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Abstract

The problem of optimal prediction in the stochastic linear regression model with infinitely

many parameters is considered. We suggest a prediction method that outperforms

asymptotically the ordinary least squares predictor. Moreover, if the random errors are

Gaussian, the method is asymptotically minimax over ellipsoids in c2: The method is based on a
regularized least squares estimator with weights of the Pinsker filter. We also consider the case

of dynamic linear regression, which is important in the context of transfer function modeling.
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1. Introduction

Consider the regression model

y ¼
XN
k¼1

bkxk þ E; ð1Þ

where fxkgk¼1;2;y is a sequence of possible explanatory variables, y is the

corresponding response, E is the error, and b ¼ ðb1; b2;yÞA c2 is an unknown
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regression sequence. Assume that fxkg and E are random variables, and EE ¼ 0 and

EE2 ¼ s2; the stochastic series in (1) and later are assumed to converge in the mean
squared sense. Suppose we are given n realizations of y and fxkg;

fyðtÞ; x1ðtÞ; x2ðtÞ;y; t ¼ 1;y; ng ð2Þ

coming from model (1); that is,

yðtÞ ¼
XN
k¼1

bkxkðtÞ þ EðtÞ; t ¼ 1;y; n;

where EðtÞ; t ¼ 1; 2;y; are i.i.d. random copies of E and for each k the variables
xkðtÞ; t ¼ 1; 2;y; have the same distribution as xk: Given x1ðn þ 1Þ; x2ðn þ 1Þ;y;
the objective is to predict the corresponding response yðn þ 1Þ using data (2).
Following Breiman and Friedman [2], we establish our main results under the

assumption that model (1) is canonical, i.e., fxkg are uncorrelated zero mean
variables with variance 1: This assumption is not so restrictive in the prediction
context. If fxkg are correlated then the standard Gram–Schmidt orthonormalizing
process can be applied to get a canonical model with some other coefficient
sequence (cf. [2]). Under the canonical formulation the influence of a particular
regressor xk on y is quantified solely by the magnitude of the corresponding
coefficient bk: We assume that the coefficients bk are small for large values
of k: Depending on the prior assumptions on the sequence b; only a certain finite
number of first coefficients bk is significant and should be kept for prediction. In
Section 3 we indicate how the main results can be extended to the case of correlated
regressors.
A prediction method (or predictor) ŷðn þ 1Þ is, in general, a random variable

measurable with respect to ðUn;Xnþ1Þ whereUn ¼ fyðtÞ; x1ðtÞ; x2ðtÞ;y; t ¼ 1;y; ng
and Xnþ1 ¼ fx1ðn þ 1Þ; x2ðn þ 1Þ;yg: An important subclass of predictors that we
call natural predictors and denote ŷNðn þ 1Þ is defined by

ŷNðn þ 1Þ ¼
XN
k¼1

#bkxkðn þ 1Þ; ð3Þ

where #b ¼ ð #b1; #b2;yÞ is an estimate for the regression coefficients b ¼ ðb1; b2;yÞ: If
#b is a linear estimate, ŷNðn þ 1Þ is called a linear predictor. The use of predictor (3) in

practice is possible if only a finite number of (first) estimates #bk are non-zero. This is

the case for the ordinary least squares (OLS) predictor, where #bk are the least squares

estimators of bk for kpp and #bk ¼ 0 for k4p; with some given p [2,20].
In this paper we are interested in the optimal choice of predictor ŷ in a minimax

sense on a given family B of regression sequences b: The prediction error of ŷ is

defined as usually in the form E½ŷðn þ 1Þ � yðn þ 1Þ	2: Note that this error

cannot be arbitrarily small; it is at least s2 for large n; because of the non–vanishing
innovation component Eðn þ 1Þ independent of ðUn;Xnþ1Þ: We therefore consider
the difference E½ŷðn þ 1Þ � yðn þ 1Þ	2 � s2; and define the maximal risk over B in
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the form

R½ŷ;B	 ¼ sup
bAB

E½ŷðn þ 1Þ � yðn þ 1Þ	2 � s2: ð4Þ

The optimal (minimax) predictor ŷ
*
¼ ŷ

*
ðn þ 1Þ minimizes the maximal prediction

error,

R½ŷ
*
;B	 ¼ R

*
½n;B	 
 inf

ŷ
R½ŷ;B	;

where inf is taken over all possible prediction methods based on the observations
ðUn;Xnþ1Þ: Our aim is to find an asymptotically minimax prediction method ŷ

satisfying

R½ŷ;B	 ¼ R
*
½n;B	ð1þ oð1ÞÞ; n-N:

We will assume that B is an ellipsoid in the sequence space c2;

B ¼ Bðfakg;LÞ ¼ bAc2 :
XN
k¼1

a2kb
2
kpL2

( )
;

where fakgk¼1;2;y are positive coefficients such that fakg is monotone non-

decreasing, and ak-N as k-N: This assumption is natural since bk; k ¼
1; 2;y; are the coefficients of the canonical regression model.
The main result of this paper consists in a construction of asymptotically

minimax prediction methods (AMPM) for ellipsoids. We show that the AMPM is
based not on the least squares estimator of b; but on properly weighted least squares,
with the weights defined by the filter of Pinsker [17]. The AMPM outperforms the
ordinary least squares predictor. The lower bound is proved for the case of Gaussian
noise E: It should be noticed also that construction of the proposed AMPM uses a
priori information on the ellipsoid B: In a subsequent paper [8], we develop an
adaptive AMPM that does not require any a priori information on the class of
sequences and is asymptotically sharp minimax on any ellipsoid within a wide scale.
The idea behind construction of the adaptive AMPM is to apply the blockwise Stein
rule to a penalized least squares estimate of the regression sequence. The
corresponding block sizes increase ‘‘weakly’’ geometrically in order to ensure
asymptotic minimaxity.
Our result is related to previous work in two aspects. First, the regression models

