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Abstract

We consider the problem of estimation of the parameters in Generalized Linear Models (GLM) with
binary data when it is suspected that the parameter vector obeys some exact linear restrictions which
are linearly independent with some degree of uncertainty. Based on minimum ¢-divergence estimation
(M@E), we consider some estimators for the parameters of the GLM: Unrestricted M@ E, restricted M@ E,
Preliminary M@ E, Shrinkage M¢E, Shrinkage preliminary M@ E, James—Stein M ¢ E, Positive-part of
Stein-Rule M ¢ E and Modified preliminary M ¢ E. Asymptotic bias as well as risk with a quadratic loss
function are studied under contiguous alternative hypotheses. Some discussion about dominance among the
estimators studied is presented. Finally, a simulation study is carried out.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let Y;,i = 1,...,1, independent binomial random variables with parameters 7; and n;,
i =1,..., 1. Weshall assume that the parameters m; = Pr(¥Y; = 1),i =1, ..., I, depend on the
unknown parameters 8 = (fo, . .., ,Bk)T and explanatory variables Xl.T = (X0, - - - » Xik) , Xi0 =
1,i =1, ..., I through, the linear predictor
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k
r]iEg(T[i)Zinjﬂj, i=1,...,[. (1)

J=0

Here g is the link function. Unless restrictions are imposed on 8, we have —oo < 1; < 00,i =
1,..., 1. We denote by X the I x (k + 1) matrix with rows xiT,i =1,...,1. We also shall
assume that rank(X) = k + 1. The function g maps the unit interval onto the whole real line
(—00, 00). So we consider Generalized Linear Models (GLM) with binary data. Link functions
n; = g (;) can be any monotonic, differentiable function; however, in practice, only a small
set of link functions are actually used. In particular, links are chosen such that the inverse link
m; = g~ (n;) is easily computed. Some link functions can be seen in McCullagh and Nelder
[10] in p. 108. In the following, we denote ; = 7 (xlTﬂ) .

Let y; be the number of “successes” associated Wig} theAbinomial random variable Y;,i =
1, ..., I. The maximum likelihood estimator (MLE), 8 = B (Y1, ..., Y1), of the true value of

the parameter 8 maximizes the expression
I
Yi ni—=yi
18) = Y tog (= (x78)" (1= (x18))" ")
i=1

o~

B = arg ,rsneaél B, @

i.e.,

where

O={B=Bo,..., Pk :Bi € (—00,00),i=0,...,k}.

If we denote

P = (}31’_2’ nln;ly’)T and m;(B) = (7T (XzTﬂ) A= (X"Tﬂ>)T’ ®

i=1,...,1, wehave

1
[(B) == niDxun (Pi-7i (B) — > _niH (P;)
i=1 i=1
where Dkl (ﬁ,-, T (,3)) is the Kullback-Leibler divergence between the probability vectors p;
and x; (B), defined in (3), and H (ﬁ,) is the Shannon entropy associated with the probability
vector p;. Their expressions are

Yi ni—Yi
~ Yi n; ni —Yyi n;
D TG =>1lo : + lo !
Kull (pz l(ﬁ)) n; g T (X;Fﬂ) n; g -7 (X;Tﬂ)
and
H(B) = 2 1og 2 - Vg
ni ni ni ni

respectively. Therefore the MLE, defined in (2), can be alternatively defined by

I
B = arg min ZniDKull (P i (B)). @
pe® i
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because H ('ﬁl) does not depend on 8,i = 1, ..., I. For more details about Kullback-Leibler
divergence measure, see Kullback [7].

A new class of estimators can be obtained if we replace the Kullback-Leibler divergence in
(4) for a general family of divergence measures. One of the most known generalizations of the
Kullback-Leibler divergence is the ¢-divergence measure introduced by Csiszar [4] and Ali and
Silvey [1], simultaneously. The ¢-divergence measure between the probability vectors p; and
7; (B) is given by

Dy (1.7 B) = 7 (x7B) ¢ (ﬁ) +(1=x(x'8)) (ﬁ)

¢ € O*, d* is the class of all convex functions ¢ (x),x > 0, such that at x = 1,¢ (1) =
¢’ (1) = 0,¢” (1) > 0. In the following, we shall assume the conventions 0¢ (0/0) = 0 and
0¢ (p/0) = plim,_, o ¢ (u) /u. For a systematic study of ¢-divergences see Pardo [11] and
Vajda [18].

As a natural extension of the maximum likelihood estimator, given in (4) it is possible to
consider the minimum ¢-divergence estimator given by

I
By = arg;l;igzniDq) (pi 7 (ﬂ))'

i=1

In the following, we refer to ﬁ¢ as the unrestricted minimum ¢-divergence estimator of the true
value of the parameter .

Now we assume that non-sample prior information on the value of B, is available, either from
previous studies or from the practical experience of the researchers or experts. Let the non-sample
prior information be expressed by the subset @y of @ defined by

Qo = {ﬂe Q/KTﬂ:m},

where KT is any matrix of 7 rows and k + 1 columns and m is a vector, of order r of specified
constants; we can define the minimum ¢-divergence estimator restricted to @y by

