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implement a new EM algorithm for estimating model parameters. The idea is to extend

MSC: the link between the asymmetric Laplace distribution and the well-known univariate
62F10 quantile regression model to a multivariate context, i.e., when a multivariate dependent
62F30 variable is concerned. The approach accounts for association among multiple responses
62H12 and studies how the relationship between responses and explanatory variables can vary
60E05 across different quantiles of the marginal conditional distribution of the responses. A

penalized version of the EM algorithm is also presented to tackle the problem of variable

gﬂm‘gﬁ;hm selection. The validity of our approach is analyzed in a simulation study, where we also
Maximum likelihood provide evidence on the efficiency gain of the proposed method compared to estimation
Multivariate asymmetric Laplace obtained by separate univariate quantile regressions. A real data application examines
distribution the main determinants of financial distress in a sample of Italian firms.

Multiple quantiles © 2019 Elsevier Inc. All rights reserved.

Multivariate response variables
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1. Introduction

Quantile regression has become a widely used technique in many empirical applications, since the seminal work of
Koenker and Basset [30]. It provides a way to model the conditional quantiles of a response variable with respect to a set of
covariates in order to have a more complete picture of the entire conditional distribution than the ordinary least squares
regression. This approach is quite suitable to be used in all the situations where specific features, like skewness, fat-tails,
outliers, truncation, censoring and heteroscedasticity arise. In fact, unlike standard linear regression models, which only
consider the conditional mean of a response variable, quantile regression allows one to assume that the relationship
between the response and explanatory variables can vary across the conditional distribution of the dependent variable.

Many univariate quantile regression methods are now well consolidated in the literature and have been implemented
in a wide range of different fields, like medicine [14,39,44], survival analysis [31], financial and economic research [4,
24,42], and environmental modeling; see, e.g., [24,41] for a discussion. Koenker [28] provides an overview of the most
used quantile regression techniques in a classical setting. In longitudinal studies, quantile regression models with random
effects are also analyzed, in order to account for the dependence between serial observations on the same subject;
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see, e.g., [21,27,29,38] for references. Bayesian versions of quantile regression have also been extensively proposed;
see [6,34,35,53].

It is well known in the literature that the univariate quantile regression approach has a direct link with the asymmetric
Laplace (AL) distribution. In fact, while the frequentist quantile regression framework relies on the minimization of the
asymmetric loss function introduced by Koenker and Basset [30], the Bayesian approach introduces the asymmetric
Laplace (AL) distribution as an inferential tool to estimate model parameters; see the seminal work [53]. The two
approaches are justified by the well established relationship between the loss function and the AL density. That is, the
loss function minimization problem is equivalent (in terms of parameter estimates) to the maximization of the likelihood
associated with the AL density; see, e.g., [37]. Therefore, the AL distribution could offer a convenient device to implement
a likelihood-based inferential approach when dealing with quantile regression analysis.

Still in the context of univariate regression framework, part of the literature is concerned with estimation of multiple
quantiles, say Qy(t1), ..., Q(tp), of a given response variable Y € R. In this case, joint estimation of these p quantiles
provides a gain in efficiency compared to traditional sequential estimation of multiple quantiles. Cho et al. [13], for
example, show that the asymptotic covariance obtained from the multiple quantile regression model is always smaller
than the one obtained from the single quantile regression model. Even though only one quantile regression is of particular
interest, their proposed simultaneous multiple quantile estimation may also be desirable when simultaneous estimation
is supported by reasonably sized samples. For example, a more efficient median regression estimator could be obtained
by estimating the 25th and 75th quantile regression estimators together. Hence, a multiple quantile estimation approach
is more efficient than either ignoring the inter-quantile correlation or estimating regression parameters individually.

When multivariate response variables are concerned, the existing literature on quantile regression is less extensive.
The multivariate quantile problem has the goal to estimate the multivariate quantile, Qy(7), of a multivariate response
variable Y € RP, with p > 1 and where the index t is a scalar. In this case, the main challenge concerns the definition of
a multivariate quantile, given that there is no natural ordering in a p-dimensional space [11,23,32]. Other attempts and
extensions can be also found in [2,8,33,40,46].

The main goal of the present paper is to extend the univariate linear quantile regression methodology to a multivariate
context. In particular we want to generalize the inferential approach based on the AL distribution to a multivariate
framework, by using the multivariate asymmetric Laplace (MAL) distribution introduced by Kotz et al. [36]. In this way we
are not concerned to define a multivariate quantile. Instead, we are conducting a simultaneous inference on the marginal
conditional quantiles of a multivariate response variable, taking also into account for the possible correlation among
marginals.

This need could arise in many situations where different responses might have similar distributions or might be affected
by the same set of covariates at different parts of their distributions other than the mean. Hence, by jointly modeling
them, we can borrow information across responses and conduct joint inference at the marginal quantiles level, rather
than defining a central point for their distributions.

Similar attempts in the literature have been proposed by Jun and Pinkse [26], who introduced a seemingly unrelated
quantile regression approach which entails a nonparametric estimation of a set of moment conditions for the conditional
quantiles of interest. Waldmann and Kneib [49] proposed a bivariate quantile regression using a Bayesian approach and
showed how to estimate the conditional correlations between the two response variables. Their work, however, has not
been generalized to the multivariate case.

Our paper offers a likelihood-based approach for modeling and estimating conditional marginal quantiles jointly, by
using the MAL distribution as working likelihood in a linear regression framework. Specifically, we propose a slight
reparameterization of the MAL distribution, subject to some specific constraints, which allows us to estimate regression
coefficients via maximum likelihood (ML), accounting for the possible association among the responses. The inferential
problem is solved by developing a suitable Expectation-Maximization (EM) algorithm, which exploits the mixture
representation of the MAL distribution; see also [3].

Using simulation exercises, we assess the validity and the robustness of our approach by considering different model
distributional settings. We find that the estimation of the regression coefficients is not highly affected by the MAL
distributional assumption. Moreover, the estimation efficiency of our multivariate approach is higher than the one
obtained by running separate single quantile regression models on the marginals when estimating model parameters.
That is, taking into account for the potential association among the response variables can significantly reduce the root
mean square error of the estimated coefficients, hence improving the precision of the estimates.

