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Abstract

Classes of multivariate and cone valued infinitely divisiflamma distributions are introduced. Par-
ticular emphasis is put on the cone-valued case, due toltheree of infinitely divisible distributions
on the positive semi-definite matrices in applications. Thee-valued class of generalised Gamma
convolutions is studied. In particular, a characterisatioterms of an Itd-Wiener integral with respect
to an infinitely divisible random measure associated touhgs of a Lévy process is established.

A new example of an infinitely divisible positive definite Gara random matrix is introduced.
It has properties which make it appealing for modelling urateinfinite divisibility framework. An
interesting relation of the moments of the Lévy measuretaediVishart distribution is highlighted
which we suppose to be important when considering the gitlistribution of the eigenvalues.

Keywords: infinite divisibility, random matrix, cone valued distrition, Lévy process, matrix
subordinator
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1. Introduction

The classical examples of multivariate and matrix Gammgiligions in the probability and
statistics literature are not necessarily infinitely dislis [14], [19], [40]. These examples are analo-
gous to one-dimensional Gamma distributions and are adatdiy a direct generalisation of the one-
dimensional probability densities; see for example [183]] [24]. Working in the domain of Fourier
transforms, some infinitely divisible matrix Gamma distitibns have recently been considered in
[5], [27]. Their Lévy measures are direct generalisatiohthe one-dimensional Gamma distribution.
The work of [27] arose in the context of random matrix modelating classical and free infinitely
divisible distributions.

The study of infinitely divisible random elements in cones haen considered in [4], [25], [26],
[31] and references therein. They are important in the cocsbn and modeling of cone increasing
Lévy processes. In the particular case of infinitely dblisipositive-definite random matrices, their
importance in applications has been recently highlightef7], [8], [28] and [29]. This is due to
the fact that infinite divisibility allows modelling by matrLévy and Ornstein-Uhlenbeck processes,
which are in those papers used to model the time dynamicslof d covariance matrix to obtain a
so-called stochastic volatility model (for observed seonéfinancial data).

Generalized Gamma Convolutions (GGC) is a rich and inteigstiass of one-dimensional in-
finitely divisible distributions on the conB, = [0,). It is the smallest class of infinitely divisible
distributions onR, that contains all Gamma distributions and that is closedunthssical convolu-
tion and weak convergence. This class was introduced by Qrifin a series of papers and further
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studied by L. Bondesson in his book [10]. The book of Steutdl\#an Harn [39] contains also many
results and examples about GGC. Several well known and gaptodistributions orR, are GGC.
The recent survey paper by James, Roynette and Yor [16]iogsrianumber of classical results and
old and new examples of GGC. The multivariate case was ceresldn Barndorff-Nielsen, Maejima
and Sato [3].

There are three main purposes in this paper. We formulatestagdg multivariate and cone val-
ued Gamma distributions which are infinitely divisible. 8ed, we consider and characterise the
corresponding clas&GC(K) of Generalised Gamma Convolutions on a finite dimensionaé &
Finally, we introduce a new example of a positive definited@an matrix with infinitely divisible
Gamma distribution and with explicit Leévy measure.

The main results and organisation of the paper are as fall@sstion 2 briefly presents prelim-
inaries on notation and results about one-dimensional GBR 0as well as some matrix notation.
Section 3 introduces a class of infinitely divisitdevariate Gamma distributionSq(a, 3), whose
Lévy measures are analogous to the Levy measure of thdiorensional Gamma distribution. The
parametersxr and 3 are measures and functions 8r(the unit sphere with respect to a prescribed
norm), respectively. It is shown that the distribution does depend on the particular norm under
consideration. The characteristic function is derived &gl shown that the Fourier-Laplace trans-
form onCY exists if 8 is bounded away from zem— almost everywhere. Furthermore, the finiteness
of moments of all orders is studied and some interesting plesrexhibiting essential differences to
univariate Gamma distributions are given.

Section 4 considers cone valued Gamma distributions anddbeesponding clas& GC(K) of
Generalised Gamma Convolutions on a c#hedefined as the smallest class of distributionskon
which is closed under convolution and weak convergence anthms all the so-called elementary
Gamma variables iK (and also all Gamma random variableiimn our new definition). This class is
characterised as the stochastic integral of a non-randautifun with respect to the Poisson random
measure of the jumps of a Gamma Lévy process on the cone.isThisew representation in the
multivariate case extending the Wiener-Gamma integraiatti@rization of one-dimensional GGC on
R, = [0,), as considered, for example, in [16].

Section 5 considers the special cone valued case of infidteisible positive-semidefinite x d
matrix Gamma distributions. New examples are introducadwiexplicit form of their Levy measure.
They include as particular cases the examples considef&d {27]. A detailed study is done of the
new two parameter positive definite matrix distributidn(n,Z), wheren > (d—1)/2 andZ is ad xd
positive definite matrix. This special infinitely divisibamma matrix distribution has several mod-
eling features similar to the classical (but non-infinitdlyisible) matrix Gamma distribution defined
through a density, in particular the Wishart distributidblamely, moments of all orders exist, the ma-
trix mean is proportional t& and the matrix of covariances equals the second moment dYigteart
distribution. Whenx is thed x d identity matrix i, the distribution is invariant under orthogonal
conjugations and the trace of a random makfixwith distribution A (n,l4) has a one-dimensional
Gamma distribution. A relation of the moments of the MardtteRastur distribution with the asymp-
totic moments of the Lévy measure is exhibited. Hence rttatrix Gamma distribution has a special
role when dealing with a random covariance matrix and it tdynamics, e.g. by specifying it as a
matrix Lévy or Ornstein-Uhlenbeck process. As an appticatthe matrix Normal-Gamma distribu-
tion is introduced, which is a matrix extension of the oneelsional variance Gamma distribution
of [22] which is popular in finance.



2. Preliminaries

For the general background in infinitely divisible disttilms and Lévy processes we refer to the
standard references, e.g. [36].

2.1. One-dimensional GGC

A positive random variabl&’ with law u = £ (Y) belongs to the class of Generalised Gamma
Convolutions (GGC) ofR ;. = [0,), denoted byT (R_.), if and only if there exists a positive Radon
measurev,; on (0,e) anda > 0 such that its Laplace transform is given by:

Lu(z):Ee‘ZY:eXp<_aZ_ /Oooln (1+§) Uu(d5)> (2.1)
with . (0
o [ oulO)
| Togxiou(@q <o, [ <o @22)

For convenience we shall work without the translation tereawith a= 0. The measure,, is called
the Thorin measure gi. Its Lévy measure is concentrated (@) and is such that:

v (dx) = Xy (x)dx, (2.3)

wherel, is a completely monotone function x> 0 given by

lu(dx) = /0oo e vy (ds). (2.4)

The classT (R, ) can be characterized by Wiener-Gamma representationsifiSaky, a positive
random variablé/ belongs tor (R, ) if and only if there is a Borel functioh: R — R with

/0°°|n(1+ h(t))dt < oo, 2.5)

such thaty Z YM has the Wiener-Gamma integral representation
Y"E [ hudy, (2.6)
0

where (y%;t > 0) is the standard Gamma process with Lévy measyox) = e*XdYX. The relation
between the Thorin functioh and the Thorin measure,, is as follows: v is the image of the
Lebesgue measure ¢8, ) under the applications — 1/h(s). That s,

/0 & FIds— /0 e, (d2), x> 0. 2.7)

On the other hand, #,, (X) = [g Uy(dy) for x>0 andFU‘ul(s) is the the right continuous generalised

inverse off, (s), that isF@l(s) = inf{t > 0;Fy, (t) > s} for s> O, then,h(s) = 1/FU—“1(s) fors>0.
Many well known distributions belong (R ). The positivea-stable distributions, & a < 1,

are GGC withh(s) = {sfrl (a + 1)}‘% for a @ > 0. In particular, for the 12—stable distribution,

h(s) = 4(3271)_1. Beta distribution of the second kind, lognormal and Paregaiso GGC, see [16].
For more details on univariate GGCs we refer to [10, 16]



2.2. Notation
My(R) is the linear space al x d matrices with real entries arft}; its subspace of symmetric

matrices. BySj and§d+ we denote the open (ify) and closed cones of positive and nonnegative
definite matrices itMq(R). Sga |.| is the unit sphere oRY with respect to the norrfy- ||.