I
ﬂgo = arg min ZniDq; (ﬁl T (ﬂ)) )
B0 i
We refer to it as the restricted minimum ¢-divergence estimator. There is only the limitation on
KT in the sense that it must have full row rank, i.e., rank(KT) =r.
If we know that B, € ©, without any additi/gnal information, we shall estimate B using the
unrestricted minimum ¢-divergence estimator B, and if we are completely sure about B, € 6y

we shall estimate B, using the restricted minimum ¢-divergence estimator, /ﬁ\go If we have some
“uncertainty” about if B, € O, a better procedure for estimating 8, will be to use a “preliminary
test estimator”. It is well known that preliminary test estimation of parameters was introduced in
the literature to estimate parameters of a model when it is suspected that some “uncertain prior
information” on the parameter of interest is available. In this paper we introduce preliminary
test estimators about the parameter f of the GLM when it is a priori suspected that the GLM
parameters belong to the subspace of the parameter space determined by KT 8 = m. Preliminary
test estimators involve a statistical hypothesis test of the “uncertain prior information”, in our
case Hy : KT8 = m, based on an appropriate test statistic. We shall consider for testing
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Hy : KT8 = m, a family of test statistics based on ¢-divergence measures that in some sense
generalizes the likelihood ratio test. On the basis of this test a decision on using the unrestricted
minimum ¢-divergence estimator or the restricted minimum ¢-divergence estimator or both of
them simultaneously will be taken. Preliminary test estimators were introduced by Bancroft [2]
and studied later for many different authors in different problems. Preliminary test estimators of
the Stein-type were introduced in Stein [17] and James and Stein [6] and expanded by Saleh and
Sen [13,14] and Sen and Saleh [16] in the nonparametric context. A very nice state of the art
about this type of estimators in many different problems can be seen in Saleh [15].

Section 2 is devoted to introducing a very wide family of preliminary test estimators as

alternatives to E¢ and ﬁgo In Section 3, we obtain the asymptotic bias of them under the
null hypothesis as well as under contiguous alternative hypotheses. Their asymptotic quadratic
risk and different relations among them are studied in Section 4. Finally, a simulation study
is carried out in Section 5 in order to analyze the behavior of the different preliminary test
estimators for small samples.

2. Alternative estimators

We denote N = Z,-Izl n;,

. T 2
Wy = diag i (87-[ (X’ ﬂo))

Nar (7B) (1~ (TBo)) \ o

and by p and p (By) the probability vectors

r=\y"¥% 'N N "N N
p(Bo) = (77 (’ﬁﬁo) %, (1 - 7; (X?ﬂo)) }11\1_1’ C, T (x}rﬁo> %,
(1= (xi8)) ) -

Under the assumptions that 7 has continuous second partial derivatives in a neighborhood of the
true value of the parameter S8, and ¢ (1) € &* is twice differentiable at + > 0. The minimum
¢-divergence estimator of B, for the GLM, given in (1), verifies

= (ﬂ n—yi Y2 =y i nz—y1>T

~ —1
By = Bo+ (X"WyX) XTD< ) D, (P—p(8)))

cY
ti=1,...,
+ [P —p (Bo)| eer (B: P —p (Bo)) - &)
where
N
o = (1) 2z xi o) « (x780) =1,
N

o ~ (1 . (X;rﬂ0>)71/2 ,

and the function ot} : R*/ — RF! verifies o1 (p; p—p (Bo)) — 0 as p—p (By) - By Da, we are
denoting the diagonal matrix with elements a.
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Pardo and Pardo, [12] established that
VN (B, —By) 3 N[0 (XTWX)A 6)
¢ 0 N—o0 ’ ’

where W = limy_, oo Wy.
. . .. . . ~H .
In relation to the restricted minimum ¢-divergence estimator, ﬁ(PO, we have the following
expansion:

. -1
By = oMy (B0) (X'WaX) XD 1 DL (B2 (80))

+ [P—p(Bo)| 2 (P: P — P (Bo)) . (7)
where
_ _ -1
Hy (Bo) =1— (XTWNX) 'K (KT (XTWNX) : K) KT

and the function e, : R* — R, verifies ay (p; p — p (By)) = 0asp — p (Bo) -
For more details about obtaining Egs. (5)—(7) see Pardo and Pardo, [12].
Based on (5) and (7) it is not difficult to establish that

BB = - () K (K (wx) k) (17, )
£ 15— p (Bo)| (o2 (35— p (Bo)) — e (3D~ p (Bo)) ©

To test the compatibility of the restricted and unrestricted minimum ¢-divergence estimators
~H -~ . . . .
B ¢0 and B, we can consider the family of ¢-divergence statistics

Tli/]>1,¢2 _ ¢i/2(1) ;nil)tb] (71'1' (Em) T (ﬁilljz())) ’ 9)

where ; (Em) and &r; (Bg;o) are obtained from (3) replacing B by E¢2 and ﬁgzo, respectively.
In fact, we consider two ¢-divergence measures, Dy, associated with the ¢;-divergence test
statistic and Dy, associated with the minimum ¢,-divergence estimator. If the linear hypotheses,
KT,B = m, are correct, (Ho : KT/S = m), the asymptotic distribution of Tf}l’m, given in (9), is
chi-squared with r degrees of freedom (see Theorem 1).
If we choose in (9) ¢ (x) = xlogx —x + 1 and ¢ (x) = %(x — 1?2, we get the classical
Pearson test statistic for testing

Hy : KT,B = m versus Hj : KTB #m (10)
and for ¢; (x) = ¢ (x) = xlogx — x + 1, we get TS"? = LR + 0,(1), where LR is the

classical likelihood ratio test. Now we use the test statistic (9) as well as the sample information

. . -~ ~H,
to define alternative estimators of B, to B4, and B ¢20 .
In the case where we do not have enough evidence about if 8 € 6y, we propose to consider
the family of estimators based on the test statistic defined in (9),

ﬁgl,m = ’B‘(ZO + (1 —h (T/{/)MSZ)) (EM _ﬁqu;)) :
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The election of different functions & give some well known estimators If we choose h(x) =