When dealing with multivariate regression, the high dimensionality setting is an intrinsic part of the model building
problem. In order to gain in parsimony and to conduct a variable selection procedure, we consider the penalized Least
Absolute Shrinkage and Selecting Operator (LASSO) approach proposed by Tibshirani [47]. In particular, we propose a
penalized version of the EM algorithm (PEM) accounting for an £ penalty term. We evaluate the estimation performance
of the proposed approach through a simulation exercise, where we compute the bias and the root mean square error of
the estimated parameters at different quantile levels.

The relevance of our approach is also shown empirically, contributing to the increasingly widespread literature that
uses quantiles as measures of risk. In the recent years, due the financial and economic crises, particular attention has
been devoted to measuring and quantifying the level of financial risk and financial distress within a firm or investment
portfolios. In this respect, many risk measures developed in literature are based on quantile values, like for example
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the Value-at-Risk; see [17,50]. Moreover, quantile regression methods turn out to be very helpful to quantify either the
magnitude and the causes of riskiness; see, e.g., [18,51].

In this paper, we implement the proposed quantile regression approach to investigate the main determinants of
financial distress on a sample of 2020 Italian firms. In particular, we use the definition of financial distress adopted in [5],
which classifies a firm as financially distressed if its earnings before interest and taxes depreciation and amortization
(EBITDA) are under the first quartile of the sample or if its leverage is above the third quartile of the sample. Hence,
starting from this definition, we apply our methodology to analyze the relationships between financial distress and firms’
characteristics and evaluate how it may vary when considering different (more extreme) quantiles of the distribution
of leverage and EBITDA. In this way we are able to assess not only what are the main determinants for a firm’s risk of
financial distress, but also how these factors matter as more serious levels of distress are considered.

The rest of the paper is organized as follows. In Section 2, we introduce the main notation and briefly revise the
univariate quantile regression model. Section 3 introduces the joint quantile regression framework, while Section 4
proposes the EM-based maximum likelihood approach and the related penalized EM (PEM) algorithm to estimate model
parameters. In Section 5 we provide simulation results, while the empirical application is presented in Section 6. Section 7
summarizes our conclusions.

2. Preliminaries on univariate quantile regression and the AL distribution

To better explain the link between the MAL distribution and joint quantile regression, we briefly revise the univariate
quantile regression model and its direct connection with the AL density. As argued in [37,53], we say that a random
variable Y is distributed as an AL with location parameter u, scale parameter § > 0, and skewness parameter t € (0, 1),
i.e., AL(u, 8, T), if its probability density function is of the form

fuy; .8, 1) = (1= )8~ expl—p.{(y — p)/8}], (1)

where p, denotes the so-called loss (or check) function defined by p.(x) = x{t — 1(x < 0)}, with 1 being the indicator
function and where the quantity p.{(y — u)/8} follows an exponential distribution with rate parameter equal to 1/§. Kotz
et al. [36] show that the AL distribution in (1) admits a Gaussian mixture representation. In particular, if Y ~ AL(u, §, t),
then Y can be also written as

Y =p+§U+6:/8UZ,

where U follows an exponential distribution with rate parameter 1/§ and Z is a (0, 1) random variable. Moreover, in
order to guarantee that the parameter u coincides with the quantile of Y at a chosen level t, the following conditions on
&; and 6, must be satisfied:

& =0=20)/{z(1=-1)}, 6 =2/{zx(1-71)).

Now for all i € {1, ..., n}, let y; be a response variable of interest and let x; be a k x 1 vector of covariates associated
with the ith observation. Let Qy, (|x;) denote the quantile regression function of y; given ¥; at a given level T € (0, 1),
and assume that the relationship between Qy, (7|x;) and x; can be modeled as

Qy (tlx) =/ B, (2)
where B, is a kx 1 vector of regression coefficients. Notice that the relationship in (2) implies the linear quantile regression
model in which, for alli e {1,...,n},

vi=x B, +e, 3)

where the error term ¢; is such that its distribution is restricted to have the r-quantile equal to zero. If the distribution
of the error term is left unspecified, then the parameter estimation proceeds by minimizing the objective function

Br = argmin Z pr(yi - x;rﬂr)‘ (4)

15—

As the loss function p, is not differentiable at zero, explicit solutions for BI cannot be derived and direct optimization
is typically applied. As shown in [53], the AL distribution provides a direct connection between the minimization problem
in (4) and maximum likelihood (ML) estimation. In fact, if we use the AL density as likelihood tool in (3), we have

£ (B..3ly) = T"(1 — 7)'s " exp {— 3 ool - X,T,B,)/(S}} . (5)
i=1

for a given 7, and with § > 0. It is easy to verify that the minimization of the objective function in (4) with respect to
the parameter §, is equivalent to the maximization of the likelihood in (5). Therefore, the AL distribution offers a valid
tool to set up the quantile regression model in a likelihood framework.

In the next section we extend such link between the AL and the quantile regression to a multivariate framework.
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3. Joint quantile regression and the MAL distribution

Extending the results of the previous section, we now show how to use the MAL distribution [36] for jointly modeling

marginal conditional quantiles of a multivariate response variable. Let Y; = (Y, ..., Y,<p)T be a p-variate response variable
for each individual i € {1, ..., n} and assume that the r;-quantile of each of the jth components of Y; can be modeled as
a function of some k independent variables, for j € {1, ..., p}.

Let X; be a k x 1 vector of regressors for the ith observation and let 8, = (8., ..., ﬂ,p )T be a p x k matrix of unknown
parameters, with ﬁ, = (ﬂl,rj, R ﬁk,,j ). Then, assume that for each i € {1, ..., n}, the relationship between Y; and X;
can be modeled as

Oy, (t11X3)
: = B.Xi, (6)
QY,-p(Tp|Xi)
where Qyij(rjlx i) denotes the tj-level quantile regression function of Y given X;.

Our objective is to provide joint estimation of the p marginal conditional quantiles of Y; € RP for eachi € {1,...,n}.

