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1. Introduction

The standard assumption in the linear regression analysis is that all the explanatory variables are linearly independent.
When this assumption is violated, the problem of multicollinearity enters into the data and it inflates the variance of
an ordinary least squares estimator of the regression coefficient, see [28] for more details. Obtaining the estimators for
multicollinear data is an important problem in the literature. The ridge regression estimation due to Hoerl and Kennard [13]
works well in multicollinear data. The ridge estimators under the normally distributed random errors in a regression model
have been studied by e.g., [31,18,19,6,12,3] etc. The details of development of other approaches and the literature related to
the ridge regressions are not within the scope of this paper.

Another fundamental assumption in all statistical analyses is that all the observations are correctly observed. When
this assumption is violated, the measurement errors creep into the data. Then the usual statistical tools tend to loose their
validity, see [8,7] for more details. An important issue in the area of measurement errors is to find the consistent estimators
of the parameters which can be accomplished by utilizing some additional information from outside the sample. In the
context of multiple linear regression models, the use of additional information in the form of a known covariance matrix of
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measurement errors and a known matrix of reliability ratios, both associated with explanatory variables, has been studied,
see e.g.,[9,21-26,30,34,16,37] etc.

When the problem of multicollinearity is present in the measurement error ridden data, then an important issue is how
to obtain the consistent estimators of regression coefficients. One simple idea is to use the ridge regression estimation over
the measurement error ridden data. An obvious question that crops up is what happens then? In this paper, we attempt to
answer such questions.

It is well known that Stein [38,14] initially proposed the Stein estimator and positive-rule estimators. The preliminary
test estimators were proposed by Bancroft [4]. On the other hand, ridge regression estimators were proposed by Hoerl
and Kennard [13] and they combat the problem of multicollinearity for the estimation of regression parameters. Saleh
[29, Chapter 4] proposed “quasi-empirical Bayes estimators”. So we have considered five quasi-empirical Bayes estimators
by weighing the unrestricted, restricted, preliminary test and Stein-type estimators by the ridge “weight function”. The
resulting estimators are studied in measurement error models. The quadratic risks of these estimators have been obtained
and optimal regions of superiority of the estimators are determined.

The plan of the paper is as follows. We describe the model set up in Section 2. The details and development of the
estimators are presented in Section 3. The comparison of estimators over each other is studied and their dominance
conditions are reported in Section 4. The summary and conclusions are placed in Section 5 followed by the references.

2. The model description

Consider the multiple regression model with measurement errors

Yi=Bo+xB+e, Xe=x-+u, t=12,...,n (2.1)
where By is the intercept termand 8 = (B1, B2, . .., Bp)’ isthe px 1 vector of regression coefficients, X, = (X1, Xa¢, . . ., Xpr)’
is the p x 1 vector of set tth observations on true but unobservable p explanatory variables that are observed as X; =
(X1¢, Xat, - - ., Xpr)” with p x 1 measurement error vector #; = (uUy, Uy, - . ., Upe)’, Ui being the measurement error in the
ith explanatory variable x;; and e; is the response error in the observed response variable Y;. We assume that

(x;a €, u[) ~ N2p+l {(M';’ 07 0,)/7 BIOCl(Diag(EXXs Oee, Euu)} (22)
with py = (Uxy, gy -« -5 ;pr)/, oee is the variance of e;’s whereas X, and X, are the covariance matrices of x;’s and u;’s

respectively. Clearly, (Y, X/)’ follows a (p+1)-variate normal distribution with mean vector (8o+8' iy, fy')’ and covariance
matrix

UEE + ﬂ’EXXﬂ ﬁ/EXX
. 2.3
< ZwB L+ 2uu> (2.3)

Then the conditional expectation of Y; given X; is
E(Y X)) = vo + ¥'X: (2.4)

where yo = fo + B/, — K[)Ry, ¥ = KB, B = K3'y, and Ky = Z! Ty = (Zxe + Zyu) ' Zyx is the p x p matrix of
reliability ratios of X, see [9].

Our basic problem is the estimation of 8 under various situations beginning with the primary estimation of 8 assuming
X is known.

Let

Sy Swx
S = 2.5
<5xy 5xx> (2.5)
where
(i) Sy = (Y = Y1)/ (Y = V1), Y = (Y1, Yo, ..., Vo), 1o = (1,1,..., 1)
(il) Sxx = ((Sxx)) Sxx; = (®i — Xi1n) (% — Xi1y)
(iii) Sxiy = (Xi — Xi'lnz/(yi = Yi1n), Sxy = (Sxyv» Sxpvs -+ -5 Sxpv)
(V) Xi= 230 X, Y =230, Ve
Gleser [9] showed that the maximum likelihood estimators of y;, ¥ and o, are just the naive least squares estimators,
viz.,
. - g - - - 1 - ~r - ~
Yoo =Y =¥, X, P, =SuSxy and G = ~(V = Yol = %) (Y = Jouln = 7X) (2.6)
provided

&ee - 522 - i’;ll<x;12uui’n > 0. (27)
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When X, is known and Ky, = EX_Xl S = (D + Zuu) " T is unknown, then Ky, is estimated consistently by replacing
Yxx and Xy + X, by their respective consistent estimators as

kxx = S)ZX1 (Sxx — nZyu) (2.8)

where %Sxx is the maximum likelihood estimate of (X, + X,.).
Thus, the maximum likelihood estimates of 8y, B, and o, are given by

~ - ~/ AL ~ A1 - - ~/ A~
Bon = Yon — ﬂn(lp - KXX)X, ﬂn = Kxxl)’n and G = 0z — ﬁnxuquxﬂn (2.9)
respectively.
” o e
Finally, Bo, reduces to Y — ,X and
B, = (Sxx — nZuw) " 'Sxy (2.10)

provided 6., > 0asin(2.7). The estimators will be designated as the unrestricted estimators of 8y and B. Then by Theorem 2
of [8] we find the large sample covariance matrix of 8, as o,,C ~1 where C = K, Zxx K = EXXEX_Xl Dixe
Then, a consistent estimator of C is given by

Co = K, ZxxKiwe = Sxx — NZu) S (Sxox — NZ) (2.11)

In case, B is suspected to belong to the linear subspace of HB = h where H is a ¢ x p matrix and his a ¢ x 1 vector of
known numbers respectively, the restricted estimator of g is defined by

B, =B, — C;'H'(HC; '"H) "' (HB, — h), (2.12)

see [33].
Since it is suspected that the restrictions HB = h may hold, we remove the suspicion by testing hypothesis Hy based on
the Wald-type statistic

£ =n(HB, —h)' (HC;'"H')"'(HB, — h). (2.13)

D . . . D
Thus under Hp, as n — o0, L) —> X[f- the chi-square variable with q degrees of freedom where — denotes the
convergence in distribution.