0, Vx we get the unrestricted minimum ¢,-divergence estimator, /3(1,1 b = ﬂ¢2 For h(x) =
1,Vx, we get the restricted minimum ¢;-divergence estimator, ﬂZ1 b = ﬁ¢2 For h(x) =
1 —a,Vx,a € (0,1), the Shrinkage minimum divergence estimator, ﬂ¢1 o = EifE. For
h(x) = 1(0 22 )(x) the preliminary minimum divergence estimator, ,3 b1y = ,B¢I ¢, For

h(x) =al (0 X )(x) a € (0, 1), the Shrinkage preliminary minimum ¢,-divergence estimator,
ﬂzp.,m = ﬂ¢1,¢>z' For h(x) = (r — 2)x~ ', (r > 2), the James—Stein minimum divergence
estimator, §21,¢2 = /ﬂ\;wﬁz' For h(x) = 1 — (1 —(r— Z)x_l) I—2,00) (x), (r > 2), the
positive-part of Stein-Rule minimum divergence estimator, ﬂgl’ ¢ = ﬂf;l”(pz. For h(x) =

1 — (1 —(r— Z)x_l) [X24.50) (x) (r > 2) the modified preliminary minimum divergence

~PTE
estimator, ﬂ¢1 o =By, ¢>;

If we restrict ourselves to the maximum likelihood estimator and the classical likelihood ratio
test some of the above estimators were considered by Matin and Saleh ([9,8]) in the particular
case of the logistic regression model, not in the context of generalized linear models, considered
in this paper. Also the parameters are restricted to the equation KT8 = Bo with K" = I and
Bo = (,38 , ,3?, cery ﬂ,?) is a fixed value of 8 which is a particular case of our equation KT8 = m.

In the following Section, we shall obtain the asymptotic bias of ﬁzl ¢, as well as some properties
of them.

~h
3. Asymptotic bias of B, , under contiguous alternative hypotheses

First we are going to get the asymptotic distribution of T]f,bl’m if some or all the hypotheses
are incorrect as well as other results that will be necessary to get the asymptotic bias as well as
the asymptotic distributional quadratic risk.

Let By € © — O be a given alternative and let B be the element in &y closest to B in
the Euclidean distance sense. A possibility to introduce contiguous alternatives is to relax the
condition f (8) = K'8 — m = 0 defining 6. Let § € R” and consider the following sequence,
By, of parameters approaching 6y according to

Hin:f(By) = N2

It is clear, under Hj y, that

Sv = VN (By, — Bv) > S. (a1

where S is a normal random vector with mean vector tg = 0 and variance—covariance matrix

—1
g = (XTWX) where W = limy_, oo Wy

The following theorem presents the asymptotic distribution of T;@ ! ’¢2, givenin (9) under Hy y.

Theorem 1. Under H; y, the asymptotic distribution of T]f;l’d)2

r degrees of freedom and noncentrality parameter

is a noncentral chi-square with

5= gt (KTZ'SK)_I 5 (12)
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and under Hy given in (10) is a chi-square with r degrees of freedom.
Proof. A second Taylor expansion gives
T =YY +op(1)
where
Y = VNDL /% (pBy) — pBi)) -
But
PB) —pPBN) =Farssny B) (B—By)+ |B—Buy| ™ B; B—By)

where o* : R — R verifies a*(8; B — By) —> 0as § —> B and

e (xtp) " (1-7 (1) )
_%n (Xl-Tﬂ)i]/2 (1 -7 (xiTﬂ)l/2>

F2/x(k+1) (B) = diag

i=1,...,1

Taking into account that

T y=1/2p—1/2
X Farxet1) (Bo) Dp(ﬂ/o)Dp(ﬂ/o)FZIx(k+l) (Bo) X = X"WyX

we have
b1,¢ 2 2H\T o1 2 2Ho
T = W(ﬂd,z . ﬁ¢2> X WNXW(,B@ - ﬂ¢2) +op(1).
Based on (8) we get,
—~ T -1 _
T8 = /N (KTﬁ¢2 - m) (KTZJSK) VN <KTﬁ¢2 — m) +o,(1).
A Taylor series expansion of f ( ﬁm) around By yields

£(By,) =F(By) + K" (By, — Bn) + [By, — Bl @3 (Byy: By, — Bi)-

where a3:RFf! — R’ verifies o3 (ﬂ; B — ,BN) — 0 as B — By. We know that f(ﬂN) =
N~1/2§ and therefore

£(Bg,) = N8+ K" (By, —By) + By, — Byl a3 (Byy: By, — Br) -
As N1/2 ||ﬁ¢2 — By || is bounded in probability and by (11), we have
\/Nf(ﬁm)NioN(s,KTst).

Now the result follows from lemma in page 63 of Ferguson [5].

P2

Under Hp, § = 0, therefore, the asymptotic distribution of T;\’;l is a chi-square with r

degrees of freedom. W

Proposition 2. Under H| y the random vectors,

YN = «/N(:E(Pz —ﬁgf) and ZN = \/N(ﬁgzo - :BN>
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are asymptotically independent and

L L
Yy — Y, Zy — Z,
N—o00 N—o00
where Yy and Zy are normal random vectors with mean vectors iy = L& and py = —L8,

respectively and variance—covariance matrices
Yy =LK'Ys and ¥z =Xs-LK' g,

respectively, where

L = ¥sK (KTESK)_1 .

Proof. The result for Y is obtained from (8) and (6) and the result for Zy is obtained from (7)
and (6). The random vectors Y and Z are asymptotically independent, because it is not difficult
to establish that

lim Cov(Yy,Zy)=0. H
N—o00

Remark 3. We have that
-~ ~H
Cov (/3¢2) — Cov (ﬁ¢20) =JYy.