The Fourier transfornpi of a measurgr onM = RY or M = My(R) is given by
fi(2) = / d@pu(dx) zeM
M

where we uséA, B) = tr(A"B) as the scalar product in the matrix case, wheredenotes the trans-
posed orM4(R). By Iq we denote thel x d identity matrix and byA| the determinant of a square
matrix A. For a matrixA in the linear group?.Z4(R) we write A~ " = (AT)_l.

We say that the distribution of a symmetric randdm d matrix M is invariant under orthogonal
conjugations if the distribution dMO' equals the distribution d¥1 for any non-random matri©
in the orthogonal groug’(d). Note thatM — OMO" with O € ¢'(d) are all linear orthogonal maps
onS, (or Mg) preservingS; .

3. Multivariate Gamma Distributions

3.1. Definition

Definition 3.1. Let u be an infinitely divisible probability distribution oRY. If there exists a finite
measurex on the unit spher&gq .| with respect to the norr- || equipped with the Bore-algebra
and a Borel-measurable functigh: Sga || — R such that

AN BT
f(z) = exp( gviz_1) ¢ dra(dv)) (3.1)
Sed /R+ ( ) r

for all ze RY, thenp is called a ddimensional Gamma distributioith parametersr and 8, abbre-
viatedl4(a, B)-distribution.
If B is constant, we calit a || -

|-homogeneou§ 4(a, B)-distribution

Observe that the notatidny(a, 8) implicitly also specifies which norm we use, because a
measure on the unit sphere with respect to the norm emplaoyd8 iz a function on it. The parameters
o andf play a comparable role as shape and scale parameters asisutligositive univariate case.

Remark 3.2. (i) Obviously the Evy measure, of i is given by

e*B(V)r
Vu(E) = / 1e (rv) drar(dv) (3.2)
Sed | R+ '
for all E € #(RY). This expression is equivalent to
e BOY/IXDIXI g
Vu(dx) = Wa(dx), xeR (3.3)
whered is a measure oY given by
&(E) :/ / e (rv)dra(dv), E € B[RY. (3.4)
Sed 1 0
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(i) Likewise we defin®ly(R) andSq4-valued Gamma distributions with parameterand 3 (ab-
breviatedl 'y, (a, B) and s, (a, B), respectively) by replacin®? with My(R) andSq, respectively,
and the Euclidean scalar product witi, X) =tr(X " Z). All upcoming results immediately generalise
to this matrix-variate setting. We provide further detaiisSection 5.

If d=1anda({—1}) =0, then we have the usual one-dimensidn@ ({1} ), 3(1))-distribution.
In general it is elementary to see that fbx 1 a random variablX ~ "1 (a, ) if and only if X Z X1 —
X2 with Xg ~ T'(a({1}),B(1)) and Xz ~ I'(a({—1},B(—1)) being two independent usual Gamma
random variables, i.eX has a bilateral Gamma distribution as analysed in [17, 18Jimsinoduced in
[11, 22] under the name variance Gamma distributiora (f1}) = a({—1}) andB(1) = B(-1), it
indeed can be represented as the variance mixture of a noamdom variable with an independent
positive Gamma one (a comprehensive summary of this casbecéund in [39] where it is called
sym-Gamma distribution).

Now we address the question whiah we can take to obtain a Gamma distribution.

Proposition 3.3. Let a be a finite measure 08ga .| and 3 : Sga . — R+ a measurable function.
Then(3.2) defines a Bvy measurey,, and thus there exists lg(a, 3) probability distribution 1 if

and only if
1
{1+ gy ) 8@ <o 3.5
/SRd.w " < " B(V)> o) < (3.5)

Moreover, [pa(|[X|| A 1)vy(dX) < oo holds true.

The condition (3.5) is trivially satisfied, [ is bounded away from zem-almost everywhere.
Proof:

_ LBl [ l-efU d
/|x|<1”X“V“(dX) /st_ /0 e PVl dra (dv) /SM ~B o) S a(Suey) <

using the elementary inequality-1e—* < x,for eachx € R ;. Denoting byE; the exponential integral
function given byE; (z) = [, eTfldt forze R, we get

w g=BV)r
/|x>1 Vu(@) = /st /1 r drar(dv) = /st‘ll Eu(B(v))a(dv) (3.6)
- /O E1(2)7(d2), 67

where we made the substitutian= 3(v) andt(E) = a(B~1(E)) for all Borel setsE in R... Sincert
is a finite measure andQE;(z) <e ?In(1+1/z)Vze R, (see [1, p. 229)),

/m E1(2)1(dz) < oo.
1/2

The series representati@i(z) = —y— In( )—200:1( ) with y being the Euler-Mascheroni constant
([1, p. 229]) implies that limoE1(z)/(—In(2)) = 1. ence

-1/2
() <oo<:>/ In(2)|7(d2) <oo<:>/ N(1+1/2)1(d2) <



using IN1+ 1/z) = In(1+z) — In(z) and the finiteness af in the second equivalence. Appealing to
the finiteness of once more, the above conditions are equivalent to

/ In(1+ 1/2)7(dz) = / In(1+1/B(v))a(dv) < .
0 IS

|

The next proposition shows that the definition of a Gammaibigton does not depend on the
norm, only the parametrisation changes when using differerms.

Proposition 3.4. Let || - || be a norm orR® and u be alq4(a,B) distribution witha being a finite
measure or8ga ., and B : Sga |, — R4 measurable. If| - [|p is another norm oRY, theny is a
Iq4(ap, Bp) distribution withap being a finite measure BB . andfy: Sk ., — R+ measurable.
Moreover, it holds that

\Y
E)= 1e | o )o@V VE € B(Spo 3.8
() /SRdwa E<’|V|b> (o) € Z(Sgd|1,) (3.8)
Polo) =5 (II\Z)bla> [Vella YV € Sga |- (3.9)

The above formulae show that the mass in the different diregt which is given by, does not
change, ang only needs to be adapted for the scale changes implied byhtirge of the norm.
Proof: Substituting first, = v/, and thers = r /||y ||a gives:

exp (-/SRd-a- e (eirsz_ 1) e‘li(v)r dra(dv)>
g i yTz e_B(HV\;bHa>r
- /SJRU I /m (e - 1) — dran(dv)
BN b
= exp (/ /]R (eiSVbTZ— 1) eB(V\/bba)VMSdSOﬂ;,(dVb)> :
J Spa +

[l s

3.2. Properties
In this section we study several fundamental propertiesiof3amma distributions.

Proposition 3.5. AnyT4(a, B)-distribution is self-decomposable.

Proof: This follows immediately from the definition and [36, Th. 16]. m

Later on we will considerably improve this result by showthgt we are in a very special subset
of the self-decomposable distributions. This result hgsoirtant implications for applications where
one likes to work with distributions having densities, destributions which are absolutely continuous
(with respect to the Lebesgue measure).