3. Ridge regression estimators of 8

In this section, we introduce the ridge regression estimators of 8. For this, we first consider the conditional setup of the
least squares method with known reliability matrix K, and minimize the quadratic form with Lagrangian multiplier

(XKB + o1, — V) (XKB + o1, — Y) + kB'B.
This minimization yields the normal equation for § as
[KiSxxKx + KIp | B = Ky Sxy -

Thus, the ridge regression estimator for f is given by

. . ~N-177T L

B.(k) = |:Ip =+ (K;xSXXKxx> ] B, (3.1)
substituting the consistent estimator of K, given by (2.8) with

Bn = (SXX - nz‘uu)_l SXYc
Here, the ridge factor of the ridge estimator is given by

Ra(k) = [ + kG, '], o = RSk (3.2)
which is a consistent estimator of

RGO = [l + k€], € = K} ExxK-

Hence, the unrestricted ridge regression estimator Bn(k) is defined by

B, (k) = Ru(k)B,.
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It is easy to verify that as n — oo, the bias, MSE and trace of MSE expressions for Bn (k) are given by

by (B, (k) = —kC'(k)B;  C'(k) = (C + ki)™
My (B, (k) = 0 [R(U))CTR()] + K2C (k) BB'C" (k)
tr(M (B, (K))) = o tr{[R(K)'C R} + k*B'C2 (k) B.

Further, since § is suspected to belong to the subspace HB = h, we shall consider four more estimators, namely, the
(i) Restricted estimator of B given by

Bu(k) = Ro(k)B,. (3.3)
(ii) Preliminary test estimator (PTE) of 8 given by

~PT ~PT
B, (k) = Ry (k)B, (3.4)

where B:T =p,— B, — BH)I(QC;’; < qu ()) and X; (a) denotes the a-level critical value of a Chi-square distribution with
q degrees of freedom.

The preliminary test estimation under the assumption of normally distributed random errors has been pioneered by
Bancroft [4] and considered later by Bancroft [5], Han and Bancroft [ 11], Judge and Bock [ 15], Kibria and Saleh [20], Saleh [29]
and Arashi et al. [3] among others. In the setup of measurement errors models, Kim and Saleh [21-26] have considered the
preliminary test and Stein-type estimation.

(iii) The James-Stein type shrinkage estimator (SE) of B8 due to James and Stein [14] is given by

AS AS
B.(k) =R, (k) B, (3.5)

AS ~ ~ A
where ﬂn = ﬂn - (q - 2)(ﬂn - ﬂn)£:7]'
The Stein-rule estimation technique in various models has been considered by several researchers, see e.g., [27,10,29,35,
36,2,6,1] among many others.
(iv) The Positive rule Stein estimator (PRSE) of 8 is given by

B () = Ru()B, (36)

AS+ ~ ~S
where 8, = B,I(LE < q—2) + BI(LE > q—2).
Now, we present the asymptotic distributional properties of the five ridge regression estimators. It may be verified that
) ) . iy ) APT S st
the test . for the test of HB = h is consistent as n — oc. Thus all the quasi-empirical Bayes estimators 8, , 8, and 8, are

asymptotically equivalent to Bn under a fixed alternative, while the asymptotic distribution of B,, degenerates as n — oo.
To by pass this problem, we consider the asymptotic distribution under the sequence of local alternatives

Kw:HB=h+n 2§ &ecRL (3.7)

~ A APT AS AS
The dominance properties of 8,,, B,,, B,, , B, and ﬂn+ are given in Saleh [29, Chapter. 7.8.2] under (3.7). Let A? denotes the
departure parameter that indicates the departure of the alternative hypothesis from the null hypothesis. Here, Theorem 1
gives the properties of the ridge regression estimators using the following result:

Result. Under {K(,)} and the basic assumptions of the measurement error model, the following holds:
(a)
Vg, =B\ | 0 ¢! oc'-a
VB, —p) | — N3 <—5> yozlCcl—A c'—-A
\/ﬁ(ﬂn - ﬂn) g A 0

where C = K}, Xxx Kyx.
(b)

>0
w
&

1
lim P{Ly, <X | Ku)} = Hy(x, A?), A% = —§C8, §=C'H'HC'H) ¢
n—oo

0z

where #,(x; A?) is the c.d.f. of a noncentral Chi-square distribution with q degrees of freedom and noncentrality
parameter A2,
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Theorem 1. Under {K,)}, the bias, MSE matrices and risk expressions of the five ridge regression estimators are given by

(i) by (B, (k) = —kCT' (B, C(k) = C + kI,

M1 (B, (k) = 0RU)CT'R(K) + KC™ (k) BB'C" (k).

Ri(B,(k); W) = o,tr [WR(K)C'R(K)'] + K2 B'C2 (k) B.

(ii) b2(B, (k) = —kC ' (k) — R(K)3,

Ma (B, (k) = 02RUOICT! — AIR (k) + [KC™ (k) B + R(k)8] [kC™" (k) B + R(K)$] ,

Ra(B,(k); W) = o, tr[W (R(K) (C™" — AR(K))] + [kCT (k) + R(k)8] W [kC™" (k) + R(k)8] .