Therefore the difference of the variance—covariance matrices is a positive semi-definite matrix,
and hence it can be concluded that the restricted minimum ¢, -divergence estimator has a smaller
sampling variance than the unrestricted minimum ¢,-divergence estimator.

Let /~9* be a suitable estimator of 8, and we denote by FE* the asymptotic distribution of

VN (E* - B N) . The asymptotic bias of E* is defined by

BB = / xdF- (X) .
In the following theorem, we present the expression of B(Ezl )
Theorem 4. The asymptotic bias of
Born =B+ (1= (1)) (B ~ B2
under Hi y is given by
B@) ,) = —ZsK (KTZ‘SK)_I SE[h (x22 )]
Proof. We have,
VN (Bovn — Br) = VN (B —B) + (1= (1)) VN (B, B
= VN (By, — Bn) ~ \/N(ﬁdzz - EZO) h (Tff"m) :
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Under H; y, limy—o0 E [W (ﬁdn — ﬂN)] =0and v/N (}%2 — 3520) can be written as
_ _ —1
JN (ﬁ¢2 - ﬁ(’;‘)) - (XTWNX> 'k (KT (XTWNX) 1K> JN (KTﬁd)2 - m)
+~/N [p=p (Bo)] (2 (P: P — P (Bo)) — 1 (B:P—p(Bo))) -

Therefore,

—~h —1/2
B(ﬁ¢1,¢2) =-%sK (KTESK) E [Eh (STg)] )
where £ is a normal random vector with mean vector
—1/2
e = (KTZJSK> 5

and variance—covariance matrix the identity X'¢ = I. Applying Theorem 6 in Saleh [15], we have

BBl 4) = —TsK (KTESK)_l SE [h (122 )]

where A = 87 (KTESK)_1

5. N
Remark 5. From the above theorem, we can get the asymptotic bias for the different estimators

considered in Section 2 using the corresponding expressions of h. The estimator B, is

asymptotically unbiased and ﬁq)z , ,BifE, ﬂgﬁz, B;ST, ﬁ(m e ﬁ¢l $ ,B;Ti; are biased. Under

the null hypothesis Hy : KT8 = m, the bias of ﬂ ¢1.4,> independently of A, is zero.
The previous results are not in a scalar form, and in order to be able to do comparisons we can
consider the asymptotic quadratic bias of them

B*(B") = BB = BB).
This is given by

B* (B}, 5) = (E [h (x,2+2 (x))])st (KTZ‘SK>_1 5= (E [h (XEH (x))])zx, (13)
where A was defined in (12).

From (13), the asymptotic quadratic bias for the different estimators considered in this paper is
given by B*(B,) = 0, B*(Byy) = . B*(ﬂ¢2 )= (=) %, B* By, ) = 1G5 (x2ai 2)
BBy ) = 17T (12 ) 1B ) = ¢ =27 (E [ m]).

B* By ) =1 {Gra =20 + - =2 E [ )]

_ ~PTE
=D E 17 0 Hor (2 )] | and B BYED) = 2 (Gra (xui )
F-DE[ W]~ - DE[x B0 e (Ea ]|
By G, (x; 1), we are denoting the distribution function of a non-central chi-square with r
degrees of freedom and noncentrality parameter A evaluated at x.

~Hy 5SRE SPTE =SPT
Theorem 6. The asymptotlc quadratic bias of the estimators ﬂd)z’ /34,20 By, s Bg g Boy.gns

ﬁ¢| b ,B¢1 ¢, and ﬂ¢| ¢, can be ordered as follows:
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(a) B*(By) < B*(By) < B*(By)

(b) B*(ﬂ¢2) < B*(ﬂi”;) < B*(By )

(©) B* Byl 4,) = B*(By, ) and B* By ) < B*(By')

@ B*Bpy) = B Blyg) if Griz (67 ) = ¢ =2 E [ 17 )] for all & and .

(©) B* Byt g) = B* Bl ) i Groa (120 1) Z E[1= (1= =20 75 )
X 1(+-2,00) (Xr2+2 (A))]for all o and ).

Proof. Parts (a), (b), (d) and (e) are immediate.
(¢c) It is clear that [ = B*(ﬁil )~ B*(B\;:r@z)’ can be written as

1
l=x<r—2>2{ [ 0 H0r (X2 @) ] = =5, Gra 0 =2 A)}

(28 [ 2 0]+ g G0 = 20 - E [ 0 o (20 @) ]}

Now applying (2.2.1a), (2.2.13a), and (2.213g) in Saleh [15], we have / > 0. On the other
hand, we have

E[n W] = B[ M oz, (B2 ®)] 20

Therefore
B (B = 1 [6rin (i) 4~ 2 [ 0]
— 0 =2E [x75 0 Lor—2) (K2 (“)]}2
> AGr42 (xf,a; /\>2 (Egﬁz) u

~h
4. Asymptotic quadratic risk of B, , under contiguous alternative hypotheses:
Performance

Let ﬁ* be a suitable estimator of B and Fﬁ* the asymptotic distribution of
VN (E* - B N) . Given a positive semidefinite matrix M, we define the asymptotic distributional
quadratic risk (ADQR) of E* by

R (E*; M) = / x"MxdFye (x).

Theorem 7. The asymptotic distributional quadratic risk of

~h _ “~Hy 1,9 -~ “~Hy
By, = By, '|'(l_h(TN1 2)) (ﬂ¢2 ﬂd’z)
is given by
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~h
R (’B¢|,¢2; M)

= trace(M X) — trace(ZyM) {ZE [h (x,2+2 (x))] _E [h (x,2+2 (x))z]}
4 §TLTMLS {E [h (X2 (,\))2} —2E[h (xa )] +2E [0 (xP2 (x))]} .

