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a b s t r a c t

We investigate the class of splitting distributions as the composition of a singular
multivariate distribution and a univariate distribution. It will be shown that most
common parametric count distributions (multinomial, negative multinomial, multi-
variate hypergeometric, multivariate negative hypergeometric, . . . ) can be written as
splitting distributions with separate parameters for both components, thus facilitating
their interpretation, inference, the study of their probabilistic characteristics and their
extensions to regression models. We highlight many probabilistic properties deriving
from the compound aspect of splitting distributions and their underlying algebraic
properties. Parameter inference and model selection are thus reduced to two separate
problems, preserving time and space complexity of the base models. Based on this
principle, we introduce several new distributions. In the case of multinomial splitting
distributions, conditional independence and asymptotic normality properties for esti-
mators are obtained. Mixtures of splitting regression models are used on a mango tree
dataset in order to analyze the patchiness.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of multivariate count data is a crucial issue in numerous application settings, particularly in the fields
f biology [2], ecology [7] and econometrics [34]. Multivariate count data can be defined as the number of items of
ifferent categories issued from sampling within a population, whose individuals are grouped. Denoting by J this number
f categories, multivariate count data analysis relies on modeling the joint distribution of the discrete random vector
=
(
y1, . . . , yJ

)
. In genomics for instance, the data obtained from sequencing technologies are often summarized by the

ounts of DNA or RNA fragments within a genomic interval (e.g., RNA sequencing data). The most usual models in this
ramework are multinomial and Dirichlet multinomial regression to take account of some environmental covariate effects
n these counts. In this way, Xia et al. [36] and Chen and Li [5] studied the microbiome composition (whose output are
bacterial taxa counts), while Zhang et al. [38] studied the expression count of J exon sets.
However, the multinomial and Dirichlet multinomial distributions are not appropriate for modeling the variability

n the total number of counts in multivariate count data, because of their support: the discrete simplex ∆n :=

y ∈ NJ
:
∑J

j=1 yj = n
}
. This particular support also induces a strong constraint in terms of dependencies between the

omponents of y, since any component yj is deterministic when the J − 1 other components are known. This kind
f distribution is said to be singular and will be denoted by S∆n (θ). The parameter n, being related to the support, is
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intentionally noted as an index of the distribution, distinguishing it from other parameters θ used to define the probability
ass function (pmf). Note that initially, singular versions of some multivariate distributions have been defined by Patil

22] and Janardan and Patil [13]. However, these distinctions were unheeded until now, leading to misuse of these
istributions [38]. Therefore, a distribution will be considered as a J-multivariate distribution if

(i) the dimension of its support is equal to the number of variables (i.e., dim{Supp(y)} = J).

nother problem that occurs when defining multivariate distributions, is the independence relationships between
omponents y1, . . . , yJ . For instance, the multiple Poisson distribution described by Patil and Bildikar [23] involves J
utually independent variables. Therefore, a multivariate distribution will be considered as a sensu stricto multivariate
istribution if:

(ii) its probabilistic graphical model (in the sense of undirected graphs, see [17]) is connected, i.e., there is a path
between every pair of variables, meaning that no variable is independent of another.

dditionally, such a distribution is considered as an extension of a univariate distribution if:

(iii) all the univariate marginal distributions belong to the same family (extension),
(iv) all the multivariate marginal distributions belong to the same family (natural extension).

Even if a singular distribution is not a sensu stricto J-multivariate distribution, it is very versatile as soon as the
arameter n is considered as a random variable. It then becomes a map between spaces of univariate and multivariate
istributions. Assuming that n follows a univariate distribution L(ψ) (e.g., binomial, negative binomial, Poisson etc . . . ), the
esulting compound distribution, denoted by S∆n (θ)∧n

L(ψ), is called a splitting distribution. For instance, the multivariate
ypergeometric – resp. multinomial and Dirichlet multinomial – splitting distribution, denoted by H∆n (k)∧n L(ψ) – resp.
y M∆n (π)∧n

L(ψ) and DM∆n (α)∧n
L(ψ) – has been introduced by Peyhardi and Fernique [25]. They studied the graphical

odel of independence for such distributions according to the sum distribution L(ψ). Jones and Marchand [15] studied
he Dirichlet multinomial splitting distributions, and named them sum and Polya share distributions. They focused on the
irichlet multinomial splitting negative binomial distribution, denoted here by DM∆n (α) ∧

n
NB(r, p). Here, we propose

everal extensions of their model, both regarding the sum and splitting distributions. As a consequence, our work is also
elated to the discrete Schur-constant distribution introduced by Castañer et al. [4], which can be viewed as a specific
irichlet multinomial splitting distribution with α = (1, . . . , 1)T . The framework proposed in this article can thus be
iewed as a unifying formalism including several existing multivariate distributions and facilitating their generalization
r the specification of new distributions.
Under mild assumptions, splitting distributions can be considered as sensu stricto multivariate distributions. They

nclude all usual multivariate discrete distributions and several new ones. Many advantages derive from the compound
spect of splitting distributions. The interpretation is simply decomposed into two parts: the sum distribution (intensity
f the distribution) and the singular distribution (repartition into the J components). The log-likelihood can also be
ecomposed according to these two parts and thus easily computed and maximized. This also facilitates the derivation
f asymptotic and independence properties for maximum likelihood and Bayesian estimators. All usual characteristics
support, pmf, expectation, covariance and probability generating function (pgf)) are also easily obtained using this
ecomposition. Finally, the generalization to regression models is naturally achieved by compounding a singular regression
y a univariate regression. This new framework eases the definition of generalized linear models (GLMs) for multivariate
ount responses, taking account of the dependence between response components.
This article is organized as follows. In Section 2 notations used throughout the paper are introduced. The definition

f singular distributions, is used as a building block to introduce splitting distributions. Positive and symmetric singular
istribution is introduced, easing respectively the study of criteria (i)-(ii) and (iii)–(iv) for resulting splitting distributions.
n Section 3 the subclass of additive convolution splitting distributions is introduced in order to simplify the calculation
f marginal distributions. Sections 4 and 5 focus on splitting distributions obtained with the multinomial and the
irichlet multinomial distributions since they are both positive and additive (e.g., the multivariate hypergeometric is an
dditive but non-positive convolution distribution). This leads us to precisely describe fifteen multivariate extensions
among which five are natural extensions) of usual univariate distributions giving their usual characteristics. Some
etailed attention is given to maximum likelihood and Bayesian parameter estimation regarding multinomial splitting
istributions. Conditional independence properties and asymptotic normality for sum and singular distribution parameters
re discussed in this framework. It is then shown that multinomial splitting regression constitutes an appropriate
ramework to introduce a family of GLMs for multivariate count responses. In Section 6 a comparison of splitting
istributions and their mixtures is provided, based on an application to a mango tree dataset. The Appendix contains
he proofs of all theorems, corollaries and properties.

. Splitting distributions

.1. Notation

Throughout the paper, focus will be made only on count distributions (and regression models). For terminological
| |

∑J
onvenience, the term count will therefore be omitted. Let y = j=1 yj denote the sum of the random vector

2
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y and assume that |y| ∼ L(ψ). Let PB(A) denote the conditional probability of A given B. Let E|y|(y) and Cov|y|(y)
enote respectively the conditional expectation and covariance of the random vector y given the sum |y|. Let ▲

J
n =

y ∈ NJ
: |y| ≤ n

}
denote the discrete corner of the hypercube. If no confusion could arise, J will be omitted in the

notation. Let
(n
y

)
= n!/(n − |y|)!

∏J
j=1 yj! denote the multinomial coefficient defined for y ∈ ▲n. This notation replaces

the usual notation
(n
y

)
= n!/

∏J
j=1 yj! which is defined only for y ∈ ∆n. Let (a)n = Γ (a+n)/Γ (a) denote the Pochhammer

ymbol and B(α) =
∏J

j=1 Γ (αj)/Γ (|α|) the multivariate beta function. Let

J
2F2{(a, a

′); b; (c, c ′); s} =

∑
y∈NJ

(a)|y|(a′)|y|

∏J
j=1(bj)yj

(c)|y|(c ′)|y|

J∏
j=1

s
yj
j

yj!

enote a multivariate hypergeometric function. Let us remark that a′
= c ′ leads to J

1F1(a; b; c; s) Lauricella’s type D
unction [18]. Moreover, if J = 1 then it turns out to be the usual Gauss hypergeometric function 2F1(a; b; c; s) or the
onfluent hypergeometric 1F1(b; c; s).

.2. Definitions

As previously introduced, a distribution is said to be singular if its support is included in the simplex and will be
enoted by S∆n (θ). The parameter n, being related to the support, is intentionally noted as an index of the distribution,
istinguishing it from other parameters θ ∈ Θ J used to define the pmf. Moreover, a singular distribution is said to be:

• positive, if for any n ∈ N, p|y|=n(y) > 0 for all y ∈ ∆n (i.e., if its support is the whole discrete simplex),
• symmetric, if y ∼ S∆n (θ) ⇒ σ (y) ∼ S∆n{σ (θ)} for all permutations σ of {1, . . . , J} (i.e., if it is closed under

permutation).

et us remark that if the singular distribution is symmetric, then it is possible to define a non-singular extension having
s support a subset of ▲n (or exactly ▲n if the singular distribution is also positive). The symmetry ensures that the choice
f the last category to complete the vector has no impact on the distribution. Such a distribution for the random vector
, denoted by S▲n (θ, γ ), is defined such that (y, n − |y|) ∼ S

∆
J+1
n
(θ, γ ).