(iiD) b3(B, (K)) = —kC ™" (K)B — R(UDSHqs2[x2 (@); A7),

Ms(B, () = 0 [RKICT'RK)'] — o [RIDAR() 1 H2 x2(0); 4]
[R(k)88'R(K) {2 Hy 12 x2 (@); A*] — HypalxZ (@); A1} + K2[CT () BB'C (k)]
+K[R(k)8B'C" (k) + C™1 (k) BER()] Hy 2l xg (@); A%],

Rs(B, (k): W) = o, trlW (RKIC'RK)')] — o tr[W (RIVAR(K) ) 13202 (@); A2]

+ [§RIYWR(K)S1[2Hy 421 X2 (@); A%] — Hyyalx (@); 4211+ KPR (OWR™ (k) B]
-+ 2K[8'R(k) WR™" (k) B] Hy 42 x g (c); A].
(iv) ba(B, (10) = —kC™' ()B + (q — RS [x,2(4%)].
MaBy (k) = 022 [R(K) Sl R(K)'] — 022(q — 2) [RODAR(KY'] {2E [ x75(4%)]
—(q— 2E [x, 5D} + (@ — 49 [RU)STRK) | E [ x,4(AD)]
+KCT (RBB'CT (k) + k[R(K)SB'CT (k) + C (K BERK)' E [x0:2(A7)].
Ra(Bo(K): W) = oatr (W [R(K) S R(K)])
— 0z(q — 2)tr (W [RIOARK)']) {2E [ x5 (A%) — (4 — 2 x5 (A% ]}
+(q° — Dt [W (RI)SIRK)) ] E [ x4 (AH ] + kBT (ywC ' (k) B
+k tr {W [R(k)8B'C™ (k) + C () BER(K)' T} E [ x5 (A%)].

W) bs (B, (k) = ba(B,(10) — RIS { Hy1> — (@ — 2F [, 54D (x;5(4%) < (@ —2)]},

Ms(B, (0) = My(B,00) — oz [RUOARGY T E [ (1 = (0 = 2,2(40)" 1 (122(4%) < @ - 2)]
— [RU)SSR(K)'] {2E [(1— (@ = 2)x,5(A0)) I (x5(A4%) < (g —2))]
—E[(1- @-2x2@)" 1 (240 < @-2) ]}

x {R(k)3B'C™' (k) + C " (k)BS'R(K)'}
X E[(1— (@ = 2x;5(AH) 1 (x24(4%) < (@—2)].

Rs(B, (k); W) = Ra(B(K); W)

— {outr (RUOARGW) E [ (1- @ - 2x325(40)" 1 (12,240 < @-2) |}
+ (6w28) [2E[(1 - (@ = 2x:5(40) 1 (421247 < @ - 2)]
—E[(1- @=2224@))" 1 (13,(4) < @ - 2) ]

— 2k8'R(kYWC™ () BE [ (1 — (@ — 2) x5 (AD) 1 (x2,2(A%) < (- 2))].

4. Comparison of estimators of 8

We compare the five ridge regression estimators of 8 based on the risk criterion as a function of the departure parameter,
A2, as a function of ridge constant k and as a function of both (A2, k). Comparison among the ridge regression estimators
needs the study of the risk-difference of the estimators in comparing. On the other hand, comparison of the ridge regression
estimators and the corresponding estimators (say Bn and R(k) ﬁn etc.) needs the study of the derivatives of the ridge
estimators with respect to k. These procedures are adopted throughout in Section 4.1 onwards.
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~ AS A~S
4.1. Comparison of B,(k), B, (k) and ﬂn+(k) based on risks as a function of the departure parameter A?

First we compare Bn(k) and Bi(k). Here the risk difference may be written as
~ A~S
Ri(B,(K); Ip) — R4 (B, (K); I)

2
= (q — 2)oztr [R*(k)A] {(q—Z)E[ aa (4] (1 VL >2A25[x“‘

_ = N A2
2A20,tr[R?(k)A] ara(4%)] }

+2(q — 2)k8'R(k)C ™" (k) BE[ x5 (A2)]. (4.1)
The right hand side of (4.1) is non-negative if and only if

Chinax R2K)C™Y) g +2

tr[R2(k)A] — 2 (4.2)
Hence, [9i (k) dominates ﬁ,, (k) uniformly in A? for all k € (0, 00)
Next, we consider the risk difference
Re(B(K); 1) — Rs (B, (K); 1) = oetr [RRUOATE[(1 = (@ = 201,54 (x242(4%) < (4 —2)]
— 8R2 (k)8 {2E [(1 — (q — 2 x5 (A (x22(4) < (- 2))]
—E[(1 = (q = x5 (A" (x312(A%) < (g —2))]}
— 2k§RICT ) BEL(1 — (4 — 2) Xy 2 (AN (x512(A%) < (g —2))]. (43)

S S
Since qu+2 (A%) — (g — 2) < 0, so the right hand side of (4.3) is non-negative. Hence ,Bn+ (k) dominates B, (k) uniformly in
A? € (0, 00). As a result, the dominance picture for the above three estimators is given by

Rs(B. (K): 1) < RGB.(K): 1) < Ry(Bu(k): 1),

forall A% € (0, co). Hence /}T(k) is preferable to either Bi(k) or ﬁn(k). These results are similar to /}ff compared to ﬁi and
B, (see [29, Chapter 7]).

4.2. Comparison of ﬁnpr (k), Bn (k) and iin (k) based on risks as a function of the departure parameter A?

~PT ~
First, we consider the comparison between the risks of 8, (k) and B, (k) as follows:

Rs(B,(K0; ) — Ri(B, (K); Ip) = otr [RVARCK) ] Hgsal 2 (@); 4]
— [§'RUR(OS] [25121xg ()3 A%] — Haralxg () A%]]
— 2k [§'R(K)'CT (k) B] Hyralx (); A%]. (4.4)
The expression on the right hand side is non-negative whenever
{oztr [RIDAR(K)'] — 2k8'R(k)' C™' (k) B} HyralxZ(a); A?]

§'R(k)R(k)§ <
(RS = [2]€q+2[qu(a); A?] — HgpalxE (@); AZ]]

(4.5)

The use of the Courant-Fisher theorem once again yields that (4.5) is non-negative whenever A2 € (0, A%(a, k)) where

{oztr [RUOAR(K)'] — 2k8'R(K)'CT1 (k) B} HysalxZ(@); A?]
Chimax (R(KYR(K)C1) [2Hq1alx2(@); A2] — Heralx2(@); A2]]

Aa, k) = (4.6)

Thus B, (k) is dominated by B:T(k) whenever A% € (0, A%(, k)) and B, (k) dominates 3:T(k) whenever A% € (A%(«, k), o0)
where
{oztr [RIDAR(K)'] — 2k8'R(k)' C™' (k) B} HyralxZ(); A?]