The representation in (6) implies the multivariate linear regression model
Yi=BXi+e€ (7)
where ¢; denotes a p x 1 vector of error terms with univariate component-wise quantiles (at fixed levels 7y, ..., 1p,

respectively) equal to zero. o
For the regression model in (7), consider now the following MAL,(B.X;, D§, DXD) distribution with density func-
tion [36]

_ ATp-15%"1% =\ V/2
f1i18.X:, DE, DED) = 2P Wi = FXD D5 8( m) K“{ (2+5’>ﬁl}’ (8)
(27 /2| DX D| 2+4+d

where ﬁ,X, is the location parameter vector, D§ € RP is the scale (or skew) parameter, with D = diag(é4, ...,6p), 6; > 0
and & = (51, ..., )T, having generic element & = (1- 27:]) N1 =)

Here, ¥ is a pPXPp posmve definite matrix such that ¥ = A WA, with ¥ being a correlation matrix and A =
diag(c1, ..., 0p), with & crj =2/{rj(1 — 1)} forallj € {1, ..., p}. Moreover,

. G ~ =T ez
M=y —B.X) (DZD) 'y — B.Xi), d=§ X,
and K, denotes the modified Bessel function of the third kind with index parameter v = (2 — p)/2.

Using (7) and (8), and following [36], the MAL,(B.X;, D&, D;VJD) can be written as a location-scale mixture, having the
representation

- ~1/2
Y: = B.X; + DEW + VWD5 2, (9)

where Z ~ N,(0,,1,) denotes a p-variate standard Normal distribution and W ~ £(1) has a standard exponential
distribution, with Z being independent of W.
It is worth noticing that the following constraints, imposed for all j € {1, ..., p},

§=0-25)/{y(1- 1) and &2 =2/(5(1 - 7)), (10)

represent necessary conditions to guarantee that the model in (6) holds, as shown in the proposition below, whose proof
is given, as all others, in Appendix.

Proposition 1. Let Y ~ MAL,(u, DE, D5’JD) as defined in (9), and let T = (4, ..., rp)T be a fixed p x 1 vector, such that
71, ..., Tp € (0, 1), then Pr(Y; < u;) = 7 if and only if

§=0-25)/(t(1—1)} and & =2/{z(1- 7). (11)
In addition, Y; ~ AL(y;, Tj, &j).

Notice that, the representation in (8), under (10), is a suitable reparameterization of [36]. Indeed the introduction of
the diagonal matrix D ensures that each §; represents the scale parameter of the marginal AL distribution of Y;, for every
j€{1,...,p}; see the proof of Proposmon 1in Appendix for further details.

It is also worth adding a brief comment on parameters identifiability of the MAL distribution, as one could reasonably
ask whether D& and DX'D are uniquely identified. In the next proposition, we argue that the constraints (10) in (9) are
necessary conditions for model identifiability, for any fixed quantile level t4, ..., 7.
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Proposntlon 2. LetY € RP be distributed as a MAL,(u, DE DXD), where D = diag(éy, ..., 8p), 8 > 0, é =(&, .. §,,)T,
with ; (1 = 27;)/{7j(1—7;)} being known for any fixed value of 7. Furthermore, Yisa p X p positive defmte matrix such that
Y = AUA, with & being an unknown correlation matrix and A= diag(c1, ..., 0p), with fixed element =2/{tj(1—1)},
foreveryj e {1,...,p}. Then, the parameters D and W are uniquely identified.

In other words, the constraints in (10) represent essential conditions not only to retrieve the joint quantile regression
model in (6), as discussed in Proposition 1, but also to ensure that the model does not suffer from identifiability problems;
see Proposition 2.

4. Maximum likelihood estimation

As shown in the previous sections, the MAL density represents a convenient tool to jointly model marginal conditional
quantiles of a multivariate response variable in a quantile regression framework. In this section, we introduce a maximum
likelihood approach to estimate and make inference on model parameters. We propose a suitable likelihood-based EM
algorithm [16], showing that model parameters can be easily obtained in closed form, hence facilitating the computational
burden of the algorithm compared to the direct maximization approach. Moreover, as mentioned in the Introduction, given
the possible high dimensionality problem in multivariate settings, we also propose a penalized version (PEM) of the EM
algorithm by considering a LASSO regularization approach [47]. The procedure essentially modifies the M-step of the EM
algorithm by introducing a penalty term and provides a data-driven procedure for variable selection.

4.1. The EM algorithm

In this section we propose a maximum likelihood-based approach to estimate the parameters of the quantile regression
models defined in (6). Specifically, we derive a new EM algorithm by exploiting the Gaussian location-scale mixture
representation (9) of the MAL distribution, under the constraints in (10). Although not in the context of joint quantile
regression, the EM algorithm has been intensively exploited in the context of mixture models. For example, Franczak
et al. [19] derive an EM algorithm for mixture of Shifted Asymmetric Laplace (SAL) distributions. Other extensions to
generalized hyperbolic mixtures have been also proposed in [48] and references therein.

The EM algorithm essentially alternates between performing an expectation (E) step, which defines the expectation
of the complete log-likelihood function evaluated using the current estimate for the parameters, and a maximization (M)
step, which computes parameter estimates by maximizing the expected complete log-likelihood obtained in the E-step.
The expected complete log-likelihood function and the optimal parameter estimators are given below in the following
two propositions. All the proofs are collected in Appendix. _ ~

For sake of clarity, in the following we introduce the notation D5y and X' ) to make clear that the matrices D and X
depend on the parameters § = (54, ..., (SP)T and ¥, respectively.

Ifroposition 3. For a given vector t = (14, ..., rp)T, let D5y = diag(8), with § = (61, ..., (Sp)T and let i‘(g,) = AW A with
A subject to the constrains in (11). For every i € {1, ..., n}, let

i = (; — B.Xi) (D)X )Ds)) ' v — B.Xi),

and define d= ET S(g,)é. Then, the expected complete log-likelihood function (up to additive constants) is

E{tc(B.. D). Z(w)|Yi. B.. Dgy. B3} (12)
n
n 3 Tp-151%
—5 01D, 53D + D (Y= BX) D 5 gk (13)
i=1
I ZZ' i (D(s E(Q)D(a ) Yi— ﬁzxi) (14)
1:Te  -e
-3 EEY 19
i=1
where
s 12K 2 + d)by s\ 12K 2+ d)f
ue_( m; ) UH{ e+ )m'} 2 (Z—i-d) VH{ @+ )mi} 2v
i 2~ TSN ) i — :' = . -
2+d Ku{\/(2+a)ﬁ1i} i 1@{ (z+d)ﬁz,} i
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with

mi = (y; — B.X:)" (DG % 3Dg) " v — B.X0), QZETS(@)E‘.