Proposition 3.6. Assume thasuppa is of full dimension, i.e. that it contains d linearly indeypkent
vectors inRY. Then the 4(a, B)-distribution is absolutely continuous.
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Proof: It is immediate that the support df4(a, 3) is the closed convex cone generated by supp
Hence, the support dfy(a, B) is of full dimension and so the distribution is non-degeteera hus
[35] concludes.m

It follows along the same lines that in the degenerate casEu, B)-distribution is absolutely
continuous with respect to the Lebesgue measure on theadgpnerated by supp If suppa con-
sists of exacthyd linearly independent vectorBq(a, 8) equals the distribution of a linear transforma-
tion of a vector ofd independent univariate Gamma random variables with apiategarameters and
thus the density can be calculated easily using the demaitgformation theorem with an invertible
linear map. If suppr is a finite set of full dimension, one can calculate the dgrfsitm the density
of independent univariate Gamma random variables by ubmgdénsity transformation theorem with
an invertible linear map and integrating out the non-reiedimensions. In general the density can be
determined via solving a partial integro-differential atjan (see [37]). Moreover, criteria for qual-
itative properties of the density like continuity and comtus differentiability can be deduced from
the results of [33, 34], but looking at the simple case of aareaf independent univariate Gamma
distributions one immediately sees that the sufficient d@ws$ given there are far from being sharp.
Therefore we refrain from giving more details.

Next we show that oud-dimensional Gamma distribution has the same closednegeipies
regarding scaling and convolution as the usual univariate o

Proposition 3.7. (i) Let X ~ '4(a,B) and c> 0. Then cX~ 4(a,B/c).
(i) Let X3 ~ Tq(a1,B) and X% ~ Ig(a2,B) be two independent d-dimensional Gamma variables.
Then X+ Xo ~ Tq(a1+ a2, B).

Proof: Follows immediately from considering the characteristiodtions. m
Likewise itis immediate to see the following distributidpaoperties of the induced Lévy process.

Proposition 3.8. Let L be al'4(a, 3) Lévy process, i.e. i~ y(a,B). Then L ~ 4(ta,B) for all
teR,.

Of high importance for applications is that the clas§ @tlistributions is invariant under invertible
linear transformations.

Proposition 3.9. Let X~ Ig(a, B) (with respect to the norrp- ||) and A be an invertible ¢ d matrix.
Then AX~ Tq(ap, Ba) With respect to the norrp- ||a = [[A~1- || and

aa(E) = / 16 (AV) a(dv) = a(A1E) VE € B(Saa ) (3.10)
Sea,. o

Ba(v) =B (A™Y) YV € Sga .- (3.11)

Proof: We have for alkz € RY

E (ei<z,AX>) =/ &<ZAC | (dx) = /SRd:H /R+ (éI’VTATZ_ l)
_ —1
_/SRd,-A /ﬂh (eirUTZ_ l) : B(/: U)rdm(A_ldu)

_/SRd /R (ejruTZ_l) e_ﬁ:(U)rdraA(dU)
U

7
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dra(dv)




where we substituted= Av. m

It is easy to see that the above proposition can be extendedxtd matrices of full rank with
m> d. Obviously, such a result cannot hold in general for a liearsformatiorA with ker(A) # {0},
since combinations of one dimensional Gamma distribut@mgsin general not univariate Gamma
distributions.

Next we present an alternative representation of the cteaistic function.

Proposition 3.10. Let u bel4(a, B) distributed. Then the characteristic function is given by

{1(2) = exp ( /st_ In (m[;(i_"?\ﬁz) a(dv)) for all ze R (3.12)

whereln is the main branch of the complex logarithm.

Proof: Follows from the definition and the well known fact
® . —B(V)r
r(-vhz_ 1) & BV
/o (e 1) : dr In(B(v)—isz .
[

Note that ifa has countable suppoft;} ey, then

a({vj})
N B(vj)
“(Z)‘&<B<vj>fivi ) '

We now show that the Fourier-Laplace transform of a Gamnighlision exists if and to a certain
extent only if3 is bounded away from zem almost everywhere.

Theorem 3.11. (i) The Fourier-Laplace transformi of al y4(a, ) distribution u exists for all zin a
neighborhood UC CY of zero, if(v) >k forv e Sga | 0-a.e. withk > 0. [t is analytic there and
given by formulg3.12)

(ii) If there exists a sequend@n)new IN Sga .| With liMp_e B(Vn) = 0 and a({vn}) > O for all
n e N, then the Fourier-Laplace transforia exists in no neighborhood & CY of zero.

Proof: Using Proposition 3.4 we can assume w.l.0.g. that the Eeefichorm|| - ||> is used for the
definition of thel"4(a, B) distribution.

(i) We will now show (i) forU = B, (0) C CY, whereB(0) := {x € CY: ||x||]2 < k}. From
Proposition 3.10 it is clear thdlt(z) exists for allz € B, (0) C CY, if and only if

k. (i) @@= L (1 B ) @

exists for allz € B,(0). Consider now an arbitrary € (0,1) andz € B, (0). Then the Cauchy-
Schwarz inequality impliefv ' z| < ||z||» < dk and henceé(iv'z)/B(v)| < &. Therefore Ir<1— %)
exists and is bounded @y, (0) a-a.e. This implies that

_ /st_z In (1— %) a(dv)

8



exists onB, (0). Sinced € (0,1) was arbitrary, this concludes the proof of (i), since thelitity
follows immediately from the appendix of [12].

(if) W.l.o.g. assumeB(vn) < 1/n. Forn € N setz, = —if(Vn)Va. Then||zy||2 = B(va) < 1/nand
1—(iv) z)/B(vn) = 0. Hence,

/{Vﬂ}ln<1_i;x;> a(dv) and thereby /d (l—%>a(dv)

do not exist. This implies that is not defined orB, /,(0). Sincen € N was arbitrary, this shows (ii).
|

Proposition 3.12. AT 4(a, B) distribution 1 has a finite moment of orderk 0, i.e. fga ||X||*u(dx) <
oo, if and only if

/ B(v) ™ a(dv) < o, (3.13)
Sed .|
Moreover, if m is the mean vector ald= (adjj )i j—1,... d iS the covariance matrix of 4(a,3)
m= B(v)~tva(dv). (3.14)
Sid 1
and
> = B(v)~2w'a(dv) (3.15)
Skd. .|

Proof: If B is bounded away from zero, (3.13) holds trivially and Theoi&11 implies thaj has
finite moments of all orderk > 0. So w.l.o.g. assume thftis not bounded away from zero in the
following. By [36, p. 162]u has a finite moment of ordég if and only if

/ / "e oo dra(dv) <
@

Substitutings = r3(v) this is equivalent to

/ B(v) / &L Sdsar (dv) < oo. (3.16)
SJRd_”_” B(V)
Assuming without loss of generality thatv) <1 for allv € Szq ., we have that
0<C(k) = / s'<*1e*3ds§/ s leSds< I (k).
1 B(v)

Hence, (3.16) is equivalent to (3.13). Finally, (3.14) aBd.%) follow from Example 25.12 in [36]
and observing that that the infinitely divisible distritrtil (o, 3) with Fourier transform (3.1) has
Lévy triplet ({,0,v,), whered = [, < Xvy(dx). m

Corollary 3.13. A || - ||-homogeneou§ 4(a, 8) distribution has an analytic Fourier-Laplace trans-
form in Bg(0) and finite moments of all orders.

Hence, any homogeneous Gamma distribution behaves likevoulel expect it from the univari-
ate case. However, the behaviour in the non-homogeneoesntag be drastically different, as the
following examples illustrate.



