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a b s t r a c t

We consider n equidistributed random functions, defined on [0,1], and admitting fixed
or random jumps, the context being D[0, 1]-valued ARMA(1, 1) processes. We begin
with properties of ARMAD(1, 1) processes. Next, different scenarios are considered: fixed
instants with a given but unknown probability of jumps (the deterministic case), random
instants with ordered intensities (the random case), and random instants with non ordered
intensities (the completely random case). By using discrete data and for each scenario, we
identify the instants of jumps, whose number is either random or fixed, and then estimate
their intensity.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. There is an abundant literature concerning functional data analysis (FDA) and prediction of stochastic processes in
infinite dimensional spaces. In particular, the books by Ramsay and Silverman [50], Ferraty and Vieu [31], Ferraty and
Romain [30], Horváth and Kokoszka [35] and the recent book edited by Bongiorno et al. [9] contain interesting theoretical
and practical results. See also [11,13]. In general, X takes its value in L2 = L2([0, h]) or in C = C([0, h]), but, in some
situations, one may consider that a jump does exist if there is a large peak: see, for example the annual sediment in [9, p.
8]. Thus, it is perhaps more natural to consider the space D = D([0, h]) which is càdlàg and equipped with the Skorohod
metric d◦ (see [6, p. 125]): with that metric, D becomes a separable complete metric space. Note that this metric is not easy
to compute. In this paper, we consider càdlàg processes from a functional point of view: by this way, wework in the context
of FDA with jumps.

1.2. Works dedicated to jumps in stochastic processes appear very often: actually, there are more than 1200 papers
concerning them. Thus, we may only give recent and limited references. For example, processes with jumps are widely
used in finance: we may refer to [20,54]; [39, part 2], [29, ch. 10]; [49], etc.; but applications can also be found in fields as
varied as the environment, medicine, reliability, etc., see e.g. [33,4,16,10]. Many mathematical models have been proposed
and studied [25,42,34,24], and statistical estimation appears e.g. in [18,17,26], etc. Note that the pioneer paper concerning
jumps appears in Lévy [44]. Other references of interest will appear below.
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1.3. Now, here and in the books quoted in Section 1.1, our purpose is somewhat different sincewewant to observe a process
over a sequence of time intervals. More precisely, let (ξt , t ∈ R) be a real measurable continuous time process. We put

Xn(t) = ξ(n−1)h+t , 0 ≤ t ≤ h, n ∈ Z (1.1)

where h > 0 is a time interval. The process may contain some jumps and we envisage to detect them and to estimate
intensity of jumps, given the data X1, . . . , Xn.

Another motivation should be prediction of Xn+1 over the time interval [nh, (n + 1)h]. One way to predict Xn+1 would
be to treat continuous time and jumps separately (see [51,1,52], etc.). As an example, consider the functional autoregressive
process of order 1 (ARD(1)):

Xn+1(t) = ρ(Xn)(t)+ Zn+1(t), 0 ≤ t ≤ h, n ∈ Z,

where ρ is a continuous linear operator with respect to the sup-norm. Then, in order to separate the continuous part from
the jump’s part, wemay suppose thatρ(D) ⊂ C . That condition is satisfied by theOrnstein–Uhlenbeck process driven by a Levy
process, cf Example 2.1. Another classical example is given by: ρr(x)(t) =

 h
0 r(s, t)x(s) ds, 0 ≤ t ≤ h, x ∈ Dwhere r satisfies

Example 2.2, see also [21,35], etc. Thus, ρr(x) ∈ C . Finally, the condition ρ(D) ⊂ C seems quite standard and characterizes
the unpredictability of jumps by confining them in the innovation process. Now, the best probabilistic predictor of Xn+1 is
ρ(Xn) and it can be approximated by using an estimator of ρ. An exponential rate is obtained in [11, p. 222–235], when the
detector and intensity of jumps appear in the current paper. One direction (currently under development) will consist in
combining the two approaches to improve the prediction.

1.4. A more general model should be the ARMAD(p, p) process defined by

Xn − ρ1(Xn−1)− · · · − ρp(Xn−p) = Zn − ρ ′

1(Zn−1)− · · · − ρ ′

p(Zn−p), n ∈ Z,

where Xn and Zn areD-valued andwhereρj, ρ ′

j , j, j
′
= 1, . . . , p are continuous linear operatorswith respect to the sup-norm.

In order to study this process, it should be possible to work in the space D([0, h]p) (cf [43]). Note that if ρj, ρ ′

j , j, j
′
= 1, . . . , p

are C-valued, Xn and Zn have again the same jumps.
Now, since this model is difficult to handle, and in order to simplify the exposition, we take p = 1 and write

Xn − ρ(Xn−1) = Zn − ρ ′(Zn−1), n ∈ Z,

note that, Zn−1 may be replaced with an exogenous variable (see for example [32]).

1.5. We now give some practical examples of jumps over time intervals:

– a patient’s electrocardiogram at each minute [46,48,45];
– the temperature day by day [56];
– El Niño southern oscillation (ENSO): a prediction over one year shows a jump in May [5];
– wave amplitude [55];
– pollution day by day [35];
– credit cards transaction and its prediction [35];
– another example is electricity consumption: it admits a jump early in the morning and in the evening (see [3,27,28]);
– administration of a drug treatment: each day produces a shock at time intervals (see [40]);
– astronomical time serieswith 100000 data (see [48]);
– earthquake and explosion: [46];
– predicting ozone [36,22,15,23];
– predicting the euro–dollar rate [41];
– finally, themistral gust during one day or oneweek is one of our objective for prediction: 240000 data are at our disposal.

Predicting the greatest jump should be of interest, see [37].

1.6. In our considered framework, preliminary results were first obtained by Bosq [12] and, the case of observations in
continuous time also appears in [7]. Here, we use high frequency data (HFD); this scheme appears in many situations (see
[8,19,2] among others). Concerning prediction with HFD, practical results will be studied later with combined predictors. In
particular, we will apply the results to the mistral gusts with big data.

1.7. In Section 2, we introduce the ARMAD(1, 1)model which is connected with FDA:

Xn − m − ρ(Xn−1 − m) = Zn − ρ ′(Zn−1), n ∈ Z (1.2)

wherem is a trend and ρ(D) ⊂ C, ρ ′(D) ⊂ C so that (Xn) and (Zn) have the same jumps. We give several properties of (1.2)
as well as examples. In the following, we study various types of jumps.

In Section 3, we consider data of the form Xi(
ℓ
qn
), ℓ = 0, . . . , qn, qn ≥ 1, i = 1, . . . , n; where ℓ and qn are integers

and (X1, . . . , Xn) are D-valued realizations of (1.2). We consider the case of fixed but unknown instants of jumps t1, . . . , tk,
where tj, denotes the jth jump, j = 1, . . . , k and k is unknown too. In this part, each jump may occur randomly at time tj
with unknown probability pj ∈ ]0, 1], j = 1, . . . , k, so the number of jumps is a random variable depending on i = 1, . . . , n.
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We propose and study detectors of jumps and next, we derive estimators of each intensity of jumps by estimating pj and
plug-in the detectors.

Section 4 is devoted to the case of random instants of jumps: 0 < T1 < T2 < · · · < TKi < 1 with Ki a N-valued random
variable. We consider the case where intensities of jumps have the same ordering in each Xi. To estimate these intensities,
we detect the k, k ≥ 1, first jumps by considering separately each Xi. Here, as Ki is random, the difficulty is to select the
sample paths with at least k jumps. In this section, we also derive results for estimating the maximal jump.

In Section 5,we consider a final scheme, the completely randomonewhere the ordering of jumps varies fromeach sample
Xi. Similarly as in the previous section, we detect the jumps with each trajectories considered separately. To estimate their
intensities, their random ordering makes the problem intricate but we propose a method in the case where the number of
jumps is fixed. It is based on a trick, derived from Viète’s formula, that allows us to provide estimations (based on numerical
approximation for a number of jumps greater than 4).

2. ARMAD(1, 1) processes

2.1. Model and properties

In order to study the jumps of the real continuous time process X = (Xt , 0 ≤ t ≤ h), h > 0, we consider the space
D = D([0, h]) of càdlàg real functions defined over [0, h]. The sup-norm ∥x∥ = sup0≤t≤h |x(t)| entails non-separability of D.
Thus, it is more convenient to use the modified Skorohod metric d◦ (cf [6, p. 125]); with that metric, D becomes a complete
separable space.

The process X being defined on the probability space (Ω,A, P), we suppose that it is A − D measurable where D is the
σ -algebra generated by d◦. Concerning measurability we refer to [38].

Now, if ρ is a bounded linear operator, i.e. ∥ρ∥L = supx∈D,∥x∥≤h ∥ρ(x)∥ < ∞, then, it is D–D measurable. Also if there
is a jump at t0, x → x(t0)− x(t−0 ) is a continuous linear form on (D, ∥·∥), see [47].

We consider the ARMAD(1, 1) process defined as

Xn − m − ρ(Xn−1 − m) = Zn − ρ ′(Zn−1), n ∈ Z, (2.1)

where ρ and ρ ′ are bounded linear operators,m = E (Xn), and (Zn) is a strong white noise, i.e. the sequence (Zn) is i.i.d., and
such that E ∥Zn∥2 < ∞,E (Zn) = 0. Note also the presence of the trendm.

In order to show existence of the ARMAD process we make the following assumption, weaker than those considered
in [7]:

Assumption 2.1 (A2.1). ∃ j0 ≥ 1 :
ρ j0


L
< 1 and ∃ j1 ≥ 1 :

ρ ′j1


L
< 1.

Lemma 2.1. If Assumption 2.1 holds, we have

Xn − m=L2D

∞
j=0

ρ j

Zn−j − ρ ′(Zn−1−j)


, n ∈ Z, (2.2)

so the process (Xn − m, n ∈ Z) is stationary and (Zn, n ∈ Z) is the innovation of (Xn, n ∈ Z).