The random vector y is said to follow a splitting distribution if there exists a singular distribution S∆n (θ) and a
nivariate distribution L(ψ) such that y follows the compound distribution

S∆n (θ) ∧
n
L (ψ) . (1)

t is named splitting distribution since an outcome y ∈ N of the univariate distribution L(ψ) is split into its J components.
he pmf is then given by p(y) = p|y|(y)p(|y|) assuming that |y| follows the univariate distribution L(ψ) and y given
y| = n follows the singular multivariate distribution S∆n (θ). Note that all univariate distributions bounded by n (denoted
y Ln(θ )) are non-singular (univariate) distributions. The variable y is said to follow a damage distribution if there exists
bounded distribution Ln(θ ) and a distribution L(ψ) such that y follows the compound distribution Ln (θ) ∧

n
L (ψ). It

is named damage distribution since an outcome y ∈ N of the distribution L(ψ) is damaged into a smaller value. Let us
remark that the marginal (univariate) of any splitting distribution is a damage distribution.

Examples. Here we highlight five examples of singular distributions:

1. The multivariate hypergeometric distribution, denoted by H∆n (k) where k ∈ NJ , with pmf given by

p|y|=n(y) =

∏J
j=1

(kj
yj

)
1yj≤kj(

|k|

n

) .

2. The multinomial distribution, denoted by M∆n (π) where π ∈ ∆, with pmf given by

p|y|=n(y) =

(
n
y

) J∏
j=1

π
yj
j .

3. The Dirichlet multinomial distribution, denoted by DM∆n (α) where α ∈ (0,∞)J , with pmf given by

p|y|=n(y) =

∏J
j=1

(yj+αj−1
yj

)(n+|α|−1
n

) .
3
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Table 1
Summarized properties of the five singular distributions.
Distributions Positive Symmetric Additive

convolution
Proportional

Multivariate hypergeometric × ×

Multinomial × × × ×

Dirichlet multinomial × × ×

Generalized Dirichlet multinomial ×

Logistic normal multinomial × ×

4. The generalized Dirichlet multinomial distribution, denoted by GDM∆n (α,β) where α ∈ (0,∞)J−1 and β ∈

(0,∞)J−1, with pmf given by

p|y|=n(y) =

(
n
y

) J−1∏
j=1

(αj)(yj)(βj)(y≥j+1)

(αj + βj)(y≥j)
,

where y≥j := yj + · · · + yJ .
5. The logistic normal multinomial distribution, denoted by LNM∆n (µ,Σ ) where µ ∈ (−∞,∞)J−1 and Σ is a real

square symmetric definite positive matrix of dimension J−1. This is a multinomial distribution mixed with a logistic
normal distribution, i.e., LNM∆n (µ,Σ ) = M∆n (π) ∧

π
LN (µ,Σ ). According to [1], π ∼ LN (µ,Σ ) is equivalent to

φ(π) ∼ N (µ,Σ ) where φ(π) :=

(
ln πj

πJ
, . . . , ln πJ−1

πJ

)
.

These specific singular distributions allow us to introduce five families of splitting distributions for multivariate count data,
based on composition (1). Contrarily to the others, the multivariate hypergeometric distribution is not positive since its
support is the intersection of the simplex ∆n and the hyper-rectangle {y ∈ NJ

: y1 ≤ k1, . . . , yJ ≤ kJ}. Contrarily to
he others, the generalized Dirichlet multinomial distribution is not symmetric. An ordering relation among components
1, . . . , J] is taken into account. These properties are summarized in Table 1. The last three singular distributions can be
iewed as multinomial distributions mixed with π, respectively by a Dirichlet, a generalized Dirichlet [6] and a logistic
ormal distribution [1].

.3. Sensu stricto multivariate extensions

This subsection highlights some sufficient conditions on the singular and the sum distributions to obtain a sensu stricto
ultivariate distribution (i.e., such that criteria (i) and (ii) hold) or a multivariate extension (i.e., such that criteria (i), (ii)
nd (iii) hold). The next three paragraphs respectively correspond to the general study of the criteria (i), (ii) and (iii)–(iv).
We now study connections between criterion (i) and the sum distribution. Firstly, let us remark that a singular

istribution could be viewed as a particular splitting distribution if the sum follows a Dirac distribution (denoted by
n), i.e. S∆n (θ) = S∆m (θ) ∧

m
1n. Assume that the dimension of a set A ⊆ NJ is defined as the dimension of the smallest

R-vectorial space including A. The dimension of the support of a positive splitting distribution depends on the support of
the sum distribution as follows:

dim
[
Supp

{
S∆m (θ) ∧

m
L(ψ)

}]
=

{ 0 if L(ψ) = 10,

J − 1 if L(ψ) = 1n with n ∈ N∗,

J otherwise.

Therefore all positive splitting distributions are considered as multivariate distributions (criterion (i) holds) when the sum
is not a Dirac distribution (only non-Dirac distributions will therefore be considered hereafter).

Here, we provide sufficient conditions for criterion (ii) to hold. A probabilistic graphical model (or graphical model, in
short) is defined by a distribution and a graph such that all independence assertions that are derived from the graph using
the global Markov property hold in the distribution [17]. A graphical model is said to be minimal if any edge removal in
the graph induces an independence assertion that is not held in the distribution. A graphical model is said to be connected
if there exists a path containing all its vertices (i.e., there is no pair of independent variables). This is a necessary condition
(criterion (ii)) to obtain a sensu stricto multivariate distribution. Peyhardi and Fernique [25] characterized the graphical
model of multinomial and Dirichlet multinomial splitting distributions according to the sum distribution. In cases where
the exact graph cannot be obtained easily, it is sufficient to show that covariances of two variables are non-zero to ensure
that at least one path connects every pair of random variables in the graph. Moments can be derived using the law of
total expectation and covariance. For instance the covariance of the multivariate hypergeometric splitting distribution
H∆n (k) ∧

n
L(ψ) is given by

Cov (y) =
1

·

[
{(|k| − 1)µ1 + µ2} · diag(k) +

{
µ2 −

|k| − 1
µ2

1

}
· kkt

]
,

|k| |k|

4
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where µi denotes the factorial moment of order i (i = 1, 2) for the sum distribution and kt denotes the transpose of the
ector k. To our knowledge, the binomial distribution with |k| trials, is the only parametric distribution such that |k|µ2 =

(|k| − 1)µ2
1. Therefore, any other parametric distribution can be used for the sum in order to ensure that covariances

between any pair of components are non-zero. This method opens potential avenues to obtain graphical models in
generalized Dirichlet multinomial and logistic normal multinomial splitting distributions, in which dependencies have not
yet been characterized. Finally, the pgf of splitting distributions can be obtained from the pgf of the singular distribution
since

G(s) = E
{
Ḡ (s)

}
, (2)

where s = (s1, . . . , sJ ) and Ḡ denotes the pgf of y given the sum |y|.
Here, we provide sufficient conditions for criteria (ii) and (iv) to hold. Splitting distributions that are sensu stricto

multivariate distributions (i.e., with criteria (i) and (ii)) are not necessarily multivariate extensions. To be considered as a
multivariate extension of a specific family, the marginal distributions of yj must belong to this family. Let us remark that
he symmetry of the singular distribution is a sufficient condition to obtain a multivariate extension (i.e., with criterion
iii)). Indeed, for any j ∈ {1, . . . , J} and yj ∈ N we have

p(yj) =

∑
y−j

p(y) =

∑
n≥yj

p(|y| = n)
∑
y−j

p|y|=n(y) =

∑
n≥yj

p(|y| = n)p|y|=n(yj).

The marginal distribution of the singular distribution, i.e., the distribution of yj given |y| = n, is a distribution bounded by
. Its parametrization has the same form fj(θ) for all marginals yj given |y| = n if the singular distribution is symmetric.
t implies that all marginals yj follow the damage distribution Ln{fj(θ)} ∧

n
L(ψ). Moreover, if the sum distribution is stable

nder the damage process, i.e., if there exists ψ′

j such that Ln{fj(θ)} ∧
n

L(ψ) = L(ψ′

j), then the splitting distribution

∆n (θ) ∧
n
L(ψ) turns out to be a multivariate extension of the given distribution L(ψ). We will demonstrate in Section 3

hat this closure property is a sufficient condition to obtain a natural multivariate extension of L(ψ) (i.e. with criterion
iv)), in the three cases of multivariate hypergeometric, multinomial and Dirichlet multinomial splitting distributions.

