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a b s t r a c t

Estimating the kernel density function of a random vector taking values on Riemannian
manifolds is considered. We make use of the concept of exponential map in order to
define the kernel density estimator. We study the asymptotic behavior of the kernel
estimator which contains geometric quantities (i.e. the curvature tensor and its covariant
derivatives). Under aHölder class of functions defined on aRiemannianmanifoldwith some
global losses, the L2-minimax rate and its relative efficiency are obtained.
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1. Introduction

We consider the problem of estimating the kernel density of an independent sample of points observed on the non-
Euclidean space. The statistical aspect of the problem on them-dimensional sphere Sm or the directional data was foreseen
in an early paper of Fisher [4]. A survey of statistical methodologies dealing with the kind of non-Euclidean data may be
found in [13,17,3,7,1,11,12,8,10].

The case where the sample space is a compact Riemannian manifold without boundary has been studied by Hendriks [9]
and Pelletier [16]. When considering the statistical problem of estimating a density function defined on the non-Euclidean,
all procedures used in the Euclidean space cannot be properly applied. For solving this problem, the exponential mapwill be
introduced, which was actually one of the main topics in the dissertation of Park [14]. The kernel density estimator defined
by the exponential map on Sm is considered in [15], where the estimator may be compared with one of [7] or [1]. This paper
is to generalize the results of [15] to a complete Riemannian manifold.

Among the works regarding this research area, we already referred to the estimators of Hendriks [9] and Pelletier [16].
Their works lead to consider two points as follows.

• Hendriks’ approach used Fourier analysis on a compact Riemannianmanifold is analogous to techniques used in the case
of the Euclidean space. In comparison with Hendriks’ one, we point out that his result does not provide information on
geometric structures of a Riemannian manifoldM while being only interested in finding the L2(M)-convergence rate.
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• Pelletier’s estimator is based on kernels that are functions of a Riemannian geodesic distance on a manifold. We point
out that the kernel function is defined by a map such that K : R+ → R, while the kernel estimator is defined by a map
fn,K : p ∈ M → fn,K (p) ∈ R.

In this paper we place the focus on that the kernel function is defined on the tangent space Tp(M) of Riemannianmanifold
M , and the exponential map for connecting the manifold with the tangent space is used. The purpose of these works is to
establish that the formula of the asymptotic behavior of the bias and the mean square error contains geometric quantities
expressed by terms of polynomials in the component of the curvature tensor and its covariant derivatives on a complete
Riemannianmanifold. Also this formula provides that the behavior depends onwhether themanifold is curved positively or
negatively. Besides, we state that the estimator achieves an optimal minimax rate over a Hölder class of functions defined
on a complete Riemannianmanifold under some global losses. For these purposes, we first use the exponential map in order
to connect the manifold valued random sample Xi with the argument in the kernel function defined on the tangent space
such that expp : Tp(M) → M , for p ∈ M . The exponential map is defined by expp ξ = γξ (1), where γξ (t) = expp tξ is the
geodesic through p ∈ M at t = 0 with dγξ

dt |t=0 = ξ ∈ Tp(M). Using the exponential map, we can find the quantity analogous
to (x−Xi)/h, which appears in the kernel function defined on the Euclidean space. In the case of Rm, the geodesic γ passing
through p tangent to ξ is the straight line of equation γξ (t) = p + tξ for t ∈ R. Hence expp ξ = γξ (1) = p + ξ . Therefore
the quantity p − Xi is equal to exp−1

p Xi in the case of Rm. It is natural to replace p − Xi by exp−1
p Xi if p and Xi are onM . This

enables us to define the kernel density estimator by using the exponential map.
Let (M, g) be anm-dimensional complete Riemannian manifold with metric g . Suppose that we have a collection of i.i.d.

random variables X1, . . . , Xn taking values in M and having a probability density function f with respect to dVg , where dVg
denote them-dimensional volume element ofM associated with the metric g . We then define the kernel density estimator
of f using by the exponential map as follows.

Definition 1. The kernel density estimator with the kernel function defined on m-dimensional tangent space Tp(M), for
each p ∈ M and smoothing parameter h > 0 is

fn(p) =
1

nhmCh

n
i=1

K

1
h
exp−1

p Xi


, (1)

where Ch is the positive constant and h is the smoothing parameter such that

hmCh =


M
K

1
h
exp−1

p x

dVg(p). (2)

We will prove that the integral computation of (2) is independent of x, for any x ∈ M and Ch → 1 as h → 0 in Lemma 2.
The paper is organized as follows. In Section 2, we discuss whether the proposed estimator given by (1) is well-defined.

A property of the kernel function is considered and the asymptotic behavior of the estimator is formulated. The lower and
upper bounds on the L2(M) convergence rate are achieved under a certain Hölder condition, and its relative efficiency is
discussed in Section 3. Basic definitions and notations for the differential geometry are described in Appendix A, and also
the proofs of the main theorems are given in Appendix B.

2. Asymptotic behavior

In this section, throughout, we follow the notations and basic concepts of Riemannian geometry in Appendix A. We
suggest a positive kernel function K(·) as a function defined on them-dimensional tangent space Tp(M) such that

Tp(M)

K(v)dv =


Ep


∞

0
K(tξ)tm−1dtdµp(ξ) = 1, (3)

and for all k = 1, 2, . . . and l = 1, 2,
Ep


∞

0
K l(tξ)t(m−1)+kdtdµp(ξ) < ∞, (4)

where dv is a Lebesgue measure on TP(M) and dµp denotes the (m − 1)-dimensional volume element on Ep = {ξ ∈

Tp(M) : ∥ξ∥ = 1}. Usually K is taken as a radially symmetric unimodal probability function in the case of them-dimensional
Euclidean space. Hence we may choose K(v) = T (⟨v, v⟩

1/2
p ) for v ∈ Tp(M), where ⟨·, ·⟩p is the inner product with respect

to the Riemannian metric gp.
The kernel density estimator of f as the exponential map which associates the value f̂n(p) defined on the manifold

is formulated in Introduction. The random vector fields exp−1
p Xi, i = 1, . . . , n, in (1) are well defined in the following

sense: for each ξ ∈ Ep we define c(ξ) = sup{t > 0 : d(p, γξ (t)) = t}, where d is a Riemannian distance. Since cut
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locus ∂Dp has zero m-dimensional Riemannian measure in M and M = expp(Dp) ∪ ∂Dp where the union is disjoint, and
Dp = {tξ ∈ Tp(M) : 0 ≤ t < c(ξ), ξ ∈ Ep}, it follows that

P(X ∈ M \ Dp) =


M\Dp

f (x)dVg(x) =


∂Dp

f (x)dVg(x) = 0,

where Dp = expp(Dp). Hence we may consider only random variables X that take values, almost surely, on Dp of any point
in a complete Riemannian manifoldM . We shall suppose that exp−1

p Xi, p ∈ M , is defined in this sense.