Proof. To simplify the exposition, let us assume that m = 0. We may write Yn = Zn − ρ ′(Zn−1), n ∈ Z then, (Yn) is an
equidistributed sequence and ∥Yn∥ ≤ ∥Zn∥ +

ρ ′


L
∥Zn−1∥, thus

E ∥Yn∥
2

≤ 2E ∥Zn∥2
+ 2

ρ ′
2

L
E ∥Zn−1∥

2
≤ 2(1 +

ρ ′
2

L
)E ∥Z0∥2 < ∞.

Now, we study

E


j≥k+1

ρ j(Yn−j)

2 ≤


j,j′≥k+1

∥ρ∥
j
L ∥ρ∥

j′
L E

Yn−j
 Yn−j′

 ≤ E

∥Y0∥

2 
j≥k+1

∥ρ∥
j
L

2

and A2.1 implies


j≥k+1 ∥ρ∥
j
L −−−→

k→∞

0 which gives (2.2). Finally, the condition ∃ j1 ≥ 1:
ρ ′j1


L
< 1 gives invertibility and

consequently, (Zn) is the innovation of (Xn). �

We consider the following assumption:

Assumption 2.2 (A2.2). ρ(D) ⊂ C, ρ ′(D) ⊂ C; also,m ∈ C .

From (2.1) and A2.2, one obtains for each time of jump t0 (fixed or random)

∆n(t0) := Xn(t0)− Xn(t−0 ) = Zn(t0)− Zn(t−0 ), n ∈ Z

which shows that Xn and Zn have the same jumps and that

∆n(t0)


is i.i.d. This assumption is reasonable since we have the

following examples. Here, we may suppose thatm = 0 in order to simplify the exposition.
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Example 2.1. Consider the Ornstein–Uhlenbeck driven by a Levy process given by:

ξt =

 t

−∞

e−θ(t−s) dL(s), t ∈ R (θ > 0)

[14,20] and observed over a sequence of time intervals. By using (1.1), we obtain an ARD(1) process that satisfies Xn+1(t) =

ρθ (Xn)(t) + Zn+1(t), 0 ≤ t ≤ h, n ∈ Z, where the linear operator ρθ has the shape ρθ (x)(t) = e−θ tx(h), 0 ≤ t ≤ h, x ∈ D
and with

Zn+1(t) =

 nh+t

nh
e−θ(nh+t−s) dL(s), 0 ≤ t ≤ h, n ∈ Z.

Then (Zn) is a strong white noise which may contain jumps, and since ρθ (x) ∈ C, Xn and Zn have the same jumps.

Example 2.2. Set ρr(x)(t) =
 h
0 r(s, t)x(s) ds, 0 ≤ t ≤ h, x ∈ D, with

r(s, t)− r(s, t ′)
 ≤ c

t − t ′
α; 0 < α ≤ 1, 0 ≤

t, t ′ ≤ h, c > 0, thenρr(x)(t ′)− ρr(x)(t)
 ≤ c

t − t ′
α  h

0
|x(s)| ds −−−−−→

|t−t ′|→0
0

since x is bounded (see [6], p. 122). Then, a classical example of ARMAD(1, 1) may be derived with Xn − ρr(Xn−1) =

Zn − ρr ′(Zn−1), n ∈ Zwhere ρr ′ satisfies a similar condition as ρr .

Example 2.3. Put Xn+1 = ρ(Xn) + Zn+1, n ∈ Z, where
ρ j0


L
< 1 for some j0 ≥ 1. Then, it is possible to predict Xn+1 by

considering continuous time and jumps separately (see [51,1,52]). Thus, we may suppose that ρ(D) ⊂ C .

2.2. Discrete data

Here the data are supposed to be discrete. They take the form Xi(
ℓ
qn
), ℓ = 0, . . . , qn, qn ≥ 1, i = 1, . . . , n, where ℓ and

qn are integers and qn → ∞ as n → ∞. Now, in all the following we set h = 1 so if (ξt , t ∈ R) is the real measurable
continuous time process such that Xi(t) = ξi−1+t , one observes ξt at nqn + 1 discrete times 0, q−1

n , . . . , n − q−1
n , n.

The instants of jumps associated with Xi are denoted by Ti1, . . . , TiKi , they can be fixed or random, as well as Ki, and they
satisfy 0 < Ti1 < · · · TiKi < 1, i = 1, . . . , n, almost surely (a.s.). Next, in order to avoid local irregularity we need the
following hypothesis:

Assumption 2.3 (A2.3). For 0 < α ≤ 1, (s, t) ∈ [0, 1]2:

(i) For x ∈ D, the functions ρ(x), ρ ′(x) andm are Hölderian:

|ρ(x)(t)− ρ(x)(s)| ≤ a(x) |t − s|α (a > 0),ρ ′(x)(t)− ρ ′(x)(s)
 ≤ b(x) |t − s|α (b > 0),

|m(t)− m(s)| ≤ cm |t − s|α (cm > 0).

(ii) For i.i.d. and integrableMi: |Zi(t)− Zi(s)| ≤ Mi |t − s|α , (s, t) ∈ IiKi where IiKi = [0, Ti1[2∪ · · · ∪ [TiKi , 1[
2, i = 1, . . . , n.

Note that Example 2.2 satisfies A2.3-(i) with a(x) = c
 1
0 |x(s)| ds and that the Ornstein–Uhlenbeck process or the fractional

Brownian motion with jumps satisfies condition A2.3-(ii).
In the following, we will use repeatedly the following result since it gives a measure of proximity between increments

of X and Z .

Lemma 2.2. Under the condition A2.3-(i), we have:|Xi(s)− Xi(t)| − |Zi(s)− Zi(t)|
 ≤ (a(Xi−1)+ b(Zi−1)+ cm ∥I − ρ∥L) |s − t|α ,

i = 1, . . . , n, (s, t) ∈ [0, 1]2.

Proof. The relation (2.1) gives

|Xi(s)− Xi(t)| ≤ |Zi(s)− Zi(t)| + |ρ(Xi−1)(s)− ρ(Xi−1)(t)|

+
ρ ′(Zi−1)(s)− ρ ′(Zi−1)(t)

+ ∥I − ρ∥L |m(s)− m(t)| (2.3)

next, A2.3-(i) implies |Xi(s)− Xi(t)| ≤ |Zi(s)− Zi(t)| + (a(Xi−1) + b(Zi−1) + cm ∥I − ρ∥L) |s − t|α , and reversing the
inequality, one obtains the result. �
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Note that if m is constant, it disappears in (2.3) and the term cm ∥I − ρ∥L is no longer relevant. One may handle this case
with the choice cm = 0. The next result shows that, excluding the jump’s times, Xi satisfies also a Hölder type condition. It
is a direct consequence of Lemma 2.2 and condition A2.3-(ii).

Corollary 2.1. Under Assumption 2.3, we have

|Xi(s)− Xi(t)| ≤ (a(Xi−1)+ b(Zi−1)+ Mi + cm ∥I − ρ∥L) |s − t|α , i = 1, . . . , n

provided (s, t) ∈ IiK = [0, Ti1[2∪ · · · ∪ [TiK , 1[2, i = 1, . . . , n.

Now, throughout the paper, we will suppose that Assumptions 2.1, 2.2 and 2.3 hold.

3. Fixed jumps with k unknown

3.1. Framework

In this part, we consider the model (2.1). The (Zi) are i.i.d. functional random variables such that each Zi, i = 1, . . . , n,
has at most k distinct jumps, with a fixed but unknown k ≥ 1. These jumps may occur randomly at fixed times t1, . . . , tk
with 0 = t0 < t1 < · · · < tk < tk+1 = 1 such that tj+1 − tj ≥ δ0 > 0 for all j = 1, . . . , k − 1. More precisely, we set:

∆ij =
Zi(tj)− Zi(t−j )

 =
Xi(tj)− Xi(t−j )

 = IijYij, i = 1, . . . , n

where Zi(t−j ) = limη↘0 Zi(tj − η) and (Iij, j = 1, . . . , k) are positive random variables that describe the jump amplitudes.
Here, we suppose that P(Iij ≥ δ1) = 1 for some positive δ1 and, that (Yij, j = 1, . . . , k) are independent random
variables with Bernoulli distribution B(pj), pj ∈ ]0, 1], j = 1, . . . , k. Also, Yij and Iij are independent, which means that
E (∆ij) = E (∆1j) = pjE (I1j) > 0, j = 1, . . . , k. Hereafter, we present an example illustrating the considered framework.

Example 3.1 (Case k = 1). Consider n independent copies of Y1 with B(p1) distribution, p1 ∈ ]0, 1] and (W1(t),W2(t), t ∈

[0, 1])where W1 and W2 are two independent C-valued processes. We set

Zi(t) = Wi1(t)I[0,Ti1[(t)+ Wi2(t)I[Ti1,1[(t), i = 1, . . . , n, t ∈ [0, 1[

with Ti1 = t1 ∈]0, 1[ if Yi1 = 1 and Ti1 = 1 otherwise. In this case, intensities of jumps are given by
Zi(t1)− Zi(t−1 )

 =

|Wi1(t1)− Wi2(t1)| Yi1 and each sample path has at most one jump located at t1. Note that p1 = 1 gives a systematic jump
at t1. Such modeling refers to short-term perturbations that can be interpreted as impulses: for example, we may think of
treatments where impulses correspond to the periodic administration of some drugs.

Finally for convenience, we suppose that E∆σ(1) > · · · > E∆σ(k) > 0 for some given permutation

σ(1), . . . , σ (k)


of (1, . . . , k). By this way, we denote by tσ(j) the jump time having the jth intensity ∆σ(j), j = 1, . . . , k. Our aim is
to estimate the amplitudes E (I1j), j = 1, . . . , k, on the basis of the discretely observed X1, . . . , Xn from the model
(2.1): Xi


ℓ
qn


, ℓ = 0, . . . , qn, i = 1, . . . , n, where ℓ and qn ≥ 1 are integers and limn→∞ qn = ∞. First, we will estimate the

times tjn, j = 1, . . . , k defined as:

0 <
ℓjn − 1

qn
< tj ≤

ℓjn

qn
:= tjn, j = 1, . . . , k.