Example 3.14. Consider d= 2. Leta be concentrated ofivp }neny With
v = (sin(n™1),cogn™1))

and setar ({vn}) = e "andB(vn) = 1/n for all n € N. Then by Theorem 3.11 (i) the Fourier-Laplace
transform exists in no neighbourhood of zero.
fSRd N B(v)ka(dv) = 5 ey nke " is finite for all k> 0 using the quotient criterion, because
2

) 1)ke—(n+1)
lim w

_ 1
m o =e <1

Thus, we have moments of all orders, but the Fourier-Laplaaesform exists in no complex
neighbourhood of zero.

Example 3.15. Consider the set-up of Example 3.14, but set moiv,}) = 1/n'*™ for some real
m> 0. f%d N B(v)Ka(dv) = T pen n{‘—fm is finite if and only if k< m.

Itis eaéyzto see that conditiaf3.5) is satisfied if conditiorn(3.13)holds for some k- 0. Hence,
thel »(a, B) distribution exists indeed, but only moments of orders Em#iian m are finite.

Example 3.16. Consider again the set-up of Example 3.14. Seta¢fw,}) = (In(14+n)3(n+1))~L.
Thenfh.:,Rd'H.H2 In (1+ ﬁ) a(dv) = S nen m < o (see [32, Theorem 3.29] and thus the
I2(a, B) distribution is well-defined.
Kk . .
Yet’fSRd.u-uz B(v)ka(dv) = T pen e = o for all real k > 0and so thez(a, B) distribu-
tion has no finite moments of positive orders at alll.

4. Gamma and Generalised Gamma Convolutions on Cones

4.1. Cone-valued infinitely divisible random elements

We first review several facts about infinitely divisible elemts with values in a cone of a finite
dimensional Euclidean spa@&uwith norm||-|| and inner product:,-). A nonempty convex s of
B is said to be aoneif A > 0 andx € K imply Ax € K. A cone isproper if x =0 wheneverxand
—xare inK. Thedual cone Kof K is defined aK’ = {y € B": (y,s) > 0 for everyse K} . A proper
coneK induces a partial order dd by definingx; <k X2 whenevex; —x; € K for x; € Bandx, € B.
Examples of proper cones ake , RY = [0,%0)d, S andSy .

A random elemenX in K is infinitely divisible (ID)if and only if for each integep > 1 there exist
law

p independent identically distributed random elemefits.., X, in K such thalX = X; +... 4+ Xp. A
probability measurgs on K is ID if it is the distribution of an ID element if. It is known (see
[38]) that such a distributioru is concentrated on a cori€ if and only if its Laplace transform
Lu(©) = [k exp(— (O,x))u(dx) is given by theregular Levy-Khintchine representation

Ly (©) = exp{— (©,Wo) — / (1— e*<@vX>) » (dx)} forall @ e K’, (4.1)
K
whereWy € K and the Lévy measure is such that K) = 0 and

J0XIA D V() < o (4.2)
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If X ={X(t);t > 0} is theK-increasing Lévy proces&¢valued subordinator) associated.tpits
Lévy-Itd decomposition is of the form

t
X t):tw0+/ /xN(dt,dx)
0 JK

=tWo+ ) AX(s) as, (4.3)

S
whereAX(s) € K for all s> 0 a.s. andN(dt, dx) is a Poisson random measurel®n x K with
E{N(dt,dx)} = v, (dx)dt. (4.4)

4.2. Cone-valued Gamma distributions

Let S be the unit sphere d with respect to the norrj- H and letK be a proper cone @. We
write SK /=Sy NK and denote b)@(S‘TH) the Borel sets 08‘
Slmlhar to Definition 3.1 we have Gamma distributions in toaek.

Definition 4.1. Let i be an infinitely divisible distribution on the cone K. If teegxist a finite mea-
surea on SIT'II’ and a measurable functiof : Sm — R, such that

—exp{ // (1-eioW) S dror(dU)} (4.5)

for all © € K’, then i is called a K-Gamma distribution with parametessand 3, and we write
u~Tk(a,B). The levy measure, of u is

Vu(E) / /1E W) ra ), EeBK). (4.6)
HH

and satisfies

/Kmin(l,||x||)vp(dx) <o, 4.7)

The expression (4.6) is equivalent to

—BX/IIXIDIX]] _
vy (dX) = WlK(X)U(dX% (4.8)
wherea is a measure oK given by
&(E) / / 1e(U)dra(dU), E e B(K). (4.9)

All properties of the multivariate Gamma distribution incen 3 are also true for the cone-valued
Gamma distribution. As in Proposition 3.3 we can in paracighow that there existsla (a,3)
probability measurg if and only if

Js

1
In (HW) a(dU) < oo, (4.10)

11



in which case we have (4.7). Also, as for Proposition 3.10Lthplace transform of & (a,p)
probability measurgt is also given by

Ly (0) = exp{—/sK In <1+ <G’U>>> a(dU)} , @eK. (4.11)
[’

BW)

If ||-||p is another norm oK and if u has distributiorT k (a, 8), thenu has distributiorT k (ap, Bp)
whereay, B, are given as in (3.8) and (3.9) respectively. AlBp(a, 3), has a finite moment of order
k > 0, if and only if
/K BU)Xa(dU) < . (4.12)

S
I
In the homogeneous case, iBU) = B > 0forany U € STI<-H’ we haveE [|[M || < « for anyk > 0.
If M is a random element iK with distributionl ' (o, 3) and (4.12) is satisfied witk= 1,

/B ) Wa(du). (4.13)

4.3. I1H-Wiener-Gamma integrals
In this section we formulate an Itd-Wiener-Gamma intefpaK-valued Gamma process, similar
to the Itd-Wiener-Gamma integral (2.6) with respect toghe-dimensional Gamma process.
Lety=y(a,B) = (4#;t > 0) be aK-valued Gamma process. Thatysis theK-increasing Lévy
process such that, g = Ik (a,B) is the distribution ofy;. Let N,(ds,dx) be the random measure
on R, x K associated to th&-valued jumps ofy andv,, , be the Lévy measure gh. Hence
E{N(dt,dx)} = v, ,(dx)dt, where

B
(= // 1e(1U) dra(dU), E e Z(K).

Leth: R, x Sm — R, be a measurable function such that

// ( ))or(dU)ds<oo, (4.14)

in which case we say th&tbelongs toL(I'k (o, 3)). The last condition is the cone analogon of the
one-dimensional condition (2.5).
We prove in the next proposition that the following 1td-\Wee-Gamma integral type is well de-

fined
// ( I H)xN(dsdx) (4.15)

in the framework of integration with respect to infinitelywidible independently scattered random
measures (i.d.i.s.r.m.) in Rajput and Rosinski [30] (see ] for the special case of random matri-
ces).

Proposition 4.2. The integral(4.15)is well defined if and only if the function:iR x S\TH — R,
belongs to Ik (a, B)).
Moreover, he L(T'k (a,B)) if and only if
[ min (s x/ [X1)x)vi, (s < e, (4.16)
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and (4.16) is equivalent to the following two conditions

12
/ / I (2)| Gy (dz)a (dU) < (4.17)
SK

and

/ L6y (da(au) <o (4.18)
Sy /1/2 2

where G (dz) is the measure of® . which is the image of the Lebesgue measur&®anunder the
change of variable s- B(U)/h(s,U).