A, k) = )
(10 Chimin (R(K)YR()C1) [2H 12l x2 (@); A2] — Hralx2(@); A2]]

(4.7)
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Now, if « = 0, then qu (0) = oo implies # functions are unity and we get risk comparison of Bn (k) and fin (k). Thus

Ri (B (k) I) — Ra(B,(K); Ip) = atr [RUDAR(K)' ] — 8'R? (k)8 — 2k8'R(k)'C " (k) B. (4.8)
The right hand side is non-negative whenever A% e (0, A;(0, k)) where

oztr [R(KAR(K)'] — 2k§'R(K)'C (W) B

4100, k) = Chmax[R ()R(K)C1]

(4.9)

Thus f}n (k) dominates Bn (k) whenever A? € (0, A;(0, k)) and ,Bn (k) dominates }.?},, (k) whenever A? € (A,(0, k), co) where

oztr [R(KAR(K)'] — 2k§'R(k)'C~ (k) B
Chmin[R'()R(K)C ]

A3(0,k) = (4.10)

Now we consider the relative efficiency (RE) of f}l:r (k) compared with Bn (k) similar to Z‘II;T compared with Bn. Accordingly,

~PT
we provide a maximum and minimum (Max and Min) rule for the optimum choice of the level of significance of the g8, (k)
for testing the null hypothesis Hy : HB = h. For fixed value of k(k > 0), this RE is a function of & and A2. Let us denote
this by

. , »
e m |- e oFcaE) @i
where
fia(e, k, A%) = o, tr[R(K)AR(K) 1 #4202 (@); A*] — §'R(K)R(K)S {27012 x2 (@); A%]
— Horalx2(@): A*1} — 2kHgia[x2(@): A*18'R(K)'C™" (k)B. (4.12)

For a given k, the function E(«, A?, k), is a function of & and AZ. This function for « # 0 has its maximum under the null
hypothesis with following value,

tR(VAR(K) 142012 (@): O] r (4.13)

Emax{@, 0, ) = [] ~ tr[R(AR(K)'] + k2B'C-2(k)' B

For given k, Enax(cr, 0, k) is a decreasing function of «. While, the minimum efficiency Ep, is an increasing function of «. For
o # 0,as A2 varies the graphs of E(0, A, k) and E(1, A, k) intersectin therange 0 < A% < A%(a, k), whichis givenin (4.13).
Therefore, in order to choose an estimator with optimum relative efficiency, we adopt the following rule for fixed values
of k.If0 < A% < Af(oz, k), we choose ,Bn (k) since E(0, A, k) is the largest in this interval. However, A? is unknown and
there is no way of choosing a uniformly best estimator. Therefore, following Saleh [29], we will use the following criterion
for selecting the significance level of the preliminary test.

Suppose the experimenter does not know the size of « and wants an estimator which has relative efficiency not less than
Emin- Then among the set of estimators with « € A, where A = {« : E(a, A, k) > Enysfor allA}, the estimator is chosen to
maximize E(«, A, k) over all @ € A and all A%. Thus we solve for « from the following equation.

max minE(«, A, k) = Enin. (4.14)
0=a=<1 A2

Readers are referred to Saleh and Kibria [32] for tabular values of maximum and minimum guaranteed efficiencies ARE's
for various values of «, k, 2.

4.3. Comparison of the risk of estimators of f as a function of ridge constant k

First note that the asymptotic covariance matrix of the unrestricted estimator of § is 0,,C~! where < C = Ky, Zxx Ky i
a positive definite matrix. Thus we can find an orthogonal matrix I" such that

I (K ZxxKw) I' = T'CI = diag(Aq, Az, ..., Ap), (4.15)
where A; > A, > ---, A, > 0 are the characteristic roots of the matrix (K,QXEXXKXX). It is easy to see that the characteristic

-1
roots of [Ip + k (K}, Zxx Kxx)‘l] = R(k) and of [ (K}, ZxxKy) + kI, | = R™" (k) are

M A2 Ap
((M T et Gyt k)2> and (A1 +k Az 4k, ..., A+ k) (4.16)
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respectively. Hence we obtain the following identities:

p
tr[R(K)CR(K)] = tr [R(k) (K, Exki) ' R ] 3 /\ e (4.17)
i=1 ( + )
2
BRI = Z Gy 0= TB= 006 (4.18)
p *)\'2
tr[R(K)AR(K)'] = Z m (4.19)
where a} > 0is the dlagonal matrix of A* = I''AI" and
tr [§R(k)'R(K)8] Zp: hidi” (4.20)
I K = P EE— .
— (hi+k)?
where §; is the ith element of §* = §'I". Similarly
_ P girs;
tr [S’R(k)/ (K DocK + ki) 1R(k)&] = m (421)
i=1
4.3.1. Comparison ofﬁn (k) and Bn
In this case we have the risk of Bn(k) as
R(B,(K): 1) Xp: b +122p: o (4.22)
; =0 _— k —_— .
TP G+ (a2

Clearly for k = 0, the risk equals that the risk of 8,,. Note that the first term of (4.22) is a continuous, monotonically decreasing
function of k and its derivative with respect to k approaches —oo as k — 0" and A, — 0. The second term is also a
continuous monotonically increasing function of k and its derivative with respective k tends to zero as k — 07 and the
second term approaches BB’ as k — oo. Differentiating with respect to k, we get

AR(B,(k); I) 52
— =2 Z ot k)3 (k6? — 0,2). (4.23)

Thus a sufficient condltlon for (4.23) to be negative is that 0 < k < k where

K= 2= (4.24)
emax
where O, = Largest element of @ and 8 = (64,6, ..., 6,)".
Thus, we have the following theorem.
Theorem 2. There always exists a k € (0, k) such that R, (/NBH; I,) > Rl(fﬁn k)3 Ip).
4.3.2. Comparison off?n (k) and fin
The risk function under the hypothesis Hf # h is given by
p
N 1
Ry(B,(K); Ip) = ; G [022(hi — @) + K207 + 27872 + 2k6,57 1] - (4.25)

Thus differentiating (4.25) with respect to k, we obtain a sufficient condition for 8R2(i3n(k); I,)/9k to be negative as
k € (0, k3) where

1111112] [ —af) — 22876 — 87)]
K = . 426
> max Ai6;(6; — &7) (4.26)
<i<p

Thus a sufficient condition for the restricted ridge regression estimator to have smaller risk value than the unrestricted
ridge regression estimator is that there exists a value of k such that 0 < k < k; where k; is given by

min [0, @} — 22572]
_ 1<i<p
ky = . (4.27)
max (26;6; A;)

1<i<p




76 A.K.Md.E. Saleh, Shalabh / Journal of Multivariate Analysis 123 (2014) 68-84

We conclude that

R1(Bn(k); I,) — Rz(ﬁn(k); I,) > 0 forall ksuchthat0 < k < ky,
since
P (0,05 — A287% — 2k0;0i87)

Ry (B, (K); Ip) — Ry (B, (k); 1) =
1 p 2 14 ; ()Ll+l<)2

Theorem 3. There always exist a k € (0, k3) such that Rz(ﬁn; I) > Rz(Bn(k); Ip). Under HB = h, kj equals k.

