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Abstract

The problem of optimal prediction in the stochastic linear regression model with infinitely
many parameters is considered. We suggest a prediction method that outperforms
asymptotically the ordinary least squares predictor. Moreover, if the random errors are
Gaussian, the method is asymptotically minimax over ellipsoids in /,. The method is based on a
regularized least squares estimator with weights of the Pinsker filter. We also consider the case
of dynamic linear regression, which is important in the context of transfer function modeling.
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1. Introduction
Consider the regression model
o0
y:Zﬁkxk+C7 (1)
k=1

where {x;},_;, is a sequence of possible explanatory variables, y is the

corresponding response, ¢ is the error, and f = (f,f,,...)€ /> is an unknown
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regression sequence. Assume that {x;} and e are random variables, and E¢ = 0 and
Ec® = ¢2; the stochastic series in (1) and later are assumed to converge in the mean
squared sense. Suppose we are given n realizations of y and {x;},

{y(t);xl(t)7x2<t)a-~~;[:1)'“7”} (2)

coming from model (1); that is,
o0
y(t) = Z Pixi(t) +e(t), t=1,...,n,
k=1

where €(z),t = 1,2, ..., are i.i.d. random copies of ¢ and for each k the variables
xi(2), t=1,2,..., have the same distribution as x;. Given x;(n+1),x;(n+ 1), ...,
the objective is to predict the corresponding response y(n + 1) using data (2).

Following Breiman and Friedman [2], we establish our main results under the
assumption that model (1) is canonical, i.e., {x;} are uncorrelated zero mean
variables with variance 1. This assumption is not so restrictive in the prediction
context. If {x;} are correlated then the standard Gram—Schmidt orthonormalizing
process can be applied to get a canonical model with some other coefficient
sequence (cf. [2]). Under the canonical formulation the influence of a particular
regressor x; on y is quantified solely by the magnitude of the corresponding
coefficient f;,. We assume that the coefficients f, are small for large values
of k. Depending on the prior assumptions on the sequence f, only a certain finite
number of first coefficients f8; is significant and should be kept for prediction. In
Section 3 we indicate how the main results can be extended to the case of correlated
regressors.

A prediction method (or predictor) y(n+ 1) is, in general, a random variable
measurable with respect to (%, X n+1) where %, = {y(t); x1(¢), x2(¢), ...;t =1, ..., n}
and 1 = {x1(n+1),x2(n+ 1), ...}. An important subclass of predictors that we
call natural predictors and denote y"(n + 1) is defined by

Nu+1) =" fx(n+1), (3)
k=1
where = (f1, fa, ...) is an estimate for the regression coefficients § = (B, f,, ...). If
/? is a linear estimate, " (n + 1) is called a linear predictor. The use of predictor (3) in
practice is possible if only a finite number of (first) estimates ﬁk are non-zero. This is
the case for the ordinary least squares (OLS) predictor, where ﬁk are the least squares
estimators of 8, for k<p and ﬁk = 0 for k> p, with some given p [2,20].

In this paper we are interested in the optimal choice of predictor ¥ in a minimax
sense on a given family % of regression sequences fi. The prediction error of y is
defined as usually in the form E[j(n+1)—p(n+ 1)]>. Note that this error
cannot be arbitrarily small; it is at least ¢° for large n, because of the non—vanishing
innovation component e(n + 1) independent of (%, Z,+1). We therefore consider

the difference E[y(n+ 1) — y(n+1)]* — 62, and define the maximal risk over # in
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the form

R(7; HB] :;ug Elp(n+1)—yn+ 1] —d (4)

The optimal (minimax) predictor ¥, = ¥, (n+ 1) minimizes the maximal prediction
error,

Ry B) = A, n; B) = inf Ay; B),
y

where inf is taken over all possible prediction methods based on the observations
(Uy, X ps1). Our aim is to find an asymptotically minimax prediction method y
satisfying

R, Bl =R, n; B|(1 +o0(l)), n—ow.

We will assume that 4 is an ellipsoid in the sequence space />,

B =RB({ar},L) = {ﬁe/z > a,iﬁ,ist},
k=1
where {ax},_;,  are positive coefficients such that {ax} is monotone non-
decreasing, and a;y— oo as k— oco. This assumption is natural since f,, k=
1,2, ..., are the coefficients of the canonical regression model.

