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a b s t r a c t

In this paper, we explore tail dependencemodeling inmultivariate extreme value distribu-
tions. Themeasure of dependence chosen is the scale function, which allows combinations
of distributions in a very flexible way. The correspondences between the scale function
and the spectral measure or the stable tail dependence function are given. Combining scale
functions by simple operations, three parametric classes of laws are (re)constructed and
analyzed, and resulting nested and structured models are discussed. Finally, the denseness
of each of these classes is shown.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Modeling the tail dependence is a main challenge in multivariate extreme value distributions. The studies in this area
started with the bivariate characterizations of Tiago de Oliveira [30], Geffroy [12], and Sibuya [25], while multivariate
representationswere established by de Haan and Resnick [6] and Pickands [21]. In this article, the focus is on parametric and
semiparametric models of extreme value distributions. This topic has been initiated by Gumbel [13], Tiago de Oliveira [31],
Galambos [11] and Tawn [28]. Different reviews of parametric multivariate extreme value models are given by Coles and
Tawn [3,16,18] and Joe [2, Section 9.2.2], among others.

Our presentation will be done in terms of Fréchet margins, but other choices are possible and would lead to equivalent
expressions. To illustrate these choices through the literature, one can refer e.g. to Tiago de Oliveira [31] or Fougères
et al. [10], who worked with Gumbel marginal distributions, whereas de Haan and Resnick [6] or Klüppelberg and May [17]
chose Fréchet margins, and Pickands [21] or Tawn [28] considered exponential margins.

The representation of multivariate extreme value distributions given by Pickands [21] involves a spectral measure which
underlines the main directions of dependence with a natural interpretation. Later, Huang [15] introduced the so-called
stable tail dependence function to model this dependence. It is entirely determined by the spectral measure, and has several
properties such as homogeneity and convexity, see e.g. [2, Section 8.2.2]. Other tools have been defined in the literature, as
the Pickands [21] dependence function A in the bivariate setting.

In the present paper, a generalization of the stable tail dependence function is introduced, that will be called the scale
function. Both notions are close, and roughly speaking defined through the logarithmof the cumulative distribution function.
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The main difference between these two measures of dependence is that some information from the margins is contained
in the scale function. For instance, the stable tail dependence function evaluated at each unit basis vector is equal to one,
whereas the scale function at the unit basis vectors equals the correspondingmargin scale. As a consequence, onemay see the
scale function as an unnormalized version of the stable tail dependence function. At first glance, the notion of scale function
would seemperhaps unnatural. However, we have three reasons toworkwith this tool. The first one is that it makes it easier
to construct classes of multivariate extreme value distributions by combining other ones. Renormalizing complicates these
constructions and masks the essential structure. The second reason comes from the estimation point of view. When one
constrains the search to guarantee a (normalized) stable tail dependence function, we force exact agreement at each unit
axis vector. This is somewhat artificial, since in any practical problem, the marginals are normalized based on a sample, and
thus the scaling of components is inexact. This enforced match at the margins might cause a poorer fit globally. The third
reason is based on the result of de Haan [5], who proved that for any vector following an extreme value distribution, its
max-projection along any direction is univariate Fréchet, and conversely. More precisely, one can check that the scale of the
univariate max-projection is given by the scale function evaluated at this direction. As a consequence, the estimation of the
dependence is reduced to a sequence of univariate estimations through the estimation of max-projection scales. This topic
will be addressed in a forthcoming companion paper. Note that such a method was previously used (with min-projections
and under exponential margins) by Pickands [21] and several other authors.

Themain goal of this paper is to revisit already knownmultivariate extreme valuemodels using their scale functions, and
to define newmodels by combining these scale functions. The focus is on parametric and semiparametric classes thatmay be
defined in any dimension, that are proved to be dense, and that are computationally tractable. Dealing with models in high
dimension induces inference difficulties, that can be helpfully reduced by considering some parametric or semiparametric
classes. A denseness property of such classes is a valuable argument to counter the idea that parametric forms are too
reductive. Three classes of multivariate extreme value distributions are scrutinized: the well-known model obtained from
discrete spectral measures, the generalized logistic model and the piecewise polynomial spectral density model.

The rest of this paper is laid out as follows. Section 2 introduces the scale function and gives its properties and connections
with classicalmeasures of dependence. Section 3 defines the three classesmentioned above, states useful properties of these
classes, and discusses resulting nested and structuredmodels. A simple intuitiveway to quantify how close twomultivariate
extreme value distributions are to each other is described in Section 4, where the three classes are shown to be dense. The
last section contains all the proofs.

2. Joint dependence

In this section, we examine two different ways to describe the dependence in multivariate extreme value models. The
first one is the well-known spectral measure. The second is the scale function. We present their definitions in the context
of unnormalized Fréchet margins.

Throughout the paper, d represents the dimension and is assumed to be greater than or equal to two. Let X = (X1, X2,
. . . , Xd)

T be a d-dimensional random vector, with multivariate extreme value distribution function denoted by G. We will
assume X has Fréchet margins with a common shape parameter, so that

Gi(xi) = P(Xi ≤ xi) = exp


−


σi

xi − µi

ξ
for any i = 1, . . . , d and any xi > µi, where the shape parameter ξ and the scales σi are some positive real numbers and
where the locations µi are real numbers.

2.1. Spectral measure

Let ∥ · ∥ denote any norm on Rd and Wd
+
be the positive simplex in Rd, that is to say Wd

+
= {x ∈ Rd

+
, ∥x∥ = 1}. According

to the Representation Theorem of Pickands [21], there exists a unique finite positive measure H on Wd
+
such that

G(x) = P(X ≤ x) = exp


−


Wd

+


d

i=1

wi

(xi − µi)ξ


H(dw)


,

for any x > µ. Inequalities between bold variables stand for componentwise inequalities, so that e.g. x > µ means xi > µi
for any i = 1, . . . , d. The previous displayed formula holds true for any choice of norm on Rd, so that the uniqueness of the
measure H is with respect to this choice. Thus for a given norm one can use the notation X ∼ Fr(ξ ,µ,H(·)). Note that the
measure H corresponds to an unnormalized version of the spectral measure often used in the literature. Indeed, we have

Wd
+

wiH(dw) = σ
ξ

i ,
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whereas the usual normalized spectral measure H̃ is defined such that
Wd

+

wiH̃(dw) = 1.

See Lemma 1(d) to get the relationship between H and H̃ . The introduction of this unnormalized spectral measure is
motivated by the fact that it ismore convenient to construct and combine classes ofmultivariate extreme value distributions
as we do in this paper.

When there is no ambiguity we drop the dependence on d and write just W+ for Wd
+
. The change of norm formula is

W∥·∥a
+

f (w)H∥·∥a(dw) =


W

∥·∥b
+

f


w
∥w∥a


∥w∥a

∥w∥b
H∥·∥b(dw).

See [2, p. 264].

2.2. Scale function

We define on Rd
+
the scale function as follows

σ(u) =


W+


d

i=1

wiu
ξ

i


H(dw)

1/ξ

, (1)

which allows to write the distribution function G as

G(x) = P(X ≤ x) = exp

−σ ξ ((x − µ)−1)


, (2)

for any x > µ. This shows that the only way that the spectral measure enters into the distribution of X is through the scale
function. As a consequence, the notation X ∼ Fr(ξ ,µ, σ (·)) can be used equivalently to X ∼ Fr(ξ ,µ,H(·)).

As already noticed in the introduction, the use of the scale function is motivated by several arguments. Since we do
not have normalization constraints, the combination or construction of classes of multivariate extreme value distributions
becomes simpler. Another argument comes fromwhat we call max-projection. Assume that the locations of themargins are
all equal to zero, so thatwe focus onmultivariate extreme value distribution Fr(ξ ,µ = 0, σ (·)). For anyu = (u1, . . . , ud)

T
∈

Rd
+

\ {0}, define the univariate max projection

M(u) =

d
i=1

uiXi. (3)

Then, for all t > 0 Eq. (2) implies that

P(M(u) ≤ t) = P(u1X1 ≤ t, . . . , udXd ≤ t) = exp

−t−ξσ ξ (u)


,

whichmeans thatM(u) has a univariate Fréchet distribution Fr(ξ , µ = 0, σ (u)). This shows efficiently how the dependence
measure in a d-dimensional context may be reduced to a collection of one dimensional scale values (for each u).

Remark 1. The argument given above was shown by de Haan [5], who proved the following equivalence: X is a random
vector such that max-projections (3) are univariate Fréchet for all u ∈ [0,∞)d \ {0} if and only if X is multivariate Fréchet.
This will be a useful tool throughout the proofs of the paper.

Next we express the total mass of the spectral measure in terms of the scale function. The result depends on the norm
chosen for the unit simplex. For the ℓ1-norm, the simplex is W+ = {w ∈ [0, 1]d,

d
j=1wj = 1} and the total mass of the

spectral measure is

H(W+) =


W+

1H(dw) =


W+

d
j=1

wjH(dw) =

d
j=1


W+

wjH(dw) =

d
j=1

σ
ξ

j .

For the ℓ∞-norm, W+ = {w ∈ [0, 1]d,maxj=1...,dwj = 1}, so
d

j=1wj = 1 and thus

H(W+) =


W+

1H(dw) =


W+

d
j=1

wj H(dw) = σ(1)ξ .

For a function h : Rd
→ R and a set B = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , d}, define ∂ |B|h/∂Bu = ∂kh/∂ui1 · · · ∂uik . Using this

notation, the following result expresses the density of a multivariate Fréchet distribution in terms of the scale function.
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Proposition 1. Let X ∼ Fr(ξ ,µ = 0, σ (·)). If ∂dσ/∂u1 · · · ∂ud exists, then X has a density g(x), and that density is given by

g(x) = G(x)


d

j=1

xj

−2 
π∈Π

(−1)|π |+d

B∈π

∂ |B|σ ξ

∂Bu
(x−1), x > 0,

whereΠ is the set of all partitions of {1, . . . , d} and the product is over all of the blocks B of a partition π ∈ Π . The number |π |

denotes the number of blocks of the partition and the cardinality of each block is denoted by |B|.