Remark 1. If M = Rm the identity map (x1, . . . , xn) of Rm, by itself, is an atlas. Considering the usual Euclidean affine
connection, we find that

1
h
exp−1

p Xi =
p − Xi

h
, for p, Xi ∈ Rm. �

We now describe the asymptotic behavior of bias and variance of f̂n(p) given in (1). First we need Lemma 1 for the
expansions of f . For this we introduce some notations and new symbols as follows (see Appendix A for details of the
Riemannian curvature):

ρij(p) = Ricp(ei, ej) =

m
k=1

Rikjk(p), ⟨R(ei, ej)ek, el⟩p = Rijkl(p),

S(p) =

m
i=1

ρii(p), ∥R∥2
=

m
i,j,k,l=1

R2
ijkl(p), ∥ρ∥

2
=

m
ij

ρ2
ij (p),

1S(p) =

m
i=1

∇
2
iiS(p), ⟨∇S, ∇f ⟩ =

m
j=1

∇jS(p)
∂ f
∂xj

(p),

⟨ρ, ∇2f ⟩ =

m
i,j=1

ρij(p)Hess f (p)(ei, ej).

Let γξ (t) = expp tξ . Then under the assumptions f ∈ C∞(M), the following lemma gives the expansion of f (γξ (t)) with
respect to t .

Lemma 1. We have the expansion of f (γξ (t)).

f (γξ (t)) =

∞
k=0

γk

k!
tk, (5)

where γk = ∇ξ · · · ∇ξ f . In particular, γ0 = f (p), γ1 = ∇ξ f and γ2 = ∇ξ∇ξ f = Hessf (p)(ξ , ξ).

Proof. Let x = (x1, . . . , xn) be a coordinate system in M at p. In local coordinates, γξ is given by x ◦ γξ (t) =

(x1(t), . . . , xm(t)). If we write ξ i
= ξ(xi), we have ξ =

m
i=1 ξ i ∂

∂xi
with ξ i

= ẋi(0). Therefore, restricting f to γξ , and
then continuously differentiating f (γξ (t)) with respect to t , we can obtain γk. �

Now we prove that the integral computation given in (2) is independent of x ∈ M and Ch → 1 as h → 0 under some
conditions.

Lemma 2. Let

Ch =
1
hm


M
K

1
h
exp−1

p x

dVg(p). (6)

Then the integral computation of (6) is independent of x ∈ M. We assume that for some constant κ , Ricci curvature satisfies
Ric(ξ , ξ) ≥ κ(m − 1)|ξ |

2 for all ξ ∈ Tp(M) and for sufficiently small δ > 0,
∞

0
T (s)e(m−1)δssm−1ds < ∞. (7)

Then Ch → 1 as h → 0.
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Proof. For computation of the integral of Ch wemay choose any point x ∈ M by geodesic spherical coordinates. Thenwe have

Ch =
1
hm


M
T

1
h
⟨exp−1

p x, exp−1
p x⟩1/2p


dVg(p)

=
1

hm−1


Ex

 c(ξ)/h

0
T (s)


g(hs; ξ)dsdµx(ξ), (8)

where c(ξ) is the (possibly infinite) distance to the cut locus in the direction ξ . The last integral in (8) can be written as
M F(p)dVg(p), where F : M → R is a function defined by F(expx(tξ/h)) = T (t/h) for all (tξ/h) ∈ Tx(M). Thus the volume

element dVg(p) in (6) can be replaced by dVg(expx(tξ/h)) for any x ∈ M and from (12) in Appendix A the integral of Ch can
be formed. Hence the integral in (6) is independent of x. By the comparison theorem for Ricci curvature, we have

Ch ≤
1

hm−1


Ex

 c(ξ)/h

0
T (s)Sm−1

κ (hs)dsdµx(ξ),

where

Sκ(t) =

(1/
√

κ) sin
√

κt, κ > 0,
t, κ = 0,
(1/

√
−κ) sin

√
−κt, κ < 0.

Also note that

lim
h→0

√
g(hs; ξ)

(hs)m−1
= 1.

Hence from (7) and the dominated convergence theorem,

lim
h→0

Ch = ωm−1


∞

0
T (s)sm−1ds = 1,

where ωm−1 is the area of the surface of the unit sphere centered at the origin in Rm. Using Lemmas 1 and 3 of Appendix A,
we obtain an asymptotic formula of bias and variance of f̂n(p) in the following theorem.

Hereafter we assume that Ch → 1 as h → 0. �

Theorem 1. Suppose that the unknown density f is bounded and continuously four times differentiable. We assume that for some
constant c > 0 and l = 1, 2, as h → 0,

∞

c/h
T l(s)s(m−1)+kds = o(e−1/h) for k = 1, 2, . . . . (9)

Then we have the bias and variance of the kernel estimator as follows: for fixed p ∈ M,

Bias(fn(p)) = E
fn(p)− f (p)

=
ωm−1

2m
1f (p)


∞

0
T (s)sm+1ds

h2

Ch
+


ωm−1

24m(m + 2)


−4⟨∇S, ∇f ⟩ − 2S(p)1f (p)

− 4⟨ρ, ∇2f ⟩ + 3
m

i,j=1

∇
4
ijijf (p)


×


∞

0
T (s)sm+3ds


h4

Ch
+ o


h4

Ch


, as h → 0,

and

Var(fn(p)) = E
fn(p) − Efn(p)2

=
ωm−1

nhmC2
h


f (p)


∞

0
T 2(s)sm−1ds +

1
2m


1f (p) −

1
3
f (p)S(p)


∞

0
T 2(s)sm+1dsh2

+
1

24m(m + 2)


1
15


−3∥R∥2

+ 8∥ρ∥
2
+ 5S2(p) − 181S(p)


f (p)

− 4⟨∇S, ∇f ⟩ − 2(S(p)1f (p) − 4⟨ρ, ∇2f ⟩) + 3
m

i,j=1

∇
4
ijijf (p)


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×


∞

0
T 2(s)sm+3dsh4


−

1
n


f 2(p) +

ωm−1

m
f (p)1f (p)


∞

0
T 2(s)sm+1ds

h2

Ch



+ o


(nhm−4)−1
+ (nh−2)−1


, as nhm

→ ∞ and h → 0.