The main result of this paper consists in a construction of asymptotically
minimax prediction methods (AMPM) for ellipsoids. We show that the AMPM is
based not on the least squares estimator of f§, but on properly weighted least squares,
with the weights defined by the filter of Pinsker [17]. The AMPM outperforms the
ordinary least squares predictor. The lower bound is proved for the case of Gaussian
noise ¢. It should be noticed also that construction of the proposed AMPM uses a
priori information on the ellipsoid %4. In a subsequent paper [8], we develop an
adaptive AMPM that does not require any a priori information on the class of
sequences and is asymptotically sharp minimax on any ellipsoid within a wide scale.
The idea behind construction of the adaptive AMPM is to apply the blockwise Stein
rule to a penalized least squares estimate of the regression sequence. The
corresponding block sizes increase “‘weakly” geometrically in order to ensure
asymptotic minimaxity.

Our result is related to previous work in two aspects. First, the regression models
with growing or infinite number of parameters have been studied by several authors
[2,13,18-20,22]. In particular, Shibata [20], and Breiman and Friedman [2] develop
the methods of optimal selection of the number of terms in a finite approximation to
(1), using the ordinary least squares prediction. Shibata [20] considers the
deterministic explanatory variables, while Breiman and Friedman [2] study the case
where both {x;},_,, and ¢ are Gaussian. Huber [13], Yohai and Maronna [22],
and Portnoy [18,19] analyzed somewhat different setup. They consider regression
with a finite but growing number of parameters p and obtain asymptotics for OLS

yenn
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and, more generally, M-estimators in this model. Unlike our approach, this literature
does not study weighted least squares prediction.

Second, the Pinsker filter has been extensively studied for different models, such as
non-parametric regression and density estimation [1,4-6,12,15,21]. Golubev and
Pinsker [10,11] develop asymptotically minimax methods for prediction of
deterministic sequences observed without noise and with Gaussian white noise,
respectively. Among this literature, the paper of Efromovich [4] that treats non-
parametric regression with random design is closest to our setup. His paper considers
the estimation of the vector of coefficients f from the observations y(f) =
S Beg(0) + e(t), t=1,...,n, where {gu()},_. is the orthonormal
trigonometric basis on [0, 1], and x(7) are independent random variables distributed
on [0, 1]. If their distribution is uniform, this is a special case of our model. On the
other hand, we study prediction rather than estimation, and our method is different
from that of Efromovich [4]. In particular, we do not use a two-stage procedure with
preliminary consistent estimates. Furthermore, we discuss the problem with
dependent observations, namely the dynamic linear regression where the response
y is obtained as a convolution of the regression sequence f§ with the time sequence of
explanatory variables. Such models arise in time-series analysis, linear system
identification, and other applications (see, e.g., [3, Chapter 13; 14]).

2. Main results

In this section we assume that x,(¢), t =1,2, ... are i.i.d. random variables for
each k. Moreover, the following assumptions will be imposed on the explanatory
variables and the errors of the model.

Assumption 1. The random variables {xt},_,,  are uncorrelated, Ex; =0, Ex; =
1, and either

(i) |xk|<x<oo, Vk, or
(i) E|xi|* <c¥-2(2p)!, for some ¢>0, p=2,3,..., and Vk.

Assumption 2. Ee =0, Ee> = ¢?, Ec*<t0*< o0 for some positive 7, and € is

In order to define our prediction method we need the following notation (cf. [17]).
Let v, denote the solution of the equation

o0

o’n! Z ar(1 — vaay), = v,L? (5)
k=1

(note that the solution is unique since g, are non-decreasing and a; — o). Let
)Lk:(l_Vnak)Jr’ k=1,2,..., (6)
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d,(#) = max{k : a,<v,'}, and A, = diag(4,, ..., A4). In what follows, for brevity,
we will write d or d, instead of d,(%), keeping in mind that d depends both on the
sample size n and on the class of regression sequences 4.

Denote ¢,(t) = (x1(2), ...,xq(¢)), t=1,...,n, and let

ba = <% i ba(t) by (1) ‘Hl_lld) <% i ¢d(Z)J’(t)>

:Qﬁ@(éij%@»@) )
t=1

where I; stands for the identity d x d matrix. In fact, by = (ﬁl, ...,[}d)' is a
regularized version of the standard least squares estimate for the vector b, =
(By, ..., B,)" composed of the first d coefficients of the regression sequence . We
introduce this regularization in order to improve the behavior of b, for small sample

sizes n, when the matrix n=! Y1, ¢,(£)¢},(¢) may not be well conditioned.
Define

B. =([21,'.~,l§d;0,0,...)E(Nﬁ,Ad;O,O,...). (8)

Let y, =y, (n+ 1) be the predictor given by (3) with B = B* as in (8). Note that y,
is a linear predictor with finite number d of summands in (3), and it is different from
the OLS predictor. The predictor y, is optimal in the following minimax sense.

