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a b s t r a c t

As a useful tool in functional data analysis, the functional linear regression model has
become increasingly common and been studied extensively in recent years. In this paper,
we consider a sparse functional linear regression model which is generated by a finite
number of basis functions in an expansion of the coefficient function. In this model, we
do not specify how many and which basis functions enter the model, thus it is not like a
typical parametric model where predictor variables are pre-specified. We study a general
framework that gives various procedures which are successful in identifying the basis
functions that enter the model, and also estimating the resulting regression coefficients
in one-step. We adopt the idea of variable selection in the linear regression setting where
one adds a weighted L1 penalty to the traditional least squares criterion. We show that the
procedures in our general framework are consistent in the sense of selecting the model
correctly, and that they enjoy the oracle property, meaning that the resulting estimators of
the coefficient function have asymptotically the same properties as the oracle estimator
which uses knowledge of the underlying model. We investigate and compare several
methodswithin our general framework, via a simulation study. Also, we apply themethods
to the Canadian weather data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study a functional linear regression model E(Y |X) = α +

β(u)X(u) du with a scalar response Y and

a functional covariate X , where the coefficient function β is generated by a set of basis functions. Let {φj : 1 ≤ j < ∞}

be a basis for L2(I) where I is the interval on which the random function X and the coefficient function β are defined.
We consider the case where only a small number of the basis functions φj enter the model, but do not know the number
and which of them generate β . That is, we assume β =


j∈J βjφj where J is an unknown index set. Our functional linear

regression model can be represented as E(Y |X) = α +


j∈J βjξj, where ξj =

Xφj. We call this ‘‘a sparse functional linear

regression model’’. The model is more flexible than a typical parametric model where J is assumed to be known and have a
finite cardinality. We propose methods to identify J and estimate βj for j ∈ J , so that one can estimate the function β . Our
treatment includes both the cases where the cardinality of J is fixed and finite, and where the cardinality grows with the
sample size.

The problem of identifying J is similar to variable selection in high-dimensional linear regression models, but the
difference is that we have an infinite number of predictors ξj =


Xφj, 1 ≤ j < ∞, to choose from. Our procedure starts

by selecting a large number k, called the ‘‘dimension-cut-off’’, takes the predictors ξj, 1 ≤ j ≤ k, and then choose a smaller
number of ξj, among k, that are relevant. To select relevant ξj, we adopt the technique of penalized least squares estimation.
Several methods, such as the adaptive lasso [28], the SCAD [6] and the MCP [27], have been proposed in the context of
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linear regression. We employ a quite general penalization scheme which includes the aforementioned methods as a special
case. Our methods afford consistency in identifying the index set J . In the case where J has a fixed and finite cardinality, the
methods achieve the parametric

√
n-rate of convergence for the estimation of the functional coefficient β . We also show

that our estimator of β has the oracle property of the theoretical estimator that utilizes knowledge of J .
We first workwith the casewhere the coefficient function is generated by a fixed known basis system. This includes even

non-orthogonal basis systems such as splines. Then, we consider the Karhunen–Loève basis formed by the eigenfunctions
in the functional principal component analysis (PCA) of the regressor X . In the latter case, the basis functions are unknown
and need to be estimated. PCA is widely used as a means of dimension reduction for high-dimensional or functional data
analysis, see [19] for an introduction to this approach. The conventional PCA method is to take the first few estimators
ψ̂1, . . . , ψ̂p of the respective eigenfunctions ψ1, . . . , ψp, where ψ̂1, ψ̂2, . . . are naturally ordered in terms of the respective
eigenvalue estimators π̂1 ≥ π̂2 ≥ · · ·. Recently, Hall and Yang [10] justified the conventional approach by showing that
it has a minimax property, and also gave theoretical justification for cross-validation choice of the frequency cut-off p. Our
work on the Karhunen–Loève basis gives an alternative approach to dimension reduction. Our method may select non-
consecutive J . Also, our solution does not operate in a hierarchical way to select a model. That means, for example, that even
if ψ̂1, ψ̂3 and ψ̂4 are selectedwhen the dimension-cut-off k equals 5, there is no guarantee that they are selected againwhen
k ≥ 6. We found that our methods may produce more accurate results than the conventional PCA with a frequency cut-off
p determined by a data-driven selector.

The present work in the setting of the Karhunen–Loève decomposition is related to Cai and Hall [2], and Hall and
Horowitz [8]. The latter two considered an infinite-dimensional β , and studied the conventional least squares method,
based on functional PCA, without penalization. Some other related works include Cardot et al. [3] which also considered
the functional linear model with an infinite-dimensional coefficient function but treated a more general case where
the realization of X is in a Hilbert space. Cardot et al. [4] suggested an estimator of infinite-dimensional β based on a
B-splines expansion. James [11] and Müller and Stadtmüller [16] studied generalized functional linear models with an
infinite-dimensional coefficient function. They used natural cubic splines or an orthonormal basis to expand β . James and
Silverman [12] discussed more general functional regression models, but developed parametric asymptotic theory under
the assumption that J is known. Recently, James et al. [13] considered estimation of the functional coefficient β in the
functional linear regressionmodel when β(u) = 0 on some regions where the function is defined. Yuan and Cai [26] studied
a reproducing kernel Hilbert space approach with a roughness penalty for the estimation of an infinite-dimensional β .

The rest of the paper is organized as follows. In the next section we introduce a general framework for the penalized
least squares estimation of the coefficient function β , and give some asymptotic results that demonstrate consistency in
identifying J and the oracle properties of the penalized methods. Also, we discuss a criterion to choose the dimension-cut-
off k and the regularization parameters involved in the penalization methods. In Section 3 we treat the case where the
coefficient function admits a sparse representation in the Karhunen–Loève expansion. In Section 4 we provide the results
of a simulation study that compare the finite sample properties of several methods. In Section 5, we illustrate the methods
using a real data example. In Section 6 some concluding remarks are given. All the technical details are contained in the
Appendix.

2. Methodology and theory

2.1. Sparse functional linear model

Let X denote a square integrable random function that is defined on the interval I ≡ [0, 1] and satisfies


I
E(X2) < ∞.

Let Xi (1 ≤ i ≤ n) be i.i.d. copies of X . We consider the following functional linear regression model:

Yi = α +


I

βXi + εi, 1 ≤ i ≤ n, (2.1)

where β is a square integrable function from I to the real line, α, Yi and εi are scalars, α and β are deterministic, εi are i.i.d.
with E(εi) = 0 and σ 2

≡ E(ε2i ) < ∞, and Xi are independent of εi. Put µ = E(X).
We assume that β admits a sparse representation in a given basis {φj : 1 ≤ j < ∞} for L2(I), that is, it is represented

as β =


j∈J βjφj for some unknown index set J . We do not assume that the cardinality of J is known, neither that J is a set
of consecutive integers j ≥ 1. Thus, the model is more flexible than a typical parametric model where J is fixed, finite and
known. Without loss of generality, we assume


I
φ2
j = 1. Our treatment includes non-orthogonal bases such as splines. The

model (2.1) is expressed as

Yi = α +


j∈J

βjξij + εi, 1 ≤ i ≤ n (2.2)

where ξij =


I
Xiφj. A major challenge in fitting the model (2.2) is to identify {φj : j ∈ J} from the infinite number of basis

functions φj and estimate the coefficients βj for j ∈ J . Our method described below selects J and estimates βj for j ∈ J in
one-step.
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2.2. Penalized least squares

We adopt the idea of variable selection, developed in the linear regression problem, to identify J and to estimate βj in
the model (2.2). Specifically, we choose a large cut-off integer k which may vary with n. We call k the ‘‘dimension-cut-off’’.
We add a weighted L1 penalty to the least squares problem of fitting

k
j=1 βjξij to Yi − Ȳ , where ξij =


I
(Xi − X̄)φj, Ȳ =

n−1n
i=1 Yi, and X̄ = n−1n

i=1 Xi. Note that with slight abuse of notation we continue to use ξij to denote


I
(Xi − X̄)φj. We

consider the following minimization problem:

(β̂1, . . . , β̂k) = argmin
β1,...,βk

1
n

n
i=1


Yi − Ȳ −

k
j=1

βjξij

2

+

k
j=1

ŵj|βj|, (2.3)

where ŵj are appropriately chosen (possibly random) nonnegative weights. Although kmay depend on n, we suppress their
dependence on n for simplicity of notation. Once we obtain the solution of the minimization problem (2.3), we take

β̂(u) =

k
j=1

β̂jφj(u)

as an estimator of the coefficient function β , and α̂ = Ȳ −


I
β̂X̄ as an estimator of α at (2.1).