.4. Log-likelihood decomposition

If the parameters θ and ψ are unrelated, the log-likelihood of the splitting distribution, denoted by L (θ,ψ; y), can be
ecomposed into log-likelihoods for the singular multivariate and sum distributions:

L (θ,ψ; y) = log
{
p|y| (y)

}
+ log {p (|y|)} = L (θ; y)+ L (ψ; |y|) . (3)

herefore, the maximum likelihood estimator (MLE) of a splitting distribution with unrelated parameters can be obtained
eparately using respectively the MLE of the singular distribution and the MLE of the sum distribution. Hence, using
imilar arguments as in [15] and under usual assumptions ensuring asymptotic normality, the respective MLEs of θ and ψ
re asymptotically independent. Let us remark that usual assumptions do not include non-singular distributions S▲n (θ, γ )
ince n is an integer parameter and is related to the support ▲n of these distributions. Moreover, with C estimators of
ingular distributions and L estimators of univariate distributions, one is able to estimate C × L multivariate distributions,
ith time complexity in O (C + L). Let us remark that decomposition (3) remains true for decomposable scores such as
IC and BIC. Model selection using decomposable scores is also reduced to two separate model selection problems and has
he same linear time and space complexity. The Supplementary Materials S1 gives the definition of some beta compound
istributions and recalls the definition of usual power series distributions. Moreover Table 1 of the supplementary material
1 introduces the notations of these distributions and gives some references for inference of their parameters.

.5. Splitting regression models

Let us consider the regression framework, with the discrete multivariate response variable y and the vector of Q
xplanatory variables x =

(
x1, . . . , xp

)T . The random vector y is said to follow a splitting regression if there exists
: X → Ψ and θ : X → Θ such that given |y| = n:

• for all n ∈ N, the random vector y given |y| and x follows the singular regression S∆n {θ (x)},
• the sum follows the univariate regression L {ψ (x)}.

uch a compound regression model will be denoted by y | x ∼ S∆n {θ (x)} ∧
n

L {ψ (x)}. The decomposition of log-
ikelihood (3) still holds when considering explanatory variables if parametrizations of the singular distribution and the
um distribution are unrelated. Table 1 of the supplementary material S3, gives some references for parameter inference
nd variable selection adapted to four singular and six univariate regression models. We thus easily obtain 4 × 6 = 24
ppropriate regression models for multivariate count responses. Most of them are new, since usually either the modeling
f the sum is forgotten or the response components yj are considered as independent given the explanatory variables x.
ariable selection can be made separately on the sum and the singular distribution.
5
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3. Convolution splitting distributions

In order to study thoroughly the graphical models and the marginals of splitting distributions, additional assumptions
re necessary concerning the parametric form of the singular distribution. Convolution splitting distributions have been
ntroduced by Shanbhag [29] for J = 2 and extended by Rao and Srivastava [27] for J ≥ 2, but were only used as a tool
or characterizing univariate discrete distributions L(ψ). We here consider convolution splitting distributions as a general
amily of multivariate discrete distributions, as in [25].

.1. Definition

The random vector y given |y| = n is said to follow a convolution distribution if there exists a non-negative parametric
equence a := {aθ (y)}θ∈Θ,y∈N such that for all y ∈ ∆n we have

p|y|=n (y) =
1

cθ(n)

J∏
j=1

aθj (yj),

here cθ denotes the normalizing constant (i.e., the convolution of aθ1 , . . . , aθJ over the simplex ∆n). Note that a
onvolution distribution is symmetric by construction. The non-singular extension denoted by C▲n (a; θ, γ ) is therefore
ell defined, with pmf

p (y) =
1

cθ,γ (n)
aγ (n − |y|)

J∏
j=1

aθj (yj),

for all y ∈ ▲n. If the non-singular convolution distribution is univariate then it is denoted by Cn(a; θ, γ ). A convolution
istribution is said to be additive if

aθ ∗ aγ = aθ+γ (4)

or all θ ∈ Θ and γ ∈ Θ , where the symbol ∗ denotes the convolution, i.e., (aθ ∗aγ )(n) :=
∑n

y=0 aθ (y)aγ (n−y). By induction
n J it is shown that the normalizing constant becomes cθ(n) = a|θ|(n). An additive convolution distribution is thus fully
haracterized by the parametric sequence a = {aθ (y)}y∈N and will be denoted by C∆n (a; θ) where θ = (θ1, . . . , θJ )T ∈ Θ J .
his additivity property will be crucial in the following to demonstrate the closure property under marginalization.

xamples:. We highlight here three examples of additive convolution distributions:

1. the multivariate hypergeometric distribution with aθ (y) =
(
θ

y

)
and Θ = N∗,

2. the multinomial distribution with aθ (y) = θ y/y! and Θ = R∗
+
,

3. the Dirichlet multinomial distribution with aθ (y) =
(y+θ−1

y

)
and Θ = R∗

+
.

he additivity of these three convolution distributions, i.e., Eq. (4), can be shown using respectively the binomial theorem,
he Rothe-Hagen identity and the Vandermonde identity.

.2. Properties

The following theorem expresses some closure properties of additive convolution splitting distributions under
arginalization (let us remind that proofs of all theorems, corollaries and properties presented in this paper are given in

he appendix).

heorem 1. Let y follow an additive convolution splitting distribution C∆n (a; θ) ∧
n
L(ψ) then:

(i) The marginal sum |yI | follows the convolution damage distribution

Cn(a; |θI |, |θ−I |) ∧
n
L(ψ).

(ii) The subvector yI given |yI | = n follows the singular convolution distribution C∆n (a; θI).
(iii) The subvector yI follows the convolution splitting damage distribution

C∆n (a; θI) ∧
n

{
Cm(a; |θI |, |θ−I |) ∧

m
L(ψ)

}
.

(iv) The subvector yI given y−I = y−I follows the convolution splitting truncated and shifted distribution

C∆n (a; θI) ∧
n

[
TS|y−I | {L(ψ)}

]
.

6
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(v) The subvector yI given yJ = yJ follows the convolution splitting truncated and shifted damage distribution

C∆n (a; θI) ∧
n

[
TS|yJ |

{
Cm(a; |θI∪J |, |θ−I∪J |) ∧

m
L(ψ)

}]
,

here I ⊂ {1, . . . , J}, −I = {1, . . . , J} \ I, J ⊂ −I, yI (respectively y−I and yJ ) denote the corresponding sub-vectors
nd TSδ{L(ψ)} denotes the truncated and shifted distribution L(ψ) with parameter δ ∈ N (i.e., X ∼ TSδ{L(ψ)} means that
(X = x) = PZ≥δ(Z = δ + x) with Z ∼ L(ψ)).

his theorem includes results of Janardan and Patil [13], Patil [22], Xekalaki [35] as particular cases. For instance multino-
ial, negative multinomial, multivariate logarithmic, multivariate hypergeometric, multivariate negative hypergeometric
nd multivariate generalized Waring distributions are specific additive convolution splitting distributions. The third item
f the theorem is the most important, implying the two following properties.

heorem 2. An additive convolution splitting distribution C∆n (a; θ)∧n
L(ψ) is a natural multivariate extension of L(ψ) if the

atter is stable under the convolution damage process Cn(a; θ, γ ) ∧
n
(·).

or example, it can be shown that the negative binomial distribution is stable under the binomial damage process. More
recisely we have Bn(π ) ∧

n
NB(r, p) = NB(r, p′), where p′

:=
πp

πp+1−p (this result corresponds to the fourth point of
heorem 6). The multinomial splitting negative binomial distribution is therefore stable under all marginalization and
an be considered as a natural multivariate extension of the negative binomial distribution. In fact this is exactly the
ell-known negative multinomial. More precisely we have M∆n (π) ∧

n
NB(r, p) = NM(r, p · π). Furthermore, a specific

istribution that is stable under the convolution damage process is the convolution damage itself.

heorem 3. An additive convolution damage distribution is stable under itself:

Cn(a; θ, γ ) ∧
n
Cm(a; θ + γ , λ) = Cm(a; θ, γ + λ).

his result can be extended to the multivariate case to obtain the particular following identity.

heorem 4. The non-singular version of an additive convolution distribution is a specific convolution splitting distribution:

C∆n (a; θ) ∧
n
Cm (a; |θ| , γ ) = C▲m (a; θ, γ ) .

. Multinomial splitting distributions

In this section the multinomial distribution is introduced as a positive, additive and, in a sense to be defined,
roportional convolution distribution. Then, the general multinomial splitting distribution (i.e., for any sum distribution
(ψ)) is addressed. For six specific sum distributions, the usual characteristics of multinomial splitting distributions are
escribed in Table 2 of the paper and Table 1 of Supplementary Materials S2.