Proof: By [9, 30] the existence of the integral is equivalent to ¢3.1
Sincef(U) < 0a.e. U, Fubini's theorem and elementary computations give

| = /w/min (L, (s, %/ [IX)X] )V 5 (D) (4.19)

— min(L [|h(s.U)U )& drar (cU ) ds
L bk

1/th)
_/K/ / h(s,U)e "PVdra(du)
s

/ / / hsw) dra(dU)

z=1B(U / / ;;U 1_e—r[3(U)/h(s,U)>dsa(dU)

A ( >d (@) (4.20)

whereE; is the exponential integral function as in the proof of Piipion 3.3.
Using the change of variable= 3(U)/h(s,U) we have

|_/ / L eZGU(dz)a(dU)

+/ /El ) Gy (dz)dsar(dU) = 14 + 1 (4.21)
HH

We shall in the following show thdt< o if and only if

13_/SK/ In <1+ 1) Gy (dz)a(dU) < (4.22)

if and only if (4.17) and (4.18) are satisfied. This conclydesobviously (4.22) ande L(IF'k(a,B))
are equivalent.
First,

/ /1 1- eZGU (d)a(dU) < w (4.23)
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if and only if (4.18), if and only if
o= [ / < 3) Gu(dD)a(dV) < oo
Sy 712 z

since(1/2)/In(1+z1) — 1 asz— oo.
On the other hand,

.12
/ E1(2) Gy (d2)a(dU) <
Sy /0

if and only if (4.17) holds (sinc&;(z)/(—In(z)) — 1 asz— 0) if and only if

|5_/ /12|n<1+1>eu(dz) (dU) <

because IfL+z1)/(—In(2)) — 1 asz— 0.

Is < o0 and (4.17) both imply
1/2
/ / Gu(d2)a(dU) <

//1/21 € Gu(d)a( dU)<// Gu(dz)a(dU) <

S St
providedls < o or (4.17) hold.
Since 0< E1(2) <e?In(1+1/2)Vze R, (see [1, p. 229]), using (4.23) implies

Thus

/ " E1(2) Gy (d2)dsa (dU)
sy /172

By

Proposition 4.3. Let he L(I'k(a,B)). Then the distribution of the K-valued random variabl&i¥
infinitely divisible and has Laplace transform

—BU)r
Lyn(© _exp< / // 1 e Mty ®U>)erdtdra(dU)> (4.24)

H I
— exp(— /S/ In <1+ )Gu(dz)a(du). (4.25)

where fora-a.e. U, Gy is a Thorin measure measure & which is the image of Lebesgue measure
onR, under the change of variable-s 3(U /h (s,U). Moreover, the Bvy measure of'Yis

wh(E / / 1e(rU)

dra(dU) E € B(K) (4.26)

where

ko (r) = /O " e 76y (d2). (4.27)
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Proof: Using the obvious analogue for the Laplace transform of tmmdilae for the characteristic
functions of the integrals with respect to i.d.i.s.r.m.$§3n30] we obtain

Lyn(©) = exp(—/ /00 (1—e<e’h(s%l)x>) vua‘B(dx)ds>
_exp</ / / 1 e fh(&U><®U>) e 'l )dra(dU)d>

As in the last proposition, leGy (dz) be themeasureon R, which is the image of the Lebesgue
measure ofR . under the change of variabde— B(U)/h(s,U) = z(U). Then

e TBU)/h(sU)
Lyn(© _exp</// 1- e"<@U dra(dU)ds)

_exp</ // 1-e7OV) rZG (dz)dra(dU))

_exp<// 1 e @U kUr(r)dror(dU)>.

Hence, combining (2.2) with the existence conditions ferititegral Gy (dt) is a Thorin measure on
R, fora-ae U. m

4.4. Characterisation of Cone Valued GGC

In this section we define Generalized Gamma ConvolutiB@(K) in the coneK and charac-
terize this class as the distributions of tKevalued random elements represented by the stochastic
integral (4.15). The result is an extension to the cone hkase of the Wiener-Gamma integral
representation of one-dimensional generalised Gammahdions, see Section 1.2 in [16].

Similar to the multivariate case (see [3]), we def@&C(K) as follows

Definition 4.4. The class GG(K) is the collection of all infinitely divisible distributionsn K with
Lévy measure, having a polar decomposition

// rU)—dra(dU) E e B(K), (4.28)
HH

where Ik (r) is a measurable function in U and completely monotone in ofa.e. U.

A probabilistic interpretation of the cla&GC(K) is provided by Theorem 4.6 below.

Proposition 4.3 says that the class of distributions of then&-Gamma integralg, with h €
L(F'k(a,B)) areGGC(K).

We now prove that all distributions BGC(K) have a Wiener-Gamma integral representation. For
simplicity we consider the case without drift, thatilg = 0 in (4.1) and (4.3). Otherwise

wo+// ( i H)desdx)

15



Theorem 4.5 (Wiener-Gamma characterization olGGC(K)). For any fixed Borel-measurable
function : SIT-H — R, bounded away from zero it holds that

{Yh :/ / h(s,x/||x|[)xN(ds,dx) : a a finite measure on%’(Sh(_H),h € L(FK(a,B))}
o Jk
= GGGy(K)
with GGG (K) denoting all generalized Gamma convolutions on K withoift.dr

The condition o3 above is needed to ensure the existence of the Gamma randaivies for all
finite measures. The result implies that starting with any fixed homogengousion-homogeneous
with 8 bounded away from 0) Gamma distribution one can obtain akgdized Gamma convolutions
as the sum of a constant and a Wiener-Itd integral with @gpdhe jump measure obtained from this
fixed distribution.

Proof: Let u € GGG(K) with Lévy measure given by (4.28). Sinkg(r) is completely monotone
inr for a-a.e.U, there exists a Radon meas@g such thaky (r) = J; € "Gy (dz). Moreover

/ /wmin(l,r)kU(r)dra(dU) < 00, (4.29)
s« Jo r

Let Fg, (X) = [3Gu(dz) for x > 0 and Fgul(s) be the right continuous generalised inverse of
Fou(s). Leth(sU) = 1/FgX(s) andh(s,U) = B(U)h(s,U) for s> 0. It follows as in the one di-
mensional case th&y,, a-a.e.U, is a Thorin measure which is the image of Lebesgue measure on
(0,) under the change of variabde— 1/h(s,U). That s,

® B ® X °°
/ e h(sU)dS:/ e h<su>ds:/ e Gy (dz), x>0
0 0 0

and

|:/SK /Ow/ow me‘”% (d2)dra (V)

_ /SK /O , /O ® h[g?tf)) (1 e PV drdsa ()

* h(s,U)
“Jo b = (50
Thus (4.29), Proposition 4.2 and (4.20) imply L(Ik(a,B)). LetN(ds,dx) be the Poisson random
measure associated g (a,8) andY" = [ [ h(s,x/||x|)xN(ds, dx). Then Proposition 4.3 shows
that u is the distribution off™ which concludes the proofm

We also have another characterizationG®%C(K), similar to a characterization of multivariate
GGC proved in [3, Theorem F]. This gives another probakglistterpretation olGGC(K).

We callXV an elementary Gamma variableKrif X is a non-random non-zero vectorknandVv
is a non-negative real random variable with one-dimensiG@enma distributiori (a, 3).

>dsa(dU).

Theorem 4.6. GGC(K) is the smallest class of distributions on K closedanmmdnvolution and weak
convergence and containing the distributions of all elelgnGamma variables in K.
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Proof: The proof is along the same lines to that of Theofein [3, p. 27]. m

This implies also that GG®() is the smallest class of distributions closed under carian and
weak convergence containing Klitvaluedr” distributions in the sense of Definition 4.1. It is trivial to
see that GG®) includes allK-valued stable distribution using the spectral represiemtaf stable
Lévy measures and mahf the formh(s,U) = {sB(U)l (a + 1)}*% withO< a < 1.

5. Positive Definite Matrix Gamma Distributions

In this section we consider the important case of non-negaléfinite Gamma random matrices.
This corresponds to the closed cdfe= §d+ of symmetric non-negative definitx d matrices with
inner product{X,Y) =tr(X"Y), X,Y € gg. WhenX is in the open con8, we write X > 0. When
dealing with random matrices, a useful matrix norm is ttae normdefined forX € My(R) as

IX|| =tr((XTX) 12 )- We write S/, = Sﬁ\l =S NSq. ForX €Sy, |IX|| = tr(X) and, in particular, if
Ue S|+H’ r(U) = ||U|| = 1. By Proposition 3.4 it is not important which norm we use. Soclveose

the one most convenient to work with.