The theory we develop covers various choices of the weights ŵj. For example, it includes the adaptive lasso [28] where
ŵj = λ|β̂0

j |
−γ for some γ > 0 and a regularization parameter λ > 0. Here and below, β̂0

j are initial estimators of βj.
Furthermore, the problem of minimizing

1
n

n
i=1


Yi − Ȳ −

k
j=1

βjξij

2

+

k
j=1

pλ(|βj|) (2.4)

for a general penalty function pλ with a regularization parameter λ > 0, reduces to (2.3) via a linear approximation of pλ.
To see this, consider the two general forms of pλ: pλ = λ2p(·/λ) and pλ = λp, for a nonnegative, monotone increasing and
differentiable function p. The former was studied by Noh [17] and Zhang [27], and the latter by Lv and Fan [15] in the linear
regression problem.Note that, in the former case, p(x) = x corresponds to the lasso, pwith p′(x) = I(x ≤ 1)+ (γ−x)+

γ−1 I(x > 1)
for some γ > 2 to the smoothly clipped absolute deviation (SCAD) penalty [6], and p(x) =

 x
0 (1 − u/γ )+ du for some

γ > 0 to the minimax concave (MC) penalty [27]. A major difficulty with these methods (except the lasso) is that the
penalty functions are non-convex. This can be overcome by a linear approximation of pλ around |β̂0

j |, see [29,18] for the
theoretical and computational advantages of using a linear approximation of a non-convex penalty function. In the case
where pλ = λ2p(·/λ), one has

pλ(|βj|) ≃ λ2p(|β̂0
j |/λ)+ λp′(|β̂0

j |/λ)(|βj| − |β̂0
j |)

for βj near β̂0
j . Thus, after the linear approximation the problem (2.4) is equivalent to (2.3) with ŵj = λp′(|β̂0

j |/λ). Similarly,
in the latter case where pλ = λp, the problem (2.4) reduces to (2.3) with ŵj = λp′(|β̂0

j |). The adaptive lasso discussed
above corresponds to the case where p′(u) = u−γ . Hence, the penalization that we formulate in (2.3) is quite general to
include all these methods as special cases. In the next two subsections, we discuss some higher-level conditions on ŵj for
our theoretical results which all the penalized methods mentioned above may satisfy.

2.3. Conditions on penalty weights when J is fixed and finite

In this section, we discuss conditions on the penalty weights ŵj for the consistency of the proposed method in selecting
the nonzero coefficients βj, and for its oracle properties. Let J = {j : βj ≠ 0} and |J| be fixed and finite, where |J| denotes
the cardinality of J . For the dimension-cut-off k in (2.3), we assume

(C1) k is larger than the greatest index in the set J .

This assumption is automatically satisfied for sufficiently large n if k increases as n. Let ρ be a positive constant such thatk
j=1


I
f φj
2

≤ ρ


I
f 2 for all f in L2(I). We can take ρ = 1 for an orthogonal basis and ρ = k for a non-orthogonal basis.

Let κ be the condition number of the matrix n−14⊤4, where 4 is the n × k matrix whose (i, j)th element equals ξij. Note
that κ is a random variable depending on n, and that ρ is non-random and may also depend on n. For the weights ŵj, we
assume

(C2) n1/2ŵj = op(1) for j ∈ J , and supj∉J n−1/2ρ1/2κŵ−1
j = op(1).

It is easy to see that the constant weight ŵj ≡ λ of the lasso [21] does not satisfy the condition (C2). Below in this section,
we discuss how the condition (C2) is satisfied by the adaptive lasso, the one-step SCAD and the one-step MC penalties.
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Suppose that for these penalizedmethods we use β̂0
j which solve the least squares problem (2.3) without the penalty terms,

that is,

(β̂0
1 , . . . , β̂

0
k ) = argmin

β1,...,βk

1
n

n
i=1


Yi − Ȳ −

k
j=1

βjξij

2

. (2.5)

Define β̂0(u) =
k

j=1 β̂
0
j φj(u). Then, we obtain the following theoremwhich gives a uniform rate of convergence for β̂0

j . The
theorem is useful to verify the condition (C2). Let ℓ and L denote the smallest and the largest, respectively, eigenvalues of
n−14⊤4. Note that ℓ and L are random variables depending on n. It can be verified that there exists a constant 0 < c < ∞

such that both P(ℓ ≤ c) and P(L ≥ c) converge to one.

Theorem 1. Under the conditions (C1),
k

j=1(β̂
0
j − βj)

2
= Op(n−1ρℓ−2). Thus, it follows that sup1≤j≤k |β̂0

j − βj| = Op

(n−1/2ρ1/2ℓ−1).

2.3.1. The case where pλ = λ2p(·/λ)
In this case, ŵj = λp′(|β̂0

j |/λ). Suppose that p has a nonnegative and nonincreasing derivative p′ on (0,∞), and satisfy

lim
u→0+

p′(u) > 0, p′(u) = O(u−b) as u → ∞ for some b > 0. (2.6)

We verify that the condition (C2) is satisfied if

n1/2λ1+b
→ 0, n1/2λρ−1/2κ−1 p

→ ∞. (2.7)

The first part of (C2) follows easily from the second condition of (2.6) and the first condition of (2.7). To see that the
second part of (C2) holds, we note that from the monotonicity of p′

inf
j∉J

p′(|β̂0
j |/λ) ≥ p′

n1/2ρ−1/2ℓ sup
j∉J

|β̂0
j − βj|

λn1/2ρ−1/2ℓ

 . (2.8)

By Theorem 1, the first condition of (2.6), the second condition of (2.7) and the fact that P(L ≥ c) converges to one for some
0 < c < ∞, the right hand side of (2.8) converges to some strictly positive constant in probability. This shows that there
exists a constant 0 < C < ∞ such that

sup
j∉J

n−1/2ρ1/2κŵ−1
j ≤ Cn−1/2λ−1ρ1/2κ

with probability tending to one. The second part of (C2) now follows from the second condition of (2.7).
Both the one-step SCAD and MC penalty functions satisfy the conditions (2.6) for all constants b > 0 since p′(u) in those

cases vanishes for all u greater than a fixed positive constant. Thus, for these methods the first condition of (2.7) only needs
to hold for an arbitrarily large constant b > 0. If λ converges to zero at a polynomial order of n, i.e., if λ = O(n−α) for
some α > 0, then the first condition of (2.7) always hold by taking b > 0 sufficiently large. In this case, one only needs
the second condition of (2.7). If k is fixed, this reduces to n1/2λκ−1 p

→ ∞. Furthermore, n−14⊤4 typically converges to a
positive definite matrix, in which case the condition reduces further to

n1/2λ → ∞.

The latter condition is assumed in Theorem 2 of [6] for the SCAD in the linear regression setting to have the oracle properties.

2.3.2. The case where pλ = λp
In this case, ŵj = λp′(|β̂0

j |). Suppose that p has a nonnegative and nonincreasing derivative p′ on (0,∞), and satisfy

p′(u)−1
= O(uγ ) as u → 0 for some γ > 0. (2.9)

The condition (2.9) implies that p′(u) tends to infinity as u decreases to zero, and this makes sense with the weight scheme
ŵj = λp′(|β̂0

j |) since one needs to put a large penalty for βj close to zero. We may verify (C2) under the conditions

n1/2λ → 0, n(γ+1)/2λρ−(γ+1)/2κ−1ℓγ
p

→ ∞. (2.10)

To see this, we note that

inf
j∉J

p′(|β̂0
j |) ≥ p′

n1/2ρ−1/2ℓ sup
j∉J

|β̂0
j − βj|

n1/2ρ−1/2ℓ

 .
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From the second condition of (2.10), one can infer n1/2ρ−1/2ℓ
p

→ ∞. Also, by Theorem 1 and (2.9), the inverse of the right
hand side of the above inequality is bounded, in probability, by some strictly positive constant multiplied by n−γ /2ργ /2ℓ−γ .
The condition (C2) now follows from the condition (2.10).

Recall that the adaptive lasso corresponds to the one-step penalized method with pλ = λp and p′(u) = u−γ for some
γ > 0. This means that the weights ŵj = λ|β̂0

j |
−γ of the adaptive lasso satisfy (C2) if (2.10) holds. In particular, if k is large

but fixed and n−14⊤4 converges to a positive definite matrix, then the conditions at (2.10) reduce to

n1/2λ → 0, n(γ+1)/2λ → ∞.

These are the conditions assumed in Theorem 2 of [28] for the adaptive lasso in the linear regression setting to have the
oracle properties.

2.4. Conditions on penalty weights when J grows with the sample size

Here, we consider the case where |J| → ∞ as n → ∞. In this case, it can be verified that Theorem 1 remains to hold.
For the selection consistency and the oracle properties we need to add a condition on the magnitude of δJ ≡ infj∈J |βj| and
modify the first condition of (C2). Let ρJ denote a constant such that


j∈J


I
f φj
2

≤ ρJ


I
f 2 for all f in L2(I). We assume

(C1),

(C2′)


j∈J n
1/2ŵjρ

−1/2
J = op(1) and supj∉J n−1/2ρ1/2κŵ−1

j = op(1),
(C3) δ−1

J n−1/2ρ1/2ℓ−1
= op(1).