.1. Multinomial distribution

Let aθ (y) = θ y/y! be the parametric sequence that characterizes the multinomial distribution as a convolution
istribution. It is positive since θ y/y! > 0 for all θ ∈ Θ = (0,∞) and all y ∈ N. It is additive, as a consequence

of the binomial theorem: (θ + γ )n =
∑n

y=0

(n
y

)
θ yγ n−y. It implies, by induction on n, that the normalizing constant is

cθ(n) = a|θ|(n) = |θ|n/n!. The pmf of the singular multinomial distribution is thus given, for y ∈ ∆n, by

p|y|=n (y) =

(
n
y

) J∏
j=1

(
θj

|θ|

)yj
, (5)

and is denoted by M∆n (θ) with θ ∈ (0,∞)J . This convolution is proportional, implying that the equivalence class of
distributions {M∆n (λ · θ), λ ∈ (0,∞)} can be summarized by the representative element M∆n (π) where π =

1
|θ|

· θ. The
arameter vector π lies in the continuous simplex ∆ := {π ∈ (0, 1)J : |π| = 1} and the pmf reduces to its usual form,

given by Johnson et al. [14]. The pmf of the non-singular multinomial distribution, denoted by M▲n (θ, γ ), is given by

p (y) =

(
n
y

)(
γ

|θ| + γ

)n−|y| J∏
j=1

(
θj

|θ| + γ

)yj
,

or y ∈ ▲n. In the same way there exists a representative element M▲n (π
∗, γ ∗) with (π∗, γ ∗) ∈ (0, 1)J+1 such that

π∗
| + γ ∗

= 1. Given this constraint, the last parameter γ ∗
= 1 − |π∗

| could be set aside to ease the notation and obtain
(π∗) where the parameter vector π∗ lies in the continuous corner of the open hypercube ▲ = {π∗

∈ (0, 1)J : |π∗
| < 1}.
▲n

7
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Table 2
Characteristics of multinomial splitting (a) binomial, (b) negative binomial and (c) logarithmic series distribution.
(a)

Distribution M∆n (π) ∧
n
Bm(p)

Re-parametrization M▲m (p · π)
Supp(y) ▲m

p(y)
(n
y

)
(1 − p)n−|y|

∏J
j=1(pπj)yj

E(y) mp · π

Cov(y) mp ·
{
diag(π) − p · ππt

}
Gy (s)

(
1 − p + p πts

)m
Marginals yj ∼ Bm(πjp)

(b)

Distribution M∆n (π) ∧
n
NB(r, p)

Re-parametrization NM(r, p · π)
Supp(y) NJ

p(y)
(
|y|+r−1

y

)
(1 − p)r

∏J
j=1(pπj)yj

E(y) r p
1−p · π

Cov(y) r p
1−p ·

{
diag(π) +

p
1−p · ππt

}
Gy (s)

(
1−p

1−pπt s

)r
Marginals yj ∼ NB(r, p′

j) with p′

j =
πjp

πjp+1−p

(c)

Distribution M∆n (π) ∧
n
L(p)

Re-parametrization ML(p · π)
Supp(y) NJ

\ (0, . . . , 0)
p(y)

(
|y|

y

)
−1

|y|ln(1−p)

∏J
j=1 π

yj
j

E(y) −p
(1−p) ln(1−p) · π

Cov(y) −p
(1−p) ln(1−p) ·

{
diag(π) +

p{1−ln(1−p)}
(1−p) ln(1−p) · ππt

}
Gy (s) ln(1−p·πt s)

ln(1−p)
Marginals yj ∼ L

(
p′

j, ω
′

j

)
with p′

j =
πjp

πjp+1−p and ω′

j = ω − ln(πjp + 1 − p)

As a particular case of the non-singular multinomial distribution (when J = 1), the binomial distribution is finally denoted
y Bn(p) with p ∈ (0, 1) (which is also the representative element of its class). Even if this new definition of multinomial
istributions based on equivalence classes seems somehow artificial, this is necessary to obtain all the properties that
old for convolution splitting distributions. For instance Theorem 4 becomes the following result (with representative
lement notations).

orollary 1. The multinomial splitting binomial distribution is exactly the non-singular multinomial distribution:

M∆n (π) ∧
n
Bm (p) = M▲m (p · π) .

We wish to highlight the following significant point regarding the difference between singular and non-singular
multinomial distributions. Contrarily to the widely held view that the multinomial distribution is the extension of the
binomial distribution [14], only the non-singular one should be considered as the natural extension. In fact, criterion
(iv) does not hold for the singular multinomial distribution (multivariate marginals follow non-singular multinomial
distributions). Moreover, when confronted with multivariate counts, usual inference of multinomial distributions [14,38]
is that of singular multinomial distributions such that ∀n ∈ N the random vector y given |y| = n follows M∆n (π). Such
point of view therefore limits the possibility of comparing these distributions to other classical discrete multivariate
istributions such as the negative multinomial distribution or the multivariate Poisson distributions [16] used for modeling
he joint distribution of y. The singular multinomial distribution should thus not be considered as a J-multivariate
istribution since criterion (i) would not hold.

.2. Properties of multinomial splitting distributions

Let y follow a multinomial splitting distribution M∆n (π)∧n
L(ψ). Criteria (i) and (iii) hold, as a consequence of positivity

and symmetry. The pmf is given by

p(y) = p(|y|)
(

|y|

y

) J∏
π

yj
j , (6)
j=1

8
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for y ∈ NJ . According to the law of total expectation and covariance, we have

E (y) = µ1π, (7)

Cov (y) = µ1diag(π) + (µ2 − µ2
1)ππ

t . (8)

Moreover, according to (2) we obtain the pgf of multinomial splitting distributions as

G(s) = Ey
{
(πts)|y|

}
= Gψ

(
πts
)
, (9)

where Gψ denote the pgf of the sum distribution. The graphical model is characterized by the following property.

Theorem 5 (Peyhardi and Fernique [25]). The minimal graphical model for a multinomial splitting distribution M∆n (π)∧n
L(ψ)

is:

• empty if L(ψ) = P(λ) for some λ > 0,
• complete otherwise.

Therefore, all multinomial splitting distributions are sensu stricto multivariate distributions (criterion (ii)) except when
the sum follows a Poisson distribution. As a consequence of additivity, Theorem 1 holds and yields the marginals:

Corollary 2. Assume that y follows a multinomial splitting distribution M∆n (π)∧n
L(ψ) and denote by G(y)

ψ the yth derivative
of the pgf Gψ . Then, the marginals yj follow the binomial damage distribution Bn(πj) ∧

n
L(ψ) and

p(yj) =
π

yj
j

yj!
G
(yj)
ψ (1 − πj), (10)

Using Eq. (10), it is easy to study the stability of power series distributions under the binomial damage process.

Theorem 6. The binomial, Poisson, negative binomial and zero modified logarithmic series distributions are stable under the
binomial damage process. More precisely we have

(i) Bn(π ) ∧
n
Bm(p) = Bm(πp)

(ii) Bn(π ) ∧
n
P(λ) = P(πλ)

(iii) Bn(π ) ∧
n
NB(r, p) = NB(r, p′) where p′

:=
πp

πp+1−p

(iv) Bn(π ) ∧
n
L(p, ω) = L(p′, ω′) where p′

:=
πp

πp+1−p and ω′
:= ω − ln(πp + 1 − p).

Assume that L(ψ) is a power series distribution denoted by PSD{g(α)}. It can be seen by identifiability that the resulting
plitting distribution of y is exactly the multivariate sum-symmetric power series distribution (MSSPSD) introduced
y Patil [22], i.e., M∆n (π) ∧

n
PSD{g(α)} = MSSPSD{α · π}. The non-singular multinomial distribution, the negative

ultinomial distribution and the multivariate logarithmic series distribution are thereby encompassed in multinomial
plitting distributions (see Table 2).
Assume now that L(ψ) is a standard beta compound distribution. We obtain three new multivariate distributions,

hich are multivariate extensions of the non-standard beta binomial, non-standard beta negative binomial and beta
oisson distributions (see Table 1 of Supplementary Material S2 for details about these three multivariate distributions and
upplementary Material S1 for definitions of the non-standard beta binomial and the non-standard beta negative binomial
istributions). All the characteristics of these six multinomial splitting distributions (pmf, expectation, covariance, pgf and
arginal distributions) have been calculated using (6), (7), (8), (9), (10) according to the sum distribution L(ψ).

.3. Asymptotic and independence properties of estimators

Firstly, maximum likelihood estimation in multinomial splitting distributions (MSDs) M∆n (π) ∧
n
L (ψ) is considered.

Let Y := (y i)1≤i≤N denote an independent and identically distributed (i.i.d.) sample with size N and distribution
M∆n (π) ∧

n
L (ψ) and |Y| := (|y i|)1≤i≤N denote the corresponding i.i.d. sample of sums. As a consequence of the log-

likelihood decomposition property (3), L (π,ψ;Y) can be written as L (π;Y) + L (ψ; |Y|). Hence, the sum distribution
parameters ψ and the probability parameters π can be separately estimated. Computation of the MLE ψ̂ of ψ is then
equivalent to MLE computation in the statistical model associated with an i.i.d. sample |Y| distributed according to L(ψ).

The asymptotic properties of ψ̂ are inherited from the statistical model associated with
N⨂
i=1

Lψ , the rate of convergence

being determined by the sample size N . For any i ∈ {1, . . . ,N}, j ∈ {1, . . . , J}, let y denote the component j in y and let
i,j i

9
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z denote the total count
∑N

i=1 |y i| =
∑N

i=1
∑J

j=1 yi,j. It is proved straightforwardly as in i.i.d. samples from multinomial
distributions that for any j ∈ {1, . . . , J}, π̂j has the following closed-formed expression:

π̂j =

∑N
i=1 yi,j
z

. (11)

oreover, π̂ satisfies the following limit central theorem used in the proof of the Pearson chi-square test, see [24,31].
pecifically, there exists a deterministic orthonormal family (u1, . . . , uJ−1) of RJ and i.i.d. centered, standardized random
aussian variables (ξ1, . . . , ξJ−1) such that given z,

√
z
[
π̂1 − π1

√
π1

, . . . ,
π̂J − πJ
√
πJ

]
D

−−−→
z→∞

J−1∑
k=1

ξkuk.