For a given 7, maximizing the expectation of the complete data log-likelihood in Egs. (13)-(15) with respect to the
parameters 8., ¥, and § leads to the following M-step updates.

Proposition 4. Given the vector t, the values of B, E‘(g,) and § maximizing (13)-(15) are

n -1 n n
~T
= <§ zl-xix,T> <§ ZXiY] =) XiE D(;”), (16)
i=1 i=1 i=1

and

1¢ R
= A0 (Y= BX = B X Zuss —70‘12 )'E (17)

while the estimation of 8 is obtained through a numerical optimization, by solving the non linear first order condition

n

D= BXOE S+ D) — SV — BX)Yi — BX)DS S 4 = 0y (18)

i=1

Therefore, the EM algorithm can be implemented as follows:

E-step: Set the iteration number h = 1. fix the vector 7 at the chosen quantile levels 71, ..., 7, of interest and initialize
the parameter 6 = (B,, ¥, §), deriving X y) and D(s. Then, given 6 = 0™ calculate the weights

s\ V2 Kugr 12+ dO)

ugh) = ( i~(h)> (]9)
2+d Kofy/ (2 + d®yin)
o\ 172 Koy 44/(2 + d)ym™

o _ (24 l e (20)

i mgh) ~ (h)

K, {,/ 2+ Ei<h))ﬁ1§’”}
where

. "
i = (¥; = BPX0) (D) g)Dlg)) ' (Yi = BEX))
and d =§ E(W)é forallie{1,...,n}.

M-step: Use u ) and z ) to maximize E{¢.(0]6 h))} with respect to 6, and obtain the new parameter estimates as

T(h+1 ! L
(Zz xxT> (Z 2"y - XiE DEZ)’ (1)
i=1 i=1

and

(h+1) h) y—1(h Ah+1 A”'+1) 1(h
S = Z”D Moy — B X - B X T (22)

e Z u"g’ — “’”Z -8 x0"E (23)

while DE‘;)‘L ) is obtained as the solution of the equation

n
Ah+1) =T & (h+1)

E (Y —ﬂ Xl)& 2(@) + nD(‘s)

i=1

h+l) ~(h+1) (h+1)
Zz””(v, X(Yi— B, X)'Dg Z gy =0pp. (24)
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The procedure is iterated until convergence, i.e., when the difference between the likelihood function evaluated at two
consecutive iterations is small enough. In our paper, we set this convergence criterion equal to 107°. In order to avoid
possible premature convergence of the algorithm, we also implement the procedure of [9] as alternative stopping rule.
Since in our case all the parameters are available in closed form, in both the cases the convergence of the algorithm is
very fast and estimation results remain unchanged.

Notice that all the parameter estimates in Eqs. (21)-(24) account for the multivariate structure of the data through the
weights u; and z; in (19) and (20), which depend on the index v as a function of p. In the univariate case, v = 1/2 and
the estimators reduce to the case of [45].

4.2. Variable selection and the penalized EM (PEM) algorithm

As mentioned before, when dealing with high dimensional statistical problems, Lasso penalized procedures represent
possible solutions to detect significant predictors from a large pool of candidate variables. Therefore, in this section we
introduce a penalized version of the EM algorithm described in Section 4.1. The PEM algorithm was originally proposed
by Green [22] to allow for the maximization of a difficult-to-calculate penalized likelihood. Compared to the EM, the PEM
algorithm leaves the E-step unchanged and modifies the M-step with a penalty function introduced to achieve shrinkage
(e.g., ridge regression, as in [25]), variable selection (e.g., Lasso, as in [47]) or simultaneous shrinkage and variable selection
(e.g., elastic net, as proposed in [54]). _

For a chosen level 7, let us denote by § = (8., D), X ¢ ) the parameter set. Then, consider the penalized-M (PM) step

p k
6"+ = argmax { Q(816™M) — A Z Z |Bis.zil ¢ - (25)
4 j=1 s=1
where
n
n < _
Q616™) = — In Dy Zw)Dio)| + Y (¥i — B.Xi )TD; B g (26)
i=1
-5 le i ) (D) ¥ ()D) "' (Yi — B.Xi) (27)
1-7~ ~
-5 z(w)gzui. (28)
i=

with all the quantities defined as in Section 4.1. In (25), the quantity

p
’\ZZWJHJ

Jj=1 s=1

represents a convex penalty function, where A is a tuning parameter that regulates the strength of the penalization
assigned to the coefficients in the model. The choice of A is made by performing cross-validation techniques which allow
us to consider A as a data-driven parameter. In particular, we compute the solutions for a decreasing sequence of values for
A, starting from the smallest value Ay, for which the entire vector 8, = 0. We then select a minimum value Ay = €Amax
and construct a sequence of m values of A, decreasing from An.x t0 Amin On the log scale. This would lead to a more stable
algorithm; see, e.g., [20].

Notice that, even though the algorithm penalizes only the M-step, the expressions of the weights u; and z; in the E-step
will be indirectly affected by the new (penalized) estimates in the M-step at each iteration.

In the next section we assess the performance of the EM and PEM algorithms using a simulation exercise.

5. Simulation study

In the following sections we conduct a simulation study to evaluate the small sample properties of the proposed
methods. The idea of this exercise is to show that both the EM and PEM algorithms represent valid procedures to estimate
the quantile regression coefficients, regardless of the true data generation process.

5.1. Joint quantile regression

In this section we asses the performance of our estimation procedure by simulating a joint quantile regression model
as described in Section 3. For this purpose, we consider a simple case of n = 1000 units, of dimension p = 3 and two
explanatory variables. The observations are generated using the following data generating process. For eachi € {1, ..., n},

Yi=B.0+ B, 1 X+ B, Xz + €.
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Table 1
Parameter estimates at different quantile levels: Point estimates and relative bias.