Remark 2. While Pelletier’s kernel estimator does not contain geometric quantities in spite of the estimator on the
Riemannian manifold, the results of Theorem 1 contain the curvature tensor and its covariant derivatives. These geometric
information imply whether themanifold is curved negatively or positively. For example, the Euclidean space Rm, the sphere
Sm−1(ρ) = {x ∈ Rm

: ∥x∥ = ρ} and the hyperbolic space Bm(ρ) are the simply connected spaces with constant sectional
curvatures κ = 0, κ = 1/ρ and κ = −1/ρ, respectively. Therefore if M = Rm, the scalar curvature S(p) = 0 for all
p ∈ Rm. �

Remark 3. From the variance part, Var(fn(p)) has the term

1
2m


1f (p) −

1
3
f (p)S(p)


.

If scalar curvature S(p) > 0 for p ∈ M , then we have, up to order h2
nhm ,Var(f̃n(p)) ≥ Var(fn(p)), where f̃n is a kernel density

estimator on Rm, and vice versa. �

Remark 4. Recently the density estimator defined on a manifold (or Lie group) has been used for image processing
(e.g. astrophysics, nonparametric clustering mean shift techniques, 3D multiple rigid motion algorithm and so on). The
result of Theorem 1 is motivated by the applications of those. To have the geometric quantities in Theorem 1 seems to us a
warrant to consider how the manifold is curved in practice. �

3. The rate of L2(M)-convergence

In this section we give the optimal minimax rate of convergence of the proposed estimator. As already mentioned in
Introduction, Hendriks [9] is to be noted because he considers a compact Riemannianmanifoldwithout boundary to the case
of the generalization of estimationwith Fourier series,where the theory builds up the eigenfunctions of the Laplace–Beltrami
operator on the manifold. His approach used Fourier analysis on L2(M) is analogy to techniques used in the case of the
Euclidean space. Therefore he obtained the rate of convergence of the proposed estimator f ∗

n in L2 and L∞ senses:

E

∥f − f ∗

n ∥
2
L2


≤ O(nm/(2s+m)n−1), E


∥f − f ∗

n ∥
2
L∞


≤ O(n2m/(2s+m)n−1),

where suppose that the unknown density f has bounded and continuously s(s > m/2) times differentiable. The L2(M)
convergence rate of Pelletier [16, Theorem 5], is equal to those of Hendriks.

Now we state the lower and the upper bound on the minimax L2 convergence rate in the case where f is in a certain
Hölder class. Suppose f is β times differentiable with β-th covariant derivative. For a real function f belonging to Cβ(M)
where β ≥ 0 is an integer, we define

|∇
β f |2 =

m
j1,...,jβ=1

∇j1∇j2 · · · ∇jβ f∇j1∇j2 · · · ∇jβ f ,

where ∇
β f means any βth covariant derivative of f . In particular, |∇

0f | = |f |, |∇1f |2 = |∇f |2 =
m

i=1 ∇if∇if . For
0 < γ < 1, we define Cβ+γ (M) to be the subspace Cβ(M) consisting of those functions f for which ∇

β f satisfies a Hölder
condition of exponent γ , i.e.,

|∇
β f (x) − ∇

β f (y)| ≤ Kd(x, y)γ , for x, y ∈ M, (10)

and take

Σm(M) = Cβ+γ (M) ∩


f : f ≥ 0,


M
fdVg = 1


∩ L2.

We consider the L2-norm as the global loss function:

L(f , g) =


M

|f (x) − g(x)|2dVg(x)

1/2

.
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We assume that
Ep

 c(ξ)/h

0
ξαK(sξ)


g(hs; ξ)dsdµp(ξ) = 0 for 1 ≤ |α| ≤ β, (11)

where ξα
= (ξ 1)α1 · · · (ξm)αm , α1 + · · · + αm = |α|. To further simplify matters, we shall assume that functions in Σm(M)

may be regarded as taking values on a cube Q ⊆ M .

Theorem 2. Suppose the probability function density f on M is in Σm(M). Under the condition (11), an estimator of the
form (1) with h = n−1/(2β+2γ+m) has, as n → ∞,

E


∥f (p) −fn(p)∥2
L2


≤ O


n−2(β+γ )/(2β+2γ+m)


,

where m is the dimension of M.

Theorem 3. Suppose the probability function density f on M is in Σm(M). The lower rate of convergence for the L2-norm is
given by

lim inf
n→∞

inffn sup
f∈Σm(M)

E


∥f (p) −fn(p)∥2
L2n

2(β+γ )/(2β+2γ+m)


> 0,

where m is the dimension of M.

Remark 5. The rates in Theorems 2 and 3 are improved under the Hölder condition with component γ , which could be
compared with those of Hendriks [9] and Pelletier [16], respectively.