Moreover, the following results hold:

Theorem 7. The estimator ψ̂ of sum parameters and the estimator π̂ of components proportions are two independent random
vectors given the total count z.

Secondly, Bayesian estimation in MSDs is considered. It follows from Theorem 7 that p
(
|Y|
⏐⏐Y,ψ,π) = p

(
|Y|
⏐⏐ Z,π).

As a consequence, Bayesian inference with independent priors for ψ and π leads to a factorization property of the joint
posterior. Indeed, let denote S =

(∑n
i=1 Yi,j

)
1≤j≤J ; if p(ψ,π) = p(ψ)p(π), then

p (ψ,π | Y) ∝ p (Y | ψ,π) p(ψ)p(π) ∝ p
(
|Y|, S ⊘ |Y|

⏐⏐ψ,π) p(ψ)p(π),

where ⊘ refers to Hadamard division and is conventionally defined as 0 if
∑n

i=1 Yi,j = 0. Thus,

p (ψ,π | Y) ∝ p
(
S ⊘ |Y|

⏐⏐ |Y|,ψ,π
)
p
(
|Y|
⏐⏐ψ,π) p(ψ)p(π) ∝ p

(
S ⊘ |Y|

⏐⏐ Z,π) p (|Y|
⏐⏐ψ) p(ψ)p(π)

by (3) and Theorem 7. Hence, p
(
ψ,π

⏐⏐Y) ∝ p
(
S ⊘ |Y|

⏐⏐ Z,π) p(π)p (ψ ⏐⏐ |Y|
)
, where from the proof of Theorem 7, S ⊘|Y|

has distribution M(Z,π) given (Z,π), up to the scaling factor Z . Note that this result extends that of Lemma 1 in [32]
with Poisson-distributed (Yi,j)1≤i≤n;1≤j≤J .

In the particular case where p(π) is chosen as a Dirichlet distribution D(α1, . . . , αJ ), then the marginal posterior distri-
bution p (π | Y) is Dirichlet D(α1 + S0, . . . , αJ + SJ ) [see 28, Chapter 3], which does not depend on Z , and p (ψ,π | Y) ∝

p (π|S) p
(
ψ
⏐⏐ |Y|

)
. Thus, parameters ψ and π are independent a posteriori. Moreover, if (Lψ)ψ is in the exponential

family, its expression has the form Lψ(x) = h(x)eψx−φ(x) and a conjugate family of priors is given by p(ψ|µ, λ) =

ρ(µ, λ) exp (ψµ− λφ(ψ)), where µ and λ > 0 are hyperparameters and ρ(µ, λ) is a normalizing constant [see 28, Chapter
3]. Then the marginal posterior distribution of ψ is p(ψ

⏐⏐ |Y|, µ, λ) = ρ(µ+ z, λ+ n) exp {φ (µ+ z)− (λ+ n) φ (ψ)}.

4.4. Generalized linear models for multivariate count responses

Multinomial splitting distributions offer an appropriate framework for describing GLMs for multivariate count re-
sponses. Let x = (x1, . . . , xp) denote the vector of explanatory variables. If both singular and sum distributions are
described by GLMs then the resulted splitting regression well defines a GLM for multivariate count responses. This is a
consequence of the splitting decomposition of probabilities px(y) = p|y|,x(y)px(|y|) and the exponential property exp(a +

b) = exp(a) exp(b). The only known singular GLM for count response is the multinomial GLM. For the univariate case, the
binomial, Poisson and negative binomial are defined in the GLM framework. Assume that y|x ∼ M∆n{π(x)} ∧

n
L{ψ(x)},

where ψ is the canonical parameter of the univariate GLM. Then we have

px(y) = exp

⎧⎨⎩
J∑

j=1

yj lnπj + ln
(

|y|

y

)⎫⎬⎭ exp
{

|y|ψ − b(ψ)
φ

+ c(|y|;φ)
}

= exp

⎧⎨⎩
J∑

j=1

yj

(
lnπj +

ψ

φ

)
−

b(ψ)
φ

+ ln
(

|y|

y

)
+ c(|y|;φ)

⎫⎬⎭ = exp
{
yT θ − B(θ) + C(y;φ)

}
,

here θj := lnπj +
ψ

φ
, B(θ) :=

b
[
φ ln

{∑J
j=1 exp(θj)

}]
φ

and C(y;φ) = ln
(
|y|

y

)
+ c(|y|;φ). The Poisson GLM for the sum is a

articular case since the components y1, . . . , yJ are independent given the explanatory variables x and such that

M∆n{π(x)} ∧
n
P{λ(x)} =

J⨂
P{λ(x)πj(x)}.
j=1

10
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Therefore only binomial and negative binomial GLMs for the sum allow us to define multivariate GLMs with dependencies.
They turn out to be respectively the non-singular multinomial GLM

M∆n{π(x)} ∧
n
Bm{p(x)} = M▲n{p(x) · π(x)},

and the negative multinomial GLM

M∆n{π(x)} ∧
n
NB{r, p(x)} = NM{r, p(x) · π(x)}.

he non-singular multinomial GLM is sensu stricto a GLM since criterion (i) holds, contrarily to the usual (singular)
ultinomial GLM. Compared to the usual multinomial and negative GLMs multinomial, used for instance by Zhang and
hou [37], our versions offer several advantages. First, estimation can be made separately on the sum and splitting.
econdly, the variety of link functions described on π(x) for multinomial GLMs [26,33] can thus be used to introduce
everal new link functions in GLMs for multivariate count responses. It is also possible to multiply the number of models
y using different link functions on p(x) for negative binomial GLMs; see [11]. Note that the choice of the link function on
(x) is related to the symmetry of the resulting splitting GLM. Only the canonical link function (i.e., the multinomial logit
ink) implies the symmetry of the splitting GLM; see [26] for details about invariance properties of categorical regression
odels. Finally asymptotic independence between MLEs of regression parameters for π(x) and p(x) holds under usual
ssumptions for GLMs described by [8].

. Dirichlet multinomial splitting distributions

In this section the Dirichlet multinomial distribution is introduced as a positive and additive convolution distribution.
hen, the general case of Dirichlet multinomial splitting distributions, is studied. For six specific sum distributions, the
sual characteristics of Dirichlet multinomial splitting distributions are described in Tables 3 and 4 of the paper and
ables 5 and 6 of Supplementary Materials S2. Finally, the canonical case of beta binomial sum distribution is detailed,
ith particular emphasis on parameter inference.

.1. Dirichlet multinomial distribution

Let aθ (y) =
(y+θ−1

y

)
be the parametric sequence that characterizes the Dirichlet multinomial distribution as a

onvolution distribution. It is positive since
(y+θ−1

y

)
> 0 for all θ ∈ Θ = (0,∞) and all y ∈ N. It is additive, as a

onsequence of the convolution identity of Hagen and Rothe:
(n+θ+γ−1

n

)
=
∑n

y=0

(y+θ−1
y

)(n−y+γ−1
n−y

)
. It implies, by induction

on n, that the normalizing constant is cθ(n) = a|θ|(n) =
(n+|θ|−1

n

)
. In order to respect the usual notation, parameter αwill be

used instead of θ, and thus the Dirichlet multinomial distribution will be denoted by DM∆n (α) with n ∈ N and α ∈ (0,∞)J .
The non-singular Dirichlet multinomial distribution will be denoted by DM▲n (α, b) with b ∈ (0,∞). The beta binomial
distribution will be denoted by βBn(a, b) with (a, b) ∈ (0,∞)2. Using Theorem 4 with aθ (y) =

(y+θ−1
y

)
and θ = α we

obtain the following result.

Corollary 3. The Dirichlet multinomial splitting beta binomial distribution with the specific constraint a = |α| is exactly the
non-singular Dirichlet multinomial distribution:

DM∆n (α) ∧
n
βBm (|α|, b) = DM▲m (α, b) .

For similar reasons as in the multinomial case, the non-singular Dirichlet multinomial distribution should be considered
as the natural extension of the beta binomial distribution, rather than the singular one. Let us remark that the Dirichlet
multinomial distribution turns out to be the multivariate negative hypergeometric distribution if α ∈ NJ instead of (0,∞)J .