Here and throughout this part, we consider qn sufficiently large to have ti ≠ tj ⇒ ti,n ≠ tj,n and we use notation ℓj, ℓσ(j) for
ℓj,n, ℓσ(j),n. Also, we set

ζ ℓ,n =
1
n

n
i=1

Xi

 ℓ
qn


− Xi

ℓ− 1
qn

, ℓ = 1, . . . , qn

and make the assumption:

Assumption 3.1 (A3.1).

(i) The distribution of ζ ℓ,n, ℓ = 1, . . . , qn is continuous.
(ii) Iij ≥ δ1 > 0 (a.s.), j = 1, . . . , k, i = 1, . . . , nwhere δ1 is fixed.

Finally for j = 1, . . . , k, or ℓ = 1, . . . , qn, we set:

∆j,n =
1
n

n
i=1

Xi(tj)− Xi(t−j )
 and ζ

(Z)
ℓ,n =

1
n

n
i=1

Zi ℓqn


− Zi
ℓ− 1

qn

.
We begin with a result giving the proximity between ζ

(Z)
ℓj,n and∆j,n.
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Lemma 3.1. For all j = 1, . . . , k, A2.3-(ii) implies that
ζ (Z)ℓj,n −∆j,n

 ≤ 2Mq−α
n with M =

1
n

n
i=1 Mi.

Proof. First, note that we have the simple inequality |u − v| − |x − y|
 ≤ |u − x| + |v − y| , u, v, x, y ∈ R. (3.1)

Since∆j,n =
1
n

n
i=1

Xi(tj)− Xi(t−j )
 =

1
n

n
i=1

Zi(tj)− Zi(t−j )
, this impliesζ (Z)ℓj,n −∆j,n

 ≤
1
n

n
i=1

Zi ℓjqn


− Zi
ℓj − 1

qn

− Zi(tj)− Zi(t−j )


≤
1
n

n
i=1

Zi ℓjqn


− Zi(tj)
+ Zi(t−j )− Zi

ℓj − 1
qn

 ≤ 2Mq−α
n

from the condition A2.3-(ii) and the properties ℓj
qn

∈ [tj,
ℓj+1
qn

[ and t−j ∈ [
ℓj−1
qn
, tj[. �

3.2. Detection of jumps

Since k and δ1 are unknown, we consider two sequences: kn → ∞ and un → 0 such that unqαn → ∞, for α ∈ ]0, 1]
defined in Assumption 2.3. For example, if qn ≃ nβ , β > 0, an omnibus choice for un is un ≃ (log n)−1. In order to detect
the jumps, we need the following assumption.

Assumption 3.2 (A3.2). Suppose that one of the following two conditions holds true:

(i) – E (a(X1)) < ∞,E (b(Z1)) < ∞,E (M1) < ∞,
– E (

Z1(tj)− Z1(t−j )
4) < ∞, j = 1, . . . , k,

–


n≥1 u
−1
n q−α

n < ∞.
(ii) – a(X1) ≤ a∞ < ∞,E (exp(c1b(Z1))) < ∞,E (exp(c2M1)) < ∞, (a∞ > 0, c1 > 0, c2 > 0),

– E (exp(c3
Z1(tj)− Z1(t−j )

)) < ∞, j = 1, . . . , k, (c3 > 0).

Considering Example 2.2, A3.2(i) holds as soon as E (
 1
0 |X1(s)| ds) < ∞ but the condition imposed on qn implies that

sample paths should be observed with high frequency, especially when α is small. Condition A3.2(ii) is more stringent since
a(X1) is supposed to be bounded, but in this case, the only requirement qn → ∞ is sufficient to derive exponential rates of
convergence.

Now, the jumps detection is carried as follows. We setℓ1,n =ℓ1 = argmaxℓ=1,...,qn ζ ℓ,n and as ζℓj−1
> un:ℓj = arg max

ℓ=1,...,qn
ℓ≠ℓ1,...,ℓ≠ℓj−1

ζ ℓ,n, j = 2, . . . , kn.

The number of detected jumps is then given byk :=kn = min

j = 1, . . . , kn : ζℓj ≤ un


− 1.

Remark that the unique restriction on kn is that k belongs to {1, . . . , kn} for n large enough: kn → ∞ is a sufficient condition.
Hence if the above set is empty, it means that there exist at least kn jumps: in this case, from a practical point of view, one
has to replace kn by k′

n with k′
n > kn. Finally, detectors of jumps locations are given by (t1,n, . . . ,tk,n) = (t∗1,n, . . . ,t∗k,n)

wheret∗j,n is the jth order statistic associated with (t1,n, . . . ,tk,n) := (
ℓ1
qn
, . . . ,

ℓk
qn
). Note that (a.s.) uniqueness oft1,n, . . . ,tk,n

is guaranteed by Assumption 3.1 and the next theorem shows that the times of jumps are detected with probability 1.

Theorem 3.1. Suppose that Assumption 3.1 holds, then the condition A3.2-(i) implies:

P

 k
j=1

{tj,n ≠ tj,n}


= P

 k
j=1

{tj,n ≠ tσ(j),n}


= O

n−2

+ O

u−1
n q−α

n


; (3.2)

while A3.2-(ii) gives:

P

 k
j=1

{tj,n ≠ tj,n}


= P

 k
j=1

{tj,n ≠ tσ(j),n}


= O

exp(−c n)


, c > 0. (3.3)

The same bounds hold for P(k ≠ k) so in both cases, we obtain that a.s. for n large enough,k = k and for j = 1, . . . , k:tj,n = tσ(j),n.
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Proof. Wemay write P(
k

j=1{
ℓj ≠ ℓσ(j)}) ≤ P(

k
j=1{
ℓj ≠ ℓσ(j)})+ P(k ≠ k). First, we have

P(k ≠ k) ≤ P


k

j=1

{ζℓj,n ≤ un}


+ P(ζℓk+1,n > un)

where P(
k

j=1{ζℓj,n ≤ un}) ≤ P(
k

j=1{ζ ℓσ(j),n ≤ un})+ P(
k

j=1{
ℓj ≠ ℓσ(j)}) and

P(ζℓk+1,n
> un) ≤ P(ζlk+1,n > un,∩

k
j=1{
ℓj = ℓσ(j)})+ P


k

j=1

{ℓj ≠ ℓσ(j)}


.

Hence,

P

 k
j=1

{ℓj ≠ ℓσ(j)}


≤

k
j=1

P(ζ ℓσ(j),n ≤ un)+ P(ζlk+1,n > un,∩
k
j=1{
ℓj = ℓσ(j)})+ 3P


k

j=1

{ℓj ≠ ℓσ(j)}


. (3.4)

For the first term, we get from Lemmas 2.2 and 3.1 that for j = 1, . . . , k

ζ ℓσ(j),n ≥ ∆σ(j),n − q−α
n (2M + aX + bZ + cm ∥I − ρ∥L), (3.5)

where aX =
1
n

n
i=1 a(Xi), bZ =

1
n

n
i=1 b(Zi) and M =

1
n

n
i=1 Mi. Now, we set in all the followingΛn = 2M + aX + bZ +

cm ∥I − ρ∥L for obtaining

P(ζ ℓσ(j),n ≤ un) ≤ P(∆σ(j),n ≤ un + q−α
n Λn)

≤ P

∆σ(j),n − E (∆σ(j))
 ≥

E (∆σ(j))

2


+ P


Λn ≥


E (∆σ(j))

2
− un


qαn


.

These terms are controlled by the following lemma whose proof is postponed to Appendix.

Lemma 3.2. (1) Under the conditions A3.2-(i), we get P
∆σ(j),n − E (∆σ(j))

 ≥
E (∆σ(j))

2


= O


n−2


and P


Λn >E(∆σ(j))

2 − un

qαn


= O

q−α
n


for j = 1, . . . , k.

(2) If the conditions A3.2-(ii) hold, P
∆σ(j),n − E (∆σ(j))

 ≥
E (∆σ(j))

2


= O


e−c n


, for some c > 0 and P


Λn >E(∆σ(j))

2 − un

qαn


= O

e−c nqαn


for j = 1, . . . , k.

Concerning again (3.4), the term P(ζlk+1
> un,∩

k
j=1{
ℓj = ℓσ(j)}) is controlled with

ζlk+1,n > un,∩
k
j=1{
ℓj = ℓσ(j)}


⇒

 
ℓ∉{ℓσ(1),...,ℓσ(k)}

{ζ ℓ,n > un}


and Corollary 2.1 implies that, for all ℓ ∉ {ℓσ(1), . . . , ℓσ(k)}:

{ζ ℓ,n > un} ⇒ {q−α
n (aX + bZ + M + cm ∥I − ρ∥L) > un}.

This last event does not depend on ℓ, so

P(ζlk+1,n,∩
k
j=1{
ℓj = ℓσ(j)}) ≤ P(aX + bZ + M > unqαn − cm ∥I − ρ∥L).

For this term, we obtain the bound O(u−1
n q−α

n ) under the condition A2.3-(i) while A2.3-(ii) gives a O(e−cnunqαn ).
For the last term in (3.4), observe that the property P(A ∪ B) = P(Ac

∩ B) + P(A) implies for k = 2 the relation:
P(ℓ1 ≠ ℓσ(1) ∪ℓ2 ≠ ℓσ(2)) = P(ℓ1 = ℓσ(1),ℓ2 ≠ ℓσ(2)) + P(ℓ1 ≠ ℓσ(1)). Next by induction and using the convention0

1 · · · = 0, we obtain

P

 k
j=1

{ℓj ≠ ℓσ(j)}


= P(ℓ1 ≠ ℓσ(1))+

k−1
j=1

P(ℓ1 = ℓσ(1), . . . ,ℓj = ℓσ(j),ℓj+1 ≠ ℓσ(j+1)).