Theorem 1. Let Assumptions 1 and 2 hold, and
dy/In(n)/n—0, n- co. 9)

Assume also that k='2a, — oo as n— oo. Then
A5 A <ra(1 4 0(1), n oo, (10)

where

Consider an application of Theorem 1. Let ¢y = k%, k=1,2,..., a>1/2, and let
A, denote the ellipsoid #({k*}, L). Then

- [(a +1)2x+1) Lzazn] Tl

,= [ (1+o(1)),

and d, = O(n'/?**1)) as n— co. Thus, (9) is satisfied. The asymptotical maximal risk
of our prediction method y, is

e
ro(By) = CHa)[55T (";) o)),
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. oy \BoT 1
C*(o) = (a+ 1) (200 4 1)2a+1

is the Pinsker constant. Let us compare now this risk to the maximal risk of the
ordinary least squares (OLS) predictor. Confining ourselves to the Gaussian case and
using the results of Breiman and Friedman [2], we find that the error of the OLS
predictor of the order p (denoted yOr) is

ERYS(n+1) —yn+ 1) —o” = (Z Bi +p%2> (I+o(1)), n—oo.
k>p
Thus,
AL, %) = (sz” +%‘2)<1 +o(1)).

The maximal risk of the best OLS predictor is

200+ 1 0 P\ T
mpin %WSLS;_@A — ( 062: )(za)2<x+1L2a+l(%) (1+40(1)),

and it is easy to see that this expression is greater than r,(4,):

min, Z[y0S; B,] _ [(2a+ D+ 1)}%(1 +o(1))>1.

r(B,) 202

The result of Theorem 1 cannot be improved among all prediction methods in the
case where ¢ is Gaussian. We now state the lower bound showing this fact.

Assumption 3. The random variable ¢ is Gaussian ./°(0, %), and ¢ is independent of

.....

Theorem 2. Let Assumptions 1 and 3 hold. Assume that either

ny?
exp{ R 5 } =o(v,), n-oow, YVp>0 (11)
ko1 @ (1= vnar)’,
or
dy
Yy Zak:o(a’,,)7 n— 0. (12)

k=1
Then for every prediction method y = y(n+ 1) one has

Ry Bl =r,(1+0(1)), n— 0. (13)
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It can be easily verified that (11) is valid for the ellipsoids with polynomially
increasing sequences {ay}, while (12) holds for exponentially increasing {ay}.
Thus, Theorem 1 along with Theorem 2 shows that predictor (3) associated with

B, given by (8) is asymptotically minimax.

3. Correlated regressors

In this section we indicate how the above results can be extended to the case of
correlated regressors. We also consider an important specific example of dynamic
linear regression model where the time sequence of explanatory variables is
correlated.

3.1. Reduction to a canonical model

Consider the regression model

0
y=> iz +e,
=1

s a sequence of explanatory variables and 0 = (0,0, ...)e /5 is
an unknown regression sequence. As before, given {y(¢);z((t),z2(¢), ...;t =1, ...,n}
and z;(n+ 1),z2(n+ 1), ..., we wish to predict y(n + 1). In contrast to the canonical

model (1) we assume here that the regressors {zx },_, , are correlated. Since we are
interested in prediction, we can represent the random variable ¢ = Y7 | Oxzx in an
orthonormal basis, passing thus to a canonical model. Observe that if 0 belongs to an
ellipsoid 4, then the coefficient sequence of the corresponding canonical model does
not necessarily belongs to 4. Nevertheless, under mild conditions on the correlation
between regressors, the ellipsoidal structure of the problem is preserved when passing
to the canonical model.

Let zy, z3, ... be correlated, Ez; = 0, Ez,%, =1, and any finite number of elements
Z1,22, ...,z be linearly independent. Assume that 0e%({cx}, L) with monotone
increasing sequence {c; } satisfying ¢k~ — 00 as k— oo for some y>1/2. Then the
coefficient sequence f§ of the corresponding canonical model belongs to any ellipsoid
#B({ar}, LM) such that 3,7 | a?c;> < M? < oo. Indeed, the standard Gram-Schmidt
orthonormalizing process yields the orthonormal basis {x;} with the following

yaen

J
=Y hpxi, j=12,.., (14)
k=1

and Ex; =0, Exix; = 0y, where d; stands for the Kronecker symbol. It follows
from the construction that /i = E(z;jxx) and hy = 0, for k>j. The random variable
=302, 0kzx is represented in the orthonormal basis (xi,x2,...) as &=
Sy E(Exi)xi = >°42, Prxk, and the regression sequence ff = (B, f,,...) in the
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canonical model is given by
ﬁk ixk Z = Z thjk-
j=1 =k

Further, note that the condition Ez} = 1 amounts to 3_, hy, =1, Vk (see (14)). Let
{ax} be a positive monotone increasing sequence such that >°,% a2 2 < M? < o0.