The relative performance of the proposed estimator to that of Pelletier’s estimator is of good interest. Therefore we shall
consider statistical efficiency of the proposed estimator. Pelletier considers the following kernel density estimator on a
compact Riemannian manifoldM: for fixed p ∈ M

fn,K (p) =
1
n

n
i=1

1
rmθXi(p)

K


dg(p, Xi)

r


,

where θp(q) denotes the volume density function. When f is 2-times differentiable, we compute the asymptotic relative
efficiency (ARE) of fn,K with respect tofn defined by

ARE(fn,K ,fn) =
AMISE(fn)
AMISE(fn,K )

,

where AMISE is the asymptotic mean integrated square error plugging in the optimal bandwidth of each kernel density. By
Lemmas 3.2 and 3.3 in [16], the asymptotic relative efficiency is evaluated as follows:

ARE(fn,K ,fn) =

C1


mC1
4C2

−m/(m+4)
+ C2


mC1
4C2

4/(m+4)

D1


mD1
4D2

−m/(m+4)
+ D2


mD1
4D2

4/(m+4) ,

where

C1 = ωm−1


∞

0
T 2(s)sm−1ds,

C2 =


ωm−1

2m


∞

0
T (s)sm+1ds

2 
M
(1f (p))2dVg(p),

D1 = sup
M

sup
B(q,r0)

θ−1
q (p)Vol(B(0; 1))K 2(0),

D2 =


B(0;1)

∥y∥2K(∥y∥)dy

2 
M
(1f (p))2dVg(p).
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Appendix A. Riemannian differential geometry

We review some basic definitions and notations in Riemannian geometry. Given any tangent vector ξ ∈ Tp(M) there is a
maximal open interval Iξ in R about the origin and an unique geodesic γξ inM such that γξ (0) = p, γ ′

ξ (0) = ξ . We assume
that M is geodesically complete, that is, Iξ = R. We define the exponential map, viz. expp : Tp(M) → M by expp ξ = γξ (1),
thus γξ (t) = expp tξ . Now we briefly mention the notions involving cut points. Let Ep = {ξ ∈ Tp(M) ∥ ξ | = 1}.
For each ξ ∈ Ep we define c(ξ) = sup{t > 0 : d(p, γξ (t)) = t}, where d is the Riemannian distance. If we set
Dp = {tξ ∈ Tp(M)|0 ≤ t < c(ξ), ξ ∈ Ep} and Dp = expDp, then expp maps Dp diffeomorphically onto Dp, and D̄p is
mapped onto all ofM . The cut locus ∂Dp is the image by expp of ∂Dp, and for any p ∈ M , the cut locus ∂Dp has zero measure
in M . For each ξ ∈ Ep, let ξ⊥ be the orthogonal complement of {Rξ} in Tp(M), and let τt : Tp(M) → Texpp tξ denote parallel
translation along γξ . Then we define the path of linear transformations A(t; ξ) : ξ⊥

→ ξ⊥ by A(t; ξ)η = (τt)
−1Y (t),

where Y (t) is the Jacobi field along γξ such that Y (0) = 0 and (∇tY )(0) = η, where ∇ is the Riemannian connection of M .
The proposition of the linear transformations A(t; ξ) is given in [2, see p. 66]. We set

√
g(t; ξ) = detA(t; ξ). Using polar

coordinates in Tp(M), the m-dimensional volume element ofM, dVg , is given by

dVg(expp(tξ)) =


g(t; ξ)dtdµp(ξ), (12)

where dµp denotes the (m − 1)-dimensional volume element on the unit sphere Ep in (Tp(M), gp).
We turn to the Riemannian curvature. For vector fields X, Y , Z on M , define R(X, Y )Z = ∇Y∇XZ − ∇X∇YZ + ∇[X,Y ]Z ,

where [X, Y ] = XY−YX . R is called the Riemannian curvature tensor of∇ . For p ∈ M , the Ricci tensor Ric: Tp(M)×Tp(M) → R
is defined by Ric(ξ , η) = trace(ζ → R(ξ , ζ )η), and the scalar curvature S(p) is defined to be the trace of Ric with respect
to the Riemannian metric. Thus if {e1, . . . , em} is an orthonormal basis of Tp(M), we have Ricp(ξ , η) =

m
i=1⟨R(ξ , ei)η, ej⟩,

and S(p) =
m

i,j=1⟨R(ei, ej)ei, ej⟩.
The power series expansions for

√
g(t; ξ) can be derived from [5] as follows: if we let ξ =

m
i=1 ξ iei, where {e1, . . . , em}

is an orthonormal basis of a tangent space Tp(M), then we have the following.

Lemma 3. We have the asymptotic expansion in small t:


g(t; ξ) = tm−1

∞
k=0

γk(ξ)

k!
tk, (13)

where

γ0 = 1, γ1 = 0, γ2 = −
1
3

m
i,j=1

ρijξ
iξ j, γ3 = −

1
2

m
i,j,k=1

∇iρjkξ
iξ jξ k

γ4 =

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


ξ iξ jξ kξ l, . . . .

Appendix B. The proof of theorems

Proof of Theorem 1. Note that for any p ∈ M,M = expp(Dp) ∪ ∂Dp where the union is disjoint and the cut locus ∂Dp has
zerom-dimensional Riemannian measure. Therefore we have

E(f̂n(p)) =
1

hmCh


M
K

1
h
exp−1

p x

f (x)dVg(x)

=
1

hmCh


expp(Dp)

K

1
h
exp−1

p x

f (x)dVg(x). (14)

We work with the geodesic spherical coordinates, given by y(t, ξ) = expp tξ . If c(ξ) is the (possibly infinite) distance to the
cut locus in the direction ξ , the last integral in (14) becomes

1
hm−1Ch


Ep

 c(ξ)/h

0
K(sξ)f (y(hs, ξ))


g(hs; ξ)dsdµp(ξ)

=
1

hm−1Ch


Ep

 c(ξ)/h

0
T (s)f (y(hs, ξ))


g(hs; ξ)dsdµp(ξ). (15)
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The geodesic s → γξ (hs) has initial velocity hγ ′

ξ (0) = hξ . Hence γξ (hs) = γhξ (s) for all h and s. By (8), we obtain

Ef̂n(p) = f (p) +
1

hm−1Ch


Ep

 c(ξ)/h

0
T (s)[f (y(hs, ξ)) − f (p)]


g(hs; ξ)dsdµp(ξ). (16)

Note that for all ξ ∈ Ep, c(ξ) are bounded below by a strictly positive real number. Using the expansions in Lemmas 3 and
1 and the conditions in (9), we write Ef̂n(p) − f (p) as follows: as h → 0,