. APT APT
4.3.3. Comparison of B, (k) and B,

We consider the R3 (ﬁ?(k), I,) under HB # h which is a function of eigenvalues and k is given as follows:

b
~PT
Ra(B, (0. 1) = D ———— [on {hi — a5 He i} (@); A1} + K267
= itk
+2K0:0i8] Hyralxg (@) A%+ 2787 (212000 (@); AP = Hyralxg (@); A1) (4.28)

~PT ~PT ~PT
Differentiation of R3(8,, (k), I,) with respect to k, we obtain a sufficient condition for 8, (k) is superior to 8, is that there
~PT
exists a k € (0, kx(ar, A?)). The derivative oRs3(B, (k), I,)/0k is negative where k; (e, A?) is defined by

, A2

ky(a, A?) = Wiz) (4.29)

g1(a, A%)
where
fla, A% = 1n2ii23 [o22 (% = @i Htralxg (0): A%]) + 2787 {2020 (@): A7)
— HaralxZ (@) A1} = 078 HyralxF (@): A%]] (4.30)
1rr<1ia<); [2i6; {6 — 8 Hyralxg (@); A1}]
O 431
&1 (O( ) 11"113X (eiz’ )\i) ( )
<i<p

Theorem 4. There always exist a k € (0, ko(«, A%)) such that Rg(BZT; I,) > R3(i3iT(k); I,). Under HB = h, ky(«, A?) equals
k3 (o, A%) = minj<i<p [)»i - a,??e%’m(xj(a); 0)]-

Remark. Suppose k > 0, then the following statements hold true following Kaciranlar et al. [17]:

APT APT
1. If g1 (o, A%) > 0, it follows that for each k > 0 with k < ka(c, A%), B, (k) has smaller risk than that of 8, .
2. If gy (a, A%) < 0, it follows that for each k > 0 with k > ky(at, A?), anyr (k) has smaller risk than that of ﬁiT.
3. If ¢ = 0, we obtain the comparison conditions for Bn (k) and Bn and if @ = 1, we obtain the comparison conditions for

B.(k) and B,.

4.3.4. Comparison ofﬁ:T (k), B,, (k) and ﬁn(k)
Consider first the comparison of /§:T (k) and }§n (k).

Under the alternative hypothesis HB # h, the difference between the risks of B:T(k) and f?n(k) in terms of eigenvalues
and k is given by

~PT ~ z
RaBy (051y) — RaBr0i ) = Do s
=787 [1 = 251alxg (@): A1+ Hypalxg (@) A71]

= 2k6:i8; [1 = Hgralxg (@); A%1]] (432)

[O—zza;‘ki [1 - e%q+2[X;(a); Az]]
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and the right hand side is negative whenever

max {[o,a} [1 — HepalxZ (@); A%]] — 22877 [1 = 2Hg2[x2 () A*] + HypalxZ(): A%]]]}

1=i<p

k3 (A%, @) = (4.33)

min {26087 [1 — Hei2lx2(@); A2]]}

1<i<p
Thus ﬁ:T (k) dominates Bn (k) whenever k3(A?, a) < k, otherwise the reverse holds true. For « = 1, we find that f}l:r (k) is
dominated by B,,(k) when
max [o,a; — 4757

min (26;1;5;")

1<i<p

k3 (A%, 1) =

(4.34)

Under the null hypothesis Hy : HB = h, Bn (k) is superior to ,B:r (k) since the risk difference equals

1 * 2 .
; m [Gzzaii{l - ]fq+2[Xq (@); O]}] > 0.
Again the risk difference of ‘Enpr (k) and Bn (k) in terms of eigenvalues and k points out to the fact that ﬁ:T (k) dominates
B,(k) when k € k4(A2, o), where
max { (02205 Hq.2 X2 (@); A2] = W2872 [2512[x2 (@0): A%] — HgralxZ (o) A71]]}

1<i<p

ka(A?, @) =

: (4.35)
min {26,487 Hga[x2(@); A2]}

1=i<p

and ﬁn (k) dominates iil;T (k) whenever k4 (A2, @) > k.

S ~S
4.3.5. Comparison of B, (k) and B,
S S
In this section, we compare B, (k) and 8, when the risk is a function of (e, A?). First we consider the risk as a function of

k and then as a function of A?. We now consider the risk function of }A?i (k). Then, a sufficient condition for dR, (Bi (k); 1,)/ 9k
to be negative is that k < ks(A?) where

AZ
ks(2?) = 2 2) , (4.36)
£2(4%)
where
fB(AZ) = ]rEian {Gzz {)‘-i —(q— z)azza?; |:(q - Z)E[X(;:lz(Az)]
(q +2)87%22 _ e
+ (1 = m QAME[x 4 (AN | | + (@ — 20787 E[ x5 (A%)] (4.37)
n
£(4%) = max [160; {0 — (0 — 28/ELxg 5 (AM1}]. (438)
Suppose k > 0, then the following statements hold true following Kaciranlar et al. [17]:
1. If g&,(A?%) > 0, it follows that for each k > 0 with k < ks(A?), Bi(k) has smaller risk than that of Bi
2. If g,(A) < 0, it follows that for each k > 0 with k > ks(A), Bi(k) has smaller risk than that of Bi
Now we consider the risk as a function of A2 s s
To find a sufficient condition on A2, the difference in the risks of g8, (k) and B, will be non-positive when
AZ
8'[1, — R()R(k)]8 > J(47) (4.39)

(@ — DE[xy 4 (A2
where
fa(A%) = o[trRK)CT'R(k)) — tr(C™H] + (q — 2)02.[tr(A) — tr(R(k)AR(k)")]
x {2E[x;5(A%)] — (q — DE[x,5(A7)]}
+ kB C*(k)B + 2(q — 2)k'R(k)'C " (k) BE[ x5 (A%)]. (4.40)
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A~S AS
Since A% > 0, we assume that the numerator of (4.39) is positive. Then the 8, is superior to f, (k) when

A2 > f4(A2) AZ
T (@ — A Chinax[ (I, — RKYR))CTIE[ x4 (A%)] e

(k), say (4.41)

where Chyax (M) is the maximum characteristic root of the matrix (M). However, f?i is inferior to ﬁi(k) when
AZ
AZ < f4( )
(g% — 4)Chmin[ (I, — R(k)'R(k))C~]E [xq+4(A2)]

where Chp,i, (M) is the minimum characteristic root of the matrix (M).