For example, if ¢xk =2 — oo as k— oo for some y>1/2, then a; = ¢,k can be taken.
By the Cauchy-Schwarz inequality and monotonicity of {ay}

o0 o0 o0 o0
22 2 2 2 2 2 2,
E aifi< L E ai E h/k =L g E ak
k=1 k=1 Jj=k J=1
0 J 0
2 2 -2 2 2 2 27242
< “C. <
<L a;c; h]A L E a;c; L M-,
j=1 k=1 Jj=1

Thus fe B ({ar}, LM) as claimed.

Although we have the above relationship between the coefficient sequences, it is
not unreasonable to impose ellipsoidal constraints directly on the coefficients f§ of
the canonical model. In fact, the influence of the corresponding regressor x; on the
response y is quantified solely by the magnitude of f,. In this case, the results
about the statistical properties of our prediction method are exactly the same as in
Section 2.

Note that the above reduction to the canonical model applies only when
correlations between the original regressors {z;} are known. Otherwise a sampled
version of the orthonormalizing process can be performed in a standard way.
Observe that it is sufficient to ‘“‘decorrelate” the d = d, first regressors, because
the AMPM is based only on the d first “principle components”. In this
case the corresponding prediction method can be defined similarly to (3), (6)—(8)
with the following modifications. Let ¢,(t) = (z1(¢), ..., za(2))', t=1,...,n,

z”d:GEansd(r)qbd(t)wn‘L,), ba=2 ‘”( Z% )
t=1

Let f, be given by (8) and $a(r) = (x1(2), ..., xa(t)) = =, *¢,(r). Then the
predictor is defined by y(n+ 1) = [;”* $a(n+1). We conjecture that this prediction
method is asymptotically minimax in the case of correlated regressors.

3.2. Dynamic linear regression model

In many applications the following dynamic linear regression model is of interest:

t):i:ﬁku(t—k)Jre(t), t=1,...,n (15)
k=1
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In the context of time-series analysis one can think of (15) as being the transfer
function model between two time series {y(¢)} and {u(¢)} (cf. [3, Section 13.1]). For
example, model (15) contains as a special case (but is not limited to) the state space
model y(1) = u(t) + ¢(¢) with an ARMA (p, ¢) process u(t). Of course, in this case the
coefficients f, should be exponentially decreasing. Polynomially decreasing f;
(allowed by our model) correspond to long-range dependence.

Minimax rates of convergence in estimating f§ = (f;, 5, ...) under model (15)
have been studied recently by Goldenshluger [7]. Here we consider the prediction
problem and propose a different method that achieves not only the rates but also the
exact minimax constants.

Given the data %, = {y(¢),u(t — 1);t =2, ...,n} our objective is to predict the
output (response) y(n+ 1). A predictor y(n+ 1) can be any random variable
measurable w.r.t. (%,,u(n)). In contrast to (1), the vectors of the explanatory
variables in (15) are dependent. It turns out that the results of Section 2 can be
extended for the case of the dynamic linear regression model.

We use the same notation as in Section 2; the only difference is that now

¢ ()= (u(t—1),....u(t—d)), t=1,...n, (16)

and that the vectors ¢,(¢) can involve inputs u(¢) for £<0: in this case the inputs
are assumed to be replaced by zeros in (16). Define the prediction method y,
by the same formulae as in Section 2. As before, the maximal risk Z[J; %] is
given by (4).

Assumption 1’. The random variables u(z), t = ...,—1,0,1, ..., are independent and
identically distributed, Eu(t) =0, E|u(z)]* =1, and either
(1) |u(t)| <K< o0,V or

(i) E|u(r)|* <c*-2(2p)!, for some ¢>0, p=2,3,... .

Assumption 2’. The random variables ¢(¢), = 1,2, ..., are independent identically
distributed, independent of {u(r)}, and Ee(r) = 0, Ele(r)|* = o2, Ele(t)|*<to* < o0
for some positive 7.

The next theorem is an analog of Theorem 1 for the dynamic regression model.

Theorem 3. Let Assumptions 1" and 2' hold, and d,/In(n)/n—0 as n— co. Assume
that k=V?a; — o0 as k— oo. Then

%b}*;g]<rn(1+0(l)), n— oo.

Remark. Goldenshluger and Zeevi [9] study minimax rates of prediction for
autoregressive models with infinitely many parameters f,. Their setup is different
from the regression setup (15) and, furthermore, it is restricted to exponentially
decreasing f3,.. Note also that the method of Goldenshluger and Zeevi [9] does not
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involve the Pinsker filter and, unlike Theorem 3, their result concentrates on non-
asymptotic bounds and does not give the asymptotically exact constants.

