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Given some regularity conditions on the distribution F(-) of a random X/, .., X,
emanating from a strictly stationary sequence of random variabies satisfying a
strong mixing condition, it is shown that the sequence of quantile processes
{n'"2f(F Y ())F; ' (s)—F~'(s)); 0<s<1} behaves like a sequence of Brownian
bridges {B,(s); 0 <s<1}. The latter is then utilized to construct (i} simultaneous
bounds for the unknown quantile function F ~!(s), and (ii) a tolerance interval for
predicting a future observation. Some numerical investigations of the results are
also discussed. € 1994 Academic Press, Inc.

1. INTRODUCTION

Let {X,:neZ} be a real valued strictly stationary sequence of random
vanables taking values in a space (2, #, P) with common distribution
F(x). The nth empirical and quantile measures are given by F, (x)=
n= T I . (X)) and F'(s) =inf{X) > s}, respectively, and their
processes are defined as

C(x)=nV*F (x)— F(x)), -0 <X < 0,
and

Q.(s)=n"*(F ' (s)— F ~\(s)), O<s<l.
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We will investigate how well C,(x) and Q,(x) can be approximated by
the Gaussian Processes. The literature on the behavior of the strong
approximation of C,(x) and Q,(x) for independently and identically
sequences of random variables is extensive, with prominent contributions
from Csaki (1977), Csérgé and Révész (1978), 1981), and Csorgd (1983),
to name a few. For the dependence case, one needs to define a mixing coef-
ficient as follows. For any collection X of random variables, let B(X)
denote the Borel field generated by X. Thus, for —oc <m <n < oo, define

—

Fr=B(X,:m<k<n). Hence, for each n> 1, define

a, (n)=a, (F° FT)

—a n

_ P(AnB)—P(4) P(B) 0 7 =
- { Py gy AET e BET

and
P(A) P(B)#0} |0, (1.1)

where 0<r,s<1. Since the process is stationary, it yields «, ()=
o, (F1 . # 7. ,) for any integer j. With r = 5=0, the process satisfying the
(1.1) condition is called a strong mixing process, and a{n) = ay(#n) is called
a strong mixing coefficient; with r =1 and s =0, one obtains the uniform
mixing process, and @(n)=o,,(n) is the uniform mixing coefficient. For the
sake of completeness, we also designate the absolute regular process to be
when the absolute regular coeflicient f(n)=E{sup, - |P(4|F° )—
P(A4)]} | 0. Extensive information about conditions of type (1.1) and
absolute regular processes can be found in Bradley (1986). Philipp (1977),
Berkes and Philipp (1977), and Yoshihara (1979} have studied the large
sample strong approximation properties for the empirical process C,(x) for
strictly stationary and strong mixing sequences of random variables with a
strong mixing coefficient decreasing at polynomial order.

We have two main objectives in this work. The first, is to establish
strong approximation results for the nth quantile process under a strictly
stationary strong mixing coefficient decaying at polynomial rate. The
second, and more important, aim will be to try to understand what these
results represent; this is achieved by demonstrating how to construct
simultaneous confidence intervals for the quantile function and to obtain
one-step-ahead prediction intervals for future observations. In addition to
the fact that these results are of considerable intrinsic interest, they are
included here to show how much one can do from the understanding we
shall develop. The results are attained by relating empirical processes with
those of the quantile. The link between the empirical process and the quan-
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tile process is restricted to the strong mixing case. It is not hard to see that
most of the argument also extends to other types of mixing cases, i.e.,
absolute regular and uniform mixing, although there are some non-trivial
technical problems to overcome on the way. (One needs to establish similar
lemmas to Lemma 1, 2 and 4 below, for absolute regular and uniform
mixing.) The important fact to know, however, is that although some
details change, the same intuition developed for the strong mixing case
carries over qualitatively to uniform mixing and absolute regular processes.

2. BACKGROUND AND RESULTS

In this section, our focus is on introducing some further notations, to
define two types of Gaussian processes, which play an important role in
our approximation, and to present the main results of the study.

We commence with notations. The symbol < denotes that the left-hand
side 1s bounded by an unspecified constant times the right-hand side; it is
used instead of O(.) notation. In exactly the same way as in the i.i.d. case,
we redefine the space for which the sequence {X,:neZ} was generated to
a space which is rich enough in the sense that a separable Gaussian process
can be defined on it. Now, the separable Gaussian process will be called the
Brownian bridge {B(s):0<s< 1}, if B(1)=B(0)=0, E(B(s)) =0, and has
covariance function E(B(s) B(s'})}=1I1(s,s'), for 0<s, s'<1. To define
I(s,s"), we write

gn(8) =10 (U,) —s, nzl, (2.1)

where {U,:neZ} is a uniform on [0, 1] strictly stationary strong mixing
sequence of random variables. Then, for 0 <s, 5’ <1,

I(s, s") = E(g.(s) g:(s")) + Z {E(81(5) ga(s")) + E(g,(s) g:1(s'))}, (2.2)

n=2

such that the series on the right-hand side of (s, s’) is absolutely convergent.
The second separable Gaussian process which will be utilized here is a
Kiefer type process {K(s, t) : 0<s< 1,120} with K(s, 0) =K(1, 1) =
K(0,¢) =0, E(K(s, t))=0, and covariance function I'*(s, !, s, 5') =
min(t, '} I(s,8"), for 1,/ 20 and 0<s, s < 1.
For convenient reference, the basic conditions on F(-), from which the
various results are obtained, are gathered together here.

F: F(x) is twice differentiable on (a, b}, where — oc<a=
sup{x: F(x)=0) and oo 2 b=inf{x: F(x)=1},

F,: F'=f+#0on (a,b),
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Fiiosupgo o [