Ef̂n(p) − f (p) =
1
Ch

(B1(h) + B2(h) + B3(h) + B4(h) + o(h4)),

where

B1(h) =


Ep


∞

0
T (s)⟨gradf (p), ξ⟩hsm


1 −

1
6

m
i,j=1

ρijξ
iξ j(hs)2 −

1
12

m
i,j,k=1

∇iρjk(hs)3ξ iξ jξ k

+
1
24

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


× (hs)4ξ iξ jξ kξ l


dsdµp(ξ),

B2(h) =
1
2


Ep


∞

0
T (s)Hessf (p)(ξ , ξ)h2sm+1

×


1 −

1
6

m
i,j=1

ρijξ
iξ j(hs)2 −

1
12

m
i,j,k=1

∇iρjk(hs)3ξ iξ jξ k

+
1
24

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


(hs)4ξ iξ jξ kξ l


dsdµp(ξ),

B3(h) =
1
6


Ep


∞

0
T (s)∇2df (ξ , ξ , ξ)h3sm+2

×


1 −

1
6

m
i,j=1

ρijξ
iξ j(hs)2 −

1
12

m
i,j,k=1

∇iρjk(hs)3ξ iξ jξ k

+
1
24

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


× (hs)4ξ iξ jξ kξ l


dsdµp(ξ),

B4(h) =
1
24


Ep


∞

0
T (s)∇3df (ξ , ξ , ξ , ξ)h4sm+3

×


1 −

1
6

m
i,j=1

ρijξ
iξ j(hs)2 −

1
12

m
i,j,k=1

∇iρjk(hs)3ξ iξ jξ k

+
1
24

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


× (hs)4ξ iξ jξ kξ l


dsdµp(ξ).

We write B1(h) := B1,1(m)h + B1,2(m)h3
+ B1,3(m)h4, where

B1,1(m) =


Ep


∞

0
T (s)⟨gradf (p), ξ⟩smdsdµp(ξ),

B1,2(m) = −
1
6

m
i,j=1

ρij


Ep


∞

0
T (s)⟨grad f (p), ξ⟩sm+2ξ iξ jdsdµp(ξ),

B1,3(m) = −
1
12

m
i,j,k=1

∇iρjk(hs)3


Ep


∞

0
T (s)⟨grad f (p), ξ⟩ × sm+3ξ iξ jξ kdsdµp(ξ).

Wemay choose an orthonormal basis {e1, . . . , em} of Tp(M), and then writing ξ =
m

i=1 ξ iei, we obtain
Ep

⟨grad f (p), ξ⟩dµp(ξ) =

m
i=1

⟨grad f (p), ei⟩


Ep

ξ idµp(ξ)

= 0. (17)

Hence B1,1(m) = 0. Also B1,2(m) is

B1,2(m) = −
1
6

m
i,j,k=1

ρij


Ep


∞

0
T (s)⟨grad f (p), ek⟩sm+2ξ iξ jξ kdsdµp(ξ)

= 0.
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Consider B1,3(m) term. Write

ηijkl = ∇iρjk
∂ f
∂xl

(p).

First note that
m

i=1 ∇iρij = 1/2∇jS and
m

j=1 ∇iρjj = ∇iS. Then

m
i,j,k,l=1

ηijkl


Ep

ξ iξ jξ kξ ldµp(ξ) =
3Vol(Ep)

m(m + 2)

m
i=1

ηiiii +
Vol(Ep)

m(m + 2)

m
i≠j=1

(ηiijj + ηijij + ηijji)

=
Vol(Ep)

m(m + 2)

m
i,j=1

(ηiijj + ηijij + ηijji)

=
Vol(Ep)

m(m + 2)

m
i,j=1


2∇iρij

∂ f
∂xj

(p) + ∇iρjj
∂ f
∂xi

(p)



= 2
Vol(Ep)

m(m + 2)

m
j=1

∇jS
∂ f
∂xj

(p)

= 2
Vol(Ep)

m(m + 2)
⟨∇S, ∇f ⟩.

Hence

B1(h) = −
Vol(Ep)

6m(m + 2)
⟨∇S, ∇f ⟩


∞

0
T (s)sm+3dsh4. (18)

We write B2(h) := B2,1(m)h2
+ B2,2(m)h4, where

B2,1(m) =
1
2


Ep


∞

0
T (s)Hess f (p)(ξ , ξ)sm+1dsdµp(ξ),

B2,2(m) = −
1
12

m
i,j=1

ρij


Ep


∞

0
T (s)Hess f (p)(ξ , ξ)sm+3ξ iξ jdsdµp(ξ).

Diagonalizing the symmetric bilinear form Hessf with respect to an orthonormal basis {e1, . . . , em} of Tp(M), we have
Ep

Hess f (p)(ξ , ξ)dµp(ξ) =

m
i,j=1

Hess f (p)(ei, ej)


Ep

ξ iξ jdµp(ξ)

=

m
i=1

Hess f (p)(ei, ei)


Ep

(ξ i)2dµp(ξ) +

m
i,j=1,i≠j

Hessf (p)(ei, ej)


Ep

ξ iξ jdµp(ξ)

=
Vol(Ep)

m
tr Hess f (p).

Thus

B2,1(m) =
Vol(Ep)

2m
1f (p)


∞

0
T (s)sm+1ds.

Write κijkl = ρijHessf (p)(ek, el). Then similarly as computations in B1,3(h), we have

m
i,j,k,l=1

κijkl


Ep

ξ iξ jξ kξ ldµp(ξ) =
Vol(Ep)

m(m + 2)

m
i,j=1

(κiijj + κijij + κijji)

=
Vol(Ep)

m(m + 2)

m
i,j=1

(ρiiHess f (p)(ej, ej) + 2ρijHess f (p)(ei, ej))

=
Vol(Ep)

m(m + 2)
(S(p)1f (p) + 2⟨ρ, ∇2f ⟩).