Proof. We have

ﬁ(ﬁgmz - 'BN> = \/ﬁ(ﬁdu - ﬂN) - \/N(ﬁtbz ﬂ¢2) (T¢l ¢2)
Therefore,

R (EZ.,¢2z M) = E -Nli_r)noo («/ﬁ By — Bn) - ﬁ(§¢2 _E;IZO)Th (T131,¢2)> M

<W(§¢2 —Bn) - ﬁ(ﬁm /’m) (T¢l m))}

=E _IJEHOO\/N(,/}@ - ﬂN)TM\/N(ﬁ(pz - ﬂN)]

—E| lim «/ﬁ(}%—/31\,)TM~/N(E¢,2 ﬂ¢2) (T¢1 ¢2)]

_N—>oo

—E| Jim (T]f,”’m) VN (E(}bz - EZO)TMW(% = ﬂN)]
[ () N (BB W (B )
—A—B—C+D.

Now we are going to get the expressions of A, B, C and D. By (11), we have
A=F [STMS] = trace(MXg).
We know
2 2 Ho T - T (xT - -2
ﬁ(ﬂ¢2 —ﬂ¢2) - ﬁ(x WNX) K(K (X WNX) K) £y,
T T 1.o\—L/2 ™
where VNEy = (KT (XTWyX) " K) " VN (K"B,;, — m) and
NEy = &,
N—oo
being § a random normal vector with mean pg = (KTZ‘SK)A/ : & and variance—covariance
matrix the identity X'y = L
By Theorem 8§ in Saleh [15], we have
2 —-1/2 —-1/2
D=E [h (ng) g7 <KTZ‘SK) KT XM XK (KTSSK) g}

= trace(ZyM)E |:h (Xf+2 (x))z} o |:h (XE » (A))2:| sTLTMLS.
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In relation with B, we have the following:

B=E _}Jiirlwﬁ(ﬁ¢2 —ﬁN)TM‘/ﬁ(/}d)z /3¢2> <T¢l ¢2)i|

—1/2

N—>oo

= E| lim STM# (T¢1 ¢2) (XTWNX)_l K <KT (XTWNX)_l K) JN. N]

_ £ [s™™n (sTs) 25K (KTESK)_UZ«S}

_eln (ng) E [ST/g] MK (KTESK)_l/zg] .
It is not difficult to establish that
E[S/E =x] = ¥sK (KTZJSK)A/ZX — L.
Therefore we have,
C=E [h (ng) g7 (KTZ'SK)_I/Z KT XM XK (KTESK)_I/2 g}
—E [h (ng) STLTM 36K (K ( ZSK) 12 ]
— trace(ZyM)E [h (x3+2 (x))] +§TLTMLSE [h (x,2+4 (x))]
—§"LTMLSE [h (Xf » (A))]
— trace(ZyM)E [h (Xr2+2 (x))]
+8TL™™MLS {E [h (x,2+4 (x))] _E [h (Xr+2 (x))]} .
Now the result follows. M

First we are going to see the relation between the asymptotic quadratic risk of
~Hy 5SRE PTE —SPT =S T
}3¢2, By, By, By 4,0 B, ,ﬂ¢l e ﬂdn ¢, and ﬁ¢> & " under the null hypothesis Hy : K =

m.

Theorem 8. Under the null hypothests Ho : KT8 = m, the asymptotlc dlstrlbutlonal quadratic
~SRE =PTE =SPT =S
risk of the estimators ,B(pz, ﬂ¢2 By, By Boygoe ﬂ¢l P B¢1 ¢, and ﬂ¢,1 ¢, can be ordered

as follows:

w0 R (B0 < 1 (BT ) < 1 (BT ) < R (B
(b) If r > 2,
R (E;[zo; M) =R (E;T@z; M) =R (Eimz? M) =R (ﬁlﬁz; M)
and
PTE

R(EQZO;M><R(B¢1€PZ’M)<R(ﬂ¢1¢2’ )SR(E@;M)'
© R (Bi:M) < R (By, M) < R (Byy: M
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(@) If Gri2(x24: 0) = (r —2) /2,

~Hy_ ~PTE ~5 ~
R (’3¢2 ’ M) =R ('Btbwﬁz’ M) =R (/34)1,@’ M) < R(By: M).
Proof. Under the null hypothesis Hy : KT8 = m by Theorem 7, we have

R (Eg.,q)z? M) = trace(MXY'z) + trace(XyM)E |:(l —h (Xr2+2 (O)))z] .

Therefore the ADQR is an increasing function of

E[(l —h<x,?+2 (0)))2]. (14)

For this reason, we are going to analyze this expression for the different func-
tions h associated with ﬁ¢2,§$,ﬁifE,ﬁg:@z,/ﬂ\ﬁzz,/ﬁ\ihm, ﬁ;im and ﬁ;ri;, respec-
tively. It is not difficult to establish that E [(1=h (x2, )] is equal 1,0,a
1= Gri2(Xgi 0.1 = a2 =) Gria(X2gi 0. fy (1 = (r = 2x71)2dGrpa (x3 0), [755(1 —
(r— 2)x’1)2dGr+2(x; 0) and f)?a Q- - 2)x’1)2dGr+2(x; 0) for the functions % associated

.. = =Hy SSRE =PTE =SPT = -~ ~PTE . .
with 8, ﬂ(p;, ’3552 By g ﬂilm, ﬁ;wﬁz’ ﬂjﬁif/)z and /9451,4;;’ respectively. Now it is clear that

~~H, ~PTE ~SPT -~
R (ﬂzpzo? M) =R (ﬂmd)z; M) =R (/’¢1,¢z; M) < R(Bg,: M).