5.1. General Case
The matrix Gamma distributiopt ~ Fgg(a, B) on Sg has the Laplace transform

BWU)r _
_exp{ / / - @U)e r dra(dU)},veeSj (5.1)
S
with alternative representation
tr(UO) —+
L,(®) =ex —/ In<1+ >adU VO ESy. 5.2
u(©) p{ s 50 ) >} y (5.2)

Additional properties of Gamma random matrices to thoseHergeneral cone valued case in
Section 4.2 are the following.
If M is a symmetric random matrix with Gamma distributiﬁgg(a,ﬁ), tr(M) follows a one-

dimensional Gamma convolution law. However, in the homeges cas@(U) = 3, > 0, tr(M) has
a one-dimensional Gamma distributibfa (S i H) Bo)-

Proposition 5.1. a) If M ~ I'gg(a,B), tr(M) has a one-dimensional GGC law with Laplace transform

Ee (M) _ exp{—/oooln (1+ g) uayﬁ(ds)} (5.3)

where v, g is the Thorin measure o0, ) induced bya(dU) on Sm under the transformation

U — BU).
b) If M ~ Fgg(a,ﬁ) with B(U) = Bo, thentr(M) has the one-dimensional Gamma distribution

F(G(S”f”),ﬁo).

Proof: For8 > 0, let® = 6l4. SinceEe M) =L (@), from (4.11)

Cotr(M) otr(U)
Ee0tr(M) _exp{—/y In <1+ BU) )a(dU)}




= exp{—/owln <1+ Z) Uo,,ﬁ(ds)}

whereu, B is the measure ofD, ) induced bya (dU) on SW under the transformatiod — B(U).
Then, using (2.1) we obtain (a). For (b) we observe that #rbenﬂtrst equality in the last expression
with B(U) = o, we obtainEe 8™ = (1+6/B) *Si1). m

Any matrix Gamma distributioi (a B) is self- decomposable and if sugp is of full dimen-
sion, it is absolutely continuous W|th respect to the Lebesgeasure oy (which can be identified
with R4(4+1/2) and so there is a density. The proof follows from the multate case, identifying
the coneS; with RA(4+1/2 Moreover, since the Lebesgue measurB0fS; is zero, the distribution
I'Sg(a,B) is supported in the the open coKe> 0. In other words

Corollary 5.2. Let M be a random matrix with Gamma distributiﬁgg(a,ﬁ) with supg(a) of full
dimension. Thei*(M > 0) = 1.

The following result is an adaptation of Proposition 3.8 peaal linear operators preserving
the coneS;. Observe that all invertible surjective linear operatorssprvingS] are of the form
X — CXCT with someC € GL4(R) (see [20, 21)).

Proposition 5.3. Let M~ I'¢ (a B) with respect to the trace norfft|| and let Ce ¥.Z4(R). Then
Y =CMC' ~ Msi,, (ac, Be), whereSH e = Sl NSq for|Bfc = ||cBC 7| and

ac(E)=a(ClECT), VEe B(S).): (5.4)
and
Bc(U)=B(CECT), We ST (5.5)
Moreover, Y~ I'gg(ac,ﬁc) with respect to the trace norfh|| where
~ ' U
Ge(E) = /Sd+ 1e <||U ”> ac(dU), VE e B(ST) (5.6)
and U
etw) =i (g7 ) Wle. W e s, 5.7)

Example 5.4. (Diagonal matrix with independent entries). As pointediayb], an infinitely divis-

ible non-negative definite random matrix M has independemponents if and only if it is diagonal
and therefore its Bvy measure is concentrated in the diagonal matrix aXes Ej, i=1,..d. Thus,

a Gamma random matrix M Fgg(a,[}) has independent components, if and only if there exist non-

negative numberg;, ..., B4 such that the Bvy measurey is given by

d —rﬁi

vm(E) = Za(E”)/Omlg(rU)e

dr EcBSy).

Further examples are considered in the next section.
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5.2. The A-distribution

We now introduce a special matrix distributiétiy(n,Z) in the open con&; with parameters,
n>(d—1)/2andZ € Sj. We study several properties including a relation betweenutants of
Al (n,Z) and the moments of a Wishart distribution.

The multivariate Gamma function, denotedlty(n ), is defined for Rén) > (d—1)/2 as

ra(n) = /X O e, (5.8)

where K is the Lebesgue measure §§ (identified withR4(4+1/2); see for example [24, p. 61An
alternative expression fdérg(n) is ([24, Theorem 2.1.12])

nd<d—1>/4dr i R > (d—1)/2. 5.9
_Unz(),e(n)()/ (5.9)

The special infinitely divisible matrix Gamma distributiéti 4(n,2) is defined as follows. For
n > (d—1)/2, consider the measupg (dX) = g, (X)dX on the open con8 where

(X) e -z y g (5.10)
=Cip——— , X>0, :
T o)™
and F(nd)
n
Cd.n = Wy 5.11
& TTa(n) (-1

andawy,, > 0is given.

Proposition 5.5. Let n > (d — 1)/2. Then there exists a homogeneous Gamma matrix distribution
FS+(01,,,[3) with respect to the trace norm whefigU) = 1 for each Ue S| and aj, is the measure

Bl
on Sm given by

du
ap(dU) =cqp U W (5.12)

with o, (S i H) = ay,n - Moreover, the Bvy measure oIFS+ (ap,B) is py and has a polar decomposition

e’ U —t
/g,, )dX = cd,,/l/ 1e(rU) rdr|U|d+1)/2’ Ec B(S)). (5.13)

Proof: To show existence of the matrix dlstributiﬁgg (ap,B), by Proposition 3.3 it suffices to prove
thatay, is a finite measure, since trivially satisfies (4.12). The fact thﬁgg(an,ﬁ) is concentrated

in the open con&; will follow by Corollary 5.2 since from (5.12) sugp, ) has full dimension.
For X > 0 make the change of variable

X =rU,r =tr(X), tr(U) = 1,dX = rd@1/2=1grquy (5.14)
([23, p. 111]) Using this in (5.8) and the fact thatJ | = r4|U|

du
/ /S+ e dr|U| |U‘(d+1)/2

M-l
du
— n
= r(nd)/S+ U] VG (5.15)

and hencex,, (S | H) wy - Using again the change of variable (5.14) we have (5.#3).
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Definition 5.6. Letn > (d—1)/2andX € Sj. An infinitely divisible px p positive definite random
matrix M is said to follow the distribution [A4(n, %) if it has Gamma distributiorh'Sg(a,,,z,Bz) with

respect to the trace norm whefz(U) = tr(=~'U) and

! an (dU) (5.16)

aps(dU)= —
nz(J) =T tr(z-2y)nd "1

anday is given by (5.12).