We note that the condition (C2′) reduces to (C2) when J is fixed and finite since then ρJ is a fixed positive number. Also, in
that case the additional condition (C3) is automatically satisfied since δJ is also a fixed positive number.

In the case where pλ = λ2p(·/λ) for a function pwith a nonnegative and nonincreasing derivative p′ on (0,∞) satisfying
(2.6), the conditions (C2′) and (C3) are satisfied if

n1/2λ1+b
|J| δ−b

J ρ
−1/2
J → 0, n1/2λρ−1/2κ−1 p

→ ∞. (2.11)

In the case where pλ = λp, we need an additional condition other than (2.9) for the function p. In fact, the function p should
also satisfy p′(u) = O(u−γ ) as u → 0 for the γ in (2.9). With these conditions on p, the conditions (C2′) and (C3) are
satisfied if

n1/2λ|J| δ−γ

J ρ
−1/2
J → 0, n(γ+1)/2λρ−(γ+1)/2κ−1ℓγ

p
→ ∞. (2.12)

Note again that the conditions at (2.11) and (2.12) reduce to those at (2.7) and (2.10), respectively, when J is fixed and finite.

2.5. Oracle properties when J is fixed and finite

Define 4J to be the n× |J| matrix whose columns are the vectors (ξ1j, . . . , ξnj)⊤ for j ∈ J . If one were to know J , then one
would estimate βj, j ∈ J , by minimizing

1
n

n
i=1


Yi − Ȳ −


j∈J

βjξij

2

.

This would yield an oracle estimator β̂J,oracle ≡ (4⊤

J 4J)
−14⊤

J (Y − 1Ȳ ). Define βJ = (βj : j ∈ J) and β̂J = (β̂j : j ∈ J),
where β̂j are defined at (2.3). The following theorem demonstrates that our penalized method selects nonzero coefficients
βj, j ∈ J , correctly with probability tending to one, and that the estimator β̂J has the same asymptotic distribution as the
oracle estimator β̂J,oracle. It also tells that the prediction errors of Ŷ ≡ α̂ +


I
β̂X and Ŷoracle ≡ α̂oracle +


I
β̂oracleX are the

same to the second order. Here, β̂oracle =


j∈J β̂j,oracleφj and α̂oracle = Ȳ −


I
β̂oracleX̄ . The prediction errors of Ŷ and Ŷoracle,

as predictors of Y , is given by

EX,Y (Y − Ỹ )2 = (1 + n−1)σ 2
+ EX


I

(β̃ − β)(X − µ)

2
+ op(n−1), (2.13)

where (Ỹ , β̃) denotes (Ŷ , β̂) or (Ŷoracle, β̂oracle), and the expectation is taken for the test data X and Y only. LetΣJ be a |J|×|J|
matrix with E


(X − µ)φj


(X − µ)φj′


for j, j′ ∈ J being its elements.

Theorem 2. Assume (C1) and (C2) hold. Then, (i) P(β̂j = 0 for j ∉ J) → 1 as n → ∞; (ii) both
√
n(β̂J − βJ) and

√
n(β̂J,oracle−βJ) have the same asymptotic distribution N(0, σ 2Σ−1

J ); (iii) the prediction errors of Ŷ and Ŷoracle differ by op(n−1)

and the second term on the right hand side of (2.13) admits the expansion n−1σ 2Vn + op(n−1), where Vn is the same for Ŷ and
Ŷoracle and has asymptotically a chi-square distribution with degree of freedom |J|.
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We note that the problem of estimating the functional coefficient β is not of parametric nature even if we assume that β
is of finite-dimension. This is because we do not know the fixed and finite set J . Theorem 2 tells that, although the problem
is far more difficult than the one in parametric models where the set J is known, our method affords the parametric

√
n-rate

of convergence in estimating the functional coefficient β . The first two parts of the theorem are for the estimators of the
individual coefficients βj. One may be interested in making inference on βj as well if one can give a good interpretation to
ξj =


Xφj.

2.6. Oracle properties when J grows with the sample size

When |J| → ∞ as n → ∞, the selection consistency (i) in Theorem 2 is preserved. However, one may not get
the parametric

√
n-rate of convergence in this case. Let ℓJ and LJ denote the smallest and largest eigenvalues of ΣJ . Put

an = n−1/2ℓ−1
J ρ

1/2
J . Then, one can show that, under (C1)

j∈J

(β̂j,oracle − βj)
2

= Op(a2n), EX


I

(β̂oracle − β)(X − µ)

2
= Op(LJa2n).

Theorem 3. Assume (C1), (C2′) and (C3) hold. Then, (i) P(β̂j = 0 for j ∉ J) → 1 as n → ∞; (ii)


j∈J(β̂j − β̂j,oracle)
2

=

op(a2n); (iii) the prediction errors of Ŷ and Ŷoracle differ by op(LJa2n).

2.7. Selection of regularization parameters and dimension-cut-off k

The weights ŵj that correspond to the typical penalized methods, such as the lasso, the adaptive lasso, the SCAD and the
MCP, involve a regularization parameter λ. There are several methods for choosing the tuning parameter. Two of the most
popular criteria used in the linear regression setting are the GCV [21,6] and AIC [20,25]. But, it was shown byWang et al. [24]
that they produce overfitted models if the dimension of the true model is finite. Wang et al. [24] and Wang and Leng [22]
suggested to use a BIC-type criterion and showed that it is consistent in identifying the true model in the linear regression
problem with fixed predictor dimension. Later, Wang et al. [23] extended the consistency results to the case of diverging
number of regression parameters. Adapting the method for our setting, one may select λ by minimizing

BIC(λ) = log

n−1
n

i=1


Yi − Ȳ −

k
j=1

β̂j(λ)ξij

2
+ DFλ(log n)/n,

where β̂j(λ) denotes the solution of (2.4), or its one-step approximation as we discussed in Section 2.2, and DFλ = #{j :

β̂j(λ) ≠ 0}. One may also use the above BIC-type criterion to select the dimension-cut-off k as well, together with λ. We
used this criterion in our numerical study presented in Section 4.

3. Karhunen–Loève basis expansion

In this section we consider the case where the coefficient function β admits a sparse representation in the
Karhunen–Loève expansion. The basis is formed by the eigenfunctions in the functional principal component analysis (PCA)
of the regressor X . The methodology and theory are different from those in the previous section where the basis functions
are known. Note that the eigenfunctions in the functional PCA of X are not available but have to be estimated from the
empirical covariance function of the observed data Xi.

Let K(u, v) = E[X(u)− µ(u)][X(v)− µ(v)] be the covariance function of X . We may write

K(u, v) =

∞
j=1

πjψj(u)ψj(v), (3.1)

whereπ1 ≥ π2 ≥ · · · ≥ 0 is an enumeration of the eigenvalues of the integral operator having K as its kernel, andψj are the
corresponding orthonormal eigenfunctions. That is,


I
K(u, v)ψj(v) dv = πjψj(u), j ≥ 1. The Karhunen–Loève expansion

of X − µ is given by X(u) − µ(u) =


∞

j=1 ζjψj(u), where ζj are random variables defined by ζj =


I
(X − µ)ψj. Also,

one has Eζ 2
j = πj. Since the functions ψj form a complete orthonormal basis of L2(I), we may write β =


∞

j=1 βjψj and
Xi − µ =


∞

j=1 ζijψj, where βj =


I
βψj are deterministic and ζij =


I
(Xi − µ)ψj are random variables.

As in Section 2, we assume that β is generated by ψj with j in an index set J so that β =


j∈J βjψj, where J is unknown.
Since ζij are not observable, we use an empirical version of ζij to estimate βj. Let K̂(u, v) denote the sample covariance
function defined by K̂(u, v) = n−1n

i=1[Xi(u) − X̄(u)][Xi(v) − X̄(v)], where X̄ = n−1n
i=1 Xi. Then, analogously to (3.1),
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we can write

K̂(u, v) =

∞
j=1

π̂jψ̂j(u)ψ̂j(v),

where π̂1 ≥ π̂2 ≥ · · · ≥ 0 is an enumeration of the eigenvalues of the integral operator having kernel K̂ , and ψ̂j are the
corresponding orthonormal eigenfunctions. We let ζ̂ij =


I
(Xi − X̄)ψ̂j. Then, n−1n

i=1 ζ̂
2
ij = π̂j.