Bor Boz Bos B B2 B3 B B2 B3
Panel A: 7 = (0.50, 0.50, 0.50)"

=T -
€ ~ N3(0,DEE D+ DXD)

Estimate —0.382 1.984 0.667 —0.374 0.653 1.083 0.713 0.771 0.586
Bias (%) —0063  —0423  —0.325 0.560 0.443 0.423 —0.199 0871 0.305
€ ~ t;(DED, DE)

Estimate -0.379 1.980 0.666 —0.369 0.646 1.072 0706  0.756 0.508
Bias (%) 0.632 0.105 0.698 0.749 0.367 0.452 0778  0.056 0.898

Panel B: 7 = (0.25, 0.50, 0.75)"

=T N
€ ~ N3(0, DEE D + DXD)
Estimate —0.394 1.992 0.697 —0.371 0.647 1.083 0.714 0.768 0.590
Bias (%) 3.141 —0.030 4.030 —0.166 —0.478 0.405 —0.175 0.609 1.189

€ ~ t;(DED, DE)
Estimate —.0418 2.023 0.709 —0.373 0.655 1.086 0714 0764 0.589
Bias (%) 7.515 1501 4776 0.337 0.817 0.664 0510  0.448 0.956

Panel C: 7 = (0.10, 0.50, 0.90)"

& ~ N30, DEE' D+ DED)

Estimate —0.431 2.006 0.731 —0.363 0.651 1.065 0771 0764 0.576
Bias (%) 12.821 0.669 9.104 —1413 0.181  —1218 —0539 0051 —1271
€ ~ t3(DED, DE)

Estimate —0.436 2,012 0.755 —0.386 0.659 1.100 0717 0764 0.590
Bias (%) 14.222 0.974 12.694 2.748 1.407 1.987 1.013 0435 0.987

The covariates are randomly drawn from a standard Normal distribution. The true value of B, is set equal to

—0.382 —-0.372 0.715
B, =| 1993 0.650 0.764 .
0.670 1.079 0.584

(29)

We analyze three different quantile vectors. In the first case, we assume T = (0.50,0.50.0.50)", which implies
that £ = (0,0,0)" and A = diag(2.828, 2.828,2.828). In the second scenario, we set T = (0.25,0.50,0.75)" and,
consequently, & = (2.667, 0, ;2.667)T and A = diag(3.266, 2.828, 3.266). Finally, we consider a more extreme case
with T = (0.90, 0.50,0.10)T, £ = (8.889, 0, —8.889)" and A = diag(4.714, 2.828, 4.714) . For each of the three cases,
the parameter vector is represented by 6 = (B, 81, B2, 51, 82, 83, P12, P13, p23), Where the true values of B,, 8, B,, are
defined by the columns of B, in (29) and where we set §; = 0.13, §; = 0.30, §3 = 0.23, with p;; = 0.50, p13 = 0.30 and
P23 = 0.40.

Two different distributions for the error term generating process are considered in each simulation study:

(a) a multivariate Normal random variable with zero mean and a variance-covariance matrix equal to (D§§TD +D2D),
and

(b) a multivariate Student ¢ distribution with 3 degrees of freedom, scale parameter DXD and non centrality parameter
equal to D§.

For each distribution of the error term, we carry out B = 500 Monte Carlo replications and report the relative bias and
the root mean square error (RMSE), averaged across the 500 simulations, for each parameter value in 6. The results are
shown in Tables 1 and 2.

Table 1 analyzes the regression coefficient estimates for the three quantile levels described in Panel A, Panel B and
Panel C. For each of the three panels, the two error term distributions are considered and the corresponding point
estimates and percentage bias are reported. As can be easily inferred, the bias effect is quite small when we analyze the
median levels (see Panel A). As the quantile levels become more extreme (see Panels B and C), the bias slightly increases
but it still remains reasonably small.

In Table 2 we report the Root Mean Square Error (RMSE) of the regression coefficients for the same z-levels under
the same error distributions of Table 1, and compare the results obtained by running both the proposed joint quantile
regression (Joint QR RMSE in the table) and the univariate quantile regressions (Univariate QR RMSE in the table) separately
for each marginal Y;. In this way we want to highlight the added value of using the MAL distribution for multiple quantile
regression purpose, which accounts for potential correlation among the responses. It is worth noting that in all the
simulation situations, the effective gain of the proposed joint approach is reflected in the smaller RMSE of the estimates
compared to those in the univariate case.
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Table 2
Joint quantile estimation versus univariate quantile regressions: RMSEs.

Bor Boz Bos B B2 B3 B B2 B3
Panel A: 7 = (0.50, 0.50, 0.50)"

T ~
€ ~ N3(0,Dé€ D+ DXD)

Joint QR RMSE 0.022 0.046 0.038 0.024 0.049 0.040 0.020 0.048 0.032
Univariate QR RMSE 0.023 0.049 0.039 0.029 0.053 0.041 0.020 0.049 0.034
& ~ t;(DED, DE)

Joint QR RMSE 0.028 0.060 0.050 0.027 0.067 0.049 0.030 0.051 0.034
Univariate QR RMSE 0.034 0.074 0.058 0.030 0.077 0.044 0.027 0.067 0.059

Panel B: 7 = (0.25, 0.50, 0.75)"

=T -
€ ~ N3(0, DEE D+ DZD)

Joint QR RMSE 0.467 0.049 0.283 0.029 0.049 0.049 0.031 0.044 0.049
Univariate QR RMSE 0.470 0.055 0.324 0.029 0.049 0.051 0.038 0.048 0.051
& ~ t3(DSD, DE)

Joint QR RMSE 0.428 0.059 0.292 0.053 0.049 0.096 0.056 0.106 0.041
Univariate QR RMSE 0.491 0.061 0.572 0.056 0.049 0.103 0.061 0.196 0.049

Panel C: 7 = (0.10, 0.50, 0.90)"

~~T -
€ ~ N3(0,DEE D+ DXD)