Remark 5.7. a) The distribution &4(n,Z) has also as a parameter the total maasg(s

This parameter is conjectured to be of particular importanghen considering the \lmltmg spec-
tral (eigenvalue) distribution as the dimension goes taityfj since it may then depend gnor d.
Particularly, interesting choices afy , in this connection should bend d or a constant.

b) The case) = (d + 1)/2 was considered in Barndorff-Nielsen anérez-Abreu [5].

c) Note that fom € ((d —1)/2,(d +1)/2) the Levy density becomes infinity at the non-invertible
elements of (i.e. the matrices which are positive semi-definite, butstidttly), whereas fon >
(d+1)/2 the Levy density becomes zero at the non-invertible elemefsts.dfor n = (d+1)/2 we
have thatay, |, is the uniform measure on the unit sphere.

d) The Fourier-Laplace of the distributionlg(n,1q) is

tr(UO) du
L, () = ex —cd,/ In(1+ >u”7 VOEeSt.
u(©) p{ n s B(U) U] |U|(d+1)/2 d

e) This is an absolutely continuoug\y measure. For similar alternatives with continuous ging
lar Leévy measures, see th€& Bdistributions with g< d in the next section.

fyn > (d—1)/2 is a necessary and sufficient condition to define a progaryLmeasure. The
sufficiency is shown above. For the necessity it is enouglote that the poles of theévy density
different from zero need to be of an order lower than one ireotd give a valid [Evy measure.

Note that ifM ~ A (1, 14), thenZ/2MzY2 ~ Al 4(n, Z). This follows from Proposition 5.3 which
also gives together with Proposition 5.5, thdiq(n,>) has Lévy measurgy, s (dX) = gy s (X)dX
where
Cdn e > ) | | d+l)/2
2" [tr(z-1x)]¢
The existence of moments of all ordersAify(n,lq) follows since (4.12) is trivially satisfied. The
same is true foAl 4(n, Z) sinceX/?M3Y2 ~ Al 4(n,Z).

In the homogeneous case the distributhdny(n, oly) with o € R* is invariant under orthogonal
conjugations and the trace follows a one-dimensional Ganistabution.

O s(X)= X>0. (5.17)

Lemmab.8. Letn > (d—1)/2ando > 0.

a) The distribution A4(n, oly) is invariant under orthogonal conjugations.

b) If M ~ Al'4(n,alg), thentr(M) follows a one-dimensional Gamma distributibfcwy 5, 0).
Proof: Itis well known that the measure<d |X| (d+1/2 s invariant under the conjugatiof— CXC',
for X > 0 and any non-singular matri(see [13, Example 6.19]). The determinant and the trace norm
functions are invariant under the conjugatién— OXO', for X > 0 and anyO € ¢(d). Thus the
Lévy measure, 41, with density (5.17)% = olg, is invariant under orthogonal conjugations and so
the matrix distributionArl’ (n, oly) is. Proposition 5.1(b) gives (b

20



The cumulants of the distributioAl 4(n, oly) are related to the moments of the Wishart distri-
bution, as we prove below. Recall thatlax d positive definite random matrwW is said to have a
Wishart distributiony (n,d) with parameters > d — 1 ands € S, if its density function is given by

1

1 -1
fur (A :ﬁeﬁztr(z A) A(nfdfl)/Zj A> 0. (5.18)
A= o2 A

As usual we denote b&® B the tensor product of the matricAsandB. We recall that ifA andB are
in M, then t{A® B) = tr(A)tr(B) and|A® B| = |A]"|B|".

We use the notatioB(n,m) =T (n)I"(m) /I (n+m) for the Beta function, with R@) > 0,Re(m) >
0, and for the multivariate Beta function, denotedByyx,y),

Ca(na(m)

Ba(n,m) = Fg(n+m)

, Re(n) > 0,Re(m) > 0. (5.19)

Proposition 5.9. Letn > (d—1)/2and g, (X) be the levy density of Rg(n,Z). LetW be arandom

matrix with Wishart distribution W(2n,%). For any integer p> 0 the following three identities hold:
a)

/ XPgy s (X)dX = 1B (nd, p)EWP. (5.20)
X>0 2P
b)
[ X Pan 2(X)dX = S B(0d, PIEWP). (5:21)
X>0 2P
)
[ XIPanz(X)dx = S B(nd. pAE(W|?) (5:22)
d, pd
— Gt Talp) o 51 (5.23)

Proof: The existence of the integrals (5.20)-(5.22) is seen asvisll The finiteness of the-th
moment ofAl"4(n,%) is equivalent to the existence of thgeth moment of its Lévy measure (away
from the origin). Thenfy_, 1X[[Pgn 5 (X)dX < o for any p > 0 gives the existence of the integral in
(5.20). Since foX > 0 tr(X®P) = (tr(X))P = ||X||P and|X| < ||X||%, one also obtains the existence of
the integrals in (5.21) and (5.22), respectively.

The identities in (a)-(c) are consequences of a more geresalt forg-homogeneous functions
which we now prove: Leh: S{ — H be a function such thdt(rX) = rah(X) for anyr > 0 and
X € S§ and some fixed) > 0, whereH is S§, (S;)“" and(0,) for (a),(b) and (c) respectively. In
the cases (a) and (b) we haye- p while for (c)q=dp.

The change of variable¢ = 3~1/2X5-1/2, the invariance of the measup¥|~“*1/2dx under
non-singular linear transformations and writihg(Y) = h(Z1/2Yz1/?) give:

Cog €"E a2
J= / X)@n 5 (X)dX = cd,,/ R Tl dX

e tr(V)

A (d+1)/2
—Cd.n/v>0hz(V)7( (V))”d| 118D 2 qy,
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Using (5.14), the definition of the Gamma function, first fgg) and then fo” (nd +q), and (5.11)
give

J= Cdn/ /Irq ths (U fdrU|”|U|g%>/2
=Canl (0) / sm hs(U)|U|" ﬁ
= ’?Tgfﬂ/vmhzw—t“v) V|12 gy (5.24)
_ %m/AW (%A) &30 AP ﬁ (5.25)
- oqj_nB(nd,q)//;h (%A) fw (A)dA = wy ,B(nd,q) @)qE(h(W)), (5.26)

where in (5.24) we used again (5.14), in (5.25) the changeaofable A =V /2 (with dv =
(1/2)(d+D/2dA), and for (5.26) the fact thaky is the density (5.18) of the random matki with
Wishart distributionV (2n,%).

Then (a), (b) and the first equality in (5.22) are proved. Téwoad equality in (5.22) follows
using the fact thall |WP| = |2|P 24P 4(n + p)/T4(n) (see Muirhead [24, p. 101])m

In particular, the meai(M) and covariance matrix COM) = E(M @ M) — E(M) @ E(M) of
M ~ Al4(n,Z) are expressed in terms of the mé&(iV) and the second tensor mom&r{w) @ E(W)
of the Wishart distributiomVy(2n,%). Recall that the commutatici? x d? matrix K is defined as

d

K= § Hij®H/
whereH;; denotes thel x d matrix with hj; = 1 and all other elements zero. Threth moments and
cumulants of al x d random matrix ar&l°™-dimensional objects which need to be represented in a
concise and at the same time easy to handle way. As usuahflomamatrices we define the moments
and cumulants using the tensor product, e.g.ntite moment of a random matriX is understood to
be E(X®™). An alternative would be to use the vec-operator to trartkiematrix into an element of
R first, but typically this leads to formulae that are more censbme to handle. Now we have:

Corollary 5.10. The cumulants of the random matrix MAI 4(n,Z) are proportional to the tensor
moments of the Wishart distribution. In particular

E(M) = %z (5.27)
and the matrix of covariances between elements of M is giyen b
Cov(M) — f 1+ 2 ) 1p+K) Zo3) (5.28)
4 qind + 1) 2n ) ‘ '
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Proof: The first assertion follows from (b) in Proposition 5.9. Sirthe first moment o equals its
first cumulant and its matrix of covariances equals its seé@umulant, then (5.27) follows from (a)
in Proposition 5.9 withp = 1 and sincéE(W) = 2n% for W ~ Wy (2n,%). From [24, p. 90] we have

Cov(W) =2n(lz+K)(Z®Z).

Using (b) in Proposition 5.9 witlp = 2 we have

_ ®2 _ Wun 1 ®2
COV(M)—/X>0X (X)X = T B W)
:ahl’r’ 1

A T COMW) + W) 7).