Following the idea in Section 2, we find

(β̂1, . . . , β̂k) = argmin
β1,...,βk

1
n

n
i=1


Yi − Ȳ −

k
j=1

βjζ̂ij

2

+

k
j=1

ŵj|βj| (3.2)

for a chosen scheme of weights ŵj, and then estimate β by β̂(u) =
k

j=1 β̂jψ̂j(u). Also, we estimate the intercept α by
α̂ = Ȳ −


I
β̂X̄ . The minimization problem at (3.2) has an explicit solution since ψ̂j are orthogonal. Define Ẑ to be the n× k

matrix whose columns are the vectors (ζ̂1j, . . . , ζ̂nj)⊤ for 1 ≤ j ≤ k. Let Y = (Y1, . . . , Yn)
⊤ and 1 = (1, . . . , 1)⊤. Since

n−1Ẑ⊤Ẑ = diag(π̂1, . . . , π̂k), we obtain

β̂j = argmin
βj

(π̂jβj
2
− 2cjβj + ŵj|βj|)

= π̂−1
j


|cj| −

ŵj

2


+

sgn(cj), 1 ≤ j ≤ k,

where (c1, . . . , ck)⊤ = n−1Ẑ⊤(Y − 1Ȳ ) and x+ = max{x, 0}.

3.1. When J is fixed and finite

We consider the case where |J| is fixed and finite. This assumption puts some restriction on the eigenfunctions of the
covariance operator K , thus on the process X . However, our method as described above can be a good alternative to the
conventional PCAmethod. The latter selects the first few estimators ψ̂1, . . . , ψ̂p of the respective eigenfunctionsψ1, . . . , ψp

with the frequency cut-off p determined by a data-driven method, and then estimates β by
p

j=1 β̂jψ̂j where β̂j, 1 ≤ j ≤ p,
minimize the least squares criterion at (3.2) with no penalties and k being replaced by p. We observe in our simulation
reported in Section 4.2 that our methods may produce more accurate results than the conventional PCA method.

The conditions for the selection consistency and oracle properties of the method in this case are different from those in
Section 2.3. This is due to the need to analyze the estimated principal component scores ζ̂ij, eigenvalues π̂j and eigenfunctions
ψ̂j. Let 0 < C < ∞ denote a generic constant whose meaning is different from time to time. The following two conditions
are typical in functional PCA (see [8], for example):
(D1) X has finite fourth moment, i.e.,


I
EX4 < ∞, and Eζ 4

j ≤ Cπ2
j for all j.

(D2) πj − πj+1 ≥ Cj−a−1 for all j ≥ 1 and some a > 1.

The condition (D2) requires that the spacings between the eigenvalues are not too small. It implies that each πj is greater
than a constant multiple of j−a. One needs this condition to get an expression and a bound for ψ̂j − ψj. The conditions (C1)
ad (C2) in Section 2.3 are replaced by
(D3) n−1k2(a+1)

→ 0 as n → ∞, and k is larger than the greatest index in the set J .
(D4) n1/2ŵj = op(1) for j ∈ J , and supj∉J n−1/2k(a+1)/2ŵ−1

j = op(1).

To appreciate why the conditions (C1) and (C2) are modified to (D3) and (D4), one may find from the proof of Theorem 2
in the Appendix that we need L2

k
j=1(β̂

0
j − βj)

2 supj∉J ŵ
−2
j = op(1), where L is the largest eigenvalue of n−14⊤4. In the

current setting, L is replaced by π̂1 ∼ π1. Also, as is demonstrated in the following theorem, the initial β̂0
j defined below,

satisfy
k

j=1(β̂
0
j − βj)

2
= Op(n−1kπ−1

k ). Thus, we need π1n−1/2k1/2π−1/2
k supj∉J ŵ

−1
j = op(1). Since π−1

k = O(ka) under
the condition (D2), the second part of (D4) gives the convergence. The additional requirement in the first part of (D3) is
to make π̂j − πj be of smaller order than πj − πj+1 uniformly for 1 ≤ j ≤ k, which we need to get a representation for
ψ̂j − ψj, 1 ≤ j ≤ k.

Let β̂0
j be the solution of the least squares problem

(β̂0
1 , . . . , β̂

0
k ) = argmin

β1,...,βk

1
n

n
i=1


Yi − Ȳ −

k
j=1

βjζ̂ij

2

.

Define β̂0(u) =
k

j=1 β̂
0
j ψ̂j(u). Below we have an analogue of Theorem 1 in the functional PCA regression setting.
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Theorem 4. Under the conditions (D1)–(D3),
k

j=1(β̂
0
j − βj)

2
= Op(n−1kπ−1

k ). Thus, it follows that sup1≤j≤k |β̂0
j − βj| =

Op(n−1/2k(a+1)/2), and also


I
(β̂0

− β)2 = Op(n−1ka+1).

Theorem 4 here is related to Theorem 1 of [8] which gives a rate of convergence for


I
(β̂0

− β)2. The latter treats the
case where the function β is of infinite-dimensional, i.e., there are infinite number of nonzero coefficients βj. For the size
of |βj|, they put the condition that |βj| ≤ Cj−δ for some δ > 1 + (a/2). They also assumed k ∼ n1/(a+2δ), which appears to
satisfy our (D3).

We now discuss how the condition (D4) is satisfied by a specific penalty weight scheme. First, consider the case where
ŵj = λp′(|β̂0

j |/λ). In this case it can be verified that (D4) holds if p′ is nonnegative and nonincreasing on (0,∞) and satisfies
(2.6), and also if

n1/2λ1+b
→ 0, n1/2λk−(a+1)/2

→ ∞. (3.3)

This can be done similarly as in the case of known bases with Theorem 3 being used instead of Theorem 1. In the case of the
one-step SCAD or MC penalty functions, one only needs the second condition of (3.3) if λ converges to zero at a polynomial
order of n.

Next, consider the case where ŵj = λp′(|β̂0
j |). In this case (D4) holds if p′ is nonnegative and nonincreasing on (0,∞)

and satisfies (2.9), and also if

n1/2λ → 0, n(γ+1)/2λk−(a+1)(γ+1)/2
→ ∞. (3.4)

Applying this to the adaptive lassowhere p′(u) = u−γ for some γ > 0,we see that theweights ŵj = λ|β̂0
j |

−γ of the adaptive
lasso satisfy (D4) if (3.4) holds.

In the next theorem, we state the oracle properties of the estimators β̂j defined at (3.2). To state the theorem, let ẐJ and
ZJ , respectively, to be the n×|J|matrices whose columns are the vectors (ζ̂1j, . . . , ζ̂nj)⊤ and (ζ1j, . . . , ζnj)⊤ for j ∈ J . Then, an
oracle estimator β̂J,oracle can be defined by β̂J,oracle ≡ (Ẑ⊤

J ẐJ)
−1Ẑ⊤

J (Y−1Ȳ ). Also, define a |J|×|J|matrixΓJ = diag(πj : j ∈ J).
This definition comes from that ofΣJ in the previous section by replacing the basisφj by the Karhunen–Loève basisψj. Define
for 1 ≤ j < ∞

Wj = ζj

r∈J,≠j

(πr − πj)
−1ζrβr ,

and let W = (Wj : j ∈ J) be a |J|-dimensional random vector. Let Wij for 1 ≤ i ≤ n denote the i.i.d. copies of Wj. For
ε = (ε1, . . . , εn)

⊤, define

Qn = n−1ε⊤ZJΓ
−1
J Z⊤

J ε +


j∉J

πj


n−1/2

n
i=1

Wij

2

.

We note that the first term of Qn divided by σ 2 converges to a chi-square distribution with degree of freedom |J|.

Theorem 5. Assume (D1)–(D4) hold. Then, the first two parts of Theorem 2 remain to hold in the finite-dimensional setting in

terms of Karhunen–Loève basis, with σ 2Σ−1
J being replaced by σ 2Γ −1

J +var(W). The prediction errors EX


I
(β̃ − β)(X − µ)

2
for β̃ = β̂ and β̃ = β̂oracle ≡


j∈J β̂j,oracleψ̂j admit the expansion n−1Qn + op(n−1).

In comparison with Theorem 2, the additional term var(W) in the asymptotic variance of β̂J and β̂J,oracle, and the one in
the expansion of the prediction errors (the second term in the definition of Qn) come from the error in the estimation of
the Karhunen–Loève basis ψj. It is widely accepted that in the infinite-dimensional setting the prediction error for a new Y
and the estimation error for the function β are quite different and lead to different convergence rate, see [2,5] for example.
The last part of the above theorem tells that this is not the case when β admits a finite-dimensional decomposition. The
regularization parameters λ and/or k may be selected according to the criterion introduced in Section 2.7.

3.2. When J grows with the sample size

In this case, Theorem 4 does not follow under the conditions (D1)–(D3). This is due to the fact that we use the estimated
eigenfunctions ψ̂j rather than the true ψj. In fact, in addition to (D1) and (D2) we need (D3′), which is stronger than (D3),
and (D5) as given below. Let kJ denote the greatest index in J .