with growing or infinite number of parameters have been studied by several authors
[2,13,18–20,22]. In particular, Shibata [20], and Breiman and Friedman [2] develop
the methods of optimal selection of the number of terms in a finite approximation to
(1), using the ordinary least squares prediction. Shibata [20] considers the
deterministic explanatory variables, while Breiman and Friedman [2] study the case
where both fxkgk¼1;2y and E are Gaussian. Huber [13], Yohai and Maronna [22],
and Portnoy [18,19] analyzed somewhat different setup. They consider regression
with a finite but growing number of parameters p and obtain asymptotics for OLS
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and, more generally, M-estimators in this model. Unlike our approach, this literature
does not study weighted least squares prediction.
Second, the Pinsker filter has been extensively studied for different models, such as

non-parametric regression and density estimation [1,4–6,12,15,21]. Golubev and
Pinsker [10,11] develop asymptotically minimax methods for prediction of
deterministic sequences observed without noise and with Gaussian white noise,
respectively. Among this literature, the paper of Efromovich [4] that treats non-
parametric regression with random design is closest to our setup. His paper considers

the estimation of the vector of coefficients b from the observations yðtÞ ¼P
N

k¼1 bkjkðxðtÞÞ þ EðtÞ; t ¼ 1;y; n; where fjkð�Þgk¼1;2;y is the orthonormal

trigonometric basis on ½0; 1	; and xðtÞ are independent random variables distributed
on ½0; 1	: If their distribution is uniform, this is a special case of our model. On the
other hand, we study prediction rather than estimation, and our method is different
from that of Efromovich [4]. In particular, we do not use a two-stage procedure with
preliminary consistent estimates. Furthermore, we discuss the problem with
dependent observations, namely the dynamic linear regression where the response
y is obtained as a convolution of the regression sequence b with the time sequence of
explanatory variables. Such models arise in time-series analysis, linear system
identification, and other applications (see, e.g., [3, Chapter 13; 14]).

2. Main results

In this section we assume that xkðtÞ; t ¼ 1; 2;y are i.i.d. random variables for
each k: Moreover, the following assumptions will be imposed on the explanatory
variables and the errors of the model.

Assumption 1. The random variables fxkgk¼1;2;y are uncorrelated, Exk ¼ 0; Ex2k ¼
1; and either

(i) jxkjpkoN; 8k; or
(ii) Ejxkj2ppc2p�2ð2pÞ!; for some c40; p ¼ 2; 3;y; and 8k:

Assumption 2. EE ¼ 0; EE2 ¼ s2; EE4pts4oN for some positive t; and E is
independent of fxkgk¼1;2;y:

In order to define our prediction method we need the following notation (cf. [17]).
Let nn denote the solution of the equation

s2n�1
XN
k¼1

akð1� nnakÞþ ¼ nnL2 ð5Þ

(note that the solution is unique since ak are non-decreasing and ak-N). Let

lk ¼ ð1� nnakÞþ; k ¼ 1; 2;y; ð6Þ

A. Goldenshluger, A. Tsybakov / Journal of Multivariate Analysis 84 (2003) 40–60 43



dnðBÞ 
 maxfk : akpn�1n g; and Ld ¼ diagðl1;y; ldÞ: In what follows, for brevity,
we will write d or dn instead of dnðBÞ; keeping in mind that d depends both on the
sample size n and on the class of regression sequences B:

Denote fdðtÞ ¼ ðx1ðtÞ;y; xdðtÞÞ0; t ¼ 1;y; n; and let

b̃d ¼ 1

n

Xn

t¼1
fdðtÞf0

dðtÞ þ n�1Id

 !�1
1

n

Xn

t¼1
fdðtÞyðtÞ

 !


Q�1
d ðnÞ 1

n

Xn

t¼1
fdðtÞyðtÞ

 !
; ð7Þ

where Id stands for the identity d � d matrix. In fact, b̃d ¼ ð *b1;y; *bdÞ0 is a
regularized version of the standard least squares estimate for the vector bd ¼
ðb1;y; bdÞ0 composed of the first d coefficients of the regression sequence b: We
introduce this regularization in order to improve the behavior of b̃d for small sample

sizes n; when the matrix n�1Pn
t¼1 fdðtÞf0

dðtÞ may not be well conditioned.
Define

#b
*
¼ ð #b1;y; #bd ; 0; 0;yÞ 
 ðb̃0

dLd ; 0; 0;yÞ: ð8Þ

Let ŷ
*
¼ ŷ

*
ðn þ 1Þ be the predictor given by (3) with #b ¼ #b

*
as in (8). Note that ŷ

*

is a linear predictor with finite number d of summands in (3), and it is different from
the OLS predictor. The predictor ŷ

*
is optimal in the following minimax sense.

Theorem 1. Let Assumptions 1 and 2 hold, and

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnÞ=n

p
-0; n-N: ð9Þ

Assume also that k�1=2ak-N as n-N: Then

R½ŷ
*
;B	prnð1þ oð1ÞÞ; n-N; ð10Þ

where

rn ¼ rnðBÞ ¼ s2n�1
XN
k¼1

ð1� nnakÞþ:

Consider an application of Theorem 1. Let ak ¼ ka; k ¼ 1; 2;y; a41=2; and let
Ba denote the ellipsoid Bðfkag;LÞ: Then

nn ¼ ðaþ 1Þð2aþ 1Þ
a

L2s�2n
	 
� a

2aþ1
ð1þ oð1ÞÞ;

and dn ¼ Oðn1=ð2aþ1ÞÞ as n-N: Thus, (9) is satisfied. The asymptotical maximal risk
of our prediction method ŷ