Joint QR RMSE 0.981 0.055 0.835 0.063 0.039 0.130 0.062 0.045 0.131
Univariate QR RMSE 1.063 0.05 3274 0.087 0.048 0.140 0.075 0.047 0.142
€ ~ t;(DED, DE)
Joint QR RMSE 0.997 0.101 0.936 0.093 0.241 0.165 0.065 0.048 0.152
Univariate QR RMSE 0.692 0.135 1.228 0.097 0.243 0.182 0.071 0.053 0.169
Table 3
The performance of the PEM algorithm: True Positive Rate (TPR).
,812 ,314 BZS ,324 332 333
€ ~ N30, DEE D+ DED)
7 =(0.50, 0.50, 0.50)" 89.122 92.475 84.341 89.342 91.753 89.134
7 =(0.25,0.50,0.75)" 87.221 83.453 79.978 86.397 83.641 87.550
7 =(0.10, 0.50, 0.90)" 83.341 82.512 80.123 86.101 82.308 86.761
€ ~ tz(DED, DE)
7 = (0.50, 0.50, 0.50)" 88.324 89.546 84.209 86.008 88.331 88.198
7 =(0.25,0.50,0.75)" 86.130 83.346 80.001 87.121 82.453 85.345
7 =(0.10,0.50,0.90)" 83.007 81.978 81.321 86.004 80.423 84.121

5.2. Penalized joint quantile regression

In this section, a simulation study is proposed to evaluate the performance of the penalized joint quantile regression,
which uses the PEM algorithm proposed in Section 4.2. We analyze a simple case with n = 1000, p = 3 and a set of four
explanatory variables using the same data generating process of the previous section. For a fixed t-level, the matrix of
regression coefficients B, contains 15 elements, where we set six of them (namely, B12, B14, B23, P24, B32, B33) equal to
zero.

As in the previous section, we analyze three different quantile vectors, i.e., T = (0.50, 0.50, 0.50)", T = (0.25, 0.50,
0.75)", and T_= (0.10, 0.50, 0.90). For each of the three cases we perform 100 Monte Carlo simulations, under either
the N3(0, DEETD + DE’D) and the f3(D2D, Dé) distributions as possible data generating process. Then, for each case,
we estimate the model parameters using the penalized objective function defined in (25). The estimation of the tuning
parameter A is obtained using a 10-fold cross validation method, where the initial grid of the possible values for
A € [Amin» Amax] has been described in Section 4.2.

Table 3 reports the true positive rate (TPR) for each of the true coefficients initially set equal to zero. The TPR gives a
measure of how sensitive a given method is at discovering non-zero entries and we calculate it as the ratio between the
number of simulations that correctly identify the parameter as a zero value, over the total number of simulations (i.e., the
number of true zeros for each coefficient).

The results show that the PEM method performs quite well, with an average TPR of more than the 80% across the three
simulation scenarios and regardless of the distributional assumption of the errors.
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Table 4
Estimated coefficients at different quantile levels and standard errors.
Leverage EBITDA Leverage EBITDA
Panel A: T = (0.75,0.25)7 Panel B: T = (0.90, 0.10)"
Constant —4.472 (0.501) —0.321 (0.105) —4.359 (0.557) —0.274 (0.087)
Profit —0.022 (0.003) —0.024 (0.001) —0.022 (0.003) —0.024 (0.005)
Finexp 13.598 (0.538) 0.451 (0.107) 15.849 (0.567) 0.312 (0.091)
Earnings 1.118 (0.509) 0.748 (0.110) 0.984 (0.571) 0.621 (0.092)
Employee —0.006 (0.005) —0.001 (0.001) —0.003 (0.005) —0.002 (0.001)
Fixasset 2.445 (0.132) 0.187 (0.027) 2.907 (0.119) 0.151 (0.020)
Netincome —0.371 (1.654) 0.347 (0.337) —3.816 (1.658) 0.345 (0.245)
Current debt 0.107 (0.008) —0.009 (0.002) 0.122 (0.008) —0.007 (0.001)
Cashflow —4.089 (1.376) 6.251 (0.251) —4.704 (1.256) 4.407 (0.212)
8; 0.952 (0.018) 0.190 (0.003) 0.800 (0.012) 0.138 (0.002)
P12 —0.131 (0.027) —0.005 (0.032)
n 2020 2020 2020 2020

6. Empirical application

As stated in the Introduction, recent financial and economic crises have put the need for a thorough analysis of the
causes and the effects of the financial distress. In this context, quantile regression has turned out to be an effective
framework to study and evaluate financial stability of systems. In line with the recent literature that links quantile
regression with measures of financial risks (see, e.g., [1,15,18,52]), in this section we use our methodology to identify the
main determinants for a risk of financial distress. We use data on 2020 private limited non-financial Italian firms from
the Amadeus Bureau van Dijk dataset, with reference year 2015. Following [5,43], among others, we adopt a definition of
financial distress that evaluates the firm’s capacity to satisfy its financial obligations. Specifically, they classify a company
as financially distressed not only when it files for bankruptcy but also when the two following events occur: (1) its
earnings before interest and taxes depreciation and amortization (EBITDA) are under the first quartile of the sample or
(2) the firm’s leverage is above the third quartile of the sample.

The idea of this real data application is to use our joint estimation approach to study the entire distribution of both
firm’s leverage and EBITDA and assess how the impact of firm’s characteristics (such as profitability, financial expenses
and earnings) varies with different quantile levels. This allows us to identify not only the main determinants of firm’s risk
of financial distress, but also how the effect of these factors may vary depending on the severity of the distress a firm is
facing.

As a measure of firm’'s leverage (leverage) we use the ratio between firm’s total asset and equity. As explanatory
variables, we consider indexes of firm'’s profitability (profit), financial expenses (finexp), and retained earnings (earnings),
as suggested in [43]. We also consider the impact of short-term debt (current debt) and the ratio between firm’s cashflow
and total assets (cashflow), and control for other firm'’s specific characteristics such as firms’ total fixed assets over total
asset ratio (fixassets, which can be interpreted as an indicator of firm’s collaterals), firm’s net income scaled by total
assets (netincome, as a proxi of the activity level of the firm), and size, measured by the number of employees in the firm
(employees).

The results for the two cases when v = (0.75,0.25)" and T = (0.90,0.10)" are reported in Table 4, Panel A and
Panel B, respectively. In the table, parameter estimates are displayed in boldface when significant at the standard 5%
level. Standard errors of the estimates are computed using nonparametric bootstrap (see, e.g., [21]) and are reported in
brackets.