First part: Study of P(ℓ1 ≠ ℓσ(1)).

Clearly, the relation ζ ℓσ(1),n > max ℓ=1,...,qn
ℓ≠ℓσ(1)

ζ ℓ,n ⇒ℓ1 = ℓσ(1) gives P(ℓ1 ≠ ℓσ(1)) ≤ P


ζ ℓσ(1),n ≤ max ℓ=1,...,qn

ℓ≠ℓσ(1)
ζ ℓ,n


.
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Setting j = 1 in (3.5), we obtain P(ℓ1 ≠ ℓσ(1)) ≤ P

∆σ(1),n ≤ max ℓ=1,...,qn

ℓ≠ℓσ(1)
ζ ℓ,n + q−α

n Λn

. Next, we get

max
ℓ=1,...,qn
ℓ≠ℓσ(1)

ζ ℓ,n = max


max
ℓ=1,...,qn

ℓ≠ℓσ(1),...,ℓ≠ℓσ(k)

ζ ℓ,n, ζ ℓσ(2),n, . . . , ζ ℓσ(k),n


≤ max


q−α
n (aX + bZ + M + cm ∥I − ρ∥L), ζ ℓσ(2),n, . . . , ζ ℓσ(k),n


. (3.6)

On the other hand, from Lemmas 2.2 and 3.1, we get for all j ≥ 2,

ζ ℓσ(j),n ≤ ∆σ(j),n + q−α
n (2M + aX + bZ + cm ∥I − ρ∥L). (3.7)

We may deduce that max ℓ=1,...,qn
ℓ≠ℓσ(1)

ζ ℓ,n ≤ maxj=2,...,k∆σ(j),n + q−α
n Λn and, finally, we obtain that

P(ℓ1 ≠ ℓσ(1)) ≤ P(∆σ(1),n ≤ max
j=2,...,k

∆σ(j),n + 2q−α
n Λn) (3.8)

and

P(ℓ1 ≠ ℓσ(1)) ≤ P(∆σ(1),n ≤ ∆σ(2),n + 2q−α
n Λn)+ P(∆σ(2),n < max

j=3,...,k
∆σ(j),n).

Note that (3.8) reduces to P(∆σ(1),n ≤ 2q−α
n Λn) if k = 1: this particular case will be handled in the second part of the proof.

Here, since∆σ(2),n < maxj=3,...,k∆σ(j),n ⇔ ∃ j = 3, . . . , k,∆σ(j),n > ∆σ(2),n, we get

P(ℓ1 ≠ ℓσ(1)) ≤ P

∆σ(2),n −∆σ(1),n − E (∆σ(2) −∆σ(1)) ≥ E (∆σ(1) −∆σ(2))− 2q−α

n Λn


+

k
j=3

P

∆σ(j),n −∆σ(2),n − E (∆σ(j) −∆σ(2)) ≥ E (∆σ(2) −∆σ(j))


. (3.9)

By considering the event {E (∆σ(1) − ∆σ(2)) − 2q−α
n Λn ≥

1
2E (∆σ(1) − ∆σ(2))}, we may bound the first term of (3.9) by

P

∆σ(2),n − ∆σ(1),n − E (∆σ(2) − ∆σ(1)) ≥

E (∆σ(1)−∆σ(2))

2


+ P


Λn >

E (∆σ(1)−∆σ(2))

4 qαn

. These probabilities are controlled

by the following lemma whose proof is postponed to Appendix.

Lemma 3.3. For all j = 2, . . . , k, j′ = 1, . . . , j − 1 and η > 0, the following bounds hold.
(1) If the conditions given in A3.2-(i) are fulfilled, P


Λn > ηqαn


= O


q−α
n


and

P

∆σ(j),n −∆σ(j′),n − E (∆σ(j) −∆σ(j′)) ≥ η


= O


n−2.

(2) If the conditions A3.2-(ii) hold, P

Λn > ηqαn


= O


e−c nqαn


and for some c > 0:

P

∆σ(j),n −∆σ(j′),n − E (∆σ(j) −∆σ(j′)) ≥ η


= O


e−c n.

Finally, the last term of (3.9) (which exists only for k ≥ 3) is also derived from Lemma 3.3. Consequently, the control
of P(ℓ1 ≠ ℓσ(1)) is achieved by collecting all the previous results and Borel–Cantelli’s lemma implies that a.s. for n large
enough,ℓ1 = ℓσ(1).

Second part: Study of
k−1

j=1 P(∩
j
m=1{

ℓm = ℓσ(m)} ∩ {ℓj+1 ≠ ℓσ(j+1)}) for k ≥ 2.
For this term, we have

∩
j
m=1{

ℓm = ℓσ(m)} ∩ {ℓj+1 ≠ ℓσ(j+1)} = ∩
j
m=1{

ℓm = ℓσ(m)} ∩


arg max

ℓ=1,...,qn
ℓ≠ℓσ(1),...,ℓ≠ℓσ(j)

ζ ℓ,n ≠ ℓσ(j+1)


.

As {ζ ℓσ(j+1),n > max ℓ=1,...,qn
ℓ≠ℓσ(1),...,ℓ≠ℓσ(j+1)

ζ ℓ,n} ⇒ {argmax ℓ=1,...,qn
ℓ≠ℓσ(1),...,ℓ≠ℓσ(j)

ζ ℓ,n = ℓσ(j+1)}, we deduce that the probability of

interest is bounded by P

ζ ℓσ(j+1),n ≤ max ℓ=1,...,qn

ℓ≠ℓσ(1),...,ℓ≠ℓσ(j+1)
ζ ℓ,n


. Then, using the convention

0
1 · · · = 0, it is sufficient to

control the terms
k−2
j=1

P


ζ ℓσ(j+1),n ≤ max


max
ℓ=1,...,qn

ℓ≠ℓσ(1),...,ℓ≠ℓσ(k)

ζ ℓ,n, ζ ℓσ(j+2),n, . . . , ζ ℓσ(k),n


+ P


ζ ℓσ(k),n ≤ max

ℓ=1,...,qn
ℓ≠ℓσ(1),...,ℓ≠ℓσ(k)

ζ ℓ,n


.

Using the bounds established in (3.5)–(3.7), we arrive at
k−2
j=1

P


∆σ(j+1),n ≤ max

m=j+2,...,k
∆σ(m),n + 2q−α

n Λn


+ P


E∆σ(k) −∆σ(k),n ≥ E∆σ(k) − 2q−α

n Λn


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where again Λn = 2M + aX + bZ + cm ∥I − ρ∥L. The study of the first term is analogous to that performed for the term
given in (3.8). Details are left to the reader. The second one is handled similarly to (3.9) for obtaining:P

∆σ(k),n − E∆σ(k)
 ≥

E∆σ(k)
2


+P


Λn ≥

E∆σ(k)
4 qαn


and the upper bounds are the same as those established in Lemma 3.3. Collecting all the results,

Borel–Cantelli’s lemma applied to (3.4) implies that


n P(
k ≠ k) < ∞ and


n P

k
j=1{
ℓj ≠ ℓσ(j)}


< ∞ leading to the

final result. �

3.3. Estimation of intensity

Since a.s. for n large enough,k = k and consecutive times of jumps are detected with (ℓ1, . . . ,ℓk) = (ℓ∗

1, . . . ,
ℓ∗k) the

associated order statistic, wemay evaluate their corresponding intensitiesE (Ij), j = 1, . . . , k. We start by estimatingE (∆j)
with

∆j =
1
n

n
i=1

Xi

ℓj
qn


− Xi

ℓj − 1
qn

, j = 1, . . . ,k.
Since E (∆j) = pjE (Ij), estimators of E (Ij) are given by

Ij =
∆jpj wherepj =

1
n

n
i=1

I
|Xi(

ℓj
qn )−Xi(

ℓj−1
qn )|>un

, j = 1, . . . ,k
with the same un as in Section 3.2, satisfying again the condition: un → 0 such that unqαn → ∞. Note thatpj a.s.

−−−→
n→∞

pj so,
a.s. for n large enough, the denominator is not zero.

For the almost sure behavior, we study the quantity

Ij − E (Ij) =
(∆j − E (∆j))− (pj − pj)E (Ij)pj , j = 1, . . . ,k,

and for ε > 0, we get

P

 k
j=1

Ij − E (Ij)
 ≥ ε


≤ P(k ≠ k)+

k
j=1

P
Ij − E (Ij)

 ≥ ε


≤ P(k ≠ k)+

k
j=1

P

∆j − E (∆j)
 ≥

εpj
2


+ P

pj − pj
 ≥

εpj
2E (Ij)


and for all η ∈ ]0, pj[, we have

≤ P(k ≠ k)+

k
j=1

P

∆j − E (∆j)
 ≥

ε(pj − η)

2


+ P

pj − pj
 ≥

ε(pj − η)

2E (Ij)


+ 2P

pj − pj
 ≥ η


(3.10)

where the latter termdoest not depend on ε. Thenwemay derive the following resultwhose proof is postponed to Appendix.

Theorem 3.2. Under Assumption 3.1, we obtain

(1) if the condition A3.2-(i) holds, and un = (log n)−1, qn = nβ with β > 5
4α , then almost surely for n large enoughIj − E (Ij)

 = O
 (log n)c

n
1
4


, c >

1
4
, j = 1, . . . , k;

(2) if the condition A3.2-(ii) holds, and unqαn → ∞, then almost surely for n large enoughIj − E (Ij)
 = O

 log n
n


, j = 1, . . . , k.