Remark 2. An alternative expression of the density is

g(x) = G(x)D12···d(x),

where Dj(x) := −∂σ ξ (x−1)/∂uj = ξx−2
j σ

ξ−1(x−1)∂σ/∂uj(x−1) for j = 1, . . . , d and the D terms with multiple subscripts
are defined recursively by D12···k(x) = D12···(k−1)(x)Dk(x)+∂D12···(k−1)(x)/∂uk. Indeed, proceed by recursive differentiation:

∂G(x)/∂x1 = ∂ exp(−σ ξ (x−1))/∂x1 = G(x)D1(x).

If ∂k−1G(x)/∂x1 · ∂xk−1 = G(x)D12...(k−1)(x) then

∂kG(x)/∂x1 · ∂xk = G(x)Dk(x)+ G(x)∂D12...(k−1)(x)/∂xk = G(x)D12...k(x).

2.3. Links with classical tools and properties

In the following lines,wewill focus onmultivariate extreme value distributionswithµ = 0. A dependencemeasure often
used in the literature is the so-called stable tail dependence function ℓ(·) introduced by Huang [15]. As already mentioned in
the introduction, we will prefer to make use of the scale function σ(·). Indeed, in addition to the statistical arguments, the
construction of new models is simplified by using σ(·) instead of ℓ(·). The link between the two functions is given by the
following relation

σ(u) = σ(u1, . . . , ud) = ℓ1/ξ

(σ1u1)

ξ , . . . , (σdud)
ξ

,

for each u ∈ Rd
+
. Note in particular that if X has standard Fréchet margins with shape parameter ξ = 1, then σ(·) and ℓ(·)

are the same. Also, V (u) = σ ξ (u) is the well known exponent function of de Haan and Resnick [6]. It will sometimes be
simpler to visualize the ξ -normalized version of σ defined by

σ ⋆(u) = σ ξ (u1/ξ ) =


W+


d

i=1

wiui


H(dw).

As will be seen later, this is the scale function of the Fréchet random vector Xξ , which has shape parameter ξ = 1 and the
same spectral measure H as X (see Lemma 1(b)). The following properties of the scale function are inherited from those of
ℓ(·) (see [2, p. 257] for a review).

(σ1) σ(r ·) = rσ(·), so that knowing σ(·) on W+ determines σ(·) everywhere;
(σ2) σ(ei) = σi is the scale of Xi when ei is the i-th standard unit vector;

(σ3) (σ ξ1 u
ξ

1 ∨ · · · ∨ σ
ξ

d u
ξ

d)
1/ξ

≤ σ(u) ≤


σ
ξ

1 u
ξ

1 + · · · + σ
ξ

d u
ξ

d

1/ξ
;

(σ4) σ ⋆(·) is convex.

Properties (σ1–σ4) are valid for any choice of norm on Rd. They characterize a scale function in dimension d = 2, but not
when d > 2.

Several basic operations allow us to combine multivariate extreme value distributions and stay within the class of
multivariate extreme value distributions. In the following results, we describe how scale functions and spectral measures
combine when this is done. While several of these facts are known, it seems useful to collect them in one place, expand the
list, and see how the scale function is a useful way to represent combinations of max-stable laws. For two random vectors
Y and Z the notation Y ∨ Z is used for the componentwise maximum.

Lemma 1. Consider Y a d-dimensional Fr(ξY, µY, σY(·)) and Z a k-dimensional Fr(ξZ, µZ, σZ(·)) two independent Fréchet
random vectors.

(a) Assume d = k and X = Y ∨ Z with ξY = ξZ = ξ and µY = µZ = 0. Then, X ∼ Fr(ξX, µX, σX(·)) with ξX = ξ, µX = 0,

HX = HY + HZ

and for u ∈ Rd
+
,

σX(u) = (σ
ξ

Y (u)+ σ
ξ

Z (u))
1/ξ .
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(b) Assume X = Yp with µY = 0. Then, X ∼ Fr(ξX, µX, σX(·)) with ξX = ξY/p, µX = 0,

HX = HY

and for u ∈ Rd
+
,

σX(u) = (σY(u1/p))p.

(c) Assume X = cY with scalar c > 0. Then, X ∼ Fr(ξX, µX, σX(·)) with ξX = ξY, µX = cµY,

HX = cξYHY

and for u ∈ Rd
+
,

σX(u) = c σY(u).

(d) Assume X = cY = (c1Y1, . . . , cdYd) with vector c having all ci > 0 and µY = 0. Then one has X ∼ Fr(ξX, µX, σX(·)) with
ξX = ξY, µX = 0 and for u ∈ Rd

+
,

σX(u1, . . . , ud) = σY(c1u1, . . . , cdud).

If Y has a discrete spectral measure HY(·) =
m

j=1 hY,jδwY,j(·), then X has a discrete spectral measure HX(·) =
m

j=1 hX,j

δwX,j(·), where hX,j = ∥vj∥hY,j,wX,j = vj/∥vj∥ with vj = (cξ1wY,j,1, . . . , c
ξ

dwY,j,d).
If Y has spectral density hY(·) on W+ defined here for the ℓ1-norm, then HX is also continuous with density

hX(w) = ∥c−ξw∥
−(d+1)


d

i=1

ci

−ξ

hY


c−ξw

∥c−ξw∥


.

If the spectral measure of Y is a sum of a continuous and a discrete part, then the linear transformation cY acts on each piece
separately according to the rules above.

(e) Assume X = S1/ξYY where S is a positive β-stable random variable such that E[e−tS
] = exp(−tβ). Assume also that S and

Y are independent and that µY = 0. Then X ∼ Fr(ξX, µX, σX(·)) with ξX = βξY,µX = 0 and σX(·) = σY(·).
(f) Assume X = (YT

; ZT )T with ξY = ξZ = ξ and µY = µZ = 0. Then X is a (d + k)-dimensional Fr(ξ ,µ = 0, σX(·)) with
σ
ξ

X (u) = σ
ξ

Y (u1, . . . , ud)+ σ
ξ

Z (ud+1, . . . , ud+k) for each u ∈ Rd+k
+ and spectral measure HX = HY × HZ.

The combination of (b) and (d) can be used for standardizing: if Y ∼ Fr(ξ , 0, σY(·)) then the random vector X =
(Y1/σY(e1))ξ , . . . , (Yd/σY(ed))ξ


has standard Fréchet margins and its scale function is a stable tail dependence function.

The next result generalizes Lemma 1(a) when Y and Z are dependent.

Lemma 2. Assume V = (V1, . . . , V2d)
T

∼ Fr(ξV, 0, σV(·)) and (YT
; ZT ) := (V1, . . . , Vd, Vd+1, . . . , V2d). Then X := Y ∨ Z ∼

Fr(ξX, 0, σX(·)), where ξX = ξV and σX(u) = σV((uT
;uT )T ) for each u ∈ Rd

+
.

Moreover, if V has a discrete spectral measure HV(·) =
m

j=1 hjδwj(·) on W2d
+
, then the spectral measure for X is discrete with

HX(·) =

m
j=1

h̃jδw̃j(·),

where w̃j = tj/∥tj∥ ∈ Wd
+
, h̃j = hj∥tj∥ and tj = (wj,1


wj,d+1, wj,2


wj,d+2, . . . , wj,d


wj,2d)

T
∈ [0, 1]d.

For a d-by-mmatrix A and a vector v ∈ Rm, define the max product of A and v to be the vector in Rd given as follows

A×max v :=

∨

m
j=1 a1jvj, . . . ,∨

m
j=1 adjvj

T
. (4)

Lemma 3. Let Y be an m-dimensional Fr(ξ , 0, σY(·)) random vector and let A be a d-by-m matrix of nonnegative real numbers.
Then X = A×max Y is a d-dimensional Fr(ξ , 0, σX(·)) with σX(u) = σY(AT

×max u) for each u ∈ Rd
+
. If Y has a discrete

spectral measure HY(·) =
n

j=1 hjδwj(·) on Wm
+
, then X has the discrete spectral measure HX(·) =

n
j=1
hjδwj(·) on Wd

+
, wherewj = tj/∥tj∥,hj = hj∥tj∥, and tj = (∨m

i=1wj,ia
ξ

1i,∨
m
i=1wj,ia

ξ

2i . . . ,∨
m
i=1wj,ia

ξ

di)
T

∈ Rd.

Remark 3. The operation given in Lemma 3 is anotherway to obtain several results from Lemmas 1 and 2.More specifically,

– Taking A = diag(c1, . . . , cd) gives A×max Y = (c1Y1, . . . , cdYd) and Lemma 3 implies Lemma 1(d).
– Letting V be 2d-dimensional and A = (I; I) be a d-by-2d matrix, A×max V gives Lemma 2.
– If XT

= (YT
; ZT ) where Y and Z are independent, setting A = (I; I) be a d-by-2d matrix, then A×max X = Y ∨ Z, and

Lemma 3 combined with Lemma 1(f) implies Lemma 1(a).
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– More general combinations are possible. As an illustration, consider two independent Fréchet random vectors with same
shape parameter, namely Y of dimension d and Z of dimension k. Combining Lemmas 1(f) and 3 shows that for positive
constants ci, the random vector defined by

c1 0 · · · 0 0 0 0 · · · 0
0 c2 · · · 0 c3 0 0 · · · 0
1 1 · · · 1 1 1 1 · · · 1
0 0 · · · 0 0 0 0 · · · c4
0 c5 · · · 0 0 c6 c7 · · · 0

×max


Y
Z


=


c1Y1

c2Y2 ∨ c3Z1
∨

d
i=1Yi


∨

∨

k
j=1Zj


c4Zk

c5Y2 ∨ c6Z2 ∨ c7Z3


follows a 5-dimensional Fréchet distribution.