4. Numerical results

A small simulation study has been conducted to illustrate the practical behavior of
the proposed asymptotically minimax prediction method (AMPM). It is expected
that for a given ellipsoid the AMPM will outperform the best ordinary least squares
(OLS) predictor when the regression sequence f is close to the worst—case sequence
from the class. The goal of the following is to understand for which sample sizes and
ellipsoids the difference between the methods becomes apparent.

In the simulation study we consider the ellipsoids #({ax}, L) with a; = k*, k =
1,2,... and L = 1. The data (%,, %,+1) are generated from the canonical model (1),
where e~ .47(0,1) and the regressors {x;} are i.i.d. A47°(0,1) random variables. The
regression sequence f5 is chosen in the following way: f8, are independent Gaussian
random variables with zero mean and variance mi = (1 — v,k%) +(nv,,k°‘)_], where v,
is given by (5) with qy = k* and L = 1. If mi = 0 then we set ff;,, = 0. Such a sequence
with large probability belongs to the ellipsoid %#({k*}, 1) (see proof of Theorem 2
below). For given o and n we compute the root of the mean squared prediction risk
averaged over N = 2000 replications. Recall that in our case the mean squared
prediction risk of a method y = y(n + 1) is defined by

.y = Ep(n+1) —yn+ 1) — 1.

The results for the AMPM and the best OLS predictor appear in Table 1. We
display the values for « = 1 and 2. Simulation shows that, as expected, the AMPM

Table 1
The root of the mean squared prediction risk for 2000 replications
n AMPM OLS
a=1
50 0.229 0.303
75 0.198 0.276
100 0.180 0.245
200 0.156 0.201
500 0.126 0.144
1000 0.092 0.117
o=2
50 0.213 0.265
75 0.188 0.209
100 0.160 0.179
200 0.128 0.142
500 0.092 0.135

1000 0.068 0.086
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outperforms the best OLS. This is apparent even for comparatively small sample
sizes. We observed that the difference in performance is especially pronounced for
small values of «, i.e., for more heavy-tailed sequences .

5. Proofs
5.1. Proof of Theorem 1

We give the proof under Assumption 1(i) only. Under Assumption 1(ii) the proof
is essentially the same; only minor modifications should be made. First, in the proof
of Lemma 1 below one needs to use the Bernstein exponential inequality instead of
the Hoeffding one (see [16, Chapter 2]). Second, Lemmas 2 and 3 hold true with
some new constants depending on the moment growth conditions for {x;}. The
corresponding bounds are easily obtained using the Cauchy—Schwarz inequality.

1. By Assumptions 1 and 2

- 2

Ef. (n+1) = yn+ )P =E|> " (B = B)xx(n+ 1) +e(n+1)

k=1
4 2, 2
=E|lp = Bl + o7,
where || - ||, denotes the standard norm in the sequence space />. Therefore it is

sufficient to bound from above supﬂe@EHB — B|[3. First, we note that

E||p = BIl; = EllAaba — ball5+ > B (17)
k=d+1
and
- 1 n o0 1
] CADERS SICH S RICRES ST LT
g k=d+1 T =1
Further,
E||Aaba — bdll3
= B,(Ig — Aa)’ba + E[(bg — ba) A3(by — ba)] — 26, Aq(Is — Ag)E(bg — ba)
d
= (-2 ﬁk+z IRE(Bi — Br)* =2 Z (1= ) BrE(Bi — Br)
k=1 k=
d
=Y (1= 4)’Bi + Li(n, B) + L(n, B) (19)
k=1
(recall that by = (B1, ..., Ba)).
2. Let || - ||, denote the norm on the space of real-valued sequences /> which is

generated by the inner product <x,y >, = 377, 22 xux; here {44} k=12, are defined
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in (6). In fact, || - || ; is @ semi-norm on /5, but an actual norm on the d-dimensional
linear subspace of /5. This vector norm defines the corresponding operator matrix
norm, and our current goal is to establish useful bounds on ||Q;!(n)|| ;.

Let vy =n 'Y, xi(0)x;(¢) — 8y, where i,j=1,....d, and §; stands for the
Kronecker symbol. Fix o€ (0, 1) and define the random event

Q,=dweQ: max |vj|<mn(2) ()—’C—2 2 (20)
L =3 oA vii| <my(a) o, mnoc—m o

We have the following lemma.