(D3′) n−1k2(a+1)
→ 0 as n → ∞, and lim supn πk/(kπ2

kJ
) < ∞.

(D5) lim supn


j∈J j
a+1π

3/2
j |βj| < ∞ and lim supn


j∈J β

2
j j

2 < ∞.
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Here, a is the constant in the condition (D2). The second condition of (D3′) is used to make the second term on the right
hand side of (A.5), in the proof of Theorem 4 in the Appendix, be negligible compared to the first term. The condition implies
the second condition of (D3) that k > kJ since π2

k ≪ πkk−1
∼ π2

kJ
. The first condition in (D5) is used to obtain (A.10) in the

proof of Theorem 4. The second condition in (D5) is to make negligible the contribution to


I
(β̂0

− β)2, of the second term
on the right hand side of the following decomposition:

β̂(u)− β(u) =

k
j=1

(β̂0
j − βj)ψ̂j(u)+

k
j=1

βj(ψ̂j(u)− ψj(u)).

The two conditions in (D5) hold automaticallywhen J is fixed and finite. InHall andHorowitz [8] it is assumed that |βj| ≤ Cj−c

for some c > 1 + (a/2) together with (D1) and (D2). We note that this ensures (D5).

Theorem 6. Under the conditions (D1), (D2), (D3′) and (D5), Theorem 4 remains to hold in the casewhere |J| → ∞ as n → ∞.

For the selection consistency and the oracle properties in the case where |J| → ∞ as n → ∞, we assume further

(D4′) π
−1/2
kJ

|J|−1/2
j∈J n

1/2ŵj = op(1), and supj∉J n−1/2k(a+1)/2ŵ−1
j = op(1).

(D6) δ−1
J n−1/2k(a+1)/2

= op(1).

For (D4′) to be satisfied, the conditions at (3.3) should be replaced by

n1/2λ1+bδ−b
J π

−1/2
kJ

|J|1/2 → 0, n1/2λk−(a+1)/2
→ ∞

and (3.4) by

n1/2λδ
−γ

J π
−1/2
kJ

|J|1/2 → 0, n(γ+1)/2λk−(a+1)(γ+1)/2
→ ∞.

As in the case of a fixed knownbasis systemwhen pλ = λp, the function p, in addition to (2.9), needs to satisfy p′(u) = O(u−γ )
as u → 0 for the γ in (2.9).

Let bn = n−1/2π
−1/2
kJ

|J|1/2. Then, it follows that


j∈J

(β̂j,oracle − βj)
2

= Op(b2n), EX


I

(β̂oracle − β)(X − µ)

2
= Op(n−1

|J|)

under (D1), (D2), (D3′) and (D5). The following theorem demonstrates the selection consistency and the oracle properties
of β̂ .

Theorem 7. Assume (D1), (D2), (D3′), (D4′), (D5) and (D6). Then, (i) P(β̂j = 0 for j ∉ J) → 1 as n → ∞; (ii)


j∈J(β̂j −

β̂j,oracle)
2

= op(b2n); (iii) the prediction errors of Ŷ and Ŷoracle differ by op(n−1
|J|).

4. Numerical properties

This section is divided into two parts. The first is for the case where the coefficient function β is sparse in an expansion
with a knownbasis, and the second part for the Karhunen–Loève basis expansion.We compared the finite-sample properties
of the penalized estimators of β and βj. The methods we included in the comparison were the adaptive lasso, the SCAD and
the MCP. In addition to these, we added the B-spline estimator (CFS henceforth) proposed by Cardot et al. [4] in the first
part, and the conventional method with a frequency cut-off p chosen by a BIC criterion in the second part. Both are known
as a non-sparsemethod. The CFSmethod is defined as in (2.3) with the weighted L1 penalty being replaced by the roughness

penalty λ


I

k
j=1 βjφ

′′

j

2
. Another non-sparse method which we considered in both parts was the ridge estimator, which

is defined as in (2.3) with the L2 penalty λ
k

j=1 β
2
j .

In both parts, the covariate functions Xi were generated from the model X(u) =
400

j=1(−1)j+1π
1/2
j Zjψj(u), where

ψ1 ≡ 1 and ψj+1(u) =
√
2 cos(jπu) for j ≥ 1. We took i.i.d. Zj uniformly distributed on [−

√
3,

√
3] so that EZj = 0

and EZ2
j = 1. The sets of πj were πj = c j−a, where a = 1.2, 1.6, 2.0 and c , depending on the value of a, was taken so that

I
var(X) =

400
j=1 πj =

400
j=1 j

−1.2, i.e., c =
400

j=1 j
−1.2/

400
j=1 j

−a.
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Table 1
Performance in the sparse B-spline model.

n σ a Correct nonzero Incorrect nonzero Prediction error
SCAD MCP Adap. lasso SCAD MCP Adap. lasso SCAD MCP Adap. lasso CFS Ridge

100 0.5 1.2 2 2 1.99 0.44 1.36 0.4 0.0128 0.0179 0.0123 0.0549 0.0551
1.6 1.93 2 1.98 0.95 1.9 0.66 0.0214 0.0190 0.0142 0.0509 0.0506
2.0 1.82 2 1.86 2.88 2.5 1.55 0.0349 0.0185 0.0207 0.0457 0.0443

1 1.2 1.89 1.99 1.84 1.49 2 1.51 0.0983 0.0811 0.0859 0.1782 0.1636
1.6 1.69 1.99 1.69 2.5 2.6 2.18 0.1486 0.0779 0.0983 0.1645 0.1492
2.0 1.35 1.92 1.42 4.52 2.83 2.9 0.2077 0.0716 0.1086 0.1410 0.1282

400 0.5 1.2 2 2 2 0.03 0.69 0.06 0.0012 0.0027 0.0014 0.0129 0.0133
1.6 2 2 2 0.05 1.18 0.09 0.0013 0.0035 0.0015 0.0123 0.0126
2.0 1.99 2 2 0.24 1.87 0.15 0.0019 0.0040 0.0018 0.0113 0.0113

1 1.2 2 2 2 0.21 1.21 0.19 0.0075 0.0171 0.0082 0.0457 0.0447
1.6 1.98 2 1.99 0.4 1.76 0.39 0.0127 0.0174 0.0104 0.0426 0.0413
2.0 1.77 2 1.85 1.72 2.39 1.17 0.0298 0.0176 0.0177 0.0381 0.0359

Table 2
Performance in the non-sparse B-spline model.

n σ a Prediction error
SCAD MCP Adap. lasso CFS Ridge

100 0.5 1.2 0.0553 0.0358 0.0475 0.0542 0.0542
1.6 0.0627 0.0339 0.0435 0.0506 0.0498
2.0 0.0633 0.0307 0.0405 0.0448 0.0432

1 1.2 0.1689 0.1170 0.1416 0.1746 0.1586
1.6 0.2123 0.1142 0.1427 0.1593 0.1454
2.0 0.2451 0.1015 0.1315 0.1382 0.1250

400 0.5 1.2 0.0146 0.0105 0.0146 0.0128 0.0132
1.6 0.0172 0.0095 0.0139 0.0122 0.0124
2.0 0.0171 0.0080 0.0115 0.0112 0.0112

1 1.2 0.0465 0.0346 0.0461 0.0452 0.0439
1.6 0.0517 0.0303 0.0421 0.0419 0.0405
2.0 0.0549 0.0270 0.0374 0.0375 0.0351

4.1. Cubic B-spline expansion

We set α = 0. The coefficient function was expanded in the normalized cubic B-spline basis with 19 knots at
0.05, 0.10, . . . , 0.95. This means that β =

23
j=1 βjφj, where φj are the normalized cubic B-spline functions. We took βj = 2

for j ∈ J = {8, 16} and βj = 0 for j ∉ J . For the adaptive lasso, the SCAD and the MCP, the regularization parameters λ
and the dimension-cut-off k were selected by the BIC introduced in Section 2.5. The penalty constants for the CFS and the
ridge were chosen by a GCV criterion. The constant γ for the adaptive lasso was 1. We chose it since it gave an average
performance among several values we tried in a preliminary simulation study. For the SCAD, γ was 3.7 as suggested by Fan
and Li [6], and for theMCPwe used the formula γ = 2/(1−maxj≠k |x⊤

j xk|/n), theminimal value that affords the theoretical
results in [27], where xj denotes the jth column of the design matrix.