We consider r > 2. The expression (14) for ﬁ; Lo is1— %, and for Ed& it is 1. Therefore we
have,

~H =~ o~ -~
R (ﬂzpzo? M) =R <ﬂ¢1+,¢z; M) =R (ﬂm,«bz; M) < R(By,: M).
The inequality between R (ﬁ;;r b M) and R (ﬁil b M) follows, because

foo(l (= 2Dx )Gy 2 (1 0) < /00(1 (= 2x )Gy 1a(x; 0).
r—2 0

We have,

X:(l — (r = 2)x7H)2dG,12(x; 0) = 1 — Gy 12(x74: 0) + ’”r;z {_ (1 GG 0))
= (Gr202: 0 = G (20 ) |
and
R(BL%) R (BT )
- : [= (1= 6:024:0) = (G202 0 = G (10 0) .

Therefore, R (ﬁgﬁ;, M) <R (ﬁgﬁ;z; M), because G,—2(x24: 0) > Gr(x2y; 0).

Now it is clear that

~~H, ~PTE. ~PTE o~
R (ﬂ¢2°; M) =R (ﬂ(m,d;; M) =R ('B¢1,¢2; M) < R (By,: M).
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It is also immediate to see that R (EQI;IZO; M) <R (ﬁiI;E; M) <R (§¢2; M) .
The result in (d) follows because
r—2

/00(1 — (r —2)x7H%dG,42(x; 0) =
0

This last result has been obtained taking into account that

5 K1 ok r—+2 r+2 -1
E[Xr+2(0)]_2F<T+k>F< . ) . u

The following theorems give some relations among the ADQRs of the estimators

~SRE ~PTE SPT =S
:Bd)z’ ﬂ¢20, Bs, - Bpi gy Boi.gr: Bo.ons /3¢1 ¢, and ﬂ¢l ¢, under contiguous alternative hypothe-

ses. In the following, we shall denote by Chpax(A) and Chpin (A) the largest and the smallest
eigenvalues of the matrix M.

Theorem 9. Under contiguous alternative hypotheses Hi n : f(ﬁN) = N2 r > 2 and
assuming that M verifies

2
trace(ZyM) > %Chmax(SSM), (15)

we have R(ﬁ;td’z;M) < R(Eil,rbz;M) < R(lﬂ\(pz;M)vV)\- If A — O,R(Eil,zpz;M) -
R(ﬂsz;M)'

Proof. From Theorem 7 we have,
C(Fa) -4 (B
= —trace(XyM)E [(1 —(r =215 (M)z 10,r-2) (Xr2+2 (’\))}
— §TL™LSE [(1 —r-)xA ()\))2 lor— (s (/\))]
—25"LTMLSE [((r )AL 0 - ) Lo.r2) (Xf » (,\))] .
Therefore, R ( B M) < R (B, 4,: M), because
E [(1 —r-2x3 (/\)) Lo.r—2) (x,2+2 (A))]
_ /Or_z (1 (- 2)x—1) dG,4a(x: 1) < 0.

By Courant’s Theorem, it is a simple exercise to establish that STL™™MLS < AChpmax (XyM). By
Theorem 7 we get,

R (ﬁ;l,lpz; M) —R (ﬁm; M) = — (r —2)traceMXy) {(r -2)E [ Xrin (A)]

STL™™LS (r +2)
+ |:1 ~ 2atraceMZXy) :|2kE[ Xrya (A)]}
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The last inequality follows by (15). W

Theorem 10. Under contiguous alternative hypotheses H y : f (}3 N) = N~1/2§, we have the
following relations for the ADQR,

@ R (B'sM) < R (B M) iff
A< (1 - a2> traceMXy) (1 — @) =2 (Chyax (ZsM)) ™!
and R (By,: M) < R (Ei‘f’;; M) i
A> (1 — a2> traceMXy) (1 — @) =2 (Chynin(EsM)) ™!

) R (Bgy:M) < R(Byyi M) iff 4 = traceMZy) (Chmax(SsM) ™" and R (By; M) =
R (Bis M) iff & = waceMEy) (Chmin(EsM) ™!

© R (Borgp:M) = R (Boy.g: M) iff
A> (1 —a)Gr (X,%a; A) trace(MXy) (Chin (ZsM))~!
x [26002 (1 1) = (1 = 0Graa (420 2)]
and R (ﬁgﬁz; M) <R (Ejﬁz; M) iff
A= (1= @Gy (X243 1) traceMZy) (Chns (SsM)) !

x [ZGr+z (Xf;a; A) ~(1-a)Grya (xf;a; A)]il :

(@ R (Byi M) = R By, g, M)
(X2 %) (Chain (B~
x [ZGr+2 (xf;a; k) —Gria (xf;a; A)]il

o R (B = 1 (B )

iff

A > trace(MXy)Gy2

) = traceMEY)Gr42 (1241 ) (Chima (ZsMD) ™

-1
x [ZGr+2 (xf;a; A) — Gria (xf;a; A)] .
~PTE -~
If A > oc0cora—1,R (ﬂdn,tf)z; M) — R (ﬂ¢2; M) .
~PTE

© R (Boy:M) = R (B M) if
3= (1= Graa (x2ai 1)) traceMEy) (Chax (ZyM)) ™!