Weconclude that, under themild conditions A3.2-(i), one needs to observe each sample pathwith high frequency to estimate
the intensities of jumps with some given accuracy. Recall that α is linked with regularity of the process between two jumps.
Looking at the condition β > 5

4α , it appears, as expected, that more α is small, more the estimation will be difficult without
a high sampling rate. Under A3.2-(ii) with the boundedness of a(X1), we are close to the classical root-n rate of convergence.
Finally by examining the proof of Theorem 3.2, it appears that the strong consistency ofIj holds as soon as qn → ∞.
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4. Random jumps

4.1. Detection of jumps

Now, we suppose that Zi, i = 1, . . . , n, has Ki jumps at random instants, with Ki a nonnegative integer-valued random
variable and 0 < Ti,1 < · · · < Ti,Ki < 1 almost surely if Ki ≥ 1. Here the sequence


(
Zi(Tij)− Zi(T−

ij )
 , Ki) i = 1, . . . , n


,

with Z(T−

i,j ) = limη↘0 Z(Ti,j−η), is i.i.d.We set pk = P(Ki = k) for k ≥ 0, p0 ≠ 1, and also,we suppose thatKi is independent
from

Zi(Tij)− Zi(T−

ij )
 , j = 1, . . . , Ki, i = 1, . . . , n. Assumptions 2.1–2.2 lead to

Zi(Tij)− Zi(T−

ij )
 =

Xi(Tij)− Xi(T−

ij )
.

Recall that the trajectories satisfy a Hölder condition between two consecutive jumps. Themain differencewith the previous
section is that times of jumps differ from one sample path to the other. By this way, we have to consider separately the Xi’s for
their detection. Finally, we associate to each Ti,j an integrable intensity of jump:

∆ij =
Xi(Ti,j)− Xi(T−

i,j )
 =

Zi(Ti,j)− Zi(T−

i,j )
 , j = 1, . . . , Ki; i = 1, . . . , n

with P(∆1j > δ1) = 1 for some δ1 > 0.

Example 4.1. Let 0 = Ti0 < Ti1 < · · · be a strictly increasing sequence of random variables (almost surely). Let us set
Ki =


∞

j=1 ITij≤1 and Zi(t) =
k+1

j=1 Yi,j−1I[Ti,j−1,Tij[(t) if Ki = k with Ti,k+1 = 1, 0 ≤ t ≤ 1, where Yij is A − BR measurable
and for each j = 1, . . . , k, Y1j, . . . , Ynj are i.i.d. Note that an example of such a model is the compound Poisson process.

Now, for ℓ = 1, . . . , qn, j = 1, . . . , Ki and i = 1, . . . , n, we set:

ζiℓn =

Xi

 ℓ
qn


− Xi

ℓ− 1
qn

, ζ
(Z)
iℓn =

Zi ℓqn


− Zi
ℓ− 1

qn


and we consider the integer-valued variables Lijn defined as:

Lijn − 1
qn

< Ti,j ≤
Lijn
qn
, j = 1, . . . , Ki, i = 1, . . . , n. (4.1)

We associate them with the increments ζiLjn =
Xi
 Lijn

qn


− Xi

 Lijn−1
qn

 and ζ (Z)iLjn
=
Zi Lijnqn


− Zi

 Lijn−1
qn

. Thus, these variables
correspond to the increments including a jump. To detect these jumps, the following conditions will be useful instead of
Assumptions 3.1 and 3.2.

Assumption 4.1 (A4.1).

(i) Wij = Ti,j − Ti,j−1 ≥ δ0, j = 1, . . . , Ki + 1, where Ti,0 = 0, Ti,Ki+1 = 1 and δ0 is a positive constant.
(ii) ∆ij ≥ δ1 > 0 (a.s.), j = 1, . . . , Ki, i = 1, . . . , nwhere δ1 is fixed.

Assumption 4.1 means that Wij and ∆ij are not too small. Here and throughout this section, we take n large enough
(namely such that 1

qn
< δ1) to make sure that all intervals [

ℓ−1
qn
, ℓ

qn
], ℓ = 1, . . . , qn include at most one jump. The first

condition can be relaxed as shown by the following remark.

Remark 4.1. The condition A4.1-(i) excludes in particular gamma-distributed interarrival times. By adding the condition
n≥1 nq

−1
n < ∞, observe that all subsequent results of this part hold true as soon as P(Ti,j+1 − Ti,j < q−1

n | Ki =

k) ≤ ψ(k)q−1
n with ψ such that E (K1Ψ (K1)) < ∞. A compound Poisson process satisfies this condition since we have

P(Ti,j+1 − Ti,j < q−1
n | Ki = k) = 1 − (1 − q−1

n )
k
≤ kq−1

n and E (K 2
1 ) < ∞.

Assumption 4.2 (A4.2). Suppose that for some p ≥ 1:

(i) E

a(X1)

p
< ∞,E


b(Z1)

p
< ∞,E


M1
p
< ∞,

(ii)


n≥1 nq
−α p
n u−p

n < ∞.

The condition A4.2-(ii) implies that more α is small (more the sample paths are irregular), more p should be chosen large
enough.

Now, to detect the jumps we consider the random set Lin defined by Lin =

Lijn, j = 1, . . . , Ki, Ki ≥ 1


, i = 1, . . . , n

and we predict this set with

Lin =

ℓ ∈ {1, . . . , qn} :

Xi

 ℓ
qn


− Xi

ℓ− 1
qn

 > un


still with un → 0 such that unqαn → ∞ for α ∈ ]0, 1] defined in Assumption 2.3. Again an omnibus choice is un = (log n)−1

for qn = nβ , β > 0. Moreover we denote byKi the cardinal of the set Lin and {Li1, . . . ,LiKi} its elements. We begin with a
result enlightening the fact that for each sample path and n large enough, one may identify the Ki jumps with probability 1.
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Theorem 4.1. If Assumptions 4.1 and 4.2 hold, P
n

i=1
Lin ≢ Lin


= O(nq−αp

n u−p
n ).

Proof. We haveLin ≡ Lin ⇔ (a) ∀ j = 1, . . . , Ki, Lijn ∈ Lin (Ki ≥ 1)

(b) ∀ ℓ ∉ Lin, ℓ ∉ Lin.

Wemay deduce that
n

i=1

Lin ≢ Lin


=
n

i=1

Ki
j=1{Lijn ∉ Lin} ∪

qn
ℓ=1,ℓ∉Lin

{ℓ ∈ Lin}


. Moreover
Ki

j=1{Lijn ∉ Lin} ⇔Ki
j=1

Xi(
Lijn
qn
) − Xi(

Lijn−1
qn
)
 ≤ un


and

qn
ℓ=1
ℓ∉Lin

{ℓ ∈ Lin} ⇔

qn
ℓ=1
ℓ∉Lin

{
Xi(

ℓ
qn
) − Xi(

ℓ−1
qn
)
 > un}


. Hence P(

n
i=1{

Lin ≢

Lin}) ≤
n

i=1 pi1n + pi2n with pi1n := P(
Ki

j=1{
Xi(

Lijn
qn
)− Xi(

Lijn−1
qn
)
 ≤ un}) and pi2n := P(

qn
ℓ=1,ℓ∉Lin

{
Xi(

ℓ
qn
)− Xi(

ℓ−1
qn
)
 >

un}).
Let us begin by pi1n: from Lemma 2.2, we have:

−(a(Xi−1)+ b(Zi−1)+ cm ∥I − ρ∥L)q
−α
n +

Zi Lijnqn


− Zi
 Lijn − 1

qn

 ≤

Xi

 Lijn
qn


− Xi

 Lijn − 1
qn


≤ (a(Xi−1)+ b(Zi−1)+ cm ∥I − ρ∥L)q

−α
n +

Zi Lijnqn


− Zi
 Lijn − 1

qn

.
Moreover similarly to Lemma 3.1 we may deduce from (3.1) thatZi Lijnqn


− Zi

 Lijn − 1
qn

− Zi(Tij)− Zi(T−

ij )

 ≤ 2Miq−α
n . (4.2)

SettingΛi = a(Xi−1)+ b(Zi−1)+ 2Mi + cm ∥I − ρ∥L, we get

−Λiq−α
n +

Zi(Tij)− Zi(T−

ij )

 ≤

Xi

 Lijn
qn


− Xi

 Lijn − 1
qn

 ≤ Λiq−α
n +

Zi(Tij)− Zi(T−

ij )

 (4.3)

and pi1n is bounded as follows:

pi1n ≤ P


Ki
j=1

Zi(Tij)− Zi(T−

ij )
 ≤ un +Λiq−α

n


≤ P


Ki
j=1

{
Zi(Tij)− Zi(T−

ij )
 ≤ 2un}


+ P(Λi > qαnun)

≤

∞
k=0

P


k

j=1

{
Zi(Tij)− Zi(T−

ij )
 ≤ 2un} | Ki = k


P(Ki = k)+ P(Λi > qαnun)

≤

∞
k=1

k
j=1

P(∆ij ≤ 2un)P(Ki = k)+ P(Λi > qαnun)

because Ki is independent from∆ij. Next Assumption 4.1-(ii) implies the nullity of the first term for n large enough (namely
such that 2un ≤ δ1) and the second term is controlled by Markov’s inequality and Assumption 4.2-(i). Hence, we arrive at
pi1n = O(q−αp

n u−p
n ) uniformly in i.

Now, we turn to pi2n. From Corollary 2.1, we know thatXi

 ℓ
qn


− Xi

ℓ− 1
qn

 ≤ (a(Xi−1)+ b(Zi−1)+ Mi + cm ∥I − ρ∥L)q
−α
n

so
qn
ℓ=1,ℓ∉Lin

Xi(
ℓ
qn
)− Xi(

ℓ−1
qn
)
 > un


⇒

a(Xi−1)+ b(Zi−1)+ Mi + cm ∥I − ρ∥L > qαnun


and,

pi2n ≤ P(a(Xi−1) > vn)+ P(b(Zi−1) > vn)+ P(Mi > vn)

with vn =
unqαn−cm∥I−ρ∥L

3 and Markov’s inequality gives that pi2n has a similar order as pi1n. �

4.2. Estimation of intensity

As

(∆ij, Ki), i = 1, . . . , n


is supposed to be i.i.d., we have

E (∆ij) = E
Xi(Tij)− Xi(T−

ij )
 ≡ E (∆1j), j = 1, . . . , Ki, i = 1, . . . , n.