We find a negative relationship between profitability and financial distress, as the coefficient of profitability (profit)
shows a significant and negative impact on both EBITDA and leverage. This is in line with the results in [10,43], who
argue that firms that face financial distress are most likely unable to fulfill their financial obligations. This effect remains
constant also at more extreme quantile levels of the distribution, as shown in Panel B of Table 4.

We also find a positive effect of financial expenses, whose magnitude is amplified especially for the leverage
component. This effect is still consistent with the findings in [43] and confirms the expectations that the risk of financial
distress increases as the firm'’s risk of not being able to comply with its financial obligations rises. This effect captures the
firm’s financial vulnerability, which increases when considering more extreme (riskier) values of leverage.

In analyzing the effect of retained earnings on financial distress, we find evidence of a positive impact on both
EBITDA and leverage, even though it decreases as riskier quantiles are analyzed. This is in contrast with the expected
results in the literature, where a negative relationship with financial distress likelihood is typically postulated, as a firm
should have a lower capacity of self-financing during periods of higher financial stress. However, several papers have
documented the relationship between financial distress and earnings management practices in economy like Italy, and
find evidence that private companies experiencing financial distress tend to manipulate their earnings to portray better
financial performance and obtain bank financing; see, e.g., [7]. In this case, earnings should not be considered a very
informative determinant of firm’s financial distress.
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Table 5
LASSO parameter estimates.
EBITDA Leverage EBITDA Leverage
Panel A: T = (0.75,0.25)7 Panel B: 7 = (0.90,0.10)"
Constant —3.085 —0.408 —4.566 —0.364
Profit —0.012 —0.343 —0.014 —0.038
Finexp 12.624 0.019 16.222 0.014
Earnings 0.478 1.422 1.376 0.389
Employee — — — —
Fixasset 2.038 0.307 1.067 0.235
Netincome —0.676 — —1.267 —
Current debt 0.721 —0.330 0.220 —0.107
Cashflow —3.035 5.606 —2.072 5.236
8; 0.937 0.831 0.827 0.135
P12 —0.114 —0.006
A 2.259 5.612
n 2020 2020 2020 2020

Another important factor in explaining financial distress is the ratio between firm’s fixed asset over total asset. The
claim is typically that tangible assets tend to reduce the financial distress costs because of the liquidation possibility in
case of default; see, e.g., [12]. Hence, the higher is the risk of a financial distress, the higher is the level of tangible assets a
firm will have on its balance sheet. Our results confirm this evidence, showing a positive effect of fixasset on both EBITDA
and leverage.

Firm’s cash flow over total asset ratio is also a significant predictor of financial distress. Its impact on leverage is highly
negative, while it is found to be positive on the EBITDA component, with a sensible decrease when moving towards
more extreme quantile. This is could be due to the fact that firms with low cash flow are less likely to make leverage
adjustments, especially during period of financial stress. Predictive power is also shown by the firm’s short-term debt.
Finally, no significant effect is found in terms of size (measured by the number of employees) and activity level (netincome).

In Table 5 we report the LASSO estimates computed on the same firms’ sample and on the same quantile levels, which
essentially confirm the above findings.

To conclude this section, we illustrate the same example which includes a higher number of regressors, to highlight
the main advantages of using LASSO. In particular, we consider the same response variables as in the example above
(i.e., EBITDA and firm’s leverage), but we now include two lagged variables for each of the regressors. This analysis could
be extremely relevant when assessing systemic risk within a firm, as it allows to identify leading indicators of financial
distress. In this case LASSO should help in increasing the model interpretability by eliminating irrelevant variables that
are not associated with the response variables, and by reducing overfitting issues.

The results are reported in Table 6, for the two t-levels of (0.75,0.25) (Panel A) and (0.90, 0.10) (Panel B). The
estimated coefficients for the coincident variables (in 2015) maintain the same sign and order of magnitude of the previous
case. However, several variables exhibit also a significant leading property that could signal the risk of financial distress in
advance. In particular, variables like financial expenses, net income and the ratio between cashflow over total assets show
a significant coefficient up to a lag of order 2, for both EBITDA and leverage. This calls for these factors to be monitored
on a systematic basis, as they could provide early warnings of impending financial distress.

7. Conclusions

This paper proposes a new likelihood-based method to jointly estimate marginal conditional quantiles of a multivariate
response variable in a linear regression framework. We use a suitable reparameterization of the multivariate asymmetric
Laplace distribution of Kotz et al. [36], whose mixture representation allows us to implement a new EM algorithm. Using
this procedure, we show that the regression parameters can be easily estimated in closed form, hence avoiding direct
maximization procedures. A penalized version of the algorithm is also proposed as an automatic data-driven procedure
to perform variable selection. The good performance of the two methods is evaluated using a simulation exercise, where
extreme quantiles are also considered as possible simulation scenarios. An empirical application to financial distress
analysis on a sample of Italian firms is finally presented.

As quantile regression is widely used in the literature, several extensions of the results obtained in this paper can be
analyzed in future research. Longitudinal settings and/or random effects models are of particular interest in this context,
with the goal of characterizing the change in the response variables over time and accounting also for the dependence
between serial observations on the same subject. Other forms of penalized algorithm might also be promising, as the
simultaneous regularization of the parameters could perform better when a large set of (possibly correlated) explanatory
variables is used in the application.
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Table 6
LASSO estimates using lagged variables in the model.
EBITDA Leverage EBITDA Leverage
Panel A: 7 = (0.75,0.25)" Panel B: 7 = (0.90,0.10)7