5.2. Properties of Dirichlet multinomial splitting distributions

Let y follow a Dirichlet multinomial splitting distribution DM∆n (α)∧n
L(ψ). Criteria (i) and (iii) hold, as a consequence

of positivity and symmetry. The pmf is given, for y ∈ NJ , by

p(y) =
p(|y|)(

|y|+|α|−1
|y|

) J∏
j=1

(
yj + αj − 1

yj

)
. (12)

ccording to law of total expectation and covariance, we have

E (y) =
µ1

|α|
· α, (13)

Cov (y) =
1

·

[
{(|α| + 1)µ1 + µ2} · diag(α) +

{
µ2 −

|α| + 1
µ2

1

}
· ααt

]
. (14)
|α|(|α| + 1) |α|

11
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Table 3
Usual characteristics of Dirichlet multinomial splitting standard beta binomial distribution (respectively (a) without constraint
and (b) with constraint a = |α|).
(a)

Distribution DM∆n (α) ∧
n
βBm(a, b)

Supp(y) ▲m

p(y)
(m
|y|

) B(a+|y|,b+m−|y|)
B(a,b)

∏J
j=1 (

yj+αj−1
yj
)

(m+|α|−1
m )

E(y) ma
|α|(a+b) · α

Cov(y) ma
|α|(|α|+1)(a+b) ·

[{
b(a+b+m)

(a+b)(a+b+1) +
ma
a+b + |α|

}
· diag(α) +

{
b(a+b+m)

(a+b)(a+b+1) −
ma

|α|(a+b) − 1
}

· ααt
]

Gy (s) (b)m
(a+b)m

J
2F2{(−m, a);α; (−b − m + 1, |α|); s}

Marginals yj ∼ β2Bm
(
αj, |α−j|, a, b

)
(b)

Distribution DM∆n (α) ∧
n
βBm(a, b)

Constraint a = |α|

Re-parametrization DM▲m (α, b)
Supp(y) ▲m

p(y)
(m−|y|+b−1

m−|y|

)∏J
j=1 (

yj+αj−1
yj
)

(m+|α|+b−1
m )

E(y) m|α|

|α|(|α|+b) · α

Cov(y) m
(|α|+1)(|α|+b) ·

[{
b(|α|+b+m)

(|α|+b)(|α|+b+1) +
m|α|

|α|+b + |α|
}

· diag(α) +

{
b(|α|+b+m)

(|α|+b)(|α|+b+1) −
m

|α|+b − 1
}

· ααt
]

Gy (s) (b)m
(|α|+b)m

J
1F1(−m;α; −b − m + 1; s)

Marginals yj ∼ βBm
(
αj, |α−j|+b

)

Table 4
Usual characteristics of Dirichlet multinomial splitting standard beta negative binomial distribution (respectively (a) without constraint and (b) with
constraint r = |α|).
(a)

Distribution DM∆n (α) ∧
n
βNB(r, a, b)

Supp(y) NJ

p(y) (a)r
(a+b)r

(r)|y|(b)|y|

(r+a+b)|y|(|α|)|y|

∏J
j=1

(αj)yj
yj !

E(y) rb
|α|(|α|+1)(a−1)α

Cov(y) rb
|α|(|α|+1)(a−1) ·

[{
(r+a−1)(a+b−1)

(a−1)(a−2) +
rb

a−1 + |α|
}

· diag(α) +

{
(r+a−1)(a+b−1)

(a−1)(a−2) −
rb

|α|(a−1) − 1
}

· ααt
]

(defined if a > 1)

Gy (s) (a)r
(a+b)r

J
2F2{(r, b);α; (r + a + b, |α|); s}

Marginals yj ∼ β2NB
(
r, αj, |α−j|, a, b

)
(b)

Distribution DM∆n (α) ∧
n
βNB(r, a, b)

Constraint r = |α|

Re-parametrization MGWD(b,α, a)
Supp(y) NJ

p(y) (a)|α|
(a+b)|α|

(b)|y|

(|α|+a+b)|y|

∏J
j=1

(αj)yj
yj !

E(y) b
(|α|+1)(a−1)α

Cov(y) b
(|α|+1)(a−1) ·

[{
(|α|+a−1)(a+b−1)

(a−1)(a−2) +
|α|b
a−1 + |α|

}
· diag(α) +

{
(|α|+a−1)(a+b−1)

(a−1)(a−2) −
b

a−1 − 1
}

· ααt
]

(defined if a > 2)

Gy (s)
(a)|α|

(a+b)|α|
J
1F1(b;α; |α|+a + b; s)

Marginals yj ∼ βNB
(
αj, a, b

)

The pgf of a Dirichlet multinomial splitting distribution is given by

G(s) =

∑
y∈NJ

Γ (|y| + 1) p (|y|)

∏J
j=1(αj)yj
(|α|)|y|

J∏
j=1

s
yj
j

yj!
. (15)

The graphical model is characterized by the following property.
12
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Theorem 8 (Peyhardi and Fernique [25]). The minimal graphical model for a Dirichlet multinomial splitting distribution
DM∆n (α) ∧

n
L(ψψ) is:

• empty if L(ψ) = NB(|α|, p) for some p ∈ (0, 1),
• complete otherwise.

Therefore, all Dirichlet multinomial splitting distributions are senso stricto multivariate distributions except when the sum
ollows a negative binomial distribution NB(r, p) with the specific constraint r = |α|.

orollary 4. Let y follow a Dirichlet multinomial splitting distribution, y ∼ DM∆n (α) ∧
n
L(ψ) with α ∈ (0,∞)J . Then, the

marginals follow the binomial damage compound by a beta distribution

yj ∼

{
Bn(π ) ∧

n
L(ψ)

}
∧
π
β(αj, |α−j|). (16)

Therefore, results previously obtained for the binomial damage distributions can be used to describe the beta-binomial
damage distributions. Assume that L(ψ) is a standard beta compound distribution. Four new and two already known
multivariate distributions are obtained or recovered. In particular, natural multivariate extensions of three beta compound
distributions are described. The non-singular Dirichlet multinomial is recovered when L(ψ) = βBn(a, b) with the specific
constraint a = |α| (see Table 3). The multivariate generalized Waring distribution (MGWD), introduced by Xekalaki [35],
is recovered when L(ψ) = βNB(r, a, b) with the specific constraint r = |α| (see Table 4). Finally, a multivariate extension
of the beta Poisson distribution is proposed when L(ψ) = βλP(a, b) with the specific constraint a = |α| (see Table 2 of
Supplementary Materials S2).

Assume now that L(ψ) is a power series distribution leading to three new multivariate extensions. Let us remark
that several multivariate extensions of the same univariate distribution could be defined. For instance the multinomial
splitting beta binomial distribution M∆n (π) ∧

n
βBm(a, b) and the Dirichlet multinomial splitting binomial distribution

DM∆n (α) ∧
n
Bm(p) are two multivariate extensions of the non-standard beta binomial distribution (see Tables 5 and 6

of Supplementary Materials S2). Furthermore, Jones and Marchand [15] studied the mixed multinomial splitting mixed
Poisson distribution

{
M∆n (π) ∧

π
S∆
}

∧
n

{
P(λ) ∧

λ
g
}
where S∆ denotes a distribution supported on the continuous simplex

∆ and g a continuous distribution supported on (0,∞). They focus on the specific case S∆ = D∆(α) (Dirichlet distribution)
and g = Γ (a, b) (gamma distribution) that leads to the Dirichlet multinomial splitting negative binomial distribution
DM∆n (α)∧n

NB(a, p), where p = b/(1+ b). They remark that assumption a = |α| leads to independent negative binomial
distribution: yj ∼ NB(αj, p) (this is a consequence of Theorem 4); see Table 3 of Supplementary Material S2 for details.
Otherwise, they remark that if αj → ∞ such that α/|α| = π then one obtains the multinomial splitting negative binomial
distribution M∆n (π) ∧

n
NB(a, p). In fact it turns out to be the negative multinomial distribution NM∆n (a, p · π); see

Table 2.b for details. Finally, they point out the special case DM∆n (1)∧n NB(a, p) where 1 := (1, . . . , 1)t , which corresponds
to a specific Discrete Schur-constant distribution. The discrete Schur-constant distribution described by Castañer et al.
[4] is such that the multivariate survival function for y can be written as a function of the sum |y|. It can also be
viewed as a specific Dirichlet multinomial splitting distribution: DM∆n (1) ∧

n
L where L has a specific form; see [4,19]

for details. It should be noted that DM∆n (1) = M∆n (π) ∧
π

D∆(1) where D∆(1) denotes the Dirichlet distribution with
parameters 1, i.e., the uniform distribution on the continuous simplex ∆. In fact, DM∆n (1) turns out to be the uniform
distribution on the discrete simplex ∆n. According to Theorem 3 we can easily obtain the marginal of such distribution
(y1, . . . , yj) ∼ DM▲n (1, J − j), as in Proposition 3.1. of [4]. As corollary of Theorem 4 we obtain that if y follows a discrete
Schur-constant distribution then y1, . . . , yJ are independent if and only if L = NB(J, p) for some p ∈ (0, 1), i.e., if and
only if yj ∼ NB(1, p). Let us remark that NB(1, p) is a geometric distribution (supported on N) and therefore this result
corresponds to Proposition 4.1. of [4].

Otherwise, note that the singular Dirichlet multinomial distribution does not belong to the exponential family.
Regardless of |α| being fixed or not, MLEs α̂j can be computed using various iterative methods [21,30]. Finally, Bhagwat
[3] described Bayesian estimation of α and also of r and p.

5.3. Canonical case of beta binomial sum distribution

The case L(ψ) = βBn(a, b) is considered as the canonical case since the beta binomial distribution is the univariate
version of the non-singular Dirichlet multinomial distribution. Usual characteristics of the Dirichlet multinomial splitting
beta binomial distribution are derived from Eqs. (12) to (16) with L(ψ) = βBn(a, b). The constraint a = |α| in Corollary 3
has to be taken into account in the inference procedure, either on the singular distribution or on the sum distribution.
We propose to use the first alternative since the inference procedure of a constrained Dirichlet multinomial distribution
(i.e., with a fixed sum |α|) has already been proposed by Minka [21]. The sum distribution βBn (a, b) can then be estimated
without constraint on parameters a or b (see Table 1 of Supplementary Materials S1). Note that if no constraint between
parameters of singular and sum distributions is assumed then the inference procedure is straightforward, since it can
13
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be separated into two independent procedures. The resulting splitting distribution is more general, including the non-
singular Dirichlet multinomial distribution as a special case. As a consequence of Eq. (16), the marginals follow beta
product binomial distributions β2Bn(αj, |α−j|, a, b) and beta binomial distributions βBn(αj, |α−j| + b) when the constraint

= |α| is assumed (see Supplementary Materials S1 for definition of beta product distribution and beta product compound
istributions definitions).