Hence (5.28) follows.m

In particular, whenwy , = dn, E(M) = nZ%, as in the Wishart case. On the other hand, when
wip=d,EM)=3

This result is of particular importance in applicationgics it implies that the second order mo-
ment structure is explicitly known which may allow methodnedments based estimation of models
usingAl 4(n, %) matrix subordinators as the stochastic input (e.g. [29])

The following result states an interesting relation with $lo-called Marchenko-Pastur distribution
of paramete > 0. Recall that the moments of this distribution are givendge([2])

p-1 1 p p_l .
M= —|: T 5.29
ey ;)Hl(J)( ) (5.29)
Lemma5.11. Lete € R. For any integer p>0,asd— o and d/n — A >0

1 X\P
5 X>Otr<¥> O 1, (X)AX ~ Kp(A ) axg pd—PEHE) (5.30)

where Ko(A) =T (p)Up(2A). In particular, fore =1

1 X\ P Aifp=1
(!l_rgoa o [tr (E) ]g,”d(x)dx = {0, ifp>2° (5.31)

Proof: If W ~Wg(2n,14), then

1 WP
(![nmaEtr<5) = Up(2A). (5.32)

as 21/d — 2A due to the well known Marchenko-Pastur Theorem [2], for pny 0,

By the Stirling approximatior (z+ 1) ~ \/2mz(z/e)* for z— oo, for n andd large

M(nd)
r(nd+p)

Usingn/d — A and (5.32) in (5.20) gives:

(nd)~". (5.33)

1 X\ P Wi
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p
W C(nd)F(P) 1. W

T dP r(nd+p) d (2

~T(p)awyp(nd)—Pd—Pe [%Etr <V5\,> p}

P
~T(p)wy,d PP [%Etr (VEV) ] (5.34)
~Kp(A ) nd P8 for n,d large, (5.35)

which proves the lemmaa

Conjecture 5.12. We conjecture that the above Lemma is a first step to studysihmaotic spectral
distribution of the random matrix M- Al'4(n,%). More specifically, the right hand side of (5.31)
must be related to the pth-cumulant of the pth-moment of trenrmapectral distribution of M, which
in turn should allow the identification of the limiting spedtdistribution.

5.3. Further examples
5.3.1. B -distributions
Letd > 1andg=1,...,d be fixed. Consider the Lévy measuregfh given by
e BolX|l _

Vg(dX) = Wadvq(dX), X €§4\{0} (5.36)

whereffy > 0 and .
faq(E) = / / 1¢ (U )dr ag o (). (5.37)
Sy /0
Hereaqq/d is the probability measure on the sphéfﬁ| induced by the transformatioh — U =
VVT, where thed x gmatrixV is uniformly distributed on the unit sphere of the linearcaidlyq(R)
of d x g matrices with real entries, with the Frobenius nqmﬂg =tr(YTY).

An infinitely divisible d x d symmetric random matri¥ with Lévy measure/q has the Gamma
distribution M (04,9, B0), sincevgy has a polar decomposition

vq(E):/y /(JmlE(ru)eT_rdrad,q(dU), Ec 2.

We call this distribution th&[l 4(q, Bo) distribution.

Remark 5.13. a) We observe that the supportwfis concentrated in matrices of rank q@ﬁ. Hence
this support is of full dimension. Then, by Corollary ,E%;(adﬁq,ﬁo) has support in the open cone
S

b) The case g 1 was considered in &ez-Abreu and Sakuma [27] in the context of random
matrix models for free generalised Gamma convolutions. y Toasidered the Hermitian case for
which working in the setup oMg,.4(C) is needed, but otherwise the above steps can be carried out
in a straightforward way.

c) For X € S§ one can consider invertible linear transformations Bt (ad.q, o) to obtain in-
finitely divisible positive definite matrix Gamma distrilounts Fgg(amz, Bs) with Lévy measures of the

form
e lIZ X

Vq(dX) = Wadﬂ(z_l/zdxz_l/z)
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similar to the familyi™ of matrix Gamma distributions considered in the last sectio
The following properties are easily proved.

Proposition 5.14. Let M ~ Fgg(adyq,ﬁo) and g=1,...,d be fixed. Then,
a) M has an invariant distribution under orthogonal conjuigas.
b) E|M||* < w for any k> 0.
d) tr(M) has a one-dimensional Gamma distributiofd, o).

5.3.2. Matrix Gamma-Normal distribution

In the one-dimensional case, the so called variance ganstrébdiion is popular in applications
in finance, see [22]. This distribution is a mixture of Gaassihaving a random variance following
the one-dimensional Gamma distribution. As an applicatibthe matrix Gamma distribution, we
now present a matrix extension of the one-dimensional neg&amma distribution.

Let Z be ad x g random matrix with independent standard Gaussian diséibentries, i.e.

Eexp(itr(@'2)) = exp(%tr(@T®)> , VO € Mgyq(R).

Let X be a random matrix with the Gamma distributiﬁgg(a,ﬁ) and independent at. Consider

therandom linear transformation ¥= X1/2Z. Using a standard conditional argument we compute the
characteristic function of the x g matrix as follows:

Eexp(itr(@7Y)) = ExE; [exp(itr(OTxl/ZZ)))X)}

= Ex {exp(—%tr(xl/ZOG)Txl/Z))}

= Ex {exp(—%tr(@@TX))}.

Then, using (4.11)

.
Eexp(itr(©7Y)) = exp{— /S+_ In (1+ %%) a(dU)} , (5.38)

for each® € Mg, q(R). Using the terminology in [6], we can say théthas a MaB distribution,
which is infinitely divisible inMgq(R).

Similar to the one-dimensional case, we call this distiduthe matrix Gamma-Normal distribu-
tion with parametersr and 3 or more specifically thel x g-dimensional matrix'g;(a,B)-Normal

distribution. We observe thathas a symmetric distribution in the sense that'2y and also thay

has a distribution invariant under orthogonal conjugatidi8(U) = o anda(dU ) is invariant under
orthogonal conjugations.

Remark 5.15. If B(U) = B > 0and q=d, tr(Y) has a one-dimensional variance Gamma distribu-
tion with the following characteristic function: f& € R, © = 0lg,

Eexp(i6tr(Y)) = exp{—/S+ In <l+ %92> or(dU)}
il
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—a(sy)
= (1+ i92>

S
1 Il 1
=|1-i——=6 1+i——0
() (o
Thus,tr(Y) has the same distribution asVV, where V has a one-dimensional Gamma distribution

F(a(SM), \/2B0) and Vis an independent copy of V

—a(sy)

Remark 5.16. Let g= 1, i.e. the resulting matrix Gamma-normal distributiorii8-valued. Thus for
© cRY, 00" has rank one.

Assume additionally that the measuarés concentrated on the rank one matrices, that isWu’
with u € RY (and the first non-zero componentwbeing positive, to make unique given U). Lelr
be the measure on the unit sph&gy . of RY induced bya under this transformation. Using this
we write the integral in the right hand side of (5.38) as falt

(42t

© W)\ -
-k, <“iﬁ<w>>“<d“>
/ ( _ oty >6(du)
d 2B(uu’)

+/ In <1+i&> d(du). (5.39)
. SJRCLH«H V ZB(U UT)

Interestingly, (5.39) implies that the matrix Gamma-normamdom variable can be represented (in
this special case) aspX- Xp with Xg, X ~ [4(@, B) being independent whefe= /2B (uu’).

Hence, the matrix Gamma-normal distribution with=dL, which can indeed be regarded as a d-
dimensional generalisation of the univariate variance @Gaardistribution, inherits interesting prop-
erties well-known in the univariate case.
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