Constant —2.078 —0.573 —3.862 —0.581
profityss —0.027 —0.034 —0.015 —0.028
pl'Oﬁtz()M —0.049 - —0.001 -
profityoi3 - - - -
finexpaois 17.934 0.291 18.647 0.011
finexpao14 1.386 0.013 0.395 -
finexpao13 0.205 0.025 0.463 -
earningszo1s 0.870 0375 1.010 0.200
earningsoi4 0.865 - 0.162 —
earnings;o13 — — 0.665 —
employeeygs 0.005 — —0.088 —
employeezoi4 - - - -
employeezois - - - -
fixassetyo1s 1.075 0.283 1.110 0.236
fixassetyo14 0.010 — 0.133 -
fixassetyo13 - — 0.725 -
netincomesygs —-2.011 0.974 —1.340 —0.316
netincomeypq4 —0.489 0.020 — —
netincomespq3 —-0.313 - —0.288 —
current debtygis 0.396 —0.657 0.940 —0.519
current debtygi4 0.544 —0.526 0.162 —
current debtypq3 — — 0.094 -
cashflowsgs —2.017 2.132 —2.029 3.081
cashflowyg14 —0.245 0.088 —0.429 1.075
cashflowso13 —0.220 — — -
5; 0.820 0.168 0.595 0.196
P12 —0.144 —0.160
A 1.270 2.245
n 1576 1576 1576 1576

Appendix. Proofs of Propositions

Proof of Proposition 1. Using the result in (9), where we denote 8,X; = u without loss of generality, for each component
Y; the following holds

Vi = w +4§W + v Wiz, Vj=1,....p (A1)

where Z; ~ N(0, 1) represents the jth component of Z. Then, defining V = §;W ~ £(1/8), the representation in (A.1) can
be also written as

Yi = w +§V + 05/ §VZ. (A-2)

Following [36,37], and imposing (11), the result follows since (A.2) represents a univariate AL distribution with location,
skewness and scale parameter equal to w;, 7 and §;, respectively. 0O

Proof of Proposition 2. Remember that D = diag(és, ..., §;) is an unknown matrix with §; > O for allj € {1,...,p}.
Moreover 3 = AW A, where A is a known p x p diagonal matrix with (j, j)th element equal to 6; = ,/2/{7j(1 — 7;)} and
where ¥ is an unknown correlation matrix to be estimated.

Suppose we have two sets of parameters (say, D and D*, and ¥ and ¥*) such that

DA WAD = D*A ¥* AD*. (A.3)
Then, identifiability analysis asks whether it is possible to identify both D and ¥ uniquely. That is, if (A.3) holds for some

D # D* and some ¥ # W*, then the model is not identifiable, as two different sets of parameters give the same MAL
distribution. Now, notice that (A.3) implies that

diag(DA ¥ AD) = diag(D* A ¥* AD*). (A4)
Since both ¥ and ¥* are correlation matrices then, for eachj € {1, ..., p}, we have ¥; = llfﬂ* = 1. This implies that (A.4)
can be rewritten, for each j € {1,...,p}, as

(8707 = (50} (A5)
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But then, since by assumption each §; (and 5;‘) is greater than zero, the relationship in (A.5) is satisfied if and only if
8 = (Sj*, forallj e {1,...,p}, or equivalently D = D*. Given this, the relationship in (A.3) reduces to

DAWAD = DA W* AD.
Finally, since both D and A are squared diagonal matrices (hence invertible), we have

(DA)"'DAPADDA) ' = (DA)"'DAP*ADDA)",
which implies that ¢ = @&*, Therefore, both D and ¥ are just identified, as (A.3) holds if and only if D = D* and
v=v"' 0
Proof of Proposition 3. Notice that, under the constraints in (11), the representation in (9) implies that

YilWi = w; ~ Np(B.Xi + DEw;, wiDED), W~ £(1)
This implies that the joint density function of Y and W is

Tp—1y—1
)
Then, using (A.6), the complete log-likelihood function (up to additive constant terms) can be written as

n

5 1e-1% n .
te(Br Dy, Ziw)|Yi, Wi) = Z(Yi — B.X)) Dy gk — 2 In [D5) X' 2)Dys)| (A7)
i=1
Ty 1 . »
) > wYi— BXi) (Do Xw)Ds) ™ (Yi — B.Xi) (A8)
i=1 !
1-72 e
- 55 E(W)EZW:', (A.9)
i=1

where we use the notation D) and Xy to express the matrices D and X' as a function of their parameters, é and
¥, respectively. In practice, W; is a latent variable and, hence, not observable. For this reason, the E-step of the EM
algorithm considers the conditional expectation of the complete log-likelihood function, given the observed data Y; and
the parameter estimates (f,, D(S)’ 2(@)). That is,

E{€c(B.. D), X(w)lYi, B, Dy, X))}

n
11z N <
=Y (Yi—B.X) Dy ' T ) — 5 In1DG) Dy (A.10)
i=1
1¢ -1 T ¥ -1
=5 2 EW Y = BX0) (D SiewyDs) (Y — BX)
= (A.11)

1-7~ L
- EE E(sp)‘é;E(Wf), (A.12)
i=
where E(W;|-) and E(Wi—1 |-) denote the conditional expectations of W; and Wl-_l conditional on (-), respectively.
Let m; = (y; — ﬁrxi)T(D(g)jj(g/)D(g))_l(yi — B.X;), for every i € {1,...,n}, and define d= éT E(g)é. Using the joint
distribution of Y and W derived in (A.6) and the pdf of Y given in (8), we have
fwy(wiy)) — w P2+ d)/i 2 exp (=i /i) — wi(2 + d)/2)
Fwiy(WilY; =y;) = oy o =
Y 2K, { 2+ d)rﬁi}

which corresponds to a Generalized Inverse Gaussian (GIG) distribution with parameters v, 2 + d, i, ie.,
fwiy(WilY; = y;) ~ GIG(v, d + 2, 1iy;).
It follows that

~

Y )1/2 Kv+1{ (2+a)ﬁ7i}
d 1<V{ (2+d)ﬁ1,~}

Il
-
N
+
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and
2\ 12K, 2 c:l 7
» R 5 2+d +1 < ( + )ml 2
E{VVI 1Y, ﬂr’ D(é)v 2(@)} = x = -z (A.14)
m K, ( @+dm) ™
where

2 ~ = _ ~ 2 T o ~
mi = (Vi — B Xi) (D3 X D)~ ' vi — B.Xi), d=§ ¥ 4k

Denoting the two conditional expectations in (A.13) and (A.14) by u; and z; respectively, concludes the proof. O

Proof of Proposition 4. Imposing the first order conditions on (13)-(15) with respect to 8, and 57( @) gives the parameter
estimates in (16), (17) and (18). O
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