*
is

rnðBaÞ ¼ CnðaÞL
2

2aþ1
s2

n

� � 2a
2aþ1

ð1þ oð1ÞÞ;
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where

CnðaÞ ¼ a
aþ 1

� � 2a
2aþ1

ð2aþ 1Þ
1

2aþ1

is the Pinsker constant. Let us compare now this risk to the maximal risk of the
ordinary least squares (OLS) predictor. Confining ourselves to the Gaussian case and
using the results of Breiman and Friedman [2], we find that the error of the OLS

predictor of the order p (denoted ŷOLSp ) is

E½ŷOLSp ðn þ 1Þ � yðn þ 1Þ	2 � s2 ¼
X
k4p

b2k þ
ps2

n

 !
ð1þ oð1ÞÞ; n-N:

Thus,

R½ŷOLSp ;Ba	 ¼ L2p�2a þ ps2

n

� �
ð1þ oð1ÞÞ:

The maximal risk of the best OLS predictor is

min
p

R½ŷOLSp ;Ba	 ¼
2aþ 1
2a

� �
ð2aÞ

1
2aþ1L

2
2aþ1

s2

n

� � 2a
2aþ1

ð1þ oð1ÞÞ;

and it is easy to see that this expression is greater than rnðBaÞ:

minp R½ŷOLSp ;Ba	
rnðBaÞ

¼ ð2aþ 1Þðaþ 1Þ
2a2

	 
 2a
2aþ1

ð1þ oð1ÞÞ41:

The result of Theorem 1 cannot be improved among all prediction methods in the
case where E is Gaussian. We now state the lower bound showing this fact.

Assumption 3. The random variable E is GaussianNð0; s2Þ; and E is independent of
fxkgk¼1;2;y:

Theorem 2. Let Assumptions 1 and 3 hold. Assume that either

exp � gn2n2nPdn

k¼1 a2kð1� nnakÞ2þ

( )
¼ oðnnÞ; n-N; 8g40 ð11Þ

or

nn

Xdn

k¼1
ak ¼ oðdnÞ; n-N: ð12Þ

Then for every prediction method ŷ ¼ ŷðn þ 1Þ one has

R½ŷ;B	Xrnð1þ oð1ÞÞ; n-N: ð13Þ
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It can be easily verified that (11) is valid for the ellipsoids with polynomially
increasing sequences fakg; while (12) holds for exponentially increasing fakg:
Thus, Theorem 1 along with Theorem 2 shows that predictor (3) associated with

#b
*
given by (8) is asymptotically minimax.

3. Correlated regressors

In this section we indicate how the above results can be extended to the case of
correlated regressors. We also consider an important specific example of dynamic
linear regression model where the time sequence of explanatory variables is
correlated.

3.1. Reduction to a canonical model

Consider the regression model

y ¼
XN
k¼1

ykzk þ e;

where fzkgk¼1;2;y is a sequence of explanatory variables and y ¼ ðy1; y2;yÞA c2 is

an unknown regression sequence. As before, given fyðtÞ; z1ðtÞ; z2ðtÞ;y; t ¼ 1;y; ng
and z1ðn þ 1Þ; z2ðn þ 1Þ;y; we wish to predict yðn þ 1Þ: In contrast to the canonical
model (1) we assume here that the regressors fzkgk¼1;2;y are correlated. Since we are

interested in prediction, we can represent the random variable x ¼
P

N

k¼1 ykzk in an

orthonormal basis, passing thus to a canonical model. Observe that if y belongs to an
ellipsoid B; then the coefficient sequence of the corresponding canonical model does
not necessarily belongs to B: Nevertheless, under mild conditions on the correlation
between regressors, the ellipsoidal structure of the problem is preserved when passing
to the canonical model.

Let z1; z2;y be correlated, Ezk ¼ 0; Ez2k ¼ 1; and any finite number of elements

z1; z2;y; zk be linearly independent. Assume that yABðfckg;LÞ with monotone
increasing sequence fckg satisfying ckk�2g-N as k-N for some g41=2: Then the
coefficient sequence b of the corresponding canonical model belongs to any ellipsoid
Bðfakg;LMÞ such that

P
N

k¼1 a2kc�2k pM2oN: Indeed, the standard Gram–Schmidt

orthonormalizing process yields the orthonormal basis fxkg with the following
properties. There exist constants fhjkgj;k¼1;2;y; such that

zj ¼
Xj

k¼1
hjkxk; j ¼ 1; 2;y; ð14Þ

and Exk ¼ 0; Exkxj ¼ djk; where djk stands for the Kronecker symbol. It follows

from the construction that hjk ¼ EðzjxkÞ and hjk ¼ 0; for k4j: The random variable

x ¼
P

N

k¼1 ykzk is represented in the orthonormal basis ðx1; x2;yÞ as x ¼P
N

k¼1 EðxxkÞxk ¼
P

N

k¼1 bkxk; and the regression sequence b ¼ ðb1; b2;yÞ in the
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canonical model is given by

bk ¼ EðxxkÞ ¼
XN
j¼1

yjhjk ¼
XN
j¼k

yjhjk:

Further, note that the condition Ez2k ¼ 1 amounts to
Pj

k¼1 h2jk ¼ 1; 8k (see (14)). Let

fakg be a positive monotone increasing sequence such that
P

N

k¼1 a2kc�2k pM2oN:

For example, if ckk�2g-N as k-N for some g41=2; then ak ¼ ckk�g can be taken.
By the Cauchy–Schwarz inequality and monotonicity of fakg

XN
k¼1

a2kb
2
kpL2

XN
k¼1

a2k

XN
j¼k

h2jkc�2j ¼ L2
XN
j¼1

Xj

k¼1
a2kh2jkc�2j

pL2
XN
j¼1

a2j c�2j

Xj

k¼1
h2jk ¼ L2

XN
j¼1

a2j c�2j pL2M2:

Thus bABðfakg;LMÞ as claimed.
Although we have the above relationship between the coefficient sequences, it is

not unreasonable to impose ellipsoidal constraints directly on the coefficients b of
the canonical model. In fact, the influence of the corresponding regressor xk on the
response y is quantified solely by the magnitude of bk: In this case, the results
about the statistical properties of our prediction method are exactly the same as in
Section 2.
Note that the above reduction to the canonical model applies only when

correlations between the original regressors fzkg are known. Otherwise a sampled
version of the orthonormalizing process can be performed in a standard way.
Observe that it is sufficient to ‘‘decorrelate’’ the d ¼ dn first regressors, because
the AMPM is based only on the d first ‘‘principle components’’. In this
case the corresponding prediction method can be defined similarly to (3), (6)–(8)

with the following modifications. Let fdðtÞ ¼ ðz1ðtÞ;y; zdðtÞÞ0; t ¼ 1;y; n;

#Sd ¼ 1

n

Xn

t¼1
fdðtÞfdðtÞ

0 þ n�1Id

 !
; b̃d ¼ #S�1=2

d

1

n

Xn

t¼1
fdðtÞyðtÞ

 !
:

Let #b
*
be given by (8) and *fdðtÞ ¼ ðx1ðtÞ;y; xdðtÞÞ0 ¼ #S�1=2

d fdðtÞ: Then the

predictor is defined by ŷðn þ 1Þ ¼ #b0
*
*fdðn þ 1Þ: We conjecture that this prediction

method is asymptotically minimax in the case of correlated regressors.

3.2. Dynamic linear regression model

In many applications the following dynamic linear regression model is of interest:

yðtÞ ¼
XN
k¼1

bkuðt � kÞ þ EðtÞ; t ¼ 1;y; n: ð15Þ
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In the context of time-series analysis one can think of (15) as being the transfer
function model between two time series fyðtÞg and fuðtÞg (cf. [3, Section 13.1]). For
example, model (15) contains as a special case (but is not limited to) the state space
model yðtÞ ¼ uðtÞ þ EðtÞ with an ARMA ðp; qÞ process uðtÞ: Of course, in this case the
coefficients bk should be exponentially decreasing. Polynomially decreasing bk

(allowed by our model) correspond to long-range dependence.
Minimax rates of convergence in estimating b ¼ ðb1; b2;yÞ under model (15)

have been studied recently by Goldenshluger [7]. Here we consider the prediction
problem and propose a different method that achieves not only the rates but also the
exact minimax constants.
Given the data Un ¼ fyðtÞ; uðt � 1Þ; t ¼ 2;y; ng our objective is to predict the

output (response) yðn þ 1Þ: A predictor ŷðn þ 1Þ can be any random variable
measurable w.r.t. ðUn; uðnÞÞ: In contrast to (1), the vectors of the explanatory
variables in (15) are dependent. It turns out that the results of Section 2 can be
extended for the case of the dynamic linear regression model.
We use the same notation as in Section 2; the only difference is that now

fdðtÞ ¼ ðuðt � 1Þ;y; uðt � dÞÞ0; t ¼ 1;y; n; ð16Þ

and that the vectors fdðtÞ can involve inputs uðtÞ for tp0: in this case the inputs
are assumed to be replaced by zeros in (16). Define the prediction method ŷ

*

by the same formulae as in Section 2. As before, the maximal risk R½ŷ;B	 is
given by (4).

Assumption 10. The random variables uðtÞ; t ¼ y;�1; 0; 1;y; are independent and

identically distributed, EuðtÞ ¼ 0; EjuðtÞj2 ¼ 1; and either

(i) juðtÞjpkoN; 8t; or
(ii) EjuðtÞj2ppc2p�2ð2pÞ!; for some c40; p ¼ 2; 3;y :

Assumption 20. The random variables EðtÞ; t ¼ 1; 2;y; are independent identically

distributed, independent of fuðtÞg; and EEðtÞ ¼ 0; EjEðtÞj2 ¼ s2; EjEðtÞj4pts4oN

for some positive t:

The next theorem is an analog of Theorem 1 for the dynamic regression model.

Theorem 3. Let Assumptions 10 and 20 hold, and dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnÞ=n

p
-0 as n-N: Assume

that k�1=2ak-N as k-N: Then

R½ŷ
*
;B	prnð1þ oð1ÞÞ; n-N:

Remark. Goldenshluger and Zeevi [9] study minimax rates of prediction for
autoregressive models with infinitely many parameters bk: Their setup is different
from the regression setup (15) and, furthermore, it is restricted to exponentially
decreasing bk: Note also that the method of Goldenshluger and Zeevi [9] does not
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involve the Pinsker filter and, unlike Theorem 3, their result concentrates on non-
asymptotic bounds and does not give the asymptotically exact constants.

4. Numerical results

A small simulation study has been conducted to illustrate the practical behavior of
the proposed asymptotically minimax prediction method (AMPM). It is expected
that for a given ellipsoid the AMPM will outperform the best ordinary least squares
(OLS) predictor when the regression sequence b is close to the worst–case sequence
from the class. The goal of the following is to understand for which sample sizes and
ellipsoids the difference between the methods becomes apparent.
In the simulation study we consider the ellipsoids Bðfakg;LÞ with ak ¼ ka; k ¼

1; 2;y and L ¼ 1: The data ðUn;Xnþ1Þ are generated from the canonical model (1),
where eBNð0; 1Þ and the regressors fxkg are i.i.d. Nð0; 1Þ random variables. The
regression sequence b is chosen in the following way: bk are independent Gaussian

random variables with zero mean and variance m2
k ¼ ð1� nnkaÞþðnnnkaÞ�1; where nn

is given by (5) with ak ¼ ka and L ¼ 1: If m2
k ¼ 0 then we set bk ¼ 0: Such a sequence

with large probability belongs to the ellipsoid Bðfkag; 1Þ (see proof of Theorem 2
below). For given a and n we compute the root of the mean squared prediction risk
averaged over N ¼ 2000 replications. Recall that in our case the mean squared
prediction risk of a method ŷ ¼ ŷðn þ 1Þ is defined by