Lemma 1. Let Assumptions 1 and 2 hold; then

P(Q,)=1—o. (21)
If
d,
p,(a )E + dymy(0) <1, (22)
then on the event Q,
Pu(e) Pa(00)
1+pn( )\HQd ( )||A<l + 1 _pn<a)- (23)

On the complementary event Q,, ||0;'(n)||,<n.

Proof. First we prove (21). For any ¢>0 we have

1
PJ max |v,]|>e < Pq max
ij=1,. i=1,....d |n

+ P max
ij=1,....d,i#j

Now observe that {n~'(x7() = 1)},_, _,
variables with bounded ranges. By Hoeffding’s inequality

P{ %ixf(l)—l }<2exp<—2;#>

P
and  therefore Py <2dexp(—2¢*n/k*). Similarly we have P,<2d(d —
lexp(—2¢n/x*), and finally

2 2
P{ max |v,,| >e} <2d* exp (_e4n) .
ij=1,..., K

Setting ¢ = m, (o) we come to (21). Define

ZC} = P+ P».

is a sequence of i.i.d zero mean random

gl = Iy = Qulm) = La = 3™ 4,080 - L
=1



52 A. Goldenshluger, A. Tsybakov | Journal of Multivariate Analysis 84 (2003) 40-60

If the event Q, holds, then |[44(n)];| <n ' +my(2), i,j=1,...,d (here [Aa(n)];
denotes the i, j-entry of the matrix 4,). Let A];I(n)7 j=1,...,d denote the rows of the
matrix 44(n). Then it is easily checked that ||44(n)|| , < (Z;{:] ||A2(n)||§)1/2. Thus, on
the set , we have

Ay
1AL <52 + dyn(2).

Due to (22), ||44(n)|| ;<1 and therefore

1 o — 10 1
1+||Ad(n)||/1<||(ld Ad( )) ||/1 ||Qd ( )||A<1 _||Ad(n)||/1'

Using the above bound on ||44(n)|| , we obtain (23). The lemma is proved. O

3. The next step in our analysis is to bound from above the quantity I (n, ) =

E||bg — byl |§1 (see (19)). First, we establish some useful bounds that will be used later.
We have

160 — bal 3 <1107 )31 — 07 g + Iy + I3, (24)

where

= qud Z B (1) (25)

=d+1

1> E% i: HOEGE (26)
=1

Lemma 2. Under Assumptions 1 and 2

=" ba|l5 =02 Z i (27)

&
BNl =S . 2
k=1
In addition, E{I1,11,) 4 = 0.

Proof. The proof of (27) is straightforward. To show (28) we denote

n 0

=3 w0 Y By, k=14
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Notice that E[I;14] =0, Yk =1, ...,d. We have by Assumptions | and 2

t,s=1 Jil=d+
2
1 K2 e 2
:ﬁszk > pun) <5 #
t= j=d+1 Jj=d+1

and this implies (28).

Let g =n' Y0 xi(0e(t), k=1,...,d; then E|[La|[5=EX 0, 2Ll
and (29) follows by direct calculations. Notice also that E[l124] =0, Vk =1, ...,d.
Further, for every k =1, ...,d

E[N Do :E<% Zn: Xi (8)e(s)xx () i ﬁﬁ‘/@))

f5=1 j=d+1

=nl—2 Z E<x,§(z)e(z) f: Bjxj(t)> —0

j=d+1

since ¢ is independent of {xk}kzl,z,.,.’ Hence E{I}1,112) 4 =0 as claimed. [

Lemma 3. Suppose that Assumptions | and 2 hold, and ety or pe B({ar}, L) with

constants ay, satisfying k='?ay— oo, k— co. Then there exist constants C; and C,

depending on ¢*, K, t only such that

d
(El[1u|[3)' < n(z |/fk|> Zﬂk, Ellnall) <23 72

k=d+1 k=1

Proof. We start with bounding E|I;|| = E( ;le )V,i[lll‘k]z)z. For every k=
.,d we have, due to independence of the replications {x(#), x2(¢), ... },_,

n 0 4
E[lll,kr‘ :E(i X_: Xk(l) Z ﬁij(l))

.....