~1
X [1 — 2G4 (sz;a; A) + Grqq (X,z;a; K)]
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and R (E;Tiz M) <R (ﬁgf M) iff

3z (1= Graa (x2ai 1)) traceMEy) (Chain(EyM)) ™
2 2 -1
X [1 —2Gry2 (Xr;a; A) +Grisa (Xr;a; A)] .
If o« - 0,R (3;75)22 M) — R (E;lzo; M) .
~5 ~PTE .
® R (/3¢1+,¢z; M) =R (ﬁm,é; M) f Xia <7 =2
(g) Assuming that M = Z’El, we have R (Engft;; M) <R (B;Tiz M) .

Proof. The results follow by Theorem 7, inequalities (2.2.18d)—(2.2.13h) in Saleh [15], and using
Courant’s Theorem. W

5. Simulation results

The small-sample properties of the preliminary test estimators based on ¢-divergence

~h . . . .
measures, B, , are studied under a null hypothesis as well as under contiguous alternative
hypotheses using a Monte Carlo experiment. In order to carry out the experiment, we are going
to consider the parametric family of ¢-divergence measures based on

Al _x—a@x =1

AL+ 1) A0
$.(x) = xlogx —x + 1, A=0
logx +x —1, A= —1,

which was introduced and studied by Cressie and Read [3]. That it is to say, we consider for the
study the preliminary test estimators

~h __~h ~Hy Ory P - 2Ho
ﬂll»)Q = ﬁml,mz = ﬂmz + (1 = h(Ty 1 2)) (ﬂmz o ﬁmz)’

forA; =0,2/3and 1, A = 0,2/3 and 1 and the choices of function % as in Section 2. Note that

ﬁifﬁz and E;T)i depend on the parameter a € (0, 1) which we take as 0.5 for our study.

We consider a logistic regression model consisting of a dichotomous dependent variable
and four normally distributed, with zero mean and unit variance, explanatory variables. We
generated 10000 samples of different sample sizes n = (nj, oony)T e No= {n!,n?
with nl1 =30,i =1,...,8,n% = (25,25,25,25, 10, 10, 10, 10). The regression coefficients
ﬂT = (Bo, B1, B2, B3, B4) were generated from a uniform over (0, 2) .

To have a general idea about overall performance of each of the estimators, the summed mean
squared error (SMSE) is computed under the null hypothesis

Hy : KTﬂ =m,
T 00 1 0 0 0 ) )
where K' = (0 0 o 1 o)andm = (o0 ) as well as the contiguous alternative hypotheses
00 0 0 1 0

Hsn :K'g—m=N"12§
for§ = (1,1,1)and § = (-1, 10, —5).
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Table 1

SMSE of the estimates for § = (0,0,0),n = nl

Al 0 2/3 1

Y 0 2/3 1 0 2/3 1 0 2/3 1

E‘/’AZ 0.3905 0.3647 0.3578 0.3905 0.3647 0.3578 0.3905 0.3647 0.3578
ﬁHO 0.0659 0.0596 0.0590 0.0659 0.0596 0.0590 0.0659 0.0596 0.0590

(2%

ﬁi’fﬁz 0.1484 0.1365 0.1338 0.1484 0.1365 0.1338 0.1484 0.1365 0.1338

B, 01297 01161 00143 0278 01130 01104  0.1275  0.1117  0.1085

B, 00961 01789 01754 01947  0.765  0.0725 01944 01755 01711

By, 02788 02659 02563 02781 02645 02546 02780 02641 02541
Bif,, 02458 02256 02139 02451 02241 02190 02450 02236 02185

Biot 01178 01055 01039 01162 01028 01005 01160 01017 00990

Table 2
SMSE of the estimates for§ = (1,1, 1), n= nl

A 0 2/3 1

A 0 2/3 1 0 273 1 0 2/3 1

ﬁ% 03989 03715 03643 03989 03715 03643 03989 03715  0.3643

32’;’ 0.0816 00732 00721 00816 00732 00721 00816  0.0732  0.0721
2

ﬁi’fiz 0.1543 0.1414 0.1385 0.1543 0.1414 0.1385 0.1543 0.1414 0.1385

31;:?2 0.1588 0.1427 0.1390 0.1559 0.1378 0.1341 0.1559 0.1366 0.1320

B b, 02134 01946 01901 02111  0.1909 01862 02111 01900  0.1846

ﬁfl A2 0.2924 0.2650 0.2610 0.2913 0.2632 0.2589 0.2911 0.2625 0.2581
ﬁfr o 0.2621 0.2406 0.2356 0.2609 0.2386 0.2334 0.2607 0.2380 0.2326

ﬁfln;; 0.1442 0.1294 0.1262 0.1417 0.1252 0.1219 0.1416 0.1241 0.1202

From Tables 1 and 4, it is clear that /ﬁ\gfz < Eflni; < ﬁflniz < ﬁif’iz < ﬁifiz < Efl* <
’[})S\l’ < /ﬁ\m where ‘<’ means ‘prefer to’ the same relation as we prove in Theorem 8.
Therefore, we can conclude that the asymptotic results of Theorem 8 are also valid for small
and moderate sample sizes.

For the alternative corresponding to § = (1, 1,1) and n = nl, it can be seen in Table 2 that
the above relations among the estimators hold. A little change happens when n = n? (Table 5),

. ~SRE ~PTE . . .
since the order of B, , and B, ., is reverse. This means that the result of Theorem 8 is true

when we move away a little bit from the null hypothesis.

. . ~SRE =S ~ ~PTE
From Table 3, the arrangement of the estimators is 8, 5, < B/ 1, < By, < Bijsm <

By, < By, < B < ﬁffz for § = (=1,10,—5) and n = n'. For § = (—1, 10, —5)

and n = n? (Table 6), the only difference is the behavior of /ﬂ\goz and ﬁmz. Therefore, under
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Table 3

SMSE of the estimates for § = (—1, 10, =5),n = n!