So, the ordering of jumps’ intensities is the same for each sample path; but contrary to the deterministic case, two
distinct jumps may have the same intensity. Again Assumptions 2.1 and 2.2 guarantee that for each j = 1, . . . ,
Ki,
Xi(Tij)− Xi(T−

ij )
 =

Zi(Tij)− Zi(T−

ij )
 are independent variables. For some fixed k ≥ 1, it is possible to construct



130 D. Blanke, D. Bosq / Journal of Multivariate Analysis 146 (2016) 119–137

an estimator of the k-first jumps E (∆1), . . . ,E (∆k) by selecting the Xi’s having at least k jumps. To this end, we set for
j = 1, . . . , k:

∆j := ∆jn =



n
i=1

Xi
Lij
qn


− Xi

Lij−1
qn

I{Ki≥j}

n
i=1
I{Ki≥j}

, if
n

i=1

I{Ki≥j} > 0,

0, if
n

i=1

I{Ki≥j} = 0,

still withKi =
 Lin

 and Lin =
Li1, . . . ,LiKi, i = 1, . . . , n. The strong consistency and rates of convergence are given in

the following theorem.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 (with p = 1) are fulfilled, and that for j = 1, . . . , k E (exp(c0∆1j)) < ∞

with c0 > 0. We have for all ε > 0;

P
∆j − E (∆1j)

 ≥ ε


= O(nq−α
n u−1

n )+ O(exp(−c1 nε2))+ O


n log n
qαnε


, c1 > 0.

Proof. We have to study P
∆j − E (∆1j)

 ≥ ε

, j = 1, . . . , k, k ≥ 1, ε > 0. First, this term is equal to

P

∆j − E (∆1j)
 ≥ ε,

n
i=1

Li ≢ Lin


+ P

∆j − E (∆1j)
 ≥ ε,

n
i=1

Li ≡ Lin


so it may be bounded with P(
n

i=1

Li ≢ Lin

)+ P(

∆j − E (∆1j) ≥ ε
)where we have set

∆j =

n
i=1

Xi
 Lij
qn


− Xi

 Lij−1
qn

I{Ki≥j}

n
i=1
I{Ki≥j}

I n
i=1

I{Ki≥j}>0


using the convention 0

0 = 0. The first term is controlled with Theorem 4.1 and gives aO(nq−α
n u−1

n ). Next from (4.3) and after
some derivations, we may write P(

∆j − E (∆1j)
 ≥ ε) ≤ p1n + p2n with

p1n := P


n

i=1
∆ijI{Ki≥j}

n
i=1
I{Ki≥j}

I n
i=1

I{Ki≥j}>0

 − E (∆1j)

 ≥
ε

2



p2n := P


n

i=1
ΛiI{Ki≥j}

n
i=1
I{Ki≥j}

I n
i=1

I{Ki≥j}>0

 ≥ qαn
ε

2

 .
Concerning the first term p1n, we have

p1n =

n
m=0

P


n

i=1
∆i,jI{Ki≥j}

m
Im>0 − E (∆1j)

 ≥
ε

2
|

n
i=1

I{Ki≥j} = m

× P


n

i=1

I{Ki≥j} = m


.

As
n

i=1 I{Ki≥j} ∼ B(n,


i≥j pi) and, since
n

i=1 I{Ki≥j} = m

is equivalent to have exactly m indicators equal to 1, the i.i.d

assumption on the∆i,j’s and independence from Ki give

p1n = I{ε≤2E (∆1j)}P


n

i=1

I{Ki≥j} = 0


+

n
m=1

P


m
i=1
∆i,j

m
− E (∆1j)

 ≥
ε

2

× P


n

i=1

I{Ki≥j} = m


.
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Now, one may use Bernstein’s inequality, stated as in e.g. [13, p. 297], to obtain:

p1n ≤


1 −


i≥j

pi

n

+ 2
n

m=1

n
m
 

1 −


i≥j

pi

n−m 
i≥j

pi

m

exp

−

mε2

8σ 2
j + 4Hjε


with σ 2

j = Var (∆1j) and Hj a constant linked to the central moments of ∆1j. The last expression is bounded by 2

1 −

i≥j pi +


i≥j pi exp

−

ε2

8σ 2
j +4Hjε

n
. Since ln(1−a) ≤ −a for 0 < a < 1 and 1− e−a

≥ a−
a2
2 for all a ≥ 0, we successively

obtain for all j such that


i≥j pi > 0:

p1n ≤ 2 exp


−n


i≥j

pi


1 − exp


−

ε2

8σ 2
j + 4Hjε


≤ 2 exp

−

n

i≥j

piε2

8σ 2
j + 4Hjε


1 −

ε2

16σ 2
j + 8Hjε

 .
Next, there exists 0 < c2 < 1 such that p1n ≤ 2 exp


−c2n(


i≥j pi)

ε2

8σ 2
j +4Hjε


.

Finally, for the term p2n we may write:

p2n =

n
m=1

P


n

i=1
ΛiI{Ki≥j}

m
≥ qαn

ε

2
,

n
i=1

I{Ki≥j} = m

 ≤

n
m=1

P


n

i=1

ΛiI{Ki≥j} ≥
m
2
qαnε


.

We conclude with Markov’s inequality and the condition A4.2-(i), p = 1, to get the bound O( n log n
qαn ε

). �

Remark 4.2. We may observe that the choices un = (log n)−1, qn = nβ , ε = ε0n−
1
2 (log n)γ (ε0 > 0), with γ > 2, β ≥

5
2α

entail


n P
∆j − E (∆1j)

 ≥ ε0n−
1
2 (log n)γ


< ∞. So in Theorem 4.2, an expected rate of convergence to estimate the

jumps’ intensities is O

(log n)γ n−

1
2

.

4.3. Estimation of the maximal jump

Suppose that there exists a unique integer kmax such that E (∆1kmax) > max j=1,...,k
j≠kmax

E (∆1j). Then, an estimator of the

maximal intensity of jump is ∆max = maxj=1,...,kn
∆j with kn → ∞ as n → ∞. From maxj=1,...,kn

∆j − E (∆1j)
 ≥maxj=1,...,kn |

∆j| − maxj=1,...,kn |E (∆1j)|
, we get that for all ε > 0:

P
∆max − E (∆1kmax)

 ≥ ε


≤

kn
j=1

P
∆j − E (∆1j)

 ≥ ε

.

Now, for Ki with a finite support {0, . . . , k0} and unknown k0 ≥ 1, we clearly have∆max = maxj=1,...,k0
∆j almost surely for

n large enough (as a consequence ofKi = Ki giving in turn that∆j = 0 for n large enough and j ≥ k0 + 1). Also, remark that
maxj=1,...,kn E (∆1j) = maxj=1,...,k0 E (∆1j) and E (∆1j) = 0 for j ≥ k0 + 1. Hence the summation ranges over [[0, k0]] and
one may obtain a similar rate of convergence as in Remark 4.2 for the estimation of the maximal jump. If Ki is a N-valued
random variable, we can also derive a rate of convergence with the same methodology as in [7] and with sequences kn
increasing slowly to infinity. Finally, it can also be shown thatkmax = argmaxj=1,...,kn

∆j is a consistent estimator of kmax.

5. The completely random case

5.1. The considered framework

In this part, for a fixed k ≥ 1, we denote by (∆σ(1), . . . ,∆σ(k)), k independent intensities of jumps which are ordered in
decreasing average: E∆σ(1) > · · · > E∆σ(k). We associate them to k independent continuous variables (Tσ(1), . . . , Tσ(k)):
by this way, Tσ(j) corresponds to the jumpwith highest jth average intensity. Next, with the ordered statistics (T1, . . . , Tk) =

(T ∗

σ(1), . . . , T
∗

σ(k)), T
∗

σ(1) < · · · < T ∗

σ(k), we consider a sample path Z with jumps at times (T1, . . . , Tk). Then, we work with n
i.i.d copies of Z , say Z1, . . . , Zn. Here, the key difference with the random case is that intensities of jumps have not the same
order from one sample path to the other and the difficulty is to estimate them. The latter construction is resumed with the
following hypothesis.
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Assumption 5.1 (A5.1). For each i = 1, . . . , n, there exists a permutation

σi(1), . . . , σi(k)


of (1, . . . , k) such that E∆iσi(j)

= E∆σ(j) with E∆σ(1) > · · · > E∆σ(k). Moreover (∆iσi(j), j = 1, . . . , k, i = 1, . . . , n) is a collection of independent
random variables and, for each j = 1, . . . , k, the (∆iσi(j), i = 1, . . . , n) are identically distributed.

We make use of the Lijn’s defined in Eq. (4.1), linked with the arrival times of jumps (in chronological order) and, we

consider their independent counterparts Liσi(j)n with
Liσi(j)n−1

qn
< Tiσi(j) ≤

Liσi(j)n
qn

, i = 1, . . . , n, j = 1, . . . , k (associated with
jumps ordered by intensities). Now, we suppose that

Assumption 5.2 (A5.2).

(i) (Tiσi(j), i = 1, . . . , n, j = 1, . . . , k) are globally independent with respective bounded densities f1, . . . , fk on [0, 1].
(ii)


n≥1 nq

−1
n < ∞.

(iii) ∆ij ≥ δ1, j = 1, . . . , k, i = 1, . . . , n where δ1 is a positive constant.

The next lemma establishes that with probability one, two consecutive instants are not in the same interval.

Lemma 5.1. If the conditions (i)–(ii) of Assumption 5.2 hold, for all i = 1, . . . , n, the (Tij, j = 1, . . . , k) do not belong to the
same interval a.s. for n large enough: P

n
i=1
k

j=1{Ti,j+1 − Tij ≤
1
qn

}


= O(nq−1
n ).