Hence B2(h) is given as
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B2(h) =
Vol(Ep)

2m
1f (p)


∞

0
T (s)sm+1dsh2

−
Vol(Ep)

12m(m + 2)
(S(p)1f (p) + 2⟨ρ, ∇2f ⟩)


∞

0
T (s)sm+3dsh4. (19)

Since


Ep
ξ iξ jξ kµp(ξ) = 0, we have that

B3(h) = o(h4) as h → 0. (20)

Now consider B4(h). As h → 0, we write B4(h) := B4,1(m)h4
+ o(h4), where

B4,1(m) =
1
24


Ep


∞

0
T (s)∇3df (ξ , ξ , ξ , ξ)sm+3dsdµp(ξ) + o(h4).

First note that
m

i,j,k,l=1

∇
3df (ei, ej, ek, el)


Ep

ξ iξ jξ kξ ldµp(ξ) =
Vol(Ep)

m(m + 2)

m
i,j=1


∇

3df (ei, ei, ej, ej)

+ ∇
3df (ei, ej, ei, ej) + ∇

3df (ei, ej, ej, ei)


= 3
Vol(Ep)

m(m + 2)

m
i,j=1

∇
4
ijijf (p).

Hence we have that

B4,1(m) =
Vol(Ep)

8m(m + 2)

m
i,j=1

∇
4
ijijf (p)


∞

0
T (s)sm+3ds. (21)

Now combining the above results (18)–(21), we obtain

B1(h) + B2(h) + B3(h) + B4(h) + o(h4) =
Vol(Ep)

2m
1f (p)


∞

0
T (s)sm+1dsh2

+
Vol(Ep)

24m(m + 2)


−4⟨∇S, ∇f ⟩ − 2S(p)1f (p) − 4⟨ρ, ∇2f ⟩

+ 3
m

i,j=1

∇
4
ijijf (p)


×


∞

0
T (s)sm+3dsh4

+ o(h4), as h → 0. (22)

From (22), it follows that

Bias(f̂n(p)) =
Vol(Ep)

2m
1f (p)


∞

0
T (s)sm+1ds

h2

Ch
+


Vol(Ep)

24m(m + 2)


−4⟨∇S, ∇f ⟩

− 2(S(p)1f (p) − 4⟨ρ, ∇2f ⟩) + 3
m

i,j=1

∇
4
ijijf (p)


×


∞

0
T (s)sm+3ds


h4

Ch

+ o

h4

Ch


, as

h
Ch

→ 0.

Next we compute the asymptotic behavior of the variance. Similarly as before we can prove that as h → 0,

1
hm−1


Ep

 c(ξ)/h

0
T 2(s)f (p)


g(hs; ξ)dsdµp(ξ) = A1(m) + A2(m)h2

+ A3(m)h3
+ A4(m)h4

+ o(h4),

where

A1(m) =


∞

0
T 2(s)sm−1dsf (p)

A2(m) = −
1
6


Ep


∞

0
T 2(s)sm+1

m
i,j=1

ρijξ
iξ jdsdµp(ξ)f (p)
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A3(m) = −
1
12


Ep


∞

0
T 2(s)sm+2

m
i,j,k=1

∇iρjkξ
iξ jξ kdsdµp(ξ)f (p)

A4(m) =
1
24


Ep


∞

0
T 2(s)sm+3

m
i,j,k,l=1


−

3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb


ξ iξ jξ kξ ldsdµp(ξ)f (p).

Since


Ep
ξ iξ jdµp(ξ) = 0 and

m
i=1 ρii(p) = S(p), we have

m
i,j=1

ρij


Ep

ξ iξ jµp(ξ) = S(p)
Vol(Ep)

m
.

So

A2(m) = −
1
6
S(p)

Vol(Ep)

m


∞

0
T 2(s)sm+1dsf (p).

Since


Ep
ξ iξ jξ kµp(ξ) = 0, we have that A3(m) = 0. Consider A4(m). Write

ζijkl := −
3
5
∇

2
ijρkl +

1
3
ρijρkl −

2
15

m
a,b=1

RiajbRkalb.

Using the similar computation as in B1,3(h) and
m

i,j,k,l=1 RijklRikjjl = (1/2)∥R∥2, we have

m
i,j,k,l=1

ζijkl


Ep

ξ iξ jξ kξ lµp(ξ) =
Vol(Ep)

15m(m + 2)
(−3∥R∥2

+ 8∥ρ∥
2
+ 5S2(p) − 181S(p)).

Hence

A4(m) =
Vol(Ep)

360m(m + 2)


−3∥R∥2

+ 8∥ρ∥
2
+ 5S2(p) − 181S(p)


×


∞

0
T 2(s)sm+3dsf (p).

The computation of the remaining part is essentially the same as the computation of bias. Thus

Var(f̂n(p)) =
1

nh2mC2
h
Var


K

1
h
exp−1

p X


=
1

nhmC2
h


1
hm

E

K 2

1
h
exp−1

p X


−
1
n
(E(f̂n(p)))2

=
Vol(Ep)

nhmC2
h


∞

0
T 2(s)sm−1dsf (p) +

1
2m


1f (p) −

1
3
f (p)S(p)

  ∞

0
T 2(s)sm+1dsh2

+
1

24m(m + 2)


1
15

(−3∥R∥2
+ 8∥ρ∥

2
+ 5S2(p) − 181S(p))f (p)

− 4⟨∇S, ∇f ⟩ − 2(S(p)1f (p) − 4⟨ρ, ∇2f ⟩) + 3
m

i,j=1

∇
4
ijijf (p)


×


∞

0
T 2(s)sm+3dsh4



−
1
n


f 2(p) +

Vol(Ep)

m
f (p)1f (p)


∞

0
T 2(s)sm+1ds

h2

Ch


+ o


(nhm−4)−1

+ (nh−2)−1


,

as nhm
→ ∞ and h → 0. �

Proof of Theorem 2. From (11) and Lemma 1, we obtain

Ef̂n(p) − f (p) =
1

hm−1Ch


Ep

 c(ξ)/h

0
T (s)[f (y(hs, ξ)) − f (p)]


g(hs; ξ)dsdµp(ξ)

=
hβ

hm−1Chβ!

m
j1,...,jβ=1


Ep

 c(ξ)/h

0
ξ j1 · · · ξ jβ T (s)sβ∇

β−1df (y(θ, ξ))(ej1 , . . . , ejβ )
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×


g(hs; ξ)dsdµp(ξ) (23)