Table 1 gives the results. In the table, the numbers under ‘‘CorrectNonzero’’ are the averages of #(β̂j ≠ 0, βj ≠ 0)over 100
Monte Carlo replications. Thus, it is better to have these numbers closer to 2. On the other hand, thenumbers under ‘‘Incorrect
Nonzero’’ are the averages of #(β̂j ≠ 0, βj = 0), so it is better to have these numbers closer to zero. In identifying nonzero
coefficients βj correctly, the MCP is slightly better than the SCAD and the adaptive lasso for the smaller sample size, while
they are similar in the performance for the larger sample size. In terms of identifying zero coefficients correctly, the adaptive
lasso is the best overall. There is a general tendency that the ‘‘correct nonzero’’ and ‘‘incorrect nonzero’’ performance gets
worse as a increases for all the threemethods. Table 1 also gives the values of prediction errors. The values under ‘‘Prediction
Error’’ in the table are the Monte Carlo averages of the second term on the right hand side of (2.13). We see that the three
methods, the adaptive lasso, the SCAD and theMCP, discussed in this paper beat the CFS and the ridge. For the larger sample
size, the adaptive lasso gives the best performance among the five.

One may be interested in the performance of the adaptive lasso, the SCAD and the MCP in comparison with the CFS and
the ridge when the underlying model is not sparse. For this, we considered the case where βj = 2 for j = 8 and 16 and
βj = 0.1 for j ≠ 8, 16. Table 2 presents the prediction errors of the five methods. The MCP is the best in all cases, and the
adaptive lasso shows comparable performance with the CFS and the ridge. As an another non-sparse scenario whose results
are not reported, we also tried the case where βj = 0.1 were replaced by βj = 1 for 1 ≤ j ≤ 4. We found that our methods
still gave better performance than the CFS and the ridge, but by a smaller margin. This suggests that our procedures also
give stable performance even when the model is not sparse. One interesting thing to observe in Tables 1 and 2 is that the
prediction errors of the CFS and the ridge for the sparse model are not much different from those for the non-sparse model.
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Table 3
Performance in the Karhunen–Loève basis model.

n σ a Correct nonzero
(adaptive lasso)

Incorrect nonzero
(adaptive lasso)

Prediction error

Adaptive
lasso

Conventional
method

Ridge

100 0.5 1.2 4.35 6.71 0.0903 0.1152 0.1192
1.6 4.53 5.09 0.0663 0.0992 0.0666
2.0 4.48 4.10 0.0564 0.0839 0.0473

1 1.2 3.94 4.15 0.2113 0.2693 0.3090
1.6 4.02 4.91 0.2091 0.2490 0.1741
2.0 3.81 3.00 0.1848 0.2537 0.1303

400 0.5 1.2 4.97 4.33 0.0246 0.0233 0.0329
1.6 4.99 2.89 0.0176 0.0139 0.0203
2.0 4.98 1.58 0.0142 0.0132 0.0142

1 1.2 4.71 2.01 0.0668 0.0682 0.0780
1.6 4.78 1.23 0.0513 0.0598 0.0517
2.0 4.55 1.17 0.0475 0.0495 0.0376

4.2. Karhunen–Loève basis expansion

Note that ψj in generating Xi are eigenfunctions of the integral operator K : (Kψ)(u) =


I
K(u, v)ψ(v) dv and πj are

the corresponding eigenvalues. We set α = 0 and considered the model for the coefficient function β =
400

j=1 βjψj, where
β1 = 3, β2 = 1.5, β3 = 2, β4 = 0, β5 = 1, β6 = · · ·β9 = 0, β10 = 1, and βj = 0 for all j ≥ 11. Thus, J = {1, 2, 3, 5, 10}.
We considered fully automatic procedures for the adaptive lasso, the SCAD and the MCP, selecting k in (3.2) by the BIC
introduced in Section 2.5, togetherwithλ. For fair comparison,we chose the frequency cut-off p for the conventionalmethod
also by a BIC criterion, instead of the cross-validation considered in [10]. The BIC criterion for the conventional method was

BIC(p) = log

n−1
n

i=1


Yi − Ȳ −

p
j=1

β̂jζ̂ij

2
+ p log n/n. (4.5)

The constants γ for the adaptive lasso, the SCAD and the MCP were selected in the same way as in Section 4.1.
We found that the performances of the SCAD and the MCP are similar in all measures. In terms of the ‘‘correct nonzero’’

performance, the adaptive lasso, the SCAD and the MCP showed comparable performance. In terms of the ‘‘incorrect
nonzero’’ and predictions error performances, the adaptive lasso won in large. The reason we found was that the BIC tended
to select larger k for the SCAD and MCP, while it chose smaller k for the adaptive lasso. In another simulation study that is
not reported here, we observed that the SCAD and the MCP with preselected k got worse as k was chosen larger. The BIC
as a criterion to select k worked quite well when it was applied to the adaptive lasso. In conclusion, comparing those three
sparse methods, the adaptive lasso was the best. We report the results of the adaptive lasso with those of the conventional
method in Table 3.

In Table 3 we do not include the ‘‘correct nonzero’’ and ‘‘incorrect nonzero’’ performance of the conventional method
and of the ridge since the latter two do not aim to produce a sparse solution. In fact, the performance of the conventional
method and of the ridge in identifying zero coefficients were quite worse than the adaptive lasso. In terms of the prediction
errors, we find that the adaptive lasso wins the conventional method except the single case where n = 400 and σ = 0.5. In
comparison with the ridge, the adaptive lasso has smaller prediction errors when n is larger or a is smaller.

There is a general tendency that the ‘‘incorrect nonzero’’ and the prediction error performance gets better as a increases.
This does not contradict to the folklore that the problem of estimating eigenvalues and eigenfunctions, thus the problem
of estimating βj, would be more difficult if two neighboring true eigenvalues are closer. Recall that the constant a in πj
determines the sizes of and spacings between eigenvalues. For larger (smaller) a, the size of eigenvalue πj decreases faster
(slower) as j increases and two neighboring eigenvalues are closer (more distant). But this is true only for sufficiently large
j. In fact, a large a gives more distant eigenvalues πj for j in the short range 1 ≤ j ≤ 5, see Fig. 1. It is these first a few
eigenvalues that actually determine the finite sample properties of the methods. In fact, even for the last nonzero β10 = 1,
the numbers of β̂10 ≠ 0 out of 100 replications in the case where n = 400 and σ = 0.5, for example, were 97, 99 and 98
for a = 1.2, 1.6 and 2.0, respectively. The values of the estimation error E(β̂10 − β10)

2 for the three values of awere 0.2128,
0.1123 and 0.1275, respectively.

5. Analysis of Canadian weather data

We demonstrate the penalization methods on J.O Ramsay’s Canadian weather-station dataset. The same data was also
used by Hall et al. [9] and James et al. [13]. The original data consist of one year of daily temperature measurements
and the total annual rainfall, the latter being on the log scale, obtained from each of 35 Canadian weather stations. The



12 E.R. Lee, B.U. Park / Journal of Multivariate Analysis 105 (2012) 1–17

Fig. 1. Eigenvalues πj (left) and spacings between neighboring eigenvalues πj − πj+1 (right), where πj =

400
l=1 l

−1.2/
400

l=1 l
−a

j−a .

Table 4
Average squared prediction error for the Canadian weather data.

Method Number of knots
4 5 6 7 8 9 11 13

Adaptive lasso 0.2534 0.2330 0.2349 0.2401 0.3053 0.3128 0.3189 0.4129
CFS 0.2518 0.2506 0.2605 0.2967 0.3434 0.3833 0.4186 0.4733

temperature datawere preprocessed. Each set of discrete temperaturemeasurements from aweather stationwas converted
to a continuous functional object by local linear kernel smoothing. The 35 temperature curves were then synchronized
through landmark alignment by the procedure described in [9]. That is, landmarks of different curves are transformed to be
aligned at a common landmark time-point. The landmarks of each curve were the local minimum, local maximum, and the
two zeros of the centered temperature function, and for each of these landmarks, the average of the 35 respective landmark
time-points was taken as the common landmark time-point. These were 1.15 (local minimum), 4.11 (first zero), 7.27
(local maximum), 10.33 (second zero) on the month-scale. We took the preprocessed temperature curves as the observed
predictors Xi, and the annual rainfall as Yi.