R½ŷ; y	 ¼ E½ŷðn þ 1Þ � yðn þ 1Þ	2 � 1:
The results for the AMPM and the best OLS predictor appear in Table 1. We

display the values for a ¼ 1 and 2. Simulation shows that, as expected, the AMPM

Table 1

The root of the mean squared prediction risk for 2000 replications

n AMPM OLS

a ¼ 1

50 0.229 0.303

75 0.198 0.276

100 0.180 0.245

200 0.156 0.201

500 0.126 0.144

1000 0.092 0.117

a ¼ 2

50 0.213 0.265

75 0.188 0.209

100 0.160 0.179

200 0.128 0.142

500 0.092 0.135

1000 0.068 0.086
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outperforms the best OLS. This is apparent even for comparatively small sample
sizes. We observed that the difference in performance is especially pronounced for
small values of a; i.e., for more heavy-tailed sequences b:

5. Proofs

5.1. Proof of Theorem 1

We give the proof under Assumption 1(i) only. Under Assumption 1(ii) the proof
is essentially the same; only minor modifications should be made. First, in the proof
of Lemma 1 below one needs to use the Bernstein exponential inequality instead of
the Hoeffding one (see [16, Chapter 2]). Second, Lemmas 2 and 3 hold true with
some new constants depending on the moment growth conditions for fxkg: The
corresponding bounds are easily obtained using the Cauchy–Schwarz inequality.
1. By Assumptions 1 and 2

E½ŷ
*
ðn þ 1Þ � yðn þ 1Þ	2 ¼E

XN
k¼1

ð #bk � bkÞxkðn þ 1Þ þ Eðn þ 1Þ
" #2

¼Ejj #b� bjj22 þ s2;

where jj � jj2 denotes the standard norm in the sequence space c2: Therefore it is

sufficient to bound from above supbABEjj #b� bjj22: First, we note that

Ejj #b� bjj22 ¼ EjjLd b̃d � bd jj22 þ
XN

k¼dþ1
b2k ð17Þ

and

b̃d �bd ¼Q�1
d ðnÞ �n�1bd þ 1

n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkxkðtÞþ
1

n

Xn

t¼1
fdðtÞEðtÞ

 !
: ð18Þ

Further,

EjjLd b̃d � bd jj22
¼ b0

dðId � LdÞ2bd þ E½ðb̃d � bdÞ0L2dðb̃d � bdÞ	 � 2b0
dLdðId � LdÞEðb̃d � bdÞ

¼
Xd

k¼1
ð1� lkÞ2b2k þ

Xd

k¼1
l2kEð *bk � bkÞ2 � 2

Xd

k¼1
lkð1� lkÞbkEð *bk � bkÞ



Xd

k¼1
ð1� lkÞ2b2k þ I1ðn; bÞ þ I2ðn; bÞ ð19Þ

(recall that b̃d ¼ ð *b1;y; *bdÞ0).
2. Let jj � jjL denote the norm on the space of real–valued sequences c2 which is

generated by the inner product /x; ySL ¼
P

N

k¼1 l
2
kxkyk; here flkgk¼1;2;y are defined
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in (6). In fact, jj � jjL is a semi-norm on c2; but an actual norm on the d-dimensional

linear subspace of c2: This vector norm defines the corresponding operator matrix

norm, and our current goal is to establish useful bounds on jjQ�1
d ðnÞjjL:

Let vij 
 n�1Pn
t¼1 xiðtÞxjðtÞ � dij; where i; j ¼ 1;y; d; and dij stands for the

Kronecker symbol. Fix aAð0; 1Þ and define the random event

Oa 
 oAO : max
i;j¼1;y;d

jvijjpmnðaÞ
� �

; mnðaÞ ¼
k2ffiffiffiffiffi
2n

p

ffiffiffiffiffiffiffiffiffiffiffiffi
ln
2d2

a

s
: ð20Þ

We have the following lemma.

Lemma 1. Let Assumptions 1 and 2 hold; then

PðOaÞX1� a: ð21Þ

If

rnðaÞ 

dn

n
þ dnmnðaÞo1; ð22Þ

then on the event Oa

1� rnðaÞ
1þ rnðaÞ

pjjQ�1
d ðnÞjjLp1þ

rnðaÞ
1� rnðaÞ

: ð23Þ

On the complementary event %Oa; jjQ�1
d ðnÞjjLpn:

Proof. First we prove (21). For any E40 we have

P max
i;j¼1;y;d

jvij jXE
� �

pP max
i¼1;y;d

1

n

Xn

t¼1
x2i ðtÞ � 1

�����
�����XE

( )

þ P max
i;j¼1;y;d;iaj

1

n

Xn

t¼1
xiðtÞxjðtÞ

�����
�����XE

( )

 P1 þ P2:

Now observe that fn�1ðx2i ðtÞ � 1Þgt¼1;y;n is a sequence of i.i.d zero mean random

variables with bounded ranges. By Hoeffding’s inequality

P
1

n

Xn

t¼1
x2i ðtÞ � 1

�����
�����XE

( )
p2 exp �2E

2n

k4

� �

and therefore P1p2d expð�2E2n=k4Þ: Similarly we have P2p2dðd �
1Þexpð�2E2n=k4Þ; and finally

P max
i;j¼1;y;d

jvij jXE
� �

p2d2 exp �2E
2n

k4

� �
:

Setting E ¼ mnðaÞ we come to (21). Define

AdðnÞ 
 Id � QdðnÞ ¼ Id � 1
n

Xn

t¼1
fdðtÞf0

dðtÞ �
1

n
Id :
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If the event Oa holds, then j½AdðnÞ	ij jpn�1 þ mnðaÞ; i; j ¼ 1;y; d (here ½AdðnÞ	ij
denotes the i; j-entry of the matrix Ad ). Let A

j
dðnÞ; j ¼ 1;y; d denote the rows of the

matrix AdðnÞ: Then it is easily checked that jjAdðnÞjjLpð
Pd

j¼1 jjA
j
dðnÞjj

2
2Þ
1=2: Thus, on

the set Oa we have

jjAdðnÞjjLp
dn

n
þ dnmnðaÞ:

Due to (22), jjAdðnÞjjLo1 and therefore
1

1þ jjAdðnÞjjL
pjjðId � AdðnÞÞ�1jjL ¼ jjQ�1

d ðnÞjjLp
1

1� jjAdðnÞjjL
:

Using the above bound on jjAdðnÞjjL we obtain (23). The lemma is proved. &

3. The next step in our analysis is to bound from above the quantity I1ðn; bÞ ¼
Ejjb̃d � bd jj2L (see (19)). First, we establish some useful bounds that will be used later.
We have

jjb̃d � bd jj2LpjjQ�1
d ðnÞjj2Ljj � n�1bd þ I11 þ I12jj2L; ð24Þ

where

I11 

1

n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkxkðtÞ; ð25Þ

I12 

1

n

Xn

t¼1
fdðtÞEðtÞ: ð26Þ

Lemma 2. Under Assumptions 1 and 2

jjn�1bd jj2L ¼ n�2
Xd

k¼1
l2kb

2
k; ð27Þ

EjjI11jj2Lp
k2

n

Xd

k¼1
l2k

XN
j¼dþ1

b2j ; ð28Þ

EjjI12jj2L ¼ s2

n

Xd

k¼1
l2k: ð29Þ

In addition, E/I11; I12SL ¼ 0:

Proof. The proof of (27) is straightforward. To show (28) we denote

I11;k ¼ 1

n

Xn

t¼1
xkðtÞ

XN
j¼dþ1

bjxjðtÞ; k ¼ 1;y; d:
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Notice that E½I11;k	 ¼ 0; 8k ¼ 1;y; d: We have by Assumptions 1 and 2

E½I11;k	2 ¼E
1

n2

Xn

t;s¼1
xkðtÞxkðsÞ

XN
j;l¼dþ1

bjblxjðtÞxlðsÞ
 !

¼ 1

n2
E
Xn

t¼1
x2kðtÞ

XN
j¼dþ1

bjxjðtÞ
 !2

p
k2

n

XN
j¼dþ1

b2j ;

and this implies (28).

Let I12;k ¼ n�1Pn
t¼1 xkðtÞEðtÞ; k ¼ 1;y; d; then EjjI12;kjj2L ¼ E

Pd
k¼1 l

2
k½I12;k	

2;

and (29) follows by direct calculations. Notice also that E½I12;k	 ¼ 0; 8k ¼ 1;y; d:
Further, for every k ¼ 1;y; d

E½I11;kI12;k	 ¼E
1

n2

Xn

t;s¼1
xkðsÞEðsÞxkðtÞ

XN
j¼dþ1

bjxjðtÞ
 !

¼ 1

n2

Xn

t¼1
E x2kðtÞEðtÞ

XN
j¼dþ1

bjxjðtÞ
 !

¼ 0

since E is independent of fxkgk¼1;2;y: Hence E/I11; I12SL ¼ 0 as claimed. &

Lemma 3. Suppose that Assumptions 1 and 2 hold, and bAc1 or bABðfakg;LÞ with

constants ak satisfying k�1=2ak-N; k-N: Then there exist constants C1 and C2

depending on s2; k; t only such that

ðEjjI11jj4LÞ
1=2p

C1

n

XN
k¼dþ1

jbkj
 !2Xd

k¼1
l2k; ðEjjI12jj4LÞ

1=2p
C2

n

Xd

k¼1
l2k:

Proof. We start with bounding EjjI11jj4L ¼ Eð
Pd

k¼1 l
2
k½I11;k	

2Þ2: For every k ¼
1;y; d we have, due to independence of the replications fx1ðtÞ; x2ðtÞ;ygt¼1;y;n;

E½I11;k	4 ¼E
1

n

Xn

t¼1
xkðtÞ

XN
j¼dþ1

bjxjðtÞ
 !4

¼ 1

n4
E
Xn

t;s¼1
x2kðtÞx2kðsÞ

XN
j¼dþ1

bjxjðtÞ
 !2 XN

j¼dþ1
bjxjðsÞ

 !22
4

3
5

p
k4

n4

Xn

t;s¼1
E

XN
j¼dþ1

bjxjðtÞ
 !2 XN

j¼dþ1
bjxjðsÞ

 !22
4

3
5

p
k8

n2

XN
j¼dþ1

jbj j
 !4

:
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Thus,

EjjI11jj4L ¼ E
Xd

k;j¼1
l2kl

2
j ½I11;k	

2½I11;j	2p
k8

n2

XN
j¼dþ1

jbjj
 !4 Xd

k¼1
l2k

 !2
:

Similarly, for every k ¼ 1;y; d;

E½I12;k	4 ¼E
1

n

Xn

t¼1
xjðtÞEðtÞ

 !4
¼ 1

n4

Xn

t;s¼1
E½x2kðtÞE2ðtÞx2kðsÞE2ðsÞ	

¼ s4

n2
1� 1

n

� �
þ k4s4t

n3

and therefore

EjjI12jj4L ¼ E
Xd

k¼1
l2k½I12;k	

2

 !2
p
s4

n2

Xd

k¼1
l2k

 !2
1þ k4t

n

� �
:

This completes the proof. &

4. Now we are ready to establish an upper bound on I1ðn; bÞ ¼ Ejjb̃d � bd jj2L:
Let the event Oa be defined by (20). We choose a ¼ an ¼ 2d2n�8; and let

rn
n ¼ rnðanÞ: Note that condition (9) ensures (22) of Lemma 1 for large enough

n: In addition, (9) implies rn
n-0 as n-N: It follows from (24) and Lemma 2

that

Eðjjb̃d � bd jj2L1fOangÞ

p 1þ rn
n

1� rn
n

� �
Ejj � n�1bd þ I11 þ I12jj2L

¼ 1þ rn
n

1� rn
n

� �
ðjjn�1bd jj2L þ EjjI11jj2L þ EjjI12jj2LÞ

p 1þ rn
n

1� rn
n

� �
1

n2

Xd

k¼1
l2kb

2
k þ

k2

n

Xd

k¼1
l2k

XN
j¼dþ1

b2j þ
s2

n

Xd

k¼1
l2k

 !