Since both triplets (ξ , µ,H) and (ξ , µ, σ ) characterize the multivariate extreme value distribution G, one can wonder
about the link between these representations. If the spectral measure H is known, then the scale σ(·) is known by (1).
Conversely, knowing σ(·) determines the spectral measure H , but there is no explicit formula for H in general. However, in
specific cases (e.g. the discrete spectral model) one can recognize the form of σ(·) and identify H .

In the bivariate case, we introduce the unnormalized Pickands’ function by

B(t) = σ(1 − t, t), (5)

for each t ∈ [0, 1], while the ξ -normalized definition is

B⋆(t) = σ ⋆(1 − t, t). (6)

In this case, we identify the simplex W+ with the interval [0, 1]. The next result states the extension of Beirlant et al.
[2, Eq. (8.47)] to our unnormalized framework. Note that it uses arguments mainly contained in [21, Theorem 3.1].

Lemma 4. Assume that X is Fr(ξ ,µ = 0,H(·)) or Fr(ξ ,µ = 0, σ (·)) for d = 2. Then for t ∈ (0, 1)

H([0, t]) = B⋆′(t)+ σ
ξ

1 ,

where B⋆′ should be interpreted as the right derivative of the function defined by (6). The point masses are

H({0}) = B⋆′(0)+ σ
ξ

1 ,

H({1}) = −B⋆′(1)+ σ
ξ

2 .

Before ending the section, we present a way to simplify the computation of the density of differentiable multivariate
Fréchet models by reducing to the case ξ = 1.

Lemma 5. Let Y ∼ Fr(ξ ,µ = 0,HY) and assume the existence of a density gY(·). Then the random vector X = Yξ is Fr(1,
µ = 0,HY) and it has density for x > 0 given by

gX(x) = ξ−d


d

k=1

xk

(1/ξ)−1

gY(x1/ξ ).

3. Classes of multivariate extreme value distributions

In this section, we describe several classes of multivariate extreme value distributions. Among these models only one is
non differentiable; two can be easily simulated and all of them lead to parametric or semi-parametric forms for the scale
function. We also study the closure property of these models under the operations introduced in Lemmas 1–3. Analogous
results for general multivariate extreme value distributions can be found e.g. in [22, p. 253] and [2, p. 267].

3.1. Discrete spectral measures

Max-stable distributions with discrete spectral measures have been consider by multiple authors (see e.g. [7] or [9]),
and this section is mostly a collection of previously known facts. At the end of this subsection, we discuss some reasons
why it is worth examining this class. Let m be a positive integer, {h1, . . . , hm} some non-negative real numbers and
wj = (wj,1, . . . , wj,d)

T for j = 1, . . . ,m elements of the simplex W+ for a given norm ∥ · ∥. If the spectral measure is
discrete, say H(·) =

m
j=1 hjδwj(·), then the scale functions are, for u ∈ Rd

+
,

σ(u) =


m
j=1

hj


∨

d
i=1wj,iu

ξ

i

1/ξ
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Fig. 1. The ξ -normalized Pickands’ function B⋆ with upper and lower bounds from condition (σ3). (a) d = 2,m = 1,w1 = (0.4, 0.6)T and h1 = 1.
(b) d = 2,m = 3,w1 = (0.2, 0.8)T ,w2 = (0.5, 0.5)T ,w3 = (0.9, 0.1)T , h1 = 1, h2 = 3 and h3 = 2.

and

σ ⋆(u) =

m
j=1

hj

∨

d
i=1wj,iui


.

Themodel based on discrete spectralmeasure is themost tractable andworks in any dimension. In Proposition 4 of Section 4
we give a simple proof of the fact that this class is dense.

The vertices of the piecewise linear scale function have value

σ(wk) =


m
j=1

hj


∨

d
i=1wj,iw

ξ

k,i

1/ξ

,

for each k = 1, . . . ,m, which can be written as σ(wk)
ξ

=
m

j=1 hjMk,j for Mk,j := ∨
d
i=1wj,iw

ξ

k,i. This directly gives a linear
system for the powered-values of the scale functions at the vertices in terms of the weights:

σ(w1)
ξ

σ(w2)
ξ

...

σ (wm)
ξ

 = M


h1
h2
...
hm


whereM is them-by-mmatrixM = [Mk,j]. If thematrixM is invertible, knowing σ ξ (·) at the vertices completely determines
the discrete spectral measure.

Lemma 6. The class of multivariate Fréchet distributions with discrete spectral measures is closed under the opera-
tions (a)–(d) and (f) of Lemma 1, and under the operations of Lemmas 2 and 3.

As an example of multivariate Fréchet distribution with discrete spectral measure, consider a single point mass, thus
σ ⋆(u) = h1(∨

d
i=1w1,iui). In a bivariate setting, σ ⋆(·) restricted to the unit simplex is the V-shaped function B⋆(t) =

σ ⋆(1 − t, t). The function B⋆ has one vertex at the point t = w1,1, see Fig. 1(a). When the dimension is three or more
the graph of the function is still a V-shaped function, i.e. a flat-sided cone with vertex at a point. When there are m point
masses, the function σ ⋆(·) is the sum of m V-shaped functions. In particular, if the dimension is d = 2 it is piecewise linear
with vertices at (wj, σ

⋆(wj)) and end points (ei, σ ⋆(ei)), i = 1, . . . , d. See Fig. 1(b).
One nice feature of the discrete model for the multivariate extreme value distribution is that it is straightforward to

simulate. Let Z = (Z1, . . . , Zm)T be composed by m independent and identically distributed univariate Fréchet (ξ , µ =

0, σ = 1) and let A = [aij] be a d-by-m matrix with non-negative entries. Then it can be seen easily that

X := A×max Z =

∨

m
j=1 a1jZj,∨

m
j=1 a2jZj, . . . ,∨

m
j=1 adjZj

T (7)
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is Fr(ξ ,µ = 0,H(·)) with discrete spectral measure H having mass hj = ∥aξ
·j∥ at point wj

= aξ
·j/hj, where a·j denotes the

j’s column of A. See also [27, Theorem 1] for similar considerations. The discrete spectral measure is thus a model that can
be constructed from a sequence of m independent factors Z1, . . . , Zm. In applications, this model arises as the attractor of
the so-called ‘‘factor model’’, often used in practice (see for example [8,9] for more details). One can e.g. think of d lines of
insurance, say X1, . . . , Xd, where each line may be affected in different ways by storms, the severity of which is modeled by
Zi, for i = 1, . . . ,m. It may also be possible in certain situations to find a small number of factors Z1, . . . , Zm that give a good
description of a high dimensional problem, i.e.m ≪ d.

The discrete spectral measure model allows a nice understanding of the main directions of dependence. As shown in
the previous section, one can frequently get closed form expressions for combinations of max-stable vectors with discrete
spectral measures. This allows one to explicitly see how some operation affects the spectral measure, which may not be
clear for a general spectral measure.

The scale function σ(·) will not be differentiable if H is a discrete spectral measure with mass on the interior of W+,
so the density g(·), obtained by differentiating (2), will not exist. The non-differentiability of the scale function causes the
cumulative distribution function G to have ‘‘creases’’ along the rays where there are point masses, which is why the density
does not exist. Hence discrete spectral measures correspond to non-smooth distributions, whichmay not be appropriate for
some problems. The next two classes of models lead to smooth scale functions, and hence they will have a density g(·).

3.2. Generalized logistic mixtures

Several models have been defined combining positive stable distributions and extreme value distributions. For earlier
results, see [3, Section 4.2], as well as [14,4,29]. More recently, Fougères et al. [10] unified the results in the previous papers
and used them to construct structured models, e.g. max-stable time series. The key point is to produce dependent Fréchet
distributions bymixing independent Fréchet components with independent sum-stable scales. In the latter paper, the focus
is on the fact that in these models, both conditional and unconditional distributions are extreme value distributions. The
following result allows more general dependence in the terms of the mixture distribution. Note that the results Fougères
et al. [10] were mainly stated in terms of Gumbel margins and it assumed a restricted form for the sum-stable vector; here
we use Fréchet margins and an arbitrary positive sum-stable vector.

In the following, a positive multivariate stable distribution with index α is the law of a positive random vector S =

(S1, . . . , Sd)T with Laplace transform
E[e−⟨u,S⟩

] = exp(−cαγ α(u)), u ∈ Rd
+

where cα = sec(πα/2) and

γ α(u) =


S+

⟨u, s⟩αΛ(ds). (8)

In the previous display, α ∈ (0, 1) and S+ is the first orthant of the unit sphere in the Euclidean norm, and Λ denotes
a positive and finite measure on S+. We will say that S = (S1, . . . , Sd)T is a positive α-stable random vector with sum-
stable spectral measure Λ. See [24, Proposition 1.2.12]. Note that each margin of S is a positive α-stable random variable
with E[e−tSj ] = exp(−cαtαγ α(ej)). Moreover, note that any positive linear combination of components of S is a univariate
positive α-stable random variable.

Theorem 1. Let Z1, . . . , Zd be independent and identically distributed univariate Fréchet (ξ, µ = 0, σ = 1), and Z = (Z1,
. . . , Zd)T . Let α ∈ (0, 1) and S = (S1, . . . , Sd)T be a positive α-stable random vector with sum-stable spectral measureΛ that is
independent of Z1, . . . , Zd. Then the random vector

X := S1/ξ · Z = (S1/ξ1 Z1, . . . , S
1/ξ
d Zd)T (9)

is Fr(αξ,µ = 0, σ (·)) with scale function for u ∈ Rd
+

σ αξ (u) = cαγ α(uξ ), (10)

where the right hand side is given by (8).