Az (k), (4.42)

4.3.6. Comparison ofﬁi (k) and Bn (k) as a function of k

S ~
Consider the difference in the risks of g8, (k) and B,(k). Then, a sufficient condition for the risk difference to be non-
negative is whenever 0 < k < kg(A?) where

AZ
ke(a2) = 12 2) , (4.43)
82(4%)
where
. (q +2)57
fa(A%) = min 027 1(q — 2)E[xg 5 (AM)]] + T 2Noa QAYE[x, 4 (4] (4.44)
(A% = max [zex STELX 5 (AD)]] . (4.45)
Suppose k > 0, then the following statements hold true following Kaciranlar et al. [17]:
1. If g,(A?%) > 0, it follows that for each k > 0 with k < kg(A?), ﬁi(k) has smaller risk than that of B, (k).
AS ~
2. If g,(A?) < 0, it follows that for each k > 0 with k > kg(A?), B, (k) has smaller risk than that of g8, (k).
Note that this risk difference under Hy : HB = his Zf: % > 0. Therefore /Aﬂi(k) always dominates Bn(k) under

the null hypothesis for g > 3.

4.3.7. Comparison of ﬁi (k) and Bn (k)

AS A
Consider the difference in the risks of 8, (k) and B, (k). Then, a sufficient condition for the difference to be non-negative
is that 0 < k < k;(A?) where

fs(A%)
ko (A?) = , 4.46
(40 = @) (440
where
fS(AZ) = 1“;1:‘2( {Uzzau)h {1 -(@-2) [(CI Z)E[Xq+2(A )]]
(q+2))787 .
+ (1 G ) et o an

g(4%) = min [2003][1 — (@ = 2ELx, 5(AD]1].
Suppose k > 0, then the following statements hold true:

1. If g3(A?%) > 0, it follows that for each k > 0 with k < k;(A?), ﬁi (k) has smaller risk than that of ﬁn (k).
2. If g3(A?) < 0, it follows that for each k > 0 with k > I<7(A2), B, (k) has smaller risk than that of £, (k).

Note that this risk difference under Hy : HB = his 20, Zl_ > 0.Thus ﬂn (k) is superior to ﬁ (k) underHp : HB = h.

1 (A +k)2 =
Next, consider the difference in the risks of ﬁi (k) and ﬂn (k). We define
folar, 42)

kg(o, A%) = =— 2=~ 448
o 40 = @ 27) (448)
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where

fola, A%) = max {azza;‘;xi2 {ﬂq+z[x;(a>; A= (q—2)[(@ = 2E[x, 5 (a]]

1<i<p
+2)872
L (1 _(q - ) i
2A%0,,a;

84(4%) = min [260.87 [ Hqs2lx7 (@); 471 = (q = DELxg 5 (A1) (450)

) (ZAZ)E[x;‘4<A2>]} — 17872 [y 12l g (@); A%] — Hyyalxg (@); AZ]]} - (449)

Suppose k > 0, then the following statements hold true:
1. If g4(A?%) > 0, it follows that for each k > 0 with k > kg(a, A?), Bi (k) has smaller risk than that of fSiT (k).
2. If g4(ax, A?) < 0, it follows that for each k > 0 with k < kg(a, A?), Bf; (k) has smaller risk than that of BZT (k).

The risk difference under Hy : HB = h reduces to

206203 @); 0] — (2] o

Z [ (Ai + k)?

i=1

AS ~PT
Therefore the risk of 8, (k) is smaller than the risk of 8, (k) when
x2(@) < A5 [(q—2).0] (451)
where X,? (@) is the upper «-level critical value from the chi-square distribution with q degrees of freedom. Otherwise the

risk of Bnpr (k) is smaller than the risk of f?i (k).

AS S
4.3.8. Comparison of ﬂn+ (k) and B, (k) as a function of k
AS
We consider the risk of ﬂ"+(l<) under Hy : HB # h.
) S
A sufficient condition for the risk difference between g, (k) and ﬂn+ (k) to be non-negative is whenever 0 < k < kq(A?)

which is obtained by differentiating the risk of ﬁ? (k) with respect to k to obtain

f2(A%)
ko(A?) = , 452
o(4) = -3 (452)
where
fla, A% = min [ozz {Ai — (g —2)a} [(q — DE[x, 5 (aD)]]
(q + 2)Ai8;2 _
+ (1 - 7ZUZZAZC!?; ) (2A2)E[Xq+44(A2)]
—GE[(1- @ = 265))" 1 (x2,2(4) = @~ 2)
—3267E [ (1= @ = D 5(4) T (1a(4) = (@ - 2)]
+ (0 — 28D187E [((q — 24 5(A%) — 1)1 (X2 12(4%) < (g —2))]
+dq9,<5;“x$5[x;+22m2)]} } (4.53)
gs(@, 4%) = max [1:6, {6, + 87 (0 = Dx5(4%) = )1 (4712(47) = (a - 2)
— (@ = 28E [x,2(AD]}]. (4.54)

AS AS
Differentiating the risk of ﬂn+(k)with respect to k gives a sufficient condition for 8R(ﬁn+(k); I)/ 9k to be negative under
Hp : HB = hthat k € (0, kig(«)) where

min o.; {3 — (@ = 2)a; — GE [1 - (4 = 2) ;50 1 [x3,0) < @ -2)]}
kio(a) = —= —Er ) (4.55)

1<i<p
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AS ~S
Suppose the numerator of (4.55) is positive, then ﬂn+(k) dominates ,Bn+ when k > 0 belongs to the region k € (0, kq(x)).
Suppose k > 0, then the following statements hold true following Kaciranlar et al. [17]:

S AS
1. If g5(A?%) > 0, it follows that for each k > 0 with k < kq(A?), ﬁn+ (k) has smaller risk than that of ﬂn+.
NS S
2. Ifgs(A?) < 0, it follows that for each k > 0 with k > kq(A?), ﬁn+ has smaller risk than that of ﬁn+ (k).
To obtain a condition on A2, we consider the risk difference between g5 (k) and 8.