 J1ðn; bÞ; ð30Þ

where 1f�g stands for the indicator function.
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Similarly, using Lemmas 1–3 and the Cauchy–Schwarz inequality,

Eðjjb̃d � bd jj2L1f %OangÞp n2Eðjj � n�1bd þ I11 þ I12jj2L1f %OangÞ

p 4n2ðjjn�1bd jj2LPð %OanÞ þ E½jjI11jj2L1f %Oang	

þ E½jjI12jj2L1f %Oang	Þ

p 4n2
an

n2

Xd

k¼1
l2kb

2
k þ

C3

n

Xd

k¼1
l2k

XN
k¼dþ1

jbkj
 !2 ffiffiffiffiffi

an
p

2
4

3
5

p
8d2

n8

Xd

k¼1
l2kb

2
k þ

C3d

n3

Xd

k¼1
l2k

XN
k¼dþ1

jbkj
 !2


 J2ðn; bÞ;

ð31Þ

where C3 is a constant depending on s2; k; and t only. Thus, we obtain

I1ðn; bÞ ¼ Ejjb̃d � bd jj2LpJ1ðn; bÞ þ J2ðn;bÞ; ð32Þ

where J1ðn;bÞ and J2ðn; bÞ are given by (30) and (31), respectively.
5. Taking into account (30) and (31) and returning to (17) and (19) we can write

sup
bAB

Ejj #b� bjj22p sup
bAB

XN
k¼1

ð1� lkÞ2b2k þ J1ðn; bÞ þ J2ðn; bÞ þ I2ðn; bÞ
" #

p sup
bAB

XN
k¼1

ð1� lkÞ2b2k þ
s2

n
l2k

	 


þ sup
bAB

J1ðn; bÞ �
s2

n

Xd

k¼1
l2k þ J2ðn; bÞ

" #
þ sup

bAB

½I2ðn; bÞ	: ð33Þ

The first term on the RHS of (33) is exactly rnðBÞ (see [17] or [1]); so in order to
complete the proof of the theorem it is sufficient to show that the second and the
third terms on the RHS of (33) are of the order oðrnÞ as n-N:
Due to (9), in order to prove that the second term in (33) is of the order oðrnÞ as

n-N; it is sufficient to show that

sup
bAB

1

n2

Xd

k¼1
l2kb

2
k ¼ oðrnÞ; n-N; ð34Þ

sup
bAB

1

n

Xd

k¼1
l2k

XN
j¼dþ1

b2j ¼ oðrnÞ; n-N: ð35Þ
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The proof of (34) is straightforward. Further,

1

n

Xd

k¼1
l2k

XN
j¼dþ1

b2j p
L2

n

Xd

k¼1
l2k max

j4d
½a�2

j 	pL2

n

Xd

k¼1
l2kn

2
n

p
1

n

XN
k¼1

ð1� nnakÞ2þ
s2

n

XN
k¼1

nnakð1� nnakÞþ

p
1

n

XN
k¼1

ð1� nnakÞ2þ
s2

n

XN
k¼1

ð1� nnakÞþprn

dn

n
¼ oðrnÞ;

n-N

(here we have used the fact that a�2
j pn2n for every j4dn (by definition of dn), (5), the

fact that 0paknnp1 for kpdn; and (9)). Thus,

sup
bAB

J1ðn; bÞ �
s2

n

Xd

k¼1
l2k þ J2ðn; bÞ

" #
¼ oðrnÞ; n-N: ð36Þ

Now we proceed with bounding supbAB½I2ðn; bÞ	: First, by the Cauchy–Schwarz
inequality

1

2
I2ðn; bÞp

Xd

k¼1
ð1� lkÞ2b2k

 !1=2 Xd

k¼1
l2k½Eð *bk � bkÞ	2

 !1=2

 I21ðn; bÞI22ðn; bÞ:

ð37Þ

Arguing as before we obtain

sup
bAB

I21ðn; bÞ ¼ sup
bAB

Xd

k¼1
ð1� lkÞ2b2k

 !1=2
p sup

bAB

XN
k¼1

ðnnakÞ2b2k

 !2

p ðL2n2nÞ
1=2 ¼ nn

s2

n

XN
k¼1

akð1� nnakÞþ

 !1=2
pr1=2n : ð38Þ

Observe that I22ðn; bÞ ¼ jjEb̃d � bd jjL and our current goal is to bound this quantity
from above. Let Fn

x denote the s-field generated by n independent sequences

fx1ðtÞ; x2ðtÞ;yg; t ¼ 1;y; n: Since E is independent of fxkgk¼1;2;y we have from

(18)

E½Eðb̃d � bd jFn
xÞ	 ¼ E Q�1

d ðnÞ �n�1bd þ 1
n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkxkðtÞ
 !" #

:

A. Goldenshluger, A. Tsybakov / Journal of Multivariate Analysis 84 (2003) 40–6056



Hence, by the Jensen inequality,

I22ðn; bÞ ¼ E Q�1
d ðnÞ �n�1bd þ 1

n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkxkðtÞ
 !" #�����

�����
�����

�����
L

pE Q�1
d ðnÞ �n�1bd þ 1

n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkxkðtÞ
 !�����

�����
�����

�����
L

:

Further, using the same reasoning as in bounding I1ðn; bÞ (see (30)–(32)) we finally
obtain

I222ðn; bÞp J1ðn; bÞ � 1þ rn
n

1� rn
n

� �
s2

n

Xd

k¼1
l2k

" #
þ J2ðn; bÞ:

Now taking into account (36) we conclude that supbABI22ðn; bÞ ¼ oðr1=2n Þ; n-N;

and this along with (37) and (38) implies that

sup
bAB

I2ðn; bÞ ¼ oðrnÞ; n-N: ð39Þ

Combining (39), (36), and (33) we complete the proof. &

5.2. Proof of Theorem 2

It is sufficient to consider the predictors ŷðn þ 1Þ such that Ejŷðn þ 1Þj2oN;
because otherwise the lower bound is obvious. First we note that, for any such
predictor ŷ ¼ ŷðn þ 1Þ;

E½ŷðn þ 1Þ � yðn þ 1Þ	2 ¼E ŷðn þ 1Þ �
XN
k¼1

bkxkðn þ 1Þ � Eðn þ 1Þ
" #2

¼ s2 þ E ŷðn þ 1Þ �
XN
k¼1

bkxkðn þ 1Þ
" #2

:

Further, ŷðn þ 1Þ can be decomposed into a sum of two random variables ŷ0ðn þ 1Þ
and ŷ00ðn þ 1Þ such that ŷ0ðn þ 1Þ is the orthogonal projection of ŷðn þ 1Þ on
spanfx1ðn þ 1Þ;x2ðn þ 1Þ;yg for fixed Un; and ŷ00ðn þ 1Þ is orthogonal to
spanfx1ðn þ 1Þ;x2ðn þ 1Þ;yg for fixed Un: Note that ŷ0ðn þ 1Þ has the form

ŷ0ðn þ 1Þ ¼
XN
k¼1

#bkðUnÞxkðn þ 1Þ;

where #bkðUnÞ are random variables measurable w.r.t. Un: Therefore,

R½ŷ;B	X sup
bAB

E ŷ0ðn þ 1Þ �
XN
k¼1

bkxkðn þ 1Þ
" #2

¼ sup
bAB

Ejj #b� bjj22X sup
bAB0

E
Xd

k¼1
ð #bk � bkÞ2
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for some sequence #bAc2 measurable w.r.t. Un and B0 ¼ fbAB: bk ¼ 0; k4dg:
Thus, it is sufficient to establish a lower bound on supbAB0 E

Pd
k¼1ð #bk � bkÞ2: The

further proof is similar to the proof of Theorem 1 in [1]. The difference is that we
have random, non-deterministic regressors, and therefore some modifications are
needed in calculations of the expected values. We indicate here these modifications.
The proof is based on bounding the minimax risk from below by the Bayes risk

and using the van Trees inequality. Assuming that bk is a random variable with
density mk and applying the van Trees inequality we get

Eð #bk � bkÞ
2
X

1

E½IðbkÞ	 þIðmkÞ
;

where the expectation is taken with respect to the joint distribution of Un; bk: Here
IðbkÞ is the Fisher information about bk contained in the observations Un; and
IðmkÞ is the Fisher information corresponding to the density mk: If (12) is fulfilled,
then mk; k ¼ 1;y; d; are chosen as mkðxÞ ¼ ð1=mkÞm0ðx=mkÞ; k ¼ 1;y; d; where m0
is a probability density supported on ½�1; 1	; and

Pd
k¼1 a2km2

kpL2: We have

E½IðbkÞ	 ¼
Z

Ex;y

Xn

t¼1

@ logjðyðtÞ �
Pd

j¼1 bjxjðtÞÞ
@bk

" #2
mkðbkÞ dbk

¼ 1

s4
E
Xn

t¼1
EðtÞxkðtÞ

" #2
¼ s�2n; ð40Þ

where jð�Þ is the standard normal density. This expression is the same as in the case
of the deterministic orthonormal design. Note that IðmkÞ ¼ m�2

k I0; where I0 is the

Fisher information corresponding to the density m0: Therefore we have, for any
prediction method ŷ ¼ ŷðn þ 1Þ;

R½ŷ;B	Xs2

n

Xd

k¼1

m2
kI�10

m2
kI�10 þ s2n�1:

Choosing m2
k ¼ s2ð1� nnakÞþðnnnakÞ�1; we see that

Pd
k¼1 a2km2

k ¼ L2; and thus under

condition (12) we get the desired result

Rn½ŷ;B	Xs2dn

n
ð1þ oð1ÞÞ ¼ rnð1þ oð1ÞÞ; n-N:

If condition (11) holds, then the prior distributions mk are chosen so thatZ
xmkðxÞ dx ¼ m2

kð1� d=2Þ; IðmkÞpm�2
k ð1þ dÞ

for some dAð0; 1Þ; and m ¼ ðm1;y;mdÞ satisfying
Pd

k¼1 a2km2
kpL2: Proceeding as in

[1, pp. 117–118], and computing the expected value of the Fisher information
E½IðbkÞ	 as in (40), we obtain the announced result under condition (11). &
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5.3. Proof of Theorem 3

The proof goes along the same lines as the proof of Theorem 1. We omit the proof,
outlining the main differences from the proof of Theorem 1.
The main difference is that now the regressor vectors fdðtÞ are dependent for

different t ¼ 1;y; n: However, they are d-dependent; i.e., vectors fdðtÞ and fdðsÞ
are independent for jt � sj4d: Therefore, the exponential inequalities for deviations

of n�1Pn
t¼1 uðt � kÞuðt � jÞ; k; j ¼ 1;y; d from their expectations can be written

down, and the ‘‘good’’ event similar to Oa can be defined (see [7, Lemma 1]). Thus,
an analog of Lemma 1 can be established. Further, results similar to Lemmas 2 and 3
are easily obtained. In particular, for

I11 ¼
1

n

Xn

t¼1
fdðtÞ

XN
k¼dþ1

bkuðt � kÞ; I12 ¼
1

n

Xn

t¼1
fdðtÞEðtÞ;

the same inequalities (25) and (26) hold true. Other details of the proof remain
unchanged. &
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