We used normalized and periodic cubic B-spline functions to expand the coefficient functionβ .We chose periodic splines
since β is periodic. Thus, the number of the periodic cubic spline functions equals the number of knots. We placed the knots
equally spaced on a scale of a year. We applied the adaptive lasso penalization method to the dataset with γ = 1 and λ
chosen by the BIC criterion introduced in Section 2.7. To see howwell the estimated regression equation predicts the annual
rainfall, we computed the residuals Yi − Ŷi, where Ŷi is the predicted value obtained from the regression equation that is
constructed from the leave-one-out dataset {(Xl, Yl)}l≠i. That is,

Ŷi = Ȳ−i +


β̂−i(Xi − X̄−i)

where Ȳ−i =


l≠i Yl/(n − 1), X̄−i =


l≠i Xl/(n − 1), and β̂−i is a version of β̂ based on {(Xl, Yl)}l≠i. Table 4 provides the
values of the average squared prediction error n−1n

i=1(Yi− Ŷi)
2. It also gives those values corresponding to the non-sparse

CFS with the penalty constant chosen by a GCV criterion.
According to Table 4, the number of knots that minimizes the average prediction error is 5 for the adaptive lasso and

the CFS. For this choice, the estimated coefficients for the adaptive lasso are β̂1 = 0.0850 and β̂2 = · · · = β̂5 = 0. For the
CFS, they are β̂1 = 0.1529, β̂2 = −0.1670, β̂3 = −0.1752, β̂4 = 0.0124, β̂5 = 0.2509. The resulting estimators of β are
depicted in Fig. 2. Our method suggests that temperatures in the summer months have no relationship to rainfall whereas
temperatures at other times do have an effect, which confirms the conclusion of previous research on this dataset.

6. Concluding remarks

In this paper we discussed how one can fit the functional linear regression model at (2.2) when J is a unknown finite
set. We also treated the case where the cardinality of J grows as the sample size increases. We showed that our general
penalization scheme produces an accurate estimator whose asymptotic properties are the same as those of an oracle
estimator which uses the knowledge of J . Our sparse methods produce a

√
n-consistent estimator of the true coefficient

function in the case where the cardinality of J is fixed and finite. We argued that the latter property is not shared with
non-sparse techniques.
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Fig. 2. The estimated coefficient function β̂ by the adaptive lasso (solid) and the spline estimator of Cardot, Ferraty and Sarda (dashed).

The method can be extended in a straightforward manner to the case of multiple functional covariates Xj, 1 ≤ j ≤ d,
where

Y = α +

d
j=1


I

βj(u)Xj(u) du + ε.

A more challenging extension is to the generalized functional linear regression model which accommodates discrete-type
random variables as well, for the response Y . In this model, the conditional mean of Y given a functional covariate X is
modeled by

g(E(Y |X)) = α +


β(u)X(u) du

via a link function g . In case the conditional distribution of Y belongs to an exponential family, onemay add negative penalty
to its conditional likelihood to estimate the functional coefficient. Typical examples include binary Y taking values 0 or 1, in
which case the conditional distribution is binomial, and Y taking an integer value 0, 1, 2, . . . , in which case the conditional
distribution can be modeled by the Poisson family of distributions. In case the conditional likelihood is not available, one
may use a quasi-likelihood through modeling the conditional variance as a function of the conditional mean.
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Appendix

Here, we only give proofs of Theorems 1, 2, 4 and 5. Theorems 3, 6 and 7, which are for the case where |J| → ∞ as
n → ∞, can be proved along the lines of the proofs of Theorems 2, 4 and 5, respectively, so that we omit their proofs.

A.1. Proof of Theorem 1

Let ∥ · ∥ denote the Euclidean norm, ε = (ε1, . . . , εn)
⊤ and ε̄ = n−1n

i=1 εi. It can be verified that

E∥n−14⊤ε∥2
= O(n−1ρ). (A.1)

For a matrix A, we let ∥A∥ denote its operator norm, i.e., ∥A∥ = supx:∥x∥=1 ∥Ax∥. Under the condition (C1), we have

∥β̂
0
− β∥ = ∥(4⊤4)−14⊤(ε − ε̄1)∥ ≤ ∥(n−14⊤4)−1

∥ · ∥n−14⊤(ε − ε̄1)∥.
The theorem follows from (A.1) and the fact ∥(n−14⊤4)−1

∥ = ℓ−1.
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A.2. Proof of Theorem 2

Define l(β) = n−1
∥Y − 1Ȳ − 4β∥

2
+
k

j=1 ŵj|βj|. Let Ỹ =

β(X1 − X̄), . . . ,


β(Xn − X̄)

⊤
and β̃ = (4⊤4)−14⊤Ỹ.

Under (C1), β̃ = β.

Lemma 1. Under (C1) and the first part of (C2), ∥β̂ − β∥ = Op(n−1/2ρ1/2ℓ−1).

Proof. Put δ = ∥β̂ − β∥ and write β̂ − β̃ = δu, so that ∥u∥ = 1. Then,

0 ≥ l(β̂)− l(β̃) = −2 δn−1(ε − 1ε̄)⊤4u + δ2n−1u⊤4⊤4u +

k
j=1

ŵj(|β̂j| − |β̃j|). (A.2)

Since β̃ = β, we obtain
k

j=1 ŵj(|β̂j| − |β̃j|) ≥


j∈J ŵj(|β̂j| − |β̃j|) ≥ −δ


j∈J ŵ
2
j

1/2. This and (A.2) imply

ℓδ ≤ 2 ∥n−14⊤(ε − 1ε̄)∥ +


j∈J

ŵ2
j

1/2

.

The lemma follows from (A.1) since


j∈J ŵ
2
j = op(n−1) by the first part of (C2). �

Proof of Theorem 2. First, we prove (i). Suppose that there exists an index r ∉ J such that β̂r ≠ 0. For such r , let β̂
∗

denote
the k-vector whose entries β̂∗

j equal β̂j except j = r and β̂∗
r = 0. Then,

l(β̂)− l(β̂
∗

) = −2 n−1(Y − 1Ȳ − 4β̃)⊤4(β̂ − β̂
∗

)− 2 n−1(β̃ − β̂
∗

)⊤4⊤4(β̂ − β̂
∗

)

+ n−1(β̂ − β̂
∗

)⊤4⊤4(β̂ − β̂
∗

)+ ŵr |β̂r |

≥ |β̂r |ŵr(1 − 2 ŵ−1
r ∥n−14⊤(ε − 1ε̄)∥ − 2 ŵ−1

r L∥β̃ − β̂
∗

∥).

By (A.1), Lemma 1, the second part of (C2) and the fact ∥β̃ − β̂
∗

∥ ≤ 2∥β̂ − β∥, we have

l(β̂)− l(β̂
∗

) ≥ |β̂r |ŵr/2 > 0

with probability tending to one, which contradicts to the fact that β̂ is the minimizer of l(β). This completes the proof of the
first part of the theorem.

To prove (ii), we may assume that all β̂j for j ∉ J are zero due to the first part. Thus,

β̂J = argmin
βj,j∈J

1
n

n
i=1


Yi − Ȳ −


j∈J

βjξij

2

+


j∈J

ŵj|βj|.

Recall that |J| denotes the cardinality of J . Define a function on R|J| by

V (u) =

n
i=1

Yi − Ȳ −


j∈J


βj +

uj
√
n


ξij

2

−


Yi − Ȳ −


j∈J

βjξij

2
+ n


j∈J

ŵj

βj +
uj
√
n

− |βj|


. (A.3)

Then,
√
n(β̂J −βJ) is theminimizer of the convex function V (u)with respect to u. From the first part of (C2), one can see that

the second term of (A.3) converges to zero in probability for each u. Also,
√
n(β̂J,oracle −βJ) is the minimizer of the first term

of (A.3). Based on the arguments of Geyer [7] and Knight and Fu [14] we conclude that
√
n(β̂J − βJ) and

√
n(β̂J,oracle − βJ)

have the same limit distribution.
The last part of the theorem follows since

EX


I

(β̂ − β)(X − µ)

2
= (β̂J − βJ)

⊤ΣJ(β̂J − βJ)+ op(n−1)

= (β̂J,oracle − βJ)
⊤ΣJ(β̂J,oracle − βJ)+ op(n−1). �
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A.3. Proof of Theorem 4

Given a function L of two variables, and functions f and g of one variable, we simply denote


L(u, v)f (u)g(v) du dv and
f (u)g(u) du by


Lfg and


fg , respectively. The theorem follows basically from the arguments for the proof of Theorem 1

in [8]. In their Theorem 1, it is assumed that |βj| ≤ Cj−δ for some δ > 1 + (a/2) and k ∼ n1/(a+2δ). Here, we modify their
arguments by incorporating our assumption that βj = 0 for j ∉ J but allowing k to take any order of magnitude satisfying
the condition (D3). Without loss of generality, we assume EY = 0 and EX = 0.

We first note that by Lemma 4.3 of [1] one has

sup
1≤j<∞

|π̂j − πj| ≤ ∆ = Op(n−1/2), (A.4)

where∆ > 0 denote the random variable such that∆2
=
 

(K̂ − K)2(u, v) du dv. Since n−1Ẑ⊤Ẑ = diag(π̂1, . . . , π̂k) and
EYζj = πjβj, we obtain

β̂0
j − βj = π̂−1

j


1
n

n
i=1

(Yi − Ȳ )ζ̂ij − EYζj


+ (π̂−1

j − π−1
j )EYζj. (A.5)

The assumption that βj = 0 for j ∉ J and the result (A.4) imply

sup
1≤j≤k

|(π̂−1
j − π−1

j )EYζj| = max
j∈J

|(π̂j − πj)π̂
−1
j βj| = Op(n−1/2).