. An application to mango patchiness analysis

Recently, a statistical methodology was proposed to characterize plant patchiness at whole plant scale [9]. How-
ver, little is known about patchiness at a whole population scale. To characterize patchiness at the plant scale, a
egmentation/clustering of tree-indexed data method was proposed in order to split a heterogeneous tree into multiple
omogeneous subtrees. After a first clustering step operating at the level of patches, trees were summarized by
ultivariate counts denoting the number of subtrees with each possible patch type. These types are as follows: (1)
egetative patches that contain almost only vegetative growth units (GUs, plant elementary component), (2) reproductive
atches that contain almost only GUs that flowered or fructified and (3) quiescent patches that contain GUs that neither
urst, flowered nor fructified. At the tree scale, the number of patches with types j are denoted by yj for 1 ≤ j ≤ 3. Our
im is now to identify clusters at that scale, grouping individuals that have similar count distributions. We propose the
se of mixtures of multivariate parametric distributions, within the family

y | L = k ∼ Sk
∆n

(θk) ∧
n
Lk(ψk), k ∈ {1, . . . , K },

here L is a latent categorical variable, ρk = P(L = k) are the mixture weights and the number K of mixture components
has to be determined. Trees are assumed to be independent. Such mixture models are of high interest since they enable
types of tree patchiness to be discriminated according to either or both the:

• number of patches present on trees, by fitting different sum distributions within components of the mixture model,
• distribution of these patches among types, by fitting different singular distributions within components of the

mixture model.

We allow here to have mixed distributions within different families. A model selection step has thus to be performed to
choose the singular and sum distributions among different families, separately for each mixture component k: singular
multinomial and Dirichlet multinomial for Sk

∆n
(θk) and binomial, negative binomial, Poisson and logarithmic distributions

for Lk(ψk).
Since there is at least one patch in a mango tree (i.e., the tree itself), shifted distributions are considered with a positive

shift for binomial, negative binomial and Poisson sum distributions and a non-negative shift for logarithmic distributions.
The additional shift parameter is denoted by δk (in mixture component k). These families were selected for each k using
BIC, as was the number K of mixture components.

The sample size is 201. The selected model has two components (see Fig. 1) with weights ρ̂1 = 0.44 and ρ̂2 = 0.56.
In both components k, the number of patches follows a multinomial splitting shifted negative binomial distribution
y | L = k ∼ M∆n (πk) ∧

n
NB (rk, pk; δk) with estimates π̂1 = (0.21, 0.00, 0.79), r̂1 = 0.16, p̂1 = 0.76, δ̂1 = 1 for the first

component and π̂2 = (0.54, 0.17, 0.28), r̂2 = 3.95, p̂2 = 0.40, δ̂2 = 1 for the second component. A χ2 goodness of fit test
on the sum data yielded a test statistic of 5.1 (approximated p-value: 0.02), thus highlighting some lack of fit for the sum
distribution. More precisely, probabilities were especially underestimated for |y| = 4, 9, 10 (see Fig. 1b). A χ2 goodness
of fit test was also performed on the vectors, yielding a test statistic of 18.5 (approximated p-value: 10−4), confirming
the lack of fit, which is only partly imputable to the sum distribution. For example, probabilities of vectors (1, 1, 0) and
(1, 0, 2) were underestimated, suggesting strong exclusion patterns that are not well accounted for by the model.

This mixture of two components indicates that the population of mango trees can be separated into two types of trees
(see Fig. 1):

• Mango trees with a relatively low number of patches (1.5 on average) that are most often quiescent, can also be
vegetative or but not reproductive (component 1);

• Mango trees with a relatively high number of patches (3.7 on average) that are mostly vegetative, but can also be
quiescent or less often, reproductive (component 2).

These types of trees are rather equally represented (44% for the first component against 56%). These results tend to suggest
that on the one hand, the reproductive period of mango trees leads to an increase in patch numbers while the vegetative
period leads to a decrease in patch numbers. This can be interpreted as a tendency of mango trees to be desynchronized
when reproductive and to be resynchronized after a quiescence period, or when only vegetative growth occurs.

7. Conclusions

Convolutions splitting distributions that are positive and additive have been studied in depth in this paper with elicita-

tion of their graphical models and marginal distributions. The characterization of the graphical model of hypergeometric

14
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Fig. 1. (a) BIC as a function of the number of mixture components. (b) Mixture of sum distributions estimated (with a solid line) compared with
data frequencies (gray bars). The sum distribution of the first (resp. second) component is represented with a dotted (resp. dashed) line.

splitting distributions remains an open issue because of the non-positivity. However, due to additivity, Theorem 1 still
holds. It would be interesting to study the hypergeometric splitting distributions H∆n ∧

n
L(ψ) for some specific univariate

istributions L(ψ). More generally, the multivariate Polya distribution with parameters n ∈ N, θ ∈ Θ and c ∈ R
ncompasses the multivariate hypergeometric (c = −1), the multinomial (c = 0) and the Dirichlet multinomial (c = 1)

distributions [12]. It would therefore be interesting to study the properties of multivariate Polya splitting distributions
according to the c value. Otherwise, non-symmetric convolution distributions could be defined (including the generalized
Dirichlet multinomial distribution) to ease the study of corresponding splitting distributions.

Another alternative to define new singular distributions, is to consider their mixtures. To motivate such extensions of
our approach, let us consider the mango tree application, in which we inferred mixtures of splitting distributions in order
to characterize plant patchiness at whole plant scale. This relied on the assumption that tree patchiness is both expressed
in terms of number of patches and the distribution of their types. On the one hand, if tree patchiness is only a phenomenon
expressed in terms of number of patches, a mixture of sum distributions could be considered to distinguish trees. On the
other hand, if tree patchiness is only a phenomenon expressed in terms of patch type distribution, singular distributions
constructed using mixture of singular distributions could be of interest. This highlights how mixture models are quite
interesting to define new splitting models. Finite mixtures can be inferred using a classical expectation–maximization
algorithm for multivariate distributions.

Regarding parameter estimation, properties of conditional independence of estimators for sum and singular distri-
bution parameters have been established for MLE and Bayesian estimators in the framework of multinomial splitting
distributions. Similar properties remain to be investigated for other cases of splitting (or possibly sum) distributions and
regression models.

Finally, this work could be used for learning graphical models with discrete variables, which is an open issue. Although
the graphical models for usual additive convolution splitting distributions are trivial (either complete or empty), they could
be used as building blocks for partially directed acyclic graphical models. Therefore, the procedure of learning partially
directed acyclic graphical models described by Fernique et al. [10] could be used for learning graphical models based on
convolution splitting distributions and regressions. It could be used for instance to infer gene co-expression network from
a RNA seq dataset.
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Appendix A. Proofs of theorems and corollaries

Proof of Theorem 1.
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(i) Let n ∈ N, we have

P(|YI | = n) =

∑
yI∈∆n

P(YI = yI) =

∑
yI∈∆n

∑
y−I

P(Y = y) =

∑
k≥n

P(|Y | = k)
∑

yI∈∆n

∑
y−I∈∆k−n

P|Y |=k(Y = y)

=

∑
k≥n

P(|Y | = k)
cθ(k)

∑
yI∈∆n

∏
j∈I

aθj (yj)
∑

y−I∈∆k−n

∏
j∈−I

aθj (yj) =

∑
k≥n

cθI (n)cθ−I (k − n)
cθ(k)

P(|Y | = k)

where cθI (n) denotes the convolution of (aθj )j∈I over the simplex ∆n. Since the convolution distribution is assumed
to be additive, we obtain by recursion on j ∈ I (resp. j ∈ −I and j ∈ {1, . . . , J}) that

P(|YI | = n) =

∑
k≥n

a|θI |(n)a|θ−I |(k − n)
a|θ|(k)

P(|Y | = k) (17)

Moreover we obtain the convolution identity
∑k

n=0 a|θI |(n)a|θ−I |(k − n) = a|θ|(k) and thus the last equation defines
the desired convolution damage distribution ∼ CN (a; |θI |, |θ−I |) ∧

N
L(ψ).

(ii) For yI ∈ ∆n we have

P(YI = yI, |YI | = n) = P(YI = yI) =

∑
k≥n

P(|Y | = k)
∑

y−I∈∆k−n

P|Y |=k(Y = y),

=

∏
j∈I

aθj (yj)
∑
k≥n

P(|Y | = k)
cθ(k)

∑
y−I∈∆k−n

∏
j∈−I

aθj (yj) =

∏
j∈I

aθj (yj)
∑
k≥n

a|θ−I |(k − n)
a|θ|(k)

P(|Y | = k).