It may be shown that the risk-difference is non-positive when

, ) f(4%)
&8I, — R(k)'R(k)]8 > E*(A2)

(4.56)
where

(4D = (@=2)—E[(1- @ 2x5(8))" 1 (134047 < @—2)]
—2((q = Dxg (A% = 1)1 (x22(A%) < (@—2)) (457)
fs(A% k) = oy [tr(R(K)C'R(K)) — tr(C™H)]
+ 0z [tr(A) — tr(R(K)'AR(R)) | {2E[ x5 (AM)] — (@ — 2)E[ x5 (A%)]}
+E[(1- @ = 250)" 1 (12249 < (@ - )| + 2k8RK)C 0B
x {(@=2) —E[((q = Dx;5(A%) — 1)1 (x22(4%) < (@—2)]} .
Since A? > 0, assume that both the numerator and the denominator of (4.57) are positive or negative respectively. Then
ﬁ?(k) dominates ﬁ? when

2 2 _ fS(AZa k)
A° > As(k) = Climaelly — R)'RGOCTE(A2) (4.58)
and f3?— dominates ii,sf(k) when
2
A2 < AX(k) = (4% b (4.59)

Chminll, — R(k)'R(K)C—1]E*(A2)

4.3.9. Comparison of ﬁff (k) with ﬁznyr (k) and BZ (k)
Since fii+ (k) and ,fin(k) are the particular cases of ﬁ?(k), the comparison between Bn(k) and /}T(k) as well as between
Bn(k) and ﬁ?(k) can be skipped.

4.3.10. Comparison between ﬁff (k) and ﬁ:T (k)
Case 1: Under the null hypothesis Hy : HB = h
The risk difference is

O a:)\,lz 2
[[#eold@: 01 - @-2)

" R )4
ROB 01 1) — ROB (s ) = 3 =20

i=1
~E[(1- @-2x20)]1 (2 = @-2)]} 2 0.

for all « satisfying the condition
_ _ 2
s @ = #5 (a=2+E[(1 - 0= 220)" 1 (22 = @ - 2)])} (460)

APT AS
Thus therisk of 8, (k) is smaller than the risk of ﬁn+ (k) when the critical value x;(oz) satisfies the condition (4.60). However

A~S ~PT
the risk of ﬁn+ (k) is smaller than the risk of 8,, (k) when the critical value x; (@) satisfies (4.60) with reverse inequality sign.
Case 2: Under the alternative hypothesis Hy : HB # h
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Under the alternative hypothesis, the difference in the risks of Bi+(k) and 3:T(k) is
R(B, (k):1,) — R(B, (0): 1)

= 0 tr[R(k)AR(K)'] {ﬂq+z[x;(a); A%] = (q — 2) (2E[xg 5(AD] — (4 — 2)E[x, 5 (A7)
—E[(1- @ 2x75)" 1 (2(a") < @—2) |} - FRORIS {296,211 (@): 4°)
— HaralxZ (@); A%] = (q — 2) (2E[xy 5 (AD] = 2E[x {4 (AD)] + (4 — 2)E[xy 5(A)])
+E[(1- @ - 2x540)" 1 (12240 < - 2)]
+2E[ (@ — 25 (4% = )1 (xZa(4D < @ - 2)] |
+2k8R(K) C (k) B {(q — 2)E[x; 5 (A%)]

— Hoalxg (@); A1 = E[((@ = 2)x,5(4%) = 1)1 (x5:2(4%) < (@—2))]}- (461)
The right hand side of (4.61) will be non-positive when

2
fo(a, 47 (4.62)

8'R(k)R(k)& ,
(k)'R(k) Zgg(a,A2)

where
fola, A%) = o, tr[R(K)AR(K)'] {Jeq+z[x;<a>; A%] — (@ = 2)QE[X; 5(AN] = (q — 2ELx, 5(A%)])
—E[(1- @ - 2x54)" 1 (12245 < @-2) |}
+ 2k8'R(K)'C (k) B {(q — 2)E[ Xy 2 (AP)] — Hypalx (@); A7)
—E[((q = 22,58 = 1)1 (x7,2(4) < (@ -2)]}
Zo(a, A%) = 2350 x2 (@); A%] — Hopalx. (@): A%] — (¢ — 2E[xy4(A%)]
+E[(1- @ = 2659)" 1 (244D < @-2)]
+2E[((q — 20X, 5(4%) — 1)1 (x7,2(A%) < (@ —2))]. (4.63)
Since A? > 0, assume that both the numerator and the denominator of (4.62) are positive or negative respectively. Then
ﬁi+(l<) dominates ii:T(k) when

fg (a s Az)
Chimax[R(k)'R(k)C~"]gs (cr, A?) (464

~PT . AS+
and B, (k) dominates 8, (k) when

fo(A% k)
Chimin[R(K)R(K)C g (o, A?)

AS N
Now consider the difference in the risk functions of ,Bn+ (k) and ﬁI;T (k) as a function of eigenvalues as follows:

AS+ ~PT
R(B, (k); 1) —R(B, (k); 1)

A% > Al(a, k) =

(4.65)

A < Ak(a, k) =

P 1
= Z m {Uzza:?)»? {qu+z[xq2(a); AZ] -(@q-2) [(q - Z)E[X;Z(Az)]
i=1 VM

*2
+< @+ 2)3

*
2A%0,a;

) (ZAZ)E[x;4<A2)]]} — A8 [2H 42l x] (); A®] — Hyyalxg (@); A?]]