The class of multivariate extreme value distributions with scale function defined by (10) will be called a generalized logistic
mixture or generalized logistic model. Several properties may be pointed out. It is clear that it is available for any dimension.
This model is differentiable and we state the general expression of its density in Proposition 2. Moreover we prove that it
is a dense subset (possibly with only a few terms) in Proposition 5. The Gumbel case of Fougères et al. [10] is obtained if
we take logarithms of each component. In the Fréchet setting, the stable terms Si are random scales of the original Zi. In the
Gumbel case we have

Vi := log Xi = Wi +
1
ξ
log Si,

for i = 1, . . . , d, whereWi = log Zi are independent and Gumbel distributed. Several interpretations of this Gumbel shifted
model are given in [10].
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Remark 4. It is interesting to examine the result stated in Theorem 1 in terms of the margins. Consider one of the compo-
nents, say Z1S

1/ξ
1 . The tail behaviors of the two terms are P(Z1 > x) ∼ x−ξ and P(S1/ξ1 > x) ∼ x−αξ . By Breiman’s lemma

(see e.g. [23, Section 7.3.2]), the heavier tail dominates in the product, so we get X1 in the domain of attraction of a Fréchet
distribution with index αξ , since α < 1. The fact that we get exactly a Fréchet law is a pleasing algebraic fact. If we started
with terms with the same tails, but not exactly of the same type, the product would be in the domain of attraction of a
Fréchet law with index αξ .

By construction, one can simulate generalized logistic vectors X as soon as one can simulate positive α-stable random
vectors S. We know how to simulate positive α-stable random vector S with discrete spectral measureΛ (a dense subset);
see [19]. If the stable random vector S has a discrete sum-stable spectral measure Λ(·) =

m
j=1 λjδsj(·), then the scale

function of Fréchet X is, for u ∈ Rd
+
,

σ(u) =


cα

m
j=1

λj⟨uξ , sj⟩α
1/(αξ)

. (11)

The generalized logistic model with discrete sum-stable spectral measureΛ recovers several models intensively studied in
the literature. The best known classes are the logistic model and the mixed model, respectively introduced by Gumbel [13]
and Tawn [28]. Note that our definitions may slightly differ from those of the literature. This comes from the normalization.
When the margins are normalized, mass points are added on the axes (corresponding to independent components) so that
the scale of each margin is one.

• In the case of one mass only, the above reduces to σ(u) = (
d

i=1(uivi)
ξ )1/ξ where vi = cαλ1s

1/ξ
1,i . For ξ = 1/α, we

identify the scale function of an (unnormalized) simple asymmetric logistic distribution. The particular mass λ1 = dα/cα
and location s1 = 1/d(1, . . . , 1)T give the symmetric logistic case: σ(u) = (


i u

1/α
i )α .

• When several point masses are present in the measure Λ (m > 1), the scale function (11) is a mixture of asymmetric
logistic terms.

• When we take a more general sum-stable spectral measureΛ, e.g. with a continuous density, we obtain a larger class of
asymmetric logistic mixtures.

This subclass of multivariate Fréchet distributions is stable under some transformations. More precisely, one gets the
following result.

Lemma 7. The class of generalized logistic distributions is closed under the operations (a)–(e) of Lemma 1.

Remark 5. In all generality the generalized logistic mixtures is not closed under the operation (f) of Lemma 1. However,
consider X = (YT

; ZT )T with ξY = ξZ = ξ and two generalized logistic mixtures given by Y = S1/ξU · U and Z = T1/ξV · V.
In the special case where ξU = ξV and αS = αT, (ST ; TT )T is a (d + k)-dimensional positive αS-stable random vector with
stable spectral measureΛS ×ΛT, so that X is a generalized logistic mixture.

The generalized logistic model is differentiable, as already pointed out in [3, Section 4.1] for the asymmetric logistic
mixture model. The form of the density function is specified in the next result.

Proposition 2. Under the assumption of Theorem 1, X is a continuous random vector with cumulative distribution function
G(x) = exp


−cαγ α(x−ξ )


for x > 0. Its density is

g(x) =


π∈Π

(−1)|π |+d

B∈π

∂ |B|I(x)
∂Bx


× G(x), (12)

with

∂ |B|I(x)
∂Bx

:= cα
α!

(α − |B|)!
ξ |B|


S+


⟨x−ξ , s⟩α−|B|


i∈B

six
−ξ−1
i


Λ(ds),

where in the expression (12) the sum is over Π the set of all partitions of {1, . . . , d} and the product is over all of the blocks B of
a partition π ∈ Π . The number |π | denotes the number of blocks of the partition and the cardinality of each block is denoted by
|B|.

The previous result is now illustrated for the discrete sum-stable spectral measure: Λ(·) =
m

j=1 λjδsj(·), where
sj = (sj1, . . . , sjd)T ∈ S+. In this case, for each x > 0, one has

∂ |B|I(x)
∂Bx

= cα
α!

(α − |B|)!
ξ |B|

m
j=1

λj⟨x−ξ , sj⟩α−|B|

i∈B

sji x
−ξ−1
i .

We restrict in the following to the 2-dimensional model of generalized logistic mixtures in order to establish the relation
between the stable spectral measureΛ and the max-stable spectral measure H , or its density denoted h.
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Proposition 3. Let X be a bivariate generalized logistic random vector defined by (9). The density of the associated spectral
measure H is given, for any t ∈ [0, 1], by

h(t) = cα(1/α − 1)(t(1 − t))1/α−2


S+

((1 − t)1/αs1 + t1/αs2)α−2s1s2Λ(ds).

WhenΛ is discrete with a single point mass at s = (s1, s2)with mass λwe obtain
h(t) = cαλ(1/α − 1)(t(1 − t))1/α−2((1 − t)1/αs1 + t1/αs2)α−2s1s2.

This corresponds to the bivariate asymmetric logistic model of Tawn [28] with ψ1/α
i = cαsiλ for i = 1, 2.

It does not appear to be possible to allow dependence of the Fréchet terms Z1, . . . , Zd in the Theorem 1 in general.
However, we present now a particular case, when S is totally dependent, where dependence in the Zi’s is allowed. Let
Z = (Z1, . . . , Zd)T be a multivariate Fréchet Fr(ξ ,µ = 0, σZ(·)). Let S = Sv where S is a positive α-stable random
variable such that E[e−tS

] = exp(−tα) and v = (v1, . . . , vd)
T is a deterministic vector of S+. Then X defined by (9) is

Fr(αξ,µ = 0, σX(·))with, for each u ∈ Rd
+
,

σ
αξ

X (u) = σ
αξ

Z (v
1/ξ
1 u1, . . . , v

1/ξ
d ud).

This results from the combination of the operations (d) and (e) of Lemma 1.

3.3. Piecewise polynomial spectral densities

Klüppelberg and May [17] consider polynomials defined on the whole simplex as models for the bivariate Pickands’
function. In contrast, here we consider spectral measures H(·) in arbitrary dimensions that are absolutely continuous with
densities h(·) that are piecewise polynomial. This model has five attractive properties. First, using a piecewise definition
allows one to spread mass locally, not forcing a global description. Second, it has tractable computational properties. Third,
we can estimate it even in high dimension (if the number of pieces is not too large). Fourth, it gives a dense family in arbitrary
dimensions. And finally, this model is smooth in the sense that its distributions have densities. An open question is to find
an interpretation of this class, and to find a way to simulate from it.

In two dimensions, one can explicitly compute the scale function for a piecewise polynomial spectral density.We identify
again the simplex with the interval [0, 1]. We start with a monomialwk on an interval. Let k ∈ (−1,∞) (not necessarily an
integer), 0 ≤ a < b ≤ 1 and define for u ∈ [0, 1]

αk(u; a, b) =

 b

a
[(1 − u)w ∨ u(1 − w)]wkdw.

Lemma 8. The function αk has the following expression

αk(u; a, b) =

c1(1 − u) u ≤ a
c2uk+2

− c3u + c4 a < u < b
c5u u > b,

where

c1 = c1(k, a, b) =
bk+2

− ak+2

k + 2
,

c2 = c2(k) =
1

k + 1
−

1
k + 2

, c3 = c3(k, a, b) = c1(k, a, b)+
ak+1

k + 1
, c4 = c4(k, b) =

bk+2

k + 2
,

c5 = c5(k, a, b) =
bk+1

− ak+1

k + 1
− c1.

Let us make some comments on the previous coefficients. The first remark is that all the ci’s are positive. Also, there are
relationships among these parameters so that the function αk(·; a, b) is continuous:

αk(a−
; a, b) = αk(a+

; a, b) = c1(1 − a)
αk(b−

; a, b) = αk(b+
; a, b) = c5b

and differentiable:
α′

k(a
−
; a, b) = α′

k(a
+
; a, b) = −c1

α′

k(b
−
; a, b) = α′

k(b
+
; a, b) = c5.

The second derivative of αk(·; a, b) does not exist at the join points a and b, whatever the value of k. Visually, αk(·; a, b) is
a cone, with straight line segments to the left of a and to the right of b, and a rounded vertex given by a power function of
degree (k + 2) in the interval [a, b]. Note that if k ≥ 0, the scale function is smooth and hence the corresponding bivariate
extreme value distribution has a density.
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Fig. 2. Apiecewise linear spectral density (left) and the corresponding Pickands’ function B⋆ (right) form = 5,N = 1, a = (0, 0.2, 0.4, 0.6, 0.8, 1)T , b0,· =

(0.6, 0,−0.4, 0.2,−1)T and b1,· = (−3, 0, 1, 0, 1.5)T . Note that B∗(t) is piecewise cubic on (0, 0.2), (0.4, 0.6) and (0.8, 1); quadratic on (0.6, 0.8); and linear
on (0.2, 0.4).

Using these terms as building blocks, we can explicitly evaluate the scale function for a piecewise polynomial spectral
density. Let 0 ≤ a1 < a2 < · · · < am+1 ≤ 1 andw ∈ [0, 1]. If a piecewise polynomial spectral density is given by

h(w) =

m
j=1

pj(w)1(aj,aj+1](w) =

m
j=1


N

k=0

bk,jwk


1(aj,aj+1](w),

then the scale function is, for each (u1, u2) ∈ R2
+
,

σ(u1, u2) =


m
j=1


N

k=0

bk,j

uξ1 + uξ2


αk


uξ2

uξ1 + uξ2
; aj, aj+1

1/ξ

.