Using Eq. (17) we obtain, for yI ∈ ∆n, the conditional probability

P|YI |=n(YI = yI) =
1

a|θI |(n)

∏
j∈I

aθj (yj),

and thus the desired result.
(iii) Let us remark that (i) and (ii) imply (iii) by definition of a splitting distribution.
(iv) For yI ∈ NI (where I is the cardinality of I) we have

PY−I=y−I (YI = yI) = PY−I=y−I , |YI |=|yI |(YI = yI)PY−I=y−I (|YI | = |yI |).

Since the sum |Y | is independent of the vector Y−I given its sum |Y−I | it can be shown that

PY−I=y−I (YI = yI) = P|YI |=|yI |(YI = yI)P|Y−I |=|y−I |(|YI | = |yI |).

Thanks to result (ii), the left part of this product is given by the singular convolution distribution. Remarking that
P|Y−I |=|y−I |(|YI | = |yI |) = P|Y |≥a(|Y | = a + |yI |) with a = |y−I | the left part is given by the truncated and shifted
distribution TSa{L(ψ)}.

(v) Let us remark that (iii) and (iv) imply (v).

Proof of Theorem 2. Assume that L(ψ) is stable under the damage process CN (a; |θI |, |θ−I |) ∧
N

(·) for any subset
I ⊂ {1, . . . , J}. Thanks to the additivity of the convolution distribution, Theorem 1 can be applied. Using item (iii),
it is easily seen that multivariate marginals are stable. Criterion (iv) holds and the convolution splitting distribution is
considered as a natural multivariate extension of L(ψ). In particular, L(ψ) is stable under CN (a; |θj|, |θ−j|) ∧

N
(·), i.e., there

exists ψj ∈ Ψ such that Yj ∼ L(ψj).

Proof of Theorem 3. Let y ∼ Cn(a; θ, γ ) ∧
n
Cm(a; θ + γ , λ). For y ≤ m we have

p(y) =

m∑
n=y

aθ (y)aγ (n − y)
aθ+γ (n)

p(n) = aθ (y)
m∑

n=y

aγ (n − y)
aθ+γ (n)

aθ+γ (n)aλ(m − n)
aθ+γ+λ(m)

=
aθ (y)

aθ+γ+λ(m)

m∑
n=y

aγ (n − y)aλ(m − n)

=
aθ (y)

aθ+γ+λ(m)

m−y∑
n=0

aγ (n)aλ(m − y − n) =
aθ (y)

aθ+γ+λ(m)
aγ+λ(m − y)

here the last equation comes from the additivity assumption. As a conclusion, y ∼ Cm(a; θ, γ + λ).

roof of Theorem 4. Let y follow the non-singular version of an additive convolution distribution: y ∼ C▲m (a; θ, γ ).
t means that the completed vector (y,m − |y|) follows the additive convolution C

∆
J+1
m

(a; θ, γ ). Otherwise this singular
istribution can be seen as a particular splitting Dirac distribution, i.e., C J+1 (a; θ, γ ) = C J+1 (a; θ, γ ) ∧ 1m. Thanks to the
∆m ∆n n
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additivity, the item (iii) of Theorem 1 can be applied on the completed vector (y, n − |y|) to describe the distribution
f y:

y ∼ C∆n (a; θ) ∧
n

{
Cn′ (a; |θ|, γ ) ∧

n′
1m

}
⇔ y ∼ C∆n (a; θ) ∧

n
Cm(a; |θ|, γ ).

Proof of Corollary 1. Using Theorem 4 with aθ (y) = θ y/y! we obtain for θ ∈ (0,∞)J and γ ∈ (0,∞)

M∆n (θ) ∧
n
Bm (|θ|, γ ) = M▲m (θ, γ ) .

Denoting by π =
1
|θ|

· θ, p =
|θ|

|θ|+γ
and π∗

=
1

|θ|+γ
· θ and using the proportionality we obtain equivalently

M∆n (π) ∧
n
Bm (p, 1 − p) = M▲m

(
π∗, 1 − |π∗

|
)
.

he notation of the binomial and the non-singular multinomial are then simplified by setting aside the last parameter
ithout loss of generality, i.e. we have M∆n (π) ∧

n
Bm (p) = M▲m (π

∗). Finally remarking that π∗
= p · π we obtain the

desired result.

Proof of Corollary 2. According to Theorem 1 we know that a univariate marginal of multinomial splitting distribution
follows a binomial damage distribution. Let us now express the pmf of such a distribution Bn(π )∧

n
L(ψ) according to the

pgf Gψ of the sum distribution L(ψ):

p(y) =

∑
n≥y

(
n
y

)
π y(1 − π )n−ypψ(n) =

π y

y!

∑
n≥y

n!
(n − y)!

(1 − π )n−ypψ(n) =
π y

y!
G(y)
ψ (1 − π ).

roof of Theorem 6.

(i) As a special case of Theorem 3, for θ ∈ (0,∞), γ ∈ (0,∞) and λ ∈ (0,∞) we have

Bn(θ, γ ) ∧
n
Bm(θ + γ , λ) = Bm(θ, γ + λ).

Using the representative elements π :=
θ

θ+γ
and p =

θ+γ

θ+γ+λ
we obtain the desired result and the additive constraint

between parameters disappears.
(ii) Let y ∼ Bn(π )∧

n
P(λ). The pgf of the Poisson distribution is G(s) = exp{λ(s−1)}. Therefore G(y)(s) = λy exp{λ(s−1)}

and according to Corollary 2 we obtain that

p(y) = exp(−λπ )
(πλ)y

y!
.

(iii) Let y ∼ Bn(π ) ∧
n
NB(r, p). The pgf of the negative binomial distribution is G(s) =

(
1−p
1−ps

)r
. Therefore G(y)(s) =

(1 − p)rpy (r+y−1)!
(r−1)! (1 − ps)−r−y and

p(y) =

(
y + r − 1

y

)(
πp

1 − p + πp

)y ( 1 − p
1 − p + πp

)r

.

(iv) Let y ∼ Bn(π ) ∧
n
L(p, ω)

p(0) =

∑
n≥0

(1 − π )np(n) =
ω

ω − ln(1 − p)
+

∑
n≥1

(1 − π )n
pn/n

ω − ln(1 − p)

=
1

ω − ln(1 − p)

[
ω +

∑
n≥1

{(1 − π )p}n

n

]

=
ω − ln(πp + 1 − p)
ω − ln(1 − p)
17
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For y ≥ 1 we have

p(y) =
(πp)y

ω − ln(1 − p)

∑
n≥y

(
n
y

)
{(1 − π )p}n

n
=

(πp)y/y
ω − ln(1 − p)

∑
n≥0

(
n + y − 1

n

)
{(1 − π )p}n

=
(πp)y/y

ω − ln(1 − p)
(πp + 1 − p)−y

=
(p′)y/y

ω′ − ln(1 − p′)

where p′
:=

πp
πp+1−p and ω′

:= ω− ln(πp+1−p). Therefore we obtain p(0) =
ω′

ω′−ln(1−p′) and thus the desired result.

roof of Theorem 7. From (3) and (11), the MLE ψ̂ of ψ is a deterministic function of |Y|. Thus, to prove that the
LE π̂ of π and ψ̂ are independent given Z , it is sufficient to prove that π̂ and |Y| are independent given Z . For any

q1, . . . , qJ−1) ∈ ZJ−1
+ and for any (ni)1≤i≤m ∈ Nm,

P
(
π̂1 = q1, . . . , π̂J−1 = qJ−1

⏐⏐ (|Y i| = ni)1≤i≤m
)

= P

(
m∑
i=1

Yi,1 = zq1, . . . ,
m∑
i=1

Yi,J−1 = zqJ−1

⏐⏐⏐⏐⏐ (|Y i| = ni)1≤i≤m

)
,

rom (11). Since Y 1, . . . ,Ym are independent random vectors,
(∑m

i=1 Yi,1, . . . ,
∑m

i=1 Yi,J−1
)
has distribution M▲z (π) given

(|Y i| = ni)1≤i≤m. Thus,

P
(
π̂1 = q1, . . . , π̂J−1 = qJ−1

⏐⏐ (|Y i| = ni)1≤i≤m
)

= P
(
π̂1 = q1, . . . , π̂J−1 = qJ−1,

⏐⏐ Z = z
)

and π̂ and (|Y i| = ni)1≤i≤m are independent given Z .

Proof of Corollary 4. Since the Dirichlet multinomial distribution is additive, item (iii) of Theorem 1 can be applied to
describe the marginal distributions:

yj ∼ βBn(αj, |α−j|) ∧
n
L(ψ) ⇔ yj ∼

{
Bn(π ) ∧

π
β(αj, |α−j|)

}
∧
n
L(ψ).

Since n and π are independent latent variables, the Fubini’s theorem can be applied in order to invert the sum
(composition of n) and the integral (composition of π ).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2020.104677. Sup-
plementary material includes the definitions of univariate distributions used in the paper and references to their inference
procedure (S1) tables containing the characteristics (notation, pmf, expectation, covariance and pgf) of several convolution
splitting distributions (S2) and references of inference procedure for several singular and univariate regressions (S3).
Moreover, the source code used for the inference of splitting distributions, is available on GitHub (http://github.com/
StatisKit/FPD18). Binaries can be installed using the Conda package management system (http://conda.pydata.org). Our
analyses performed with Python and R packages is available in Jupyter notebook format and can be reproduced using a
Docker image [20].
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