=1 j=d+1
o0 2 o0 2
L {z s 3 w0 (3 pu00) ]
t,5=1 j=d+1 =d+1

4 n 0 2 0 2
<Z_ E[(Z ﬁﬂ%’(ﬂ) (Z ﬁjxj(s)> ]
ts=1 i=d+1 i=d+1



54 A. Goldenshluger, A. Tsybakov | Journal of Multivariate Analysis 84 (2003) 40-60

Thus,

4/ 4 2
E||I11HA—E Z /12/12[111( 1111 < (Z |ﬁj> (Z ll%) .
k=1

kj=1 j=d+1
Similarly, for every k=1, ...,d,

n 4 n
EmMr=EG§jwmwQ:DLEIHﬁmémﬁwam

_0’4 | 1 +K40’4’E
T2 n n3

and therefore
4 . 2 2 ’ a*
E||lal[4 = E(Z ez, ] > <z
k=1

This completes the proof. [
4. Now we are ready to establish an upper bound on I (n, f) = E||bs — bl
Let the event Q, be defined by (20). We choose o« = o* =2d°n%, and let
p¥ = p,(o*). Note that condition (9) ensures (22) of Lemma 1 for large enough

n. In addition, (9) implies p*—0 as n— co. It follows from (24) and Lemma 2
that

E(|[Ba — bal[31{2x})

*
<1+ >E||—n by + Iy + 1o [
1 —pk

i 12 2 2
= (1 T2 ol + BNl + Bl
n

* d d ) 2 d
<1+ >< Z B + ZZA%Z@ZJF(;ZA,E)

Pn k= k=1 Jj=d+1 k=1
=J; (l’l, ), (30)

where 1{-} stands for the indicator function.
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Similarly, using Lemmas 1-3 and the Cauchy—Schwarz inequality,

E(|1ba = ball31{Qus ) < wE(|| = 0 'ba + T + 1| [31{Q})
< 4 (|[n” " bal 3 P(Qur) + E[1 10 |151{2s0}]
+ E(|| 1] [ 1{2x})

2
< 4n? n_z,; A§ﬁ§+7z z,i( > |ﬁk> Vo*

=1 k=d+1
s Csd o ’
Z W5 Z i( > |ﬁk|> = Jy(n. B),
k= k=d+1
(31)
where Cj is a constant depending on ¢2, k, and 7 only. Thus, we obtain
1i(n, B) = Ellba — bally <J1(n, ) + Ja(n. ), (32)

where J;(n, ) and J>(n, §) are given by (30) and (31), respectively.
5. Taking into account (30) and (31) and returning to (17) and (19) we can write

sup E||p - Bl < Eup [Z (1= 4)*Bi + Ji(n, B) + Ja(n, B) +12(”7ﬁ)]

© ) o2
< sup Z {(1 — i) B+ ;/ﬂ

d
+ sup [Jl(n p) —G— Z 3+ Ja(n, p)

Ben n o4

+ sup[lx(n, B)]. (33)
peRB

The first term on the RHS of (33) is exactly r,(4) (see [17] or [1]); so in order to
complete the proof of the theorem it is sufficient to show that the second and the
third terms on the RHS of (33) are of the order o(r,) as n— co.

Due to (9), in order to prove that the second term in (33) is of the order o(r,) as
n— o0, it is sufficient to show that

su A =o(r n— oo, 34

sup 22 = o) (34)
0

sup — ZJ Z ﬁjz:o(rn)7 n— 0. (35)

pes M i Jj=d+1
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The proof of (34) is straightforward. Further,

d % d L?
DD O BUS SF PR P
L | =1 =
o0
% Z (1 - vnak Z Vit (1 = vaa)
=1

(here we have used the fact that a; > <v, for every j>d, (by definition of d,), (5), the
fact that 0<ayv,<1 for k<d,, and (9)). Thus,

d
sup | J1(n, p) —J—Zi +L(n,p)| =o(ry), n—oo. (36)
pes iy

Now we proceed with bounding supg. 4[L2(n, f)]. First, by the Cauchy-Schwarz
inequality

4 1/2 1/2
(n, )< (Z 1 — ) ﬁk) <Z IEB = B ) = Ly (n, ) 1o2(n, B).

k=1
(37)
Arguing as before we obtain
d 1/2 - 2
sup I (n, f) = sup (1—)’Br | <sup vaai)’ B
peRB peB ; peRB kz:;
2 1/2
<@ = > al =), | <n (38)
k=1

Observe that Iny(n, B) = ||Ebys — ba|| , and our current goal is to bound this quantity
from above. Let Z% denote the o-field generated by n independent sequences
{x1(#),x2(2), ...}, t=1,...,n. Since ¢ is independent of {x;},_;, = we have from

(18)

E[E(bq —

7] =E le(n)<—nlbd+ Zd)d Z Brxi(t )]
k=d+1
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Hence, by the Jensen inequality,

122(1’1,‘3) =||FE Q;l(n) (—I’l_lbd “r% i ¢d(l) i Bka([)>]
t=1 k=d+1 A
E||0;'(n) <—n_lbd +% zn: dq(1) zoc: ﬁkxk(z)>
=1 k=d+1 A

Further, using the same reasoning as in bounding I, (#, §) (see (30)—(32)) we finally
obtain

*

1222(n7/3)<|:]1(n7ﬂ)_ (1+1 P ) Z/Lk
k=1

P

+ J2(n, B).