Proof. Note that
n

i=1
k

j=1 Ti,j+1 − Tij ≤
1
qn


⇒

n
i=1
k

j,j′=1
j′≠j

qn
ℓ=1{Tiσi(j) ∈ [

ℓ−1
qn
, ℓ

qn
] ∩ Tiσi(j′) ∈ [

ℓ−1
qn
, ℓ

qn
]}


. Using

independence and boundedness of the densities of Tiσ(j)’s, we get that
n

i=1


j≠j′
qn

ℓ=1 P(Tiσi(j) ∈ [
ℓ−1
qn
, ℓ

qn
] ∩ Tiσi(j′) ∈

[
ℓ−1
qn
, ℓ

qn
]) = O(nq−1

n ). �

5.2. Detection of jumps

Webeginwith a result enlightening the fact that for each sample path, onemay identify the k jumpswith probability 1 for
n large enough. Again in this part, the setLin is defined byLin =


Lijn, j = 1, . . . , k


, i = 1, . . . , n, ζiℓn =

Xi(
ℓ
qn
)−Xi(

ℓ−1
qn
)


and we note ζiLjn := ζi,Lijn,n.

Theorem 5.1. Suppose that Assumptions 4.2, 5.1 and 5.2 are fulfilled, then a.s. for n large enough, we get that ζiℓn < ζiLjn, j =

1, . . . , k, i = 1, . . . , n, ℓ = 1, . . . , qn with ℓ ∉ Lin. More precisely,

P

 n
i=1

qn
ℓ=1
ℓ∉Lin

k
j=1


ζiℓn ≥ ζiLjn


= O(nq−αp

n )+ O(nq−1
n ).

Proof. The desired probability is clearly bounded by

n
i=1

k
j=1

P

 max
ℓ=1,...,qn
ℓ∉Lin

ζiℓn ≥ ζiLjn,

n
i=1

k
j=1


Ti,j+1 − Tij >

1
qn

+ P


n

i=1

k
j=1


Ti,j+1 − Tij ≤

1
qn


.

Next, from Lemma 2.2, we may write for all ℓ = 1, . . . , qn, and i = 1, . . . , n:
max
ℓ=1,...,qn
ℓ∉Lin

ζiℓn ≥ ζiLjn


⇒


max
ℓ=1,...,qn
ℓ∉Lin

ζ
(Z)
iℓn + q−α

n (a(Xi−1)+ b(Zi−1)+ cm ∥I − ρ∥L) ≥ ζiLjn


.

As for ℓ ∉ Lin, there is no jump in [
ℓ−1
qn

;
ℓ
qn

], the condition A2.3-(ii) gives max ℓ=1,...,qn
ℓ∉Lin

ζ
(Z)
iℓn ≤ Miq−α

n , so


max
ℓ=1,...,qn
ℓ∉Lin

ζiℓn ≥ ζiLjn


⇒


q−α
n (Mi + a(Xi−1)+ b(Zi−1)+ cm ∥I − ρ∥L) ≥ ζiLjn


. (5.1)

Next we may use (4.2) (since
n

i=1
k

j=1{Ti,j+1 − Tij > 1
qn

} implies that two consecutive jumps cannot belong to the same
interval) and deduce with Lemma 2.2 that ζiLjn ≥ ∆ij − q−α

n (2Mi + a(Xi−1) + b(Zi−1) + cm ∥I − ρ∥L). Hence, (5.1) may be
rewritten as

max
ℓ=1,...,qn
ℓ∉Lin

ζiℓn ≥ ζiLjn


⇒

q−α
n (3Mi + 2a(Xi−1)+ 2b(Zi−1)+ 2cm ∥I − ρ∥L) ≥ ∆ij


.
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Finally the condition A5.2-(iii) gives that P

max ℓ=1,...,qn

ℓ∉Lin
ζiℓn ≥ ζiLjn


is bounded with

P


Mi ≥

δ1qαn − 6cm ∥I − ρ∥L

9


+ P


a(Xi−1) ≥

δ1qαn − 2cm ∥I − ρ∥L

6


+ P


b(Zi−1) ≥

δ1qαn − 2cm ∥I − ρ∥L

6


.

The result follows with Markov’s inequality, the condition A4.2-(i) and the conclusion is a straightforward consequence of
Borel–Cantelli’s lemma with A4.2-(ii). �

Remark 5.1. Theorem 5.1 implies that almost surely for n large enough, ζiℓn < ζiLjn for all ℓ ∉ Lin, i = 1, . . . , n, j =

1, . . . , k. Hence for each sample path, the jumps are almost surely identified and we have at our disposal n sets of k values:
{Li1, . . . ,Lik}. Here, note that theLij are not ordered either with respect to jumps intensities or arrival times. By considering
the associated order statistics: (Li1, . . . ,Lik) := (L∗

i1, . . . ,
L∗

ik), the set Lin := {Li1, . . . ,Lik} represents the arrival times of
jumps and one gets Lin ≡ Lin, i = 1, . . . , n a.s. for n large enough.

5.3. Estimation of the jumps’ intensities

Since we may identify a.s. for n large enough the k jumps of each Xi, we are in position to estimate the intensities
E (∆σ(j)), j = 1, . . . , k. We begin with the estimation of coefficients a0, . . . , ak, ak = 1, of the polynomial of degree k
with the distinct roots E (∆σ(j)):

k
j=1

(x − E∆σ(j)) =

k
j=0

ak−jxk−j
= 0.

Using Viète’s formula and independence of the jumps, we get for j = 1, . . . , k:

ak−j = (−1)j


1≤ℓ1<···<ℓj≤k

E (∆σ(ℓ1)) · · ·E (∆σ(ℓj)) = (−1)j


1≤ℓ1<···<ℓj≤k

E (∆σ(ℓ1) · · ·∆σ(ℓj)).

Here, the key point is that we have to consider the sum of k jumps, the sum of their product in pairs, . . . , and finally their
products. All these sums are exhaustive, hence we observe that we may use the jumps estimated by chronological order to
estimate each term. The next example illustrates this fact for k = 2 and k = 3.

Example 5.1. – For k = 2, we get a0 = E (∆σ(1)∆σ(2)) = E (∆1∆2), a1 = E (∆σ(1) +∆σ(2)) = E (∆1 +∆2), a2 = 1;
– for k = 3, a0 = E (∆σ(1)∆σ(2)∆σ(3)) = E (∆1∆2∆3), a1 = E (∆σ(1)∆σ(2) + ∆σ(1)∆σ(3) + ∆σ(2)∆σ(3)) = E (∆1∆2 +

∆1∆3 +∆2∆3), a2 = E (∆σ(1) +∆σ(2) +∆σ(3)) = E (∆1 +∆2 +∆3), a3 = 1.

Hence, we compute the k estimators of ak−j, j = 1, . . . , k by setting

ak−j = (−1)j


1≤ℓ1<···<ℓj≤k

1
n

n
i=1

Xi

Liℓ1n
qn


− Xi

Liℓ1n − 1
qn

 · · · Xi

Liℓjn
qn


− Xi

Liℓjn − 1

qn

.
To study their behavior, we use Remark 5.1 and the property that summations are exhaustive to obtain below the strong
consistency of these estimators as well as their rates of convergence.

5.3.1. Convergence of theak−j, j = 1, . . . , k

Forak−1 = −
1
n

n
i=1
k

j=1

Xi(
Lijn
qn
)− Xi(

Lijn−1
qn
)
 and ak−1 = −E (

k
j=1∆σ(j)) = −E (

k
j=1∆j), we obtain the following

result proved in the Appendix.

Proposition 5.1. Suppose that Assumptions 4.2, 5.1, and 5.2 are fulfilled, then

(1) ak−1
a.s.

−−−→
n→∞

ak−1 if either a(·) is bounded or


n q
−α
n < ∞;

(2)
ak−1 − ak−1

 = O

(log n)c n−

1
4

, c > 1

4 a.s. if E
Z1(T1σ1(j)) − Z1(T−

1σ1(j)
)
4 < ∞, j = 1, . . . , k and qn = nβ with

β > max( 5
4α ,

2
min(1,αp) ).

Note that if Assumption 4.2-(i) is fulfilled with p ≥ 2, the condition β > max( 5
4α ,

2
min(1,αp) ) may be reduced to

β > max( 5
4α ,

5
2 ). Finally to simplify the study of our estimators, we add an assumption of boundedness and derive the

following result for the coefficients ak−j, j = 2, . . . , k.

Proposition 5.2. Under the hypotheses of Proposition 5.1, we suppose in addition that ∥X∥ ≤ C and that functions a, b and Mi
are bounded. Then, for j = 2, . . . , k and εn > 0 such that qαnεn → ∞

P
ak−j − ak−j

 > εn


= O(nq−min(1,αp)
n )+ O(exp(−ncε2n)), c > 0.



134 D. Blanke, D. Bosq / Journal of Multivariate Analysis 146 (2016) 119–137

5.3.2. The special case of k = 2 and conclusion
Collecting the previous results, we obtain thatak−j

a.s.
−−−→
n→∞

ak−j for each j = 1, . . . , k. Now the problem consists in solving

the equation
k

j=0ak−j,nxj = 0 (withak,n ≡ 1) to recover the roots E (∆σ(j)), j = 1, . . . , k. For k = 2, the resolution is

straightforward and gives the solutions: ∆σ(1)n =
1
2 (
S +

S2 − 4P) and ∆σ(2)n =
1
2 (
S −

S2 − 4P) withS := a1 =

1
n

n
i=1

Xi
Li1n

qn


− Xi

Li1n−1
qn

 + Xi
Li2n

qn


− Xi

Li2n−1
qn

 andP :=a0 =
1
n

n
i=1

Xi
Li1n

qn


− Xi

Li1n−1
qn

Xi
Li2n

qn


− Xi

Li2n−1
qn

.
We easily derive the strong consistency of these estimators with the help of Propositions 5.1 and 5.2. The cases k = 3 and
k = 4 are again rather easy to handle but for k > 4, the use of numerically approximated solutions should be considered.
Simulations should be carried out to see how estimation is involved in the accuracy of this approximation.

Acknowledgments

We want to thank the Reviewers and the Managing Guest Editor for improving the first version of this paper.

Appendix. Auxiliary proofs

The proofs of Lemmas 3.2 and 3.3 being similar, we only give the derivation of the latter one.