=
hβ

hm−1Chβ!

m
j1,...,jβ=1


Ep

 c(ξ)/h

0
ξ j1 · · · ξ jβ T (s)sβ


∇

β−1df (y(θ, ξ))(ej1 , . . . , ejβ )

− ∇
β−1df (p)(ej1 , . . . , ejβ )


g(hs; ξ)dsdµp(ξ), (24)

where θ is a point in (0, hs). Applying the condition (10)–(24), we estimate

|Ef̂n(p) − f (p)| ≤
Khβ

hm−1Chβ!

m
j1,...,jβ=1


Ep

 c(ξ)/h

0
|ξ j1 · · · ξ jβ |T (s)sβd(y(θ, ξ), p)γ


g(hs; ξ)dsdµp(ξ)

≤
Khβ+γ

hm−1Chβ!

m
j1,...,jβ=1


Ep

 c(ξ)/h

0
|ξ j1 · · · ξ jβ |T (s)sβ+γ


g(hs; ξ)dsdµp(ξ). (25)

The right-hand side in (25) can be written as

|Ef̂n(p) − f (p)| ≤
Khβ+γ

hm−1β!

m
j1,...,jβ=1


Ep

 c(ξ)/h

0
|ξ j1 · · · ξ jβ |T (s)sβ+γ


g(hs; ξ)dsdµp(ξ)

×


1 +


1
Ch

− 1


. (26)

The expansion of
√
g(hs; ξ) in Lemma 3 and the fact that Ch → 1 as h → 0 yield, from (26), that |Ef̂n(p) − f (p)| can be

estimated by

|Ef̂n(p) − f (p)| ≤
Khβ+γ

β!

m
j1,...,jβ=1


Ep


∞

0
|ξ j1 · · · ξ jβ |T (s)sβ+γ dsdµp(ξ)

≤
Khβ+γ

β!
Vol(Ep)


∞

0
T (s)sβ+γ+m−1ds + o(hβ+γ ), (27)

where the constant A1 depends only onm and β . On the other hand, the variance part in Theorem 1 can be estimated by

Var(f̂n(p)) ≤
Vol(Ep)

nhm
f (p)


∞

0
T 2(s)sm−1ds + o

 1
nhm


. (28)

From two inequalities (27) and (28), for sufficiently small h > 0, the mean squared error of the kernel density can be
estimated by

Q
E|f̂n(p) − f (p)|2dVg(p) ≤ C1h2(β+γ )

+
C2

nhm
, (29)

where

C1 =
K 2ω2

m−1

(β!)2


∞

0
T (s)sβ+γ+m−1ds

2

Vg(Q ),

C2 =
ωm−1

nhm


∞

0
T 2(s)sm−1ds.

From (29), choosing h =


mC2

2C1(β+γ )

1/(2β+2γ+m)

n−1/(2β+2γ+m), then we have
Q
E|f̂n(p) − f (p)|2dVg(p) ≤ O(n−2(β+γ )/(2β+2γ+m)).

So we arrive at the assertion of theorem. �
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It is necessary to give new notations for the proof of the following theorems:

B(p; δ) = {ξ ∈ Tp(Sm) : ∥ξ∥ < δ}, B(p; δ) = {x ∈ M : d(p, x) < δ},

S(p; δ) = {x ∈ M : d(p, x) = δ}, E(p; δ) = {ξ ∈ Tp(Sm) : ∥ξ∥ = δ},

where d is a Riemannian distance. Note that we have B(p; δ) = expp B(p; δ).

Proof of Theorem 3. We consider a cube Q ⊆ M , i.e., Q lies in the domain of an associated, oriented, coordinate
neighborhood U, ϕ and ϕ(Q ) = C = {x ∈ Rm

: 0 ≤ xi ≤ a, i = 1, . . . ,m} for a constant a > 0, and a cube of
Rm. Thus a cube Q is a compact set. Let Kn be a sequence of positive integers tending to infinity. We begin with Km

n cubes
Cj1,...,jm = Ij1 × · · · × Ijm , having center xj1,...,jm , j1, . . . , jm = 1, . . . , Kn, where Iji = [a(ji − 1)/Kn, aji/Kn), i = 1, . . . ,m
and xj1,...,jm = (a(2j1 − 1)/2Kn, . . . , a(2jm − 1)/2Kn). Write C as the disjoint union of Cn,α α = 1, . . . , Km

n , and the center of
Cn,α as xn,α . Thus we have a partition of Q onM,Qn,α = ϕ−1(Cn,α), α = 1, . . . , Km

n and take pn,α = ϕ−1(xn,α). Therefore we
may choose a ball with the property that Qn,α ⊃ ϕ−1(B̄a/2Kn(xn,α)), where B̄a/2Kn(xn,α) denotes the closure of the open ball
of radius a/2Kn centered at xn,α .

Let x1, . . . , xm denote the local coordinates and gij, i, j = 1, . . . ,m, the components of the Riemannian metric tensor g
as a function of these coordinates. Since gij(x) is C∞ and is positive definite for each x in ϕ(Q ), and hence continuous in
x ∈ ϕ(Q ), on the compact set ϕ(Q ), there exists λ > 0 such that

gij(x)yiyj ≥ λ∥y∥2

for all y = (y1, . . . , ym) ∈ Rm. Hence for all α and nwe have

gij(x)yiyj ≥ λα,n∥y∥2
≥ λ∥y∥2 (30)

for all y = (y1, . . . , ym) ∈ Rm and x ∈ B̄a/2Kn(xn,α). For each α let γα(t), a ≤ t ≤ b, be a piecewise smooth curve lying in
ϕ−1(B̄a/2Kn(xn,α)) ⊂ Qn,α with γα(a) = pn,α and γα(b) = qn,α ∈ ϕ−1({x ∈ Rm

: ∥x − xn,α∥ = a/2Kn}), where ∥x − xn,α∥

is the Euclidean distance from x to xn,α . Working with the coordinates (x1(γα(t)), . . . , xm(γ (t))) we use the following
notation

ẋi(t) =
d
dt

xi(γα(t)).

