramétrique d’indépendance, Acad. Roy. Belg. Bull. Cl. Sci. 65 (5)
(1979) 274–292.

[5] D. Berg, Copula goodness-of-fit testing: an overview and power comparison, Europ. J. Finance 15 (2009) 675–701.
[6] C. Genest, B. Rémillard, D. Beaudoin, Goodness-of-fit tests for copulas: a review and a power study, Insurance: Math. Econom. 44 (2009) 199–213.
[7] L. Rüschendorf, Asymptotic distributions of multivariate rank order statistics, Ann. Statist. 4 (1976) 912–923.
[8] J.-D. Fermanian, D. Radulovic, M. Wegkamp, Weak convergence of empirical copula processes, Bernoulli 10 (2004) 847–860.
[9] J.D. Esary, F. Proschan, Relationships among some concepts of bivariate dependence, Ann. Math. Statist. 43 (1972) 651–655.
[10] E.L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966) 1137–1153.



C. Genest, J. Segers / Journal of Multivariate Analysis 101 (2010) 1837–1845 1845

[11] A. Charpentier, J.-D. Fermanian, O. Scaillet, The estimation of copulas: theory and practice, in: J. Rank (Ed.), Copulas: From Theory to Application in
Finance, Risk Publications, London, 2007, pp. 35–60.

[12] C. Genest, J. Segers, Rank-based inference for bivariate extreme-value copulas, Ann. Statist. 37 (2009) 2990–3022.
[13] A.I. Garralda-Guillem, Structure de dépendance des lois de valeurs extrêmes bivariées, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 593–596.
[14] F. Schmid, R. Schmidt, Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence, Metrika 66

(2007) 323–354.
[15] M. Scarsini, On measures of concordance, Stochastica 8 (1984) 201–218.
[16] C. Genest, J. Nešlehová, A primer on copulas for count data, Astin Bull. 38 (2007) 475–515.
[17] M. Henmi, A paradoxical effect of nuisance parameters on efficiency of estimators, J. Japan Statist. Soc. 34 (2005) 75–86.
[18] M. Denuit, O. Scaillet, Nonparametric tests for positive quadrant dependence, J. Financ. Econ. 2 (2004) 422–450.
[19] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge, 1998.


	On the covariance of the asymptotic empirical copula process
	Introduction
	Main result
	Consequences for inference
	Discussion
	Acknowledgments
	Proofs
	References