Now taking into account (36) we conclude that supg. 4/(n, ff) = o(r,l/ ), no o,
and this along with (37) and (38) implies that

sup L(n, p) =o(r,), n— . (39)
[fe@
Combining (39), (36), and (33) we complete the proof. [J

5.2. Proof of Theorem 2

It is sufficient to consider the predictors j(n+ 1) such that E[y(n+ 1)]* <o,
because otherwise the lower bound is obvious. First we note that, for any such
predictor ¥ = y(n + 1),

2

En+1)—yn+ D> =E|y —zw:[}kxk(n+1)—e(n+l)
=1

2

=6’ + E|j(n+1) Zﬂkxkn—i—

Further, y(n + 1) can be decomposed into a sum of two random variables y'(n + 1)
and y’(n+1) such that y'(n+ 1) is the orthogonal projection of y(n+1) on
span{x;(n+1),x2(n+1),...} for fixed %,, and y"(n+1) is orthogonal to
span{x;(n + l),xz(n 1), ...} for fixed %,. Note that y'(n+ 1) has the form

Fn+1)= ﬁ (Un)xi(n+ 1),
k=

where [fk(ﬂlln) are random variables measurable w.r.t. %,. Therefore,
2

Ry, B = sup E |y xi(n+1
s ] ﬁeg Zﬁkk

= sup E||—Bl= sup E Z (B — B’

pe# =
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for some sequence fe/, measurable w.r.t. %, and % = {feB: f, =0, k>d}.
Thus, it is sufficient to establish a lower bound on sup;.» E S (B — B)*. The
further proof is similar to the proof of Theorem 1 in [1]. The difference is that we
have random, non-deterministic regressors, and therefore some modifications are
needed in calculations of the expected values. We indicate here these modifications.

The proof is based on bounding the minimax risk from below by the Bayes risk
and using the van Trees inequality. Assuming that 5, is a random variable with
density y;, and applying the van Trees inequality we get

1
L(B)] + I (1)

where the expectation is taken with respect to the joint distribution of %, 5. Here
I(B,) is the Fisher information about f§; contained in the observations %,, and
F (1) is the Fisher information corresponding to the density w,. If (12) is fulfilled,
then y, k=1, ...,d, are chosen as p (x) = (1/my)uy(x/my), k=1, ...,d, where u,

E(ﬁk - ﬁk)2>E

is a probability density supported on [—1,1], and Y{_, a2m? <L2. We have

§n dlozor(0) - S Bx)]

E[I(Bi)] = /Ex,y 2 98, ] 1 (Bre) dPr

n

2
}:qgmm]:a2m (40)

t=1

where ¢(-) is the standard normal density. This expression is the same as in the case
of the deterministic orthonormal design. Note that .# () = m Iy, where I, is the
Fisher information corresponding to the density u,. Therefore we have, for any
prediction method y = y(n + 1),

2 d

. o
A H) > >

k=1

271
midy
m,zclo‘1 + o2n~!

Choosing m} = a>(1 — v,ay), (nvaar) ', we see that 3¢, a?m? = L2, and thus under
condition (12) we get the desired result

’d,
%m%k%ﬁﬂ+dm:mﬂ+dm,nﬁm
If condition (11) holds, then the prior distributions g, are chosen so that

[y =mi(1 = 5/2), ) <mi(1+0)

for some 6€(0,1), and m = (my, ..., my) satisfying S-¢_, a2m? < L*. Proceeding as in
[1, pp. 117-118], and computing the expected value of the Fisher information
E[I(B;)] as in (40), we obtain the announced result under condition (11). O
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5.3. Proof of Theorem 3

The proof goes along the same lines as the proof of Theorem 1. We omit the proof,
outlining the main differences from the proof of Theorem 1.

The main difference is that now the regressor vectors ¢,(¢) are dependent for
different # =1, ...,n. However, they are d-dependent; i.e., vectors ¢ () and ¢ (s)
are independent for |z — 5| >d. Therefore, the exponential inequalities for deviations
of n™ 'Y u(t —k)u(t —j), k,j=1,...,d from their expectations can be written
down, and the “good” event similar to Q, can be defined (see [7, Lemma 1]). Thus,
an analog of Lemma 1 can be established. Further, results similar to Lemmas 2 and 3
are casily obtained. In particular, for

I :% ; ba(1) k;ﬂ Bru(t = k), I :% ; Pa()e(t),

the same inequalities (25) and (26) hold true. Other details of the proof remain
unchanged. O
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