Proof of Lemma 3.3. (1) Suppose that the conditions given in A3.2-(i) are fulfilled. Similarly to the proof of Theorem 1 p.
388–389 in [53], we get that

P

1
n

n
i=1

Yi,n
 ≥ η


≤

3c
n2η4

, η > 0, n ≥ 1, (A.1)

for independent and centered random variables Yi,n, i = 1, . . . , n such that E (Y 4
in) ≤ c with some finite constant c not

depending on n. Next, as
X1(tj)− X1(t−j )

 =
Z1(tj)− Z1(t−j )

 , j = 1, . . . , k, the variables |Xi(tσ(j))−Xi(t−σ(j))|− |Xi(tσ(j′))−
Xi(t−σ(j′))| are independent with finite fourth moment thanks to the condition A3.2-(i). For the term P


Λn > ηqαn


, we apply

the Markov’s inequality and get for n large enough that this term is a O(q−α
n ).

(2) If the conditions A3.2-(ii) are fulfilled, exponential moments do exist and we have a(X1) < a∞, so we may use
Bernstein inequality to get the claimed exponential bound. Concerning the term involvingΛn: we first bound it with

P

 n
i=1

b(Zi) >
η

2
nqαn −

n
2
(cm ∥I − ρ∥L + a∞)


+ P

 n
i=1

Mi >
η

4
nqαn −

n
4
(cm ∥I − ρ∥L + a∞)


.

Next, since the b(Zi) andMi are independent random variables with exponential moment, we obtain byMarkov’s inequality
that these two terms are of order O


e−c nqαn


for some c > 0.

Proof of Theorem 3.2. We start from the relation (3.10) with three terms to study. The first one, P(k ≠ k), is controlled in
Theorem 3.1. For the second term, we set η =

pj
2 and ε1 =

εpj
4 , so for j = 1, . . . , k

P
∆j − E (∆j)

 ≥ ε1


≤ P

1
n

n
i=1

Xi


ℓj

qn


− Xi


ℓj − 1
qn

 − E (∆j)

 ≥ ε1


+ P(ℓj ≠ ℓj).

The term P(ℓj ≠ ℓj) is also controlled with Theorem 3.1. Next, from a similar bound as in (3.7), the first probability is
bounded by

P
∆j,n − E∆j

 > ε1

2


+ P


Λn ≥

qαnε1
2


(A.2)

with againΛ = aX + bZ + 2M + cm ∥I − ρ∥L.
Following the beginning of the proof of Lemma 3.3, the condition A3.2-(i) gives the bounds O


n−2ε−4

1


+ O


ε−1
1 q−α

n


prevailing those obtained in (3.2) for P(ℓj ≠ ℓj) and P(k ≠ k) as soon as ε1u−1

n → 0. On the other hand, under A3.2-(ii)
and following the second part of Lemma 3.3, the obtained bounds are O


e−c nε21


+ O


e−c nqαn ε1


for some c > 0. Again, the

bound obtained in the relation (3.3) is negligible when ε1 → 0.
Finally, for the two last terms of (3.10), the choice η =

p1
2 gives that P(

pj − pj
 ≥

pj
2 ) is negligible with respect to

P(
pj − pj

 ≥
ε1
E (Ij)

) as soon as ε1 → 0. This latter term is bounded with

P

1
n

n
i=1

IXi ℓj
qn


−Xi


ℓj−1
qn

>un
 − pj

 ≥
ε1

E (Ij)


+ P(ℓj ≠ ℓj). (A.3)
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From the relation IA = IB + IA∩Bc − IAc∩B, we may write that

IXi ℓjqn −Xi

ℓj−1
qn

>un
 = I

Yij=1
 + IXi ℓjqn −Xi


ℓj−1
qn

>un,Yij=0
 − IXi ℓjqn −Xi


ℓj−1
qn

≤un,Yij=1
.

Then, the left probability of (A.3) is bounded with

P

1
n

n
i=1

I{Yij=1} − pj
 > ε1

3E (I1j)


+ P

1
n

n
i=1

IXi ℓjqn −Xi

ℓj−1
qn

>un,
Zi(tj)−Zi(t

−

j )
=0
 > ε1

3E (I1j)


+P

1
n

n
i=1

IXi ℓjqn −Xi

ℓj−1
qn

≤un,
Zi(tj)−Zi(t

−

j )
=Iij
 > ε1

3E (I1j)


.

The first term is aO(exp(−2n ε21
9E (I1j)2

)) by Hoeffding’s inequality. For the others, we have forΛi = a(Xi−1)+b(Zi−1)+2Mi +

cm ∥I − ρ∥L:Zi(tj)− Zi(t−j )
−Λiq−α

n ≤

Xi

 ℓj
qn


− Xi

ℓj − 1
qn

 ≤
Zi(tj)− Zi(t−j )

+Λiq−α
n

so we get the two implications:
|Xi

 ℓj
qn


− Xi

ℓj − 1
qn


| > un


,
Zi(tj)− Zi(t−j )

 = 0


⇒

Λi > unqαn


Xi

 ℓj
qn


− Xi

ℓj − 1
qn

 ≤ un


,
Zi(tj)− Zi(t−j )

 = Iij


⇒

Λi ≥ qαn (Iij − un)


⇒

Λi ≥ qαn (δ1 − un)


since P(Iij > δ1) = 1. Under the condition A3.2-(i), we arrive at a bound of order O(u−1

n q−α
n ε−1

1 ) + O(exp(−cnε21)) +

O(u−1
n q−α

n ) + O(n−2) for the term given in (A.3). Finally, collecting all the results, the predominant bounds are of order
O(u−1

n q−α
n ε−1

1 ) + O(n−2ε−4
1 ). Next setting ε1 = (log n)c n−

1
4 , c > 1

4 , and qn = nβ with β > 5
4α , un = (log n)−1, we may

apply Borel–Cantelli’s lemma to derive the claimed result. If the condition A3.2-(ii) is fulfilled, the predominant bound is now

transformed in O(exp(−cnε21)), so we may derive the rate of convergence with the choice ε1 = ε0


log n
n for a sufficiently

large enough ε0 and all qn → ∞ (since nε21 = o(nqαnε1)).

Proof of Proposition 5.1. (1) To get the strong consistency, we notice that a.s. for n large enough

ak−1 = −
1
n

n
i=1

k
j=1

ζiLjn := −

k
j=1

ζ Ljn

as all possible summations in j are considered. From Lemmas 2.2 and 3.1 (whose proof is exactly the same for random
instants of jumps), we obtain the same bound for each j = 1, . . . , k:ζ Ljn − E∆j

− ∆j − E∆j
 ≤ 2Λnq−α

n (A.4)

with againΛn = 2M + aX + bZ + cm ∥I − ρ∥L. We conclude with the law of large numbers (applying Markov’s inequality
to control aX in the case where a(·) is not bounded).

(2) We have

P

|ak−1 − ak−1| ≥ ε


= P


|ak−1 − ak−1| ≥ ε,

n
i=1

Lin ≡ Lin


+ P


|ak−1 − ak−1| ≥ ε,

n
i=1

Lin ≢ Lin


that can be bounded byP
k

j=1 ζ Ljn −
k

j=1 E∆j

 ≥ ε

+P

n
i=1
qn

ℓ=1
ℓ∉Lin

k
j=1


ζiℓn ≥ ζiLjn


. First, the second term does

not depend on ε and it is a O(nq−αp
n )+ O(nq−1

n ) by Theorem 5.1. Next from (A.4), we may derive analogously to Eq. (A.2):

P

 k
j=1

ζ Ljn −

k
j=1

E∆j
 ≥ ε


≤

k
j=1

P

∆jn − E∆j
 ≥

ε

2k


+ P


Λn ≥

qαn
2k
ε

.

The first term is handled with the help of the relation (A.1), it yields to a O(n−2ε−4). For the second term, Markov’s
inequality and the condition A4.1-(i) applied with p = 1 give the bound O(q−α

n ε−1). Finally, we obtain a bound of order
O(n−2ε−4) + O(ε−1q−α

n ) + O(nq−min(1,αp)
n ). The rate is obtained for εn = (log n)cn−

1
4 , c > 1

4 , qn = n−β with β >

max( 5
4α ,

2
min(1,αp) ) and Borel–Cantelli’s lemma.
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Proof of Proposition 5.2. First, we state the following lemma.

Property 1. Let (uj, j = 1, . . . , p) and (vj, j = 1, . . . , p) be positive numbers such that maxj=1,...,p(uj ∨ vj) ≤ d, then p
j=1

uj −

p
j=1

vj

 ≤ dp−1
p

j=1

uj − vj
 , p ≥ 2.

Proof of Property 1. If p = 2,

|u1u2 − v1v2| = |u1(u2 − v2)+ v2(u1 − v1)| ≤ d

|u1 − v1| + |u2 − v2|


. (A.5)

Now, set αp−1 = u1 · · · up−1 and βp−1 = v1 · · · vp−1, then from (A.5) and by inductionαp−1up − βp−1vp
 ≤ αp−1

up − vp
+ vp

αp−1 − βp−1


≤ dp−1
up − vp

+ d


dp−2

p−1
j=1

uj − vj
 ≤ dp−1

p
j=1

uj − vj
 .

Hence the result. �

Next for proving Proposition 5.2, we begin as in the proof of Proposition 5.1-(2). Setting ζijn =
Xi
 Lijn

qn


− Xi

 Lijn−1
qn

 and
since ∥X∥ is bounded, we obtain by Property 1: j

p=1

ζiσi(ℓp)n −

j
p=1

E∆σ(ℓp)

 ≤ (2C)j−1
j

p=1

ζiσi(ℓp)n − E∆σ(ℓp)
 .

The proof is concluded with the classical approximations of Xi by Zi and Liσi(j)n/qn by Tiσi(j). Here, all the quantities are a.s.
bounded so we may make use of the Hoeffding’s inequality to derive the claimed exponential bounds. Details are left to the
reader.
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