Let

L(γα) =

 b

a


m

i,j=1

gij(x(γα(t)))ẋi(t)ẋj(t)

1/2

dt

denote the length of the curve γα(t), a ≤ t ≤ b. From (30), we have

0 < λ∥ϕ(qn,α) − xn,α∥ ≤ L(γα).

Since the curve γα(t) was arbitrarily chosen for each α, we have

0 < λ∥ϕ(qn,α) − xn,α∥ ≤ d(pn,α, qn,α) for all α = 1, . . . , Km
n .

So

aλ
2Kn

≤ inf
α

d(pn,α, qn,α). (31)

Let B̄(p, δ) = {q ∈ M|d(p, q) ≤ δ}. Therefore it follows from (31) that for all α, we have B̄(pn,α, aλ/2Kn) ⊂ Qn,α . For each
n set an = aλ/2Kn.

We choose f0 ∈ Σm such that f0(x) = C0 > 0 on Q and take a bounded function Hn,α defined on Tpn,α (M) such that 1

0


Epn,α

H2(tξ)tm−1dtdµp(ξ) = c, (32)

where c is independent of n and α. Define gn,α on Q by

gn,α(x) = C1aβ
nHn,α(a−1

n exp−1
pn,α (x)).

Wemay assume that for all α and n it has its support in B̄(pn,α, an) and
M
gn,α(x)dVg(x) = 0.
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We consider a sequence ϵn = {ϵn,α} taking values {0, 1} and then set f ϵn
n (x) = f0(x) +

Km
n

α=1 ϵn,αgn,α(x). By suitable
choice of C1, f0 and Hn,α , the function f ϵn

n will be contained in Σm. Let ϵ(α, 0) = (ϵ1, ϵ2, . . . , ϵα−1, 0, ϵα+1, . . . , ϵKm
n ) and

ϵ(α, 1) = (ϵ1, ϵ2, . . . , ϵα−1, 1, ϵα+1, . . . , ϵKm
n ). Denote byΛn,ϵ,α(1, 0) the Radon–Nikodymderivative of Pf ϵ(α,1)

n
with respect

to Pf ϵ(α,0)
n

. Let

cn = {4 sup
ϵ,α

Ef ϵ(α,0)
n

Λn,ϵ,α(1, 0)2}−1.

Suppose lim infn→∞ cn = c(0 < c < ∞), from the standard arguments to get the lower rate of convergence for the
nonparametric density in the case of the Euclidean space (see, for example, Section 3 in [6]), we obtain the inequality

lim inf
n→∞

inf
f̂n

sup
f∈Σm(M)

Pf


L(f̂n, f ) ≥


c

c + 1

1/2

Km/2
n δn


≥ c2. (33)

Now we consider the sequence {cn}. Since f0(ω) = C0 > 0 on Q and supp(gn,α) = B̄(pn,α, an), we have

Ef ϵ(α,0)
n

Λn,ϵ,α(1, 0)2 =


M
(f ϵ(α,1)

n )2(x)(f ϵ(α,0)
n )−1(x)dVg(x)

n

=


1 +


M
(f ϵ(α,1)

n (x) − f ϵ(α,0)
n )2(x)(f ϵ(α,0)

n )−1(x)dVg(x)

n

=


1 +

C2
1

C0
a2(β+γ )
n


B̄(pn,α ,an)

H2
n,α


1
an

exp−1
pn,α (x)


dVg(x)

n

. (34)

Introducing the geodesic spherical coordinates on B̄(pn,α, an) as used in Section 3, then the last term in (34) can be written as
1 +


C2
1

C0


a2β+2γ+1
n

 1

0


Epn,α

H2
n,α(tξ)


g(ant; ξ)dµpn,α (ξ)dt

n

. (35)

If we let ξ =
n

i=1 ξei, from Lemma 3, it follows that


g(t; ξ) = tm−1

+ tm−1
∞
k=1

tk

k!

m
j1,...,jk=1

Ωj1,...,jk(pn,α)ξ j1 . . . ξ jk . (36)

Since the Riemannian curvature tensor is a C∞ covariant tensor field and Ωj1,...,jk(pn,α), the coefficients of ξ j1 · · · ξ jk for k
even, can be expressed in terms of the curvature tensor and its covariant derivatives, then on the compact set Q , each term
in (36) is

Ωj1,...,jk(p)ξ
j1 · · · ξ jk ≤ A

for all p ∈ Q and ξ ∈ Ep, where A is independent of n. Therefore, from this fact and (32), we see that

Ef ϵ(α,0)
n

Λn,ϵ,α(1, 0)2 =


1 +


C2
1

C0


a2(β+γ )+m
n

 1

0


Epn,α

H2
n,α(tξ)tm−1dtdµpn,α (ξ) + o(a2(β+γ )+m

n )

n

. (37)

If we take an = n−(1/2β+2γ+m), then limn→∞ cn = c < ∞. Now we compute δn. As we have just seen,

L(0, gn,α) =


B̄(pn,α ,an)

|gn,α|
2(x)dVg(x)

1/2

= C1aβ+γ
n


B̄(pn,α ,an)

H2
n,α


1
an

exp−1
pn,α (x)


dVg(x)

1/2

= C1aβ+γ+(m/2)
n

 1

0


Epn,α

H2
n,α(tξ)tm−1dtdµpn,α (ξ) + o(an)

1/2

= Caβ+γ+(m/2)
n + oα(aβ+γ+(m/2)

n ),
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where oα(aβ+γ+(m/2)
n )may depend on α. But it is obvious that infα oα(aβ+γ+(m/2)

n ) = o(aβ+γ+(m/2)
n ). From this it follows that

Km/2
n δn = Cn−(β+γ )/(2β+2γ+m)(1 + o(1)),

and hence from (33), n−(β+γ )/(2β+2γ+m) is a lower rate of convergence. This result immediately gives lower bounds to con-
vergence rates in L2(M) metrics:

lim inf
n→∞

inf
f̂n

sup
f∈Σm(M)

E


∥f (p) − f̂n(p)∥2
L2n

−2(β+γ )/(2β+2γ+m)


> 0. �
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