Also, since k−a
≫ n−1/2 and by (A.4), one has

P[π̂j ≥ πj/2 for all 1 ≤ j ≤ k] ≥ P(πk/2 ≥ ∆) = 1 + o(1).

Thus, for the first part of the theorem it suffices to prove

k
j=1

π−2
j


1
n

n
i=1

(Yi − Ȳ )ζ̂ij − EYζj

2

= Op(n−1kπ−1
k ). (A.6)

We write n−1n
i=1(Yi − Ȳ )ζ̂ij − EYζj = S1j + S2j + S3j + S4j, where S1j =


(K̂ − K)βψj, S2j =


Kβ(ψ̂j − ψj), S3j =

(K̂ −K)β(ψ̂j −ψj) and S4j = n−1n
i=1(εi − ε̄)ζ̂ij. Let ζ̄j = n−1n

i=1 ζij. By the condition (D1) and the uniform bound (A.4)
one obtains

E


βXζj

2

= O(πj), Eζ 2
j ζ

2
l = O(πjπl), E


n−1

n
i=1

εiζ̂ij

2

= O(n−1πj) (A.7)

uniformly for 1 ≤ j, l ≤ k. The first result in (A.7) implies ES21j = O(n−1πj) uniformly for 1 ≤ j ≤ k since S1j =

n−1n
i=1


βXiζij − E


βXζj −


βX̄

ζ̄j. Also, by the third result in (A.7) one has ES24j = O(n−1πj) uniformly for 1 ≤ j ≤ k.

Furthermore, the Eqs. (5.21) and (5.22) in [8] give
(ψ̂j − ψj)

2
= Op(n−1j2) (A.8)

uniformly for 1 ≤ j ≤ k. This and the condition (D3) show S23j = Op(n−2j2) = op(n−1πj) uniformly for 1 ≤ j ≤ k.

It remains to prove
k

j=1 π
−2
j S22j = Op(n−1kπ−1

k ). Note that

(K̂ − K)ψ̂jψl = (π̂j − πl)


(ψ̂j − ψj)ψl for j ≠ l.

Thus, if π̂j − πl ≠ 0 for all 1 ≤ j ≠ l ≤ k, then the Karhunen–Loève expansion of ψ̂j − ψj gives ψ̂j − ψj =
l:l≠j(π̂j − πl)

−1ψl

(K̂ − K)ψ̂jψl + ψj


(ψ̂j − ψj)ψj for all 1 ≤ j ≤ k. By (D2) and (A.4), there exists a positive constant

c > 0 such that, for all 1 ≤ j ≠ l ≤ k,

|π̂j − πl| ≥ |πj − πl| − |π̂j − πj| ≥ cj−(a+1)
−∆ ≥ ck−(a+1)

−∆.

Due to the condition (D3) this means that

P(|π̂j − πl| > 0 for all 1 ≤ j ≠ l ≤ k) → 1.

Thus, on a set with probability tending to one, one has

S2j =


l:l≠j

(π̂j − πl)
−1πlβl


(K̂ − K)ψ̂jψl + πjβj


(ψ̂j − ψj)ψj, 1 ≤ j ≤ k. (A.9)
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The summation in (A.9) contains only a finite number of nonzero terms since βj = 0 for all j ∉ J . By the second result of (A.7)

and the identity

(K̂ − K)ψjψl = n−1n

i=1 ζijζil − Eζjζl − ζ̄jζ̄l, one has supl:l≠j


(K̂ − K)ψjψl

2
= Op(n−1πj) uniformly

for 1 ≤ j ≤ k. Also, by (A.8) and the condition (D3), one has supl:l≠j


(K̂ − K)(ψ̂j − ψj)ψl

2
= Op(n−2j2) = op(n−1πj)

uniformly for 1 ≤ j ≤ k. These two results give supl:l≠j


(K̂ − K)ψ̂jψl

2
= Op(n−1πj) uniformly for 1 ≤ j ≤ k. Since for l in

a set of finite cardinality, |π̂j − πl|
−1 < Cla+1 < C ′ with probability tending to one for universal constants 0 < C, C ′ < ∞,

we obtain

k
j=1

π−2
j


l:l≠j

(π̂j − πl)
−1πlβl


(K̂ − K)ψ̂jψl

2

= Op(kn−1π−1
k ). (A.10)

The second term in (A.9) equals zero if j ∉ J . Thus, we have by (A.8)

k
j=1

π−2
j


πjβj


(ψ̂j − ψj)ψj

2
=


j∈J

β2
j


(ψ̂j − ψj)ψj

2
= Op(n−1).

This completes the proof of the first part of Theorem 4. The remaining parts of the theorem are immediate since
sup1≤j≤k(β̂

0
j − βj)

2
≤
k

j=1(β̂
0
j − βj)

2 and

(β̂0

− β)2 ≤ 2
k

j=1(β̂
0
j − βj)

2
+ 2


β2

j∈J


(ψ̂j − ψj)

2. �

A.4. Proof of Theorem 5

Define lKL(β) = n−1
∥Y − 1Ȳ − Ẑβ∥

2
+
k

j=1 ŵj|βj|. Also, define Ỹ and β̃ as in the proof of Theorem 2. The proofs of the
first two parts are essentially the same as those of Theorem 2. If we assume that there exists an index r ∉ J such that β̂r ≠ 0,
and define β̂

∗

as in the proof of Theorem 2, then

lKL(β̂)− lKL(β̂
∗

) ≥ |β̂r |ŵr(1 − 2 ŵ−1
r ∥n−1(ε − 1ε̄)⊤Ẑ∥ − 2 ŵ−1

r π̂1∥β̃ − β∥).

Since β̃ equals β̂
0

≡ (β̂0
1 , . . . , β̂

0
k )

⊤ if all εi are zero, we obtain from Theorem 4 that ∥β̃ − β∥ = Op(n−1/2k(a+1)/2). Also, one
can verify E∥n−1(ε − 1ε̄)⊤Ẑ∥

2
= O(n−1). These and the second part of (D4) imply lKL(β̂) − lKL(β̂

∗

) ≥ |β̂r |ŵr/2 > 0 with
probability tending to one, which contradicts to the fact that β̂ is the minimizer of l(β). This proves (i). Replacing ξij by ζ̂ij in
the proof of the second part of Theorem 2 shows the asymptotic equivalence between β̂J and β̂J,oracle.

To get the asymptotic distribution of
√
n(β̂J,oracle − βJ), let ZJ = (ζij : 1 ≤ i ≤ n, j ∈ J). Then,

√
n(β̂J,oracle − βJ) = (n−1Ẑ⊤

J ẐJ)
−1n−1/2Ẑ⊤

J


ε − 1ε̄ + (ZJ − ẐJ)βJ


= diag(π−1

j : j ∈ J) n−1/2Z⊤

J


ε + (ZJ − ẐJ)βJ


+ op(1).

Note that ψ̂j − ψj =


r:r≠j(π̂j − πr)
−1ψr


(K̂ − K)ψ̂jψr + ψj


(ψ̂j − ψj)ψj for all j ∈ J . Since


(ψ̂j − ψj)ψj =

−

(ψ̂j − ψj)

2/2 = Op(n−1) for all j ∈ J , and

Kψjψr = πjδjr , where δjr is the Kronecker delta, we obtain

√
n

r∈J

βr


Kψj(ψ̂r − ψr) = πj


r:r≠j,r∈J

√
n(πr − πj)

−1

(K̂ − K)ψjψrβr + op(1)

= n−1/2
n

i=1

πjWij + op(1).

This gives

√
n(β̂J,oracle − βJ) = Γ −1

J n−1/2
n

i=1


ζijεi − πjWij : j ∈ J


+ op(1)

d
→ N(0, σ 2Γ −1

J + var(W)). (A.11)
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We prove the last part of the theorem. We observe

EX


I

(β̂ − β)(X − µ)

2
= (β̂J,oracle − βJ)

⊤ΓJ(β̂J,oracle − βJ)+ 2 (β̂J,oracle − βJ)
⊤ΓJ n−1

n
i=1

Wi

+


n−1

n
i=1

Wi

⊤

ΓJ


n−1

n
i=1

Wi



+


j∉J

πj


r∈J

(πr − πj)
−1βr


(K̂ − K)ψrψj

2

+ op(n−1).

The first three terms on the right hand side of the above equation sum to n−2ε⊤ZJΓ
−1
J Z⊤

J ε by (A.11). The last term equals
j∉J πj


n−1n

i=1 Wij
2

+ op(n−1).
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