A 0 2/3 1

A 0 2/3 1 0 2/3 1 0 2/3 1

Bd’/\z 0.4848 0.4422 0.4308 0.4848 0.4422 0.4308 0.4848 0.4422 0.4308

E;{S 0.6355 0.6709 0.6941 0.6355 0.6709 0.6941 0.6355 0.6709 0.6941
2

By 0.2866 0.2881 0.2936 0.2866 0.2881 0.2936 0.2866 0.2881 0.2936
By 0.4854 0.4428 0.4313 0.4854 0.4428 0.4314 0.4854 0.4428 0.4314
By 0.4850 0.4424 0.4309 0.4850 0.4424 0.4310 0.4850 0.4424 0.4310
Biya 0.4586 0.4187 0.4083 0.4579 0.4173 0.4069 0.4580 0.4171 0.4065
ﬂAI o 0.4586 0.4187 0.4083 0.4579 0.4173 0.4069 0.4580 0.4171 0.4065

ﬂkl lz 0.4591 0.4192 0.4088 0.4584 0.4179 0.4074 0.4585 0.4177 0.4071

Table 4
SMSE of the estimates for § = (0,0,0),n = n?

A 0 2/3 1

A 0 2/3 I 0 2/3 I 0 2/3 I

E% 11212 10198 09921 L1212 10198 09921  1.1212  1.0198  0.9921

ﬁ;’f 01222 01063 01051  0.1222  0.1063  0.1051  0.1222  0.1063  0.1051
2

BileAz 0.3800 0.3398 0.3306 0.3800 0.3398 0.3306 0.3800 0.3398 0.3306

Bflniz 0.3571 0.3091 0.3198 0.3187 0.2665 0.2563 0.3182 0.2545 0.2447

BT, 05554 04921 04917 05272 04604 04447 05260 04516 04360

ﬁfl A2 0.7928 0.7078 0.6984 0.7809 0.6918 0.6812 0.7784 0.6870 0.6759
B SRS

ﬁfrﬁ; 0.3135 0.2712 0.2789 0.2818 0.2357 0.2273 0.2812 0.2260 0.2178

0.7152 0.6383 0.6202 0.7031 0.6218 0.6025 0.7006 0.6168 0.5969

alternative hypotheses far away from the null hypothesis ﬁi?ﬁz, /ﬂ\i* », and /ﬂ\i 1.2, Seem to be the
preferable.

Another point is that in our case each estimator of the first column in fact is a family of
estimators, so we can ask us about the best members of those families. For all tables, i.e., under

the null hypothesis or alternative hypotheses the best choice is .1 = A, = 1 for all the cases

except when § = (—1, 10, —5) and n = n! for ﬁifiz and ﬁflniz

6. Conclusions

In this paper, we have considered a new family of estimators for the parameters of the
GLM with binary data. This new family of estimators depends on both minimum ¢-divergence
estimators and ¢-divergence statistics. Minimum ¢-divergence estimators appear as a natural
generalization of the maximum likelihood estimator in the GLM. Based on their asymptotic
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Table 5

SMSE of the estimates for§ = (1,1, 1), n= n?

Al 0 2/3 1

A 0 2/3 1 0 2/3 1 0 2/3 1

E‘/’AZ 1.1412 1.0253 0.9941 1.1412 1.0253 0.9941 1.1412 1.0253 0.9941

ﬁgf 0.1518 0.1300 0.1279 0.1518 0.1300 0.1279 0.1518 0.1300 0.1279
2

ﬁi’fﬁz 0.3946 0.3474 0.3367 0.3946 0.3474 0.3367 0.3946 0.3474 0.3367

ﬁ)FKE)Q 0.4643 0.4081 0.4019 0.4421 0.3764 0.3657 0.4319 0.3669 0.3559

EifTAz 0.6297 0.5575 0.5441 0.6130 0.5337 0.5169 0.6056 0.5266 0.5096

ﬁfl A 0.8283 0.7227 0.7014 0.8173 0.7082 0.6861 0.8151 0.7040 0.6813
§§T M 0.7601 0.6723 0.6516 0.7489 0.6575 0.6360 0.7467 0.6531 0.6310

35?5; 0.4083 0.3583 0.3529 0.3882 0.3298 0.3207 0.3801 0.3216 0.3121

Table 6

SMSE of the estimates for § = (—1, 10, —5),n = n?

A 0 2/3 1

A 0 2/3 1 0 2/3 1 0 2/3 1

E«’b\z 1.8120 1.6531 1.6142 1.8120 1.6531 1.6142 1.8120 1.6531 1.6142

ﬁgf 1.1552 1.2624 1.3097 1.1552 1.2624 1.3097 1.1552 1.2624 1.3097
2

~SRE

By an 0.7092 0.7135 0.7232 0.7092 0.7135 0.7232 0.7092 0.7135 0.7232

Br%, 18091 16507 16119 18091 16507 16119  1.8091  1.6507 16119

ﬁifT;Lz 1.8090 1.6505 1.6117 1.8090 1.650 1.6117 1.8090 1.6505 1.6117

3?1’12 1.7171 1.5684 1.5327 1.7090 1.5592 1.5233 1.7077 1.5571 1.5210
Ei:r " 1.7171 1.5684 1.5327 1.7090 1.5592 1.5233 1.7077 1.5571 1.5210

Biot 17172 15686 15329 17091 15594 15235 17078 15573 15212

quadratic risk, some new estimators emerge for the GLM with binary data. These results are
asymptotic (large sample sizes), but for small and moderate sample sizes we get results in
accordance with the asymptotic results. These results are established when the postulated model
is true as well as when is not true, i.e., when we consider contiguous alternative hypotheses.
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