Fig. 2 illustrate piecewise linear spectral densities h and the corresponding ξ -normalized Pickands’ functions B⋆(t) =m
j=1

N
k=0 bk,jαk


t; aj, aj+1


.

The explicit formula for the scale function gives an explicit formula for the distribution function. This in turn gives an
explicit formula for the density g(x). This can be done directly, or using Proposition 1. In the case ξ = 1 and µ = 0, the
expressions are:

G(x1, x2) = exp(−σ(x−1
1 , x

−1
2 ))

g(x1, x2) =
∂2G
∂x1∂x2

(x) =
G(x)
x21x

2
2


∂σ

∂u1
(x−1

1 , x
−1
2 )

∂σ

∂u2
(x−1

1 , x
−1
2 )−

∂2σ

∂u1∂u2
(x−1

1 , x
−1
2 )


where

σ(u1, u2) =

m
j=1

N
k=0

bk,j (u1 + u2) αk


u2

u1 + u2
; aj, aj+1


,

∂σ

∂u1
(u1, u2) =

m
j=1

N
k=0

bk,j


αk


u2

u1 + u2
; aj, aj+1


−

u2

u1 + u2
α′

k


u2

u1 + u2
; aj, aj+1


,

∂σ

∂u2
(u1, u2) =

m
j=1

N
k=0

bk,j


αk


u2

u1 + u2
; aj, aj+1


+

u1

u1 + u2
α′

k


u2

u1 + u2
; aj, aj+1


,

∂2σ

∂u1∂u2
(u1, u2) = −

u1u2

(u1 + u2)3

m
j=1

N
k=0

bk,jα′′

k


u2

u1 + u2
; aj, aj+1


.

Fig. 3 shows a simple example of these formulas.
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Fig. 3. The cumulative distribution function G for a piecewise constant spectral density h(w) = 1[1/3,2/3](w) (left) and its corresponding density g (right).
Note that the vertical scale is cut at height 0.1 for display purposes.

The previous definition may be extended to higher dimensions. Any polynomial p of degree less or equal to N can be
written as

p(w) =


k1+···+kd≤N

bkwk

where k = (k1, . . . , kd) is a multi-index of non-negative integers and wk
= w

k1
1 w

k2
2 . . . w

kd
d . Let∆1, . . . ,∆m be a partition

of W+ ⊂ Rd by convenient sets, say (d − 1)-simplices. We define the piecewise polynomial spectral density by

h(w) =

m
j=1

pj(w)1∆j(w).

We require that the polynomial pj is non-negative on ∆j. The multivariate Fréchet distribution with piecewise polynomial
spectral density h corresponds to the scale function

σ(u) =


m
j=1


∆j


d

i=1

uξi wi


pj(w)dw

1/ξ

, u ∈ Rd
+
,

with the ξ -normalized version given by

σ ⋆(u) =

m
j=1


∆j


d

i=1

uiwi


pj(w)dw.

Lemma 9. The class of multivariate Fréchet distributions with piecewise polynomial spectral density is closed under the
operations (a)–(d) and (f) of Lemma 1.

For a vector u of Rd
+
, let us introduce the set Tℓ(u) =


w ∈ W+,∨

d
i=1 uiwi = uℓwℓ


for ℓ = 1, . . . , d. The Tℓ’s are closed

(d − 1)-dimensional polytopes, overlapping only along edges that form (d − 2) dimensional sets. These sets cover W+,
and since we are only considering continuous spectral measures, these intersections have no mass, and we can regard {Tℓ,
ℓ = 1, . . . , d} as a partition ofW+. (If an exact partition is requiredwhendealingwith a non-continuousH , one can eliminate
the overlap: for ℓ > 1 replace Tℓ with Tℓ − ∪j<ℓ Tj.) We have

σ ⋆(u) =

m
j=1

d
ℓ=1

uℓ

 
k1+···+kd≤N

bj,k


∆j∩Tℓ(u)

wℓwkdw


.

We remark that∆j ∩ Tℓ(u) is a (d−1)-dimensional polytope in W+. By triangulation techniques one may obtain a partition
of∆j ∩Tℓ(u) into (d−1)-dimensional simplices. With some further simplifications, numerical computation is then possible
since exact formulas exist for integrating a polynomial on a simplex. See for instance [1, Corollary 20]. The details of the
computational method will be presented in a related paper dealing with the estimation procedure for these models.
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3.4. Structured and nested models

In this sectionwe discuss classes ofmultivariate extreme value distributions that are structured in someway. Rather than
considering X as a general d-dimensional random vector, we assume that there is some specified way the joint distribution
is defined, generally through some fixed structure among a subset of components. In the model building process, this fixed
structure will be naturally imposed by specific types of dependence, like a temporal or a spatial dependence, as we will
consider in the following paragraphs. Throughout this section, the Zi’s are independent and identically distributed univariate
Fréchet variables.

Structured models
First, we revisit Fougères et al. [10], where classes of stable mixtures were considered, and extend some ideas. As

mentioned above, the framework of temporal dependence is common in practice, and one is often interested in modeling
a dependence on the ‘‘past’’ using a time series. In the linear setting, there is a well developed theory of ARMA and more
general models; here we describe extreme value time series models based on discrete spectral measures and generalized
logistic models.

For a univariate time series model with a discrete spectral measure, define Xt = ∨
m
k=0 akZt−k, for t ∈ {1, . . . , d}. This can

be equivalently written as in (7) in terms of a (m + d)-vector of Zi’s, and a d-by-(m + d) matrix of coefficients A that has
a band structure. Note that in this case, the discrete spectral measure H of the series (X1, . . . , Xd) is supported on (m + 1)
dimensional faces of the d-dimensional unit simplex, with a fixed structure. One can extend this concept for a multivariate
time series with a discrete spectral measure: this is essentially the M4 process as introduced by Smith and Weissman [26],
see for example [32].

Introducing time series models via generalized logistic distributions was done in an univariate framework in [10], with
the stable termswere the sum of a finite number of ‘‘past’’ terms: Xt = StZt , where St =

m
k=0 akTt−k and Ti are independent

and identically distributed univariate positive stable. Note that in this case the stable spectral measure is discrete and is
supported on (m + 1) dimensional faces of the unit sphere, again with a fixed structure. In matrix form, this model can
be presented as follows. Consider the stable discrete spectral measure Λ(·) =

m
j=0 λjδsj(·). It corresponds to the spectral

measure of the stable vector S = PT for T = (T0, . . . , Tm)T and P = [Pij] amatrix of size d× (m+1), where P·j its jth-column
satisfies P·j = λ

1/α
j sj. Note that one can also extend this construction to multivariate time series.

Let us now consider the framework of spatial dependence: A similar idea can be used in spatial models, where only
the nearby components are dependent. Let t = (t1, . . . , tk)T be an index of locations on a lattice T k. Let N0 be a fixed
neighborhood of 0. For the discrete spectral measure case, define Xt = ∨j∈N0 ajZt+j for some positive constants aj. This
can again be rewritten as in (7). Note that similarly, the generalized logistic case was defined in [10]: Xt = StZt, where
St =


j∈N0

ajZt+j.
Another construction of spatial models is to build distributions on a graph: Suppose G is a graph with nodes {vi : i =

1, . . . ,m} and adjacency matrix A: ai,j = 1 if node i and j are connected, otherwise ai,j = 0; we do not require A to be
symmetric. We will write i ∼ j if i is connected to j. We can define a multivariate Fréchet distribution on G in several ways.
For a discrete spectralmodel, define Xi = ∨j∼i bi,jZj. A similar definition can be used for the generalized logistic distributions,
considering Xi = SiZi, where Si =


j∼i bi,jZj. An application of this type of models in an environmental framework is to look

at a river system, where one models water flow at multiple locations. In this situation, the nodes can be the measuring
sites, and node i is connected to node j if i is immediately downstream from j. Here the generalized logistic model may be
appropriate, as the height at one point is likely connected to the sum of factors from the upstream sites.

Nested models
Nested models are ones where there is a chain of classes of models {An, n = 1, . . . ,N} (for N ≤ ∞) with An ⊂ An+1.

This means that if a spectral measure H ∈ An, then H ∈ An+1. Equivalently, this can be stated in terms of scale functions: if
σ(·) ∈ An then σ(·) ∈ An+1. This may be useful for model selection, where some criteria is used to decide whether to use
a more complex model. For each of the three classes discussed in the paper, there are two natural ways to do this. The first
way is
– For discrete spectral measures, let An be the set of finite discrete spectral measures with n-point masses.
– For generalized logisticmodels, letAn be the set of generalized logisticmodelswith stable randomvector Shaving support

with n-point masses.
– For piecewise polynomialmodels, let An be the set ofmax-stable distributions arising frompiecewise polynomial spectral

densities of degree n.

The second way is more specific:
– For discrete spectral measures, let {Bn} be sets of points in W+ with Bn ⊂ Bn+1 and An the set of finite discrete spectral

measures with support Bn. For example the Bn’s could be successive refinements of a grid.
– For generalized logistic models, let {Bn} be a nested set of points in S+. Then define An as the generalized logistic models

with stable random vector S having support Bn.
– For piecewise polynomialmodels, let {Bn} be a nested collection of partitions ofW+ and define An as the set ofmax-stable

distributions arising from piecewise polynomial spectral densities on Bn.
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4. Metrics for multivariate extreme value distributions

Throughout this section we consider multivariate Fréchet distributions Fr(ξ ,µ = 0, σ (·)) satisfying the assumption

σ0 := inf
u∈W+

σ(u) > 0. (13)

This infimum measures how close the distribution is to singular: σ0 is zero if and only if one or more of the margin scales
are zero, which is equivalent to have a distribution concentrated on a lower dimensional subspace of Rd. If ξ = 1 and all
σi > 0, then two lower bounds are

σ(u) ≥

 1
σ1
, . . . ,

1
σd

−1

≥

min
i=1,...,d

σi

∥1∥
.