— foain?E [(1 - @ 25@) 1 (a8 < @~ 2)]
+2267E [(1- @ = D2(40) 1 (124D = (@ - 2)]}
= 20{87E [((@ = 2xg4(A%) = 1)1 (xg14(4%) < (@~ 2))]

— 2K68] { HaralxZ (@): A2] = (q — 2)Elxy 5 (47)]

+E[((0 = 2x,5(A%) = 1)1 (x7,,(4%) < (@—2))]} } : (4.66)
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Now we define

2 fola, 4%)
l<11(aa A ) — g7(a7 AZ) ) (4.67)

where
fola, 4% = max {azzaux, {qu+z[x5<a>;A2]—(q—2) [(@ = 2Elx5(47)]]

2)87?
L(1- (q + 2)¢;
2A%0,a

H

) (2A2)E[xq+44(A2)]} — 27872 2342l xg (@); A%] — Hyyalxg (@); A?]]
— ot ?E [(1 - @ - 24,547)1 (1247 = @ - 2)]
+Ai5;*<25[(1—(q x5 a)1 (xq+4(A2)s(q—2))]]

—D3PE[((q — x5 (A7) — 1)1 (x2,5(4) < (q—2))] } (4.68)

g(a, A = min [2)\93 {Hai2lx2 (@); A] = (q — 2)E[x, 5(A%)]

1<i<
[((q )Xo (A) = 1)1 (23247 < (@ —-2)]}] - (4.69)
Suppose k > 0, then the following statements hold true following Kaciranlar et al. [17]:

1. If g; (e, A2) > 0, it follows that for each k > 0 with k < ky; (e, A2), B, (k) has smaller risk than that of B, (k).
2. Ifg7(a, A?) < 0, it follows that for each k > 0 with k > kq1(a, A?), Bi+(1<) has smaller risk than that ofﬁfj(k).

AS A
Remark. Fora = 0, we obtain the condition for the superiority of ,Bn+ (k) over B,,(k) and for & = 1, we obtain the superiority
. AS+ ~
condition of 8, (k) over B, (k).

4.3.11. Comparison of ,iii+(lc) and Bi(k)
The risk difference of ;Zlff (k) and 3i (k) is
R(B," (10: 1) — R(B, (k); 1)
— {oatriRUARGOIE [ (1 = (@ = 24, 5(40)° 1 (42,2(4) < (@ —2)]
+IFRKYROOIIE [ (1= (@ = 2x4(40) "1 (1a(4) < @ 2))] ]
—2[8R(KYRSIE [((q — 2) X, 5 (A% — 1) 1 (x7,2(A%) < (@ —2))]
— 2k8'R(K) CTTRVBE [((0 — 2) x5 2(A%) — 1) 1 (x25(A%) < (g —2))]. (470)

Case 1: Suppose §'R(k)’C~' (k) > 0, then the right hand side of (4.70) is negative, since the expectation of a positive random
variable is positive. Thus for all A? and k,

AS+ AS
R(B, (k); 1)) < R(B,(k); Ip).

AS ~S

Therefore under this condition, the ﬁn+ (k) not only confirms the inadmissibility of 8, (k) but also provides a simple superior
estimator for the ill-conditioned data.

Case 2: Suppose §'R(k)'C~1(k)B < 0, then the right hand side of (4.70) is positive when

2
§RU)R(S = 11 @A) (471)

gs(a, A2)’
where

fia(ar, A%) = 2k§R(K)'CT (K BE [((q — 2 xy5(4%) = 1)1 (x5+2(A2> <(@-2)]
— o trROOARKIE | (1= (@ = 2)21,5(40) "1 (12(47) < (@ 2)]
g 4% = {E[(1- @ 25A) (4" < @-2)]
—2E[(@ - 25 — )1 (K < @=2)] |
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Since A2 > 0, assume that both the numerator and the denominator of (4.71) are positive or negative respectively. Then
S N
ﬂn+(l<) dominates §, (k) when
f]] (a ) Az)

2 2 _
AT> Aok = Chimax[R(k)'R(k)C~"]gs (cr, A?) (472)

and ﬁi (k) dominates /}ff (k) when

fi (A% k)

2 2 _
AT = Al b = G RO RKIC Tgs(@, A7)

(4.73)

Thus, it is observed that the fﬂ?(k) does not uniformly dominates the Bn(k), iin(k), BT(I() and /}i(k).

4.4. Comparison of risks as a function of (A%, k) € (0, 0o) x (0, 1)

In this section, we consider the conditions on the parameters (A2, k) simultaneously for the comparison of estimators in
the following theorems.

Theorem 5. Under {K(;} and assumed regularity conditions, Rl(ﬁn k); I,) > R4(ﬁf, (k); I,) in the interval (A%, k) € (0, 00) x
(0, k) asn — oo. Otherwise Ry(B (K): 1) = Ry (B, (K): 1).

Theorem 6. Under {K,)} and assumed regularity conditions, R4(BZ ;1) > Rs(ﬁiJr(lc); I,) in the interval (A%, k) € (0, 00) x
(0, kg(A%)) as n — oo.

As a result, the dominance relations hold as

~ AS ~S+
Ri(B.(k); Ip) = Ra(B,(k); I) = Rs(B,, (k); I)
in the interval (A2, k) € (0, 00) x (0, kq(A?)) where kq(A?) is given by (4.52) asn — oo.
Thus, again the estimator /§n+ (k) is preferable over others for applied statistics.

5. Summary and conclusions

In this paper, we have combined the idea of the preliminary test and the Stein-rule estimator with the RR approach
to obtain a better estimator for the regression parameter § in a multiple measurement error model. Accordingly, we

~ N ~PT ~S AS
considered five RRR-estimators, namely, 8,(k), 8,(k), B, (k), B,(k) and ,Bn+ (k) for estimating the parameters () when it
is suspected that the parameter 8 may belong to a linear subspace defined by H = h. The performances of the estimators
are compared based on the quadratic risk function under both null and alternative hypotheses. Under the restriction Hy, the

ﬁn (k) performed the best compared with other estimators, however, it performed the worst even when A% moves away from
its origin. Note under the risk of 8, (k) is constant while the risk of 8, (k) is unbounded as A% goes to cc. Also under Hy, the

N "~ AS A AS

risk of,BET (k) is smaller than the risks of 8, (k) and ﬁn+ (k) for satisfying (4.60) for ¢ > 3. Thus, neither ﬁzT (k) nor ﬁn+ (k) nor

ﬁi (k) dominate each other uniformly. Note that the application of BT (k) and ﬁi (k) is constrained by the requirement that
~S AS

q > 3. However, from Section 4.4, ,Bn+ (k) is preferable to f, (k) since it dominates uniformly in A2 for k € (0, co) while for

q<3, BZT (k) is preferable which depends on the size of test « which may be determined by the maximin rule given by (4.14).
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