The first inequality comes from the left side of (σ3) – see beginning of Section 2.3 – which is minimized at u⋆ =
1
σ1
, . . . , 1

σd


/

 1
σ1
, . . . , 1

σd

. The second inequality follows from the first and σj ≥ mini=1,...,d σi. As a consequence, a
sufficient condition to get (13) is to assume that all the margins are non trivial or equivalently that the distribution has full
dimension. In terms of the spectral measure H, σi > 0 if and only if H({w : wi > 0}) > 0. Thus σ0 > 0 if and only if
H({w : wi > 0}) > 0 for all i = 1, . . . , d.

The ideas in this section are adapted from the sum-stable case in [20]. Our main result is the following. It says that if two
multivariate Fréchet distributions have similar scale functions, then their cumulative distribution functions are uniformly
close.

Theorem 2. Let X ∼ Fr(ξ ,µX = 0, σX(·)) and Y ∼ Fr(ξ ,µY = 0, σY(·)) both satisfying (13) and with respective cumulative
distribution functions GX and GY. If

sup
u∈W+

|σ
ξ

X (u)− σ
ξ

Y (u)| ≤ δ

for some 0 < δ < σ
ξ

0 , then

sup
x∈Rd

|GX(x)− GY(x)| ≤
2δ

σ
ξ

0

,

where σ0 = min{infu∈W+
σX(u), infu∈W+

σY(u)}.

The next result rephrases the preceding result in terms of spectral measures: if two Fréchet distributions have similar
spectral measures, then their distributions are close. More precisely, consider a norm ∥ · ∥ on Rd. Let HX and HY be two
spectral measures on W+ associated to this norm. Define the extended Prokorov metric π∗ by

π∗(HX,HY) = π


HX

HX(W+)
,

HY

HY(W+)


+ |HX(W+)− HY(W+)| ,

whereπ is the Prokorovmetric on the space of probabilitymeasures onW+. In particular,π∗(HX,HY)will be small whenHX
and HY have total mass about the same and their normalizations to probability measures are close in the Prokorov metric.

Theorem 3. Let X ∼ Fr(ξ ,µX = 0,HX(·)) and Y ∼ Fr(ξ ,µY = 0,HY(·)) both satisfying (13) and with respective cumulative
distribution functions GX and GY. If

π∗(HX,HY) ≤ δ

for some 0 < δ < σ
ξ

0 /(K
2(1 + K 2)), then

sup
x∈Rd

|GX(x)− GY(x)| ≤ 2K 2(1 + K 2)δ/σ
ξ

0 ,

where σ0 = min{infu∈W+
σX(u), infu∈W+

σY(u)} and K = K∞,∥·∥ satisfies ∥x∥∞ ≤ K∥x∥ for any x ∈ Rd.

We now show that the models based on discrete spectral measures, defined in Section 3.1, are dense.

Proposition 4. Let X ∼ Fr(1,µ = 0,H(·)) satisfying (13) and with cumulative distribution function G. For any ϵ > 0, there
exists a cumulative distribution function Gdisc, associated to a multivariate Fréchet with discrete spectral measure with a finite
number of point masses, uniformly close to G:

|G(x)− Gdisc(x)| ≤ ϵ for all x ∈ Rd.
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Note that this result has been proved in the minima setting by Deheuvels [7]. The next proposition presents the denseness
property for the generalized logistic mixtures, studied in Section 3.2. A similar result when d = 2 has been independently
obtained by H. Rootzén, A. Rudvik, and C. Borrell (private communication).

Proposition 5. Let X ∼ Fr(1,µ = 0,H(·)) satisfying (13) and with cumulative distribution function G. For any ϵ > 0, there
exists a cumulative distribution function Glog, associated to a generalized logistic mixture, uniformly close to G:

|G(x)− Glog(x)| ≤ ϵ for all x ∈ Rd.

Remark 6. Let emphasize that the generalized logistic distribution Glog defined in Proposition 5 depends on ϵ. Indeed, the
proof shows that for every ϵ,Glog is constructed using (9) in terms of a positive multivariate stable distribution with index
α = α(ϵ) and sum-stable discrete spectral measureΛ = Λ(ϵ)with a finite number of point masses.

Finally, the equivalent formulation for the piecewise polynomial spectral densities, introduced in Section 3.3, is given.

Proposition 6. Let X ∼ Fr(1,µ = 0,H(·)) satisfying (13) and with cumulative distribution function G. For any ϵ > 0, there
exists a cumulative distribution function Gpp, associated to a piecewise polynomial spectral measure, uniformly close to G:

|G(x)− Gpp(x)| ≤ ϵ for all x ∈ Rd.

The preceding propositions offer three different approximations of any multivariate Fréchet distribution, and therefore
of any multivariate extreme value distribution after well chosen marginal transformations. In practice, there is no abstract
reason to choose one of these models over another. It is unlikely that one will be able to distinguish between these
classes with real data, unless there is a massive data set. However, the choice of a model can be based on some physical
understanding of the situation where the data is obtained, or on arguments such as parsimony, existence of a density, etc.
For example, in higher dimensions, it may be preferable to use a generalized logistic model with a few terms that gives a
smooth model, than a discrete spectral measure with many terms.

5. Proofs

Proof of Proposition 1. We use the differentiation of a function of the form exp(φ(x)). More precisely, we apply the fact
that

∂d

∂x1 . . . ∂xd
exp(φ(x)) = exp(φ(x))


π∈Π


B∈π

∂ |B|φ(x)
∂Bx

.

In our case φ(x) = −σ ξ (x−1) so that

∂ |B|φ(x)
∂Bx

=


i∈B

1
x2i


(−1)1+|B| ∂

|B|σ ξ

∂Bx
(x−1)

which allows to conclude since


B∈π (−1)1+|B|
= (−1)|π |+d. �

Proof of Lemma 1. Throughout this proof, u = (u1, . . . , ud)
T

∈ Rd
+

\ {0} is arbitrary and t > 0.
(a) Following Remark 1, it suffices to prove that any max-projection as defined by (3) is univariate Fréchet. Consider the

random variable ∨
d
i=1 uiXi. By independence of Y and Z, we have

P(∨d
i=1 uiXi ≤ t) = P


∨

d
i=1 ui max(Yi, Zi) ≤ t


= P (Y1 ≤ t/u1, . . . , Yd ≤ t/ud, Z1 ≤ t/u1, . . . , Zd ≤ t/ud)

= P (Y1 ≤ t/u1, . . . , Yd ≤ t/ud) P (Z1 ≤ t/u1, . . . , Zd ≤ t/ud)

= exp

−σ

ξ

Y (u1t−1, . . . , udt−1)

exp


−σ

ξ

Z (u1t−1, . . . , udt−1)


= exp

−t−ξ


σ
ξ

Y (u)+ σ
ξ

Z (u)

.

The previous equality also implies that ξX = ξ and σ ξX (·) = σ
ξ

Y (·) + σ
ξ

Z (·). The equality HX = HY + HZ follows easily from
the integral representation of the scale function given by (1).
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(b) Again consider a max-projection ∨
d
i=1 uiXi. We have

P(∨d
i=1 uiXi ≤ t) = P


∨

d
i=1 uiY

p
i ≤ t


= P


Y1 ≤ (t/u1)

1/p, . . . , Yd ≤ (t/ud)
1/p

= exp

−σ

ξ

Y (u
1/p
1 t−1/p, . . . , u1/p

d t−1/p)


= exp

−t−ξ/pσ ξY (u

1/p)

.

We deduce that X is a multivariate Fréchet random vector with ξX = ξ/p and σ ξ/pX (u) = σ
ξ

Y (u
1/p). Again the equality

HX = HY is a direct consequence of the combination of (1) with the relation of the scale functions.
(c) Let ∨

d
i=1 uiXi be a max-projection. For simplicity, we write ξ for ξY. We have

P(∨d
i=1 uiXi ≤ t) = P


∨

d
i=1 uicYi ≤ t


= P (Y1 ≤ (t/{cu1}), . . . , Yd ≤ (t/{cud}))

= exp

−σ

ξ

Y (cu1t−1, . . . , cudt−1)


= exp

−t−ξ cξσ ξY (u)


.

It yields X is a multivariate Fréchet random vector with ξX = ξ and σ ξX (·) = cξσ ξY (·). We obtain HX = cξHY by combining
(1) with the relation between the scale functions.

(d) Let ∨
d
i=1 uiXi be a max-projection. For simplicity, we write ξ for ξY. Then

P(∨d
i=1 uiXi ≤ t) = P


∨

d
i=1 uiciYi ≤ t


= P (Y1 ≤ t/{u1c1}, . . . , Yd ≤ t/{udcd})

= exp

−σ

ξ

Y (u1c1t−1, . . . , udcdt−1)


= exp

−t−ξσ ξY (uc)


.

This implies that X is a multivariate Fréchet random vector with ξX = ξ and σX(u) = σY(uc).
We first focus on the discrete case. From the equalities given above,

σ
ξ

X (u) = σ
ξ

Y (uc) =

m
j=1

hY,j

d
i=1

wY,j,i(ciui)
ξ

=

m
j=1

hY,j

d
i=1

(wY,j,ic
ξ

i )u
ξ

i ,

which allows us to conclude by identifying the sum in the exponent with σ ξX (u) =
m

j=1 hX,j ∨
d
i=1wX,j,iu

ξ

i .

For the continuous case, substitutingw = vc−ξ/∥vc−ξ
∥ shows

σ
ξ

X (u) = σ
ξ

Y (cu) =


W+

d
i=1

wi(ciui)
ξhY(w)dw =


W+

d
i=1

(wic
ξ

i )u
ξ

i hY(w)dw

=


W+

d
i=1

(vi/∥vc−ξ
∥)uξi hY(vc−ξ/∥vc−ξ

∥)J(v)dv

=


W+

d
i=1

viu
ξ

i hY(vc−ξ/∥vc−ξ
∥)J(v)/∥vc−ξ

∥dv

where J(v) is the Jacobean of the transformation. Thus X has a spectral density given by

hX(v) = hY(vc−ξ/∥vc−ξ
∥)J(v)/∥vc−ξ

∥.

Calculations as in [3, Theorem 2] show J(v) = ∥vc−ξ
∥

−dd
i=1 c

−ξ

i , so

hX(v) = hY(vc−ξ/∥vc−ξ
∥) ∥vc−ξ

∥
−(d+1)

d
i=1

c−ξ

i .
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(e) For simplicity, we write ξ instead of ξY. The distribution of ∨d
i=1 uiXi is

P(∨d
i=1 uiXi ≤ t) = P(u1Y1S1/ξ ≤ t, . . . , udYdS1/ξ ≤ t)

= P(Y1 ≤ tS−1/ξ/u1, . . . , Yd ≤ tS−1/ξ/ud)

= ES

P(Y1 ≤ ts−1/ξ/u1, . . . , Yd ≤ ts−1/ξ/ud)|S = s


= ES


exp(−σ ξY (u1s1/ξ/t, . . . , uds1/ξ/t))|S = s


= ES


exp(−t−ξ sσ ξY (u))|S = s


= E


exp(−t−ξ Sσ ξY (u))


= exp(−t−βξσ βξY (u)).

This allows us to conclude that ξX = βξ and σX(·) = σY(·).
(f) By independence of Y and Z, write

P(X ≤ x) = P(Y1 ≤ x1, . . . , Yd ≤ xd, Z1 ≤ xd+1, . . . , Zk ≤ xd+k)

= P(Y1 ≤ x1, . . . , Yd ≤ xd)P(Z1 ≤ xd+1, . . . , Zk ≤ xd+k)

= exp(−σ ξY (1/x1, . . . , 1/xd)) exp(−σ
ξ

Z (1/xd+1, . . . , 1/xd+k))

= exp

−


σ
ξ

Y (1/x1, . . . , 1/xd)+ σ
ξ

Z (1/xd+1, . . . , 1/xd+k)

.

Hence σ ξX (u) = σ
ξ

Y (u1, . . . , ud) + σ
ξ

Z (ud+1, . . . , ud+k). To obtain the announced form of HX , just proceed by identification
through the following set of equalities:

Wd+k
+


d+k
i=1

uξi wi


HX(dw) = σ

ξ

X (u) = σ
ξ

Y (u1, . . . , ud)+ σ
ξ

Z (ud+1, . . . , ud+k)

=


Wd

+


d

i=1

uξi si


HY(ds)+


Wk

+


k

i=1

uξd+iti


HZ(dt)

=


Wd+k

+


d+k
i=1

uξi wi


(HY × HZ)(dw). �

Proof of Lemma 2. Let us show that for any a = (a1, . . . , ad)T > 0, the max-projection ∨
d
i=1 aiXi is univariate Fréchet. For

any positive real number t

P(∨d
i=1 aiXi ≤ t) = P (Y1 ∨ Z1 ≤ t/a1, . . . , Yd ∨ Zd ≤ t/ad)

= P(Y1 ≤ t/a1, . . . , Yd ≤ t/ad, Z1 ≤ t/a1, . . . , Zd ≤ t/ad)
= P(V1 ≤ t/a1, . . . , Vd ≤ t/ad, Vd+1 ≤ t/a1, . . . , V2d ≤ t/ad)

= exp

−σ

ξV
V (a1/t, . . . , ad/t, a1/t, . . . , ad/t)


= exp


−t−ξVσ ξVV ((a

T
; aT )T )


.

Hence X ∼ Fr(ξ , 0, σX(·))where ξX = ξV and σX(u) = σV((uT
;uT )T ).

In the case of a discrete spectral measure, one can check that

σX(u) = σV((uT
;uT )T ) =

m
j=1


∨

d
i=1 uiwj,i


∨

∨

d
i=1 uiwj,i+d


hj

=

m
j=1


∨

d
i=1 ui(wj,i ∨ wj,i+d)


hj

=

m
j=1


∨

d
i=1 ui

tj,i
∥tj∥


hj∥tj∥ =

m
j=1


∨

d
i=1 uiw̃j,i


h̃j. �

Proof of Lemma 3. To show that X is a d-dimensional Fréchet random vector, we check that all univariate max-projections
are univariate Fréchet. Let u ≥ 0 be a d-dimensional vector, and consider the distribution of ∨d

k=1 ukXk. For any positive real
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number t

P(∨d
i=1 uiXi ≤ t) = P(Xi ≤ t/ui, i = 1, . . . , d) = P(∨m

j=1 aijYj ≤ t/ui, i = 1, . . . , d)

= P

Yj ≤ t/(aijui), j = 1, . . . ,m, i = 1, . . . , d


= P(Yj ≤ t min

i=1,...,d
{1/(aijui)}, j = 1, . . . ,m) = P(Yj ≤ t/ max

i=1,...,d
{aijui}, j = 1, . . . ,m)

= exp


−σ
ξ

Y ( max
i=1,...,d

{ai1ui}/t, . . . , max
i=1,...,d

{aimui}/t)


= exp

−t−ξσ ξY (A

T
×max u)


.

This shows that X is multivariate Fréchet with ξX = ξ and σX(u) = σY(AT
×max u). When HY(·) is discrete as given in the

statement of the Lemma,

σ
ξ

X (u) = σ
ξ

Y (A
T
×max u) =

n
j=1


∨

m
i=1wj,i(∨

d
k=1 ak,iuk)

ξ

hj

=

n
j=1


∨

d
k=1(∨

m
i=1wj,ia

ξ

k,i)u
ξ

k


hj =

n
j=1


∨

d
k=1 tj,ku

ξ

k


hj

=

n
j=1


∨

d
k=1(tj,k/∥tj∥)u

ξ

k


hj∥tj∥ =

n
j=1


∨

d
k=1 wj,ku

ξ

k

hj. �

Proof of Lemma 4. From Lemma 1, we know that if X is Fr(ξ ,µ = 0,H(·)) then its ξ -th power X⋆ = Xξ is Fr(1,µ =

0,H(·)). The spectral measure H does not change. One can also say that X⋆ is Fr(1,µ = 0, σ ⋆(·))where the scale function is

σ ⋆(u) = σ ξ (u1/ξ ).

Moreover, the unnormalized Pickands’ function on [0, 1] is

B⋆(t) = σ ⋆(1 − t, t) = t
 t

0
(1 − w)dH(w)+ (1 − t)

 1

t
wdH(w).

Following the steps of Pickands [21, Theorem 3.1] or Beirlant et al. [2, pp. 268–269] we have 1

t
wdH(w) =

 1

t
(w − 1 + 1)dH(w) = H((t, 1])−

 1

t
(1 − w)dH(w)

= σ ⋆1 + σ ⋆2 − H([0, t])− σ ⋆2 +

 t

0
(1 − w)dH(w) = σ ⋆1 − H([0, t])+

 t

0
(1 − w)dH(w).

It yields

B(t) = t
 t

0
(1 − w)dH(w)+ (1 − t)


σ ⋆1 − H([0, t])+

 t

0
(1 − w)dH(w)


=

 t

0
(1 − w)dH(w)+ (1 − t)


σ ⋆1 − H([0, t])


.

Now
 t
0 (1 −w)dH(w) =

 t
0 H([0, u])du + (1 − t)H([0, t]), so that B⋆(t) =

 t
0 H([0, w])dw + (1 − t)σ ⋆1 . Then H([0, t]) =

B⋆′(t) + σ ⋆1 ,H({0}) = B⋆′(0) + σ ⋆1 , and H({1}) = −B⋆′(1) + σ ⋆2 where σ ⋆i = σ ⋆(ei) = σ
ξ

i and B⋆′ should be interpreted as
its right derivative. �

Proof of Lemma 5. Use the transformation Y → Yξ and the fact that the corresponding Jacobean is
d

k=1


x(1/ξ)−1
k /ξ


. �

Proof of Lemma 6. Let Y ∼ Fr(ξY, µY, σY(·)) and Z ∼ Fr(ξZ, µZ, σZ(·)) be independent Fréchet random vectors with
discrete spectral measures denoted HY(·) and HZ(·). From Lemma 1 one knows the formula of HX. It is clear that

(a) HX(·) = HY(·)+ HZ(·)
(b) HX(·) = HY(·)
(c) HX(·) = cξYHY(·)
(d) HX(·) = HY(·)× HZ(·)

all remain discrete spectral measures on the simplex W+. The argument for the case (d) is given in details in its statement.
Lemmas 2 and 3 give the result in their statements. �
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Proof of Theorem 1. Wewill prove that for any vector a = (a1, . . . , ad)T ∈ Rd
+

\{0}, themax-projection∨
d
i=1 aiXi follows a

univariate Fréchet distribution. Using the independence of the Zi’s, and the Laplace transform of the positive random vector
S (since α < 1), we can write for any positive real number t

P(∨d
i=1 aiXi ≤ t) = P(∨d

i=1 aiS
1/ξ
i Zi ≤ t) = ES


P(Z1 ≤ t/(a1S

1/ξ
1 ), . . . , Zd ≤ t/(adS

1/ξ
d ))


= ES


d

i=1

exp

−(t/{aiS

1/ξ
i })−ξ


= ES


exp


−

d
i=1

t−ξaξi Si


= ES


exp


−⟨t−ξaξ , S⟩


= exp


−cαt−αξγ α(aξ )


.

This proves that X is multivariate Fréchet with ξX = αξ and σ ξXX (a) = cαγ α(aξ ). �

Proof of Lemma 7. Let Y ∼ Fr(αξ, 0, σY(·)) and Z ∼ Fr(αξ, 0, σZ(·)) be independent Fréchet random vectors constructed
as follows. For U1, . . . ,Ud, V1, . . . , Vd independent and identically distributed univariate Fréchet (ξ, µ = 0, σ = 1), we set
Y = (S1/ξ1 U1, . . . , S

1/ξ
d Ud) andZ = (T 1/ξ

1 V1, . . . , T
1/ξ
d Vd)where S and T are positiveα-stable randomvectorswith sum-stable

spectral measureΛY andΛZ respectively. One has

σ
αξ

Y (u) = cαγ αY (u
ξ ) = cα


S+

⟨uξ , s⟩αΛY(ds)

σ
αξ

Z (u) = cαγ αZ (u
ξ ) = cα


S+

⟨uξ , s⟩αΛZ(ds).

The componentwise maximum operation (a) gives σ αξX (u) = σ
αξ

Y (u) + σ
αξ

Z (u) = cα


S+
⟨u, s⟩α{ΛY + ΛZ}(ds). The power

transformation (b) yields σ αξ/pX (u) = σ
αξ

Y (u1/p) = cα


S+
⟨uξ/p, s⟩αΛY(ds). The multiplication by a positive scalar as in

(c) implies σ αξX (u) = cαξσ αξY (u) = cα


S+
⟨uξ , s⟩α{cαξΛY}(ds). The componentwise multiplication (d) considers X =

(c1Y1, . . . , cdYd) that can be written as X = T1/ξ
· U = (T 1/ξ

1 U1, . . . , T
1/ξ
d Ud) where T = (cξ1 S1, . . . , c

ξ

d Sd). Since T is a
positive α-stable random vector as soon as S is a positive α-stable random, we conclude that X is a generalized logistic
mixture from its stochastic representation. The multiplication by a sum-stable as in (e) gives

X = S1/(αξ)Y = (S1/(αξ)S1/ξ1 U1, . . . , S1/(αξ)S
1/ξ
d Ud) = (T 1/ξ

1 U1, . . . , T
1/ξ
d Ud),

with T := S1/αS = (S1/αS1, . . . , S1/αSd). Note that if S is positive univariate β-stable random variable and S is a positive
α-stable randomvector, with S and S being independent, then T is a positive (βα)-stable randomvector. Again the stochastic
representation allows to conclude. �

Proof of Proposition 2. We use again the differentiation formula

∂d

∂x1 . . . ∂xd
exp(φ(x)) = exp(φ(x))


π∈Π


B∈π

∂ |B|φ(x)
∂Bx

,

with φ(x) = −cαγ α(x−ξ ) = cα


S+
⟨x−ξ , s⟩αΛ(ds) so that

∂ |B|φ(x)
∂Bx

= (−1)1+|B| ∂
|B|I(x)
∂Bx

which allows to conclude since


B∈π (−1)1+|B|
= (−1)|π |+d. �

Proof of Proposition 3. We apply Lemma 4. In this setting, we have

σ ⋆(u) = σ αξ (u1/(αξ)) = cαγ α(u1/α)

and σ ⋆i = cα


S+
sαi Λ(ds) for i = 1, 2. We get successively

B⋆(t) = σ ⋆(1 − t, t) = cαγ α((1 − t)1/α, t1/α),

B⋆′(t) = cα


S+


(1 − t)1/αs1 + t1/αs2

α−1 
−(1 − t)1/α−1s1 + t1/α−1s2


Λ(ds),

and h(t) = cα(1/α − 1)(t(1 − t))1/α−2


S+
((1 − t)1/αs1 + t1/αs2)α−2s1s2Λ(ds). �
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Proof of Lemma 8. The kernel k(u, w) = (1 − u)w ∨ u(1 − w) is always a V-shaped function with vertex at u = w. In
particular, if u ≤ a, then k(u, w) = (1 − u)w and

gp(u; a, b) =

 b

a
(1 − u)wwpdw = (1 − u)

 b

a
wp+1dw = (1 − u)c1,

where c1 = (bp+2
− ap+2)/(p + 2).

Likewise, if u ≥ b, then k(u, w) = u(1−w) and gp(u; a, b) =
 b
a u(1−w)wpdw = uc5, where c5 = (bp+1

− ap+1)/(p+

1)− (bp+2
− ap+2)/(p + 2).

For a < u < b, the kernel k(u, w) = u(1 − w) on (a, u), while k(u, w) = (1 − u)w on (u, b). Hence for u ∈ (a, b),

gp(u; a, b) =

 u

a
u(1 − w)wpdw +

 b

u
(1 − u)wwpdw

= u

wp+1

p + 1
−
wp+2

p + 2

u
a
+ (1 − u)


wp+2

p + 2

b
u

= up+3


1
p + 2

−
1

p + 2


+ up+2


1

p + 1
−

1
p + 2


+ u


−

bp+2

p + 2
−

ap+1

p + 1
+

ap+2

p + 2


+

bp+2

p + 2

so that gp(u; a, b) = c2up+2
− c3u + c4. �

Proof of Lemma 9. Let Y ∼ Fr(ξY, µY, σY(·)) and Z ∼ Fr(ξZ, µZ, σZ(·)) be independent Fréchet random vectors with
piecewise polynomial spectral densities denoted hY(w) =

mY
j=1 pY,j(w)1∆Y,j(w) and hZ(w) =

mZ
j=1 pZ,j(w)1∆Z,j(w). From

Lemma 1 one knows the formula of HX. It is clear that

(a) hX(·) = hY(·)+ hZ(·)

(b) hX(·) = hY(·)

(c) hX(·) = cξYhY(·)

(d) hX(v) = hY(vc−ξ/∥vc−ξ
∥) ∥vc−ξ

∥
−(d+1)d

i=1 c
−ξ

i
(e) hX = hY × hZ

all remain piecewise polynomial spectral densities on the simplex W+. �

Proof of Theorem 2. For any x ∈ Rd,

|GX(x)− GY(x)| =

exp(−σ ξX (x−1))− exp(−σ ξY (x
−1))


= exp(−σ ξX (x

−1))

1 − exp

−


σ
ξ

Y (x
−1)− σ

ξ

X (x
−1)


≤ exp(−σ ξ0 ∥x−1
∥
ξ )

1 − exp

−∥x−1

∥
ξ

σ
ξ

Y (x
−1/∥x−1

∥)− σ
ξ

X (x
−1/∥x−1

∥)


≤ exp(−σ ξ0 ∥x−1
∥
ξ )max{exp(δ∥x−1

∥
ξ )− 1, 1 − exp(−δ∥x−1

∥
ξ )}

≤ exp(−σ ξ0 ∥x−1
∥
ξ )

exp(δ∥x−1

∥
ξ )− exp(−δ∥x−1

∥
ξ )

.

Some calculus shows that g(t) := e−σ
ξ
0 t(eδt − e−δt) has a maximum at t⋆ = 1/(2δ) ln((σ ξ0 + δ)/(σ

ξ

0 − δ)), and g(t⋆) =

2δ
σ
ξ
0 −δ


σ
ξ
0 +δ

σ
ξ
0 −δ

−(σ
ξ
0 +δ)/(2δ)

≤ (2δ)/σ ξ0 . Applying this to the bound above gives the result. �

Proof of Theorem 3. The kernel function k(w,u) = ∨
d
i=1 u

ξ

i wi is Hölder continuous in the first variable: |k(w1,u) −

k(w2,u)| ≤ K 2
∥w1 − w2∥ uniformly in u ∈ W+. Therefore, Lemma 4.2 of [20] implies |σ

ξ

X (u) − σ
ξ

Y (u)| ≤ K 2(1 + K 2)

π∗(HX,HY) ≤ K 2(1 + K 2)δ for any u ∈ W+, where the last inequality follows from the assumption. Applying Theorem 2
finishes the proof. �

Proof of Proposition 4. Let the simplex W+ ⊂ Rd
+
be partitioned into uniformly small pieces ∆1, . . . ,∆m, e.g. satisfying

Vold−1(∆j) = Vold−1(W+)/m. Let pj be a ‘‘midpoint’’ of∆j, and define

Hdisc,m(·) =

m
j=1

H(∆j)δpj(·).

This measure will be close to the original spectral measure H in the extended Prokorov metric π∗, so applying Theorem 3
gives the result. �



A.-L. Fougères et al. / Journal of Multivariate Analysis 116 (2013) 109–129 129

Proof of Proposition 5. We already know from Proposition 4 that the discrete spectral measures give a dense class: for any
positive ϵ, there exists Gdisc such that |G − Gdisc| < ϵ. If σdisc denotes its associated scale function, then it can be written as

σdisc(u) =


m
j=1

σj,disc(uξ )

1/ξ

with σj,disc(u) = ∨
d
i=1 hjwj,iui; see the first lines of Section 3.1. In terms of random vectors, what precedes can be expressed

as follows: X ∼ Fr(ξ , 0, σdisc) can be generated by

X = max{Y1/ξ
1 , . . . , Y1/ξ

m }

with Yj ∼ Fr(1, 0, σj,disc). As a consequence, the result of Proposition 5 will follow from Theorem 2 as soon as there exists a
scale function σj,log from a generalized logistic mixture close enough to σj,disc. Indeed, the inverse operation will use the fact
that the class of generalized logistic distributions is closed under the previous transformations, as stated in Lemma 7. One
can check that such a scale function exists since σj,log(u) := (

d
i=1(hjwj,iui)

α)1/α converges to ∨
d
i=1 hjwj,iui as α ↓ 0. �

Proof of Proposition 6. Consider a fine partition∆1, . . . ,∆m of W+ as already defined in the proof of Proposition 4. Let hpp
be the piecewise constant spectral density defined by

hpp(w) =

m
j=1

H(∆j)1∆j(w).

This density corresponds to an spectral measure Hpp for which π ⋆(H,Hpp) is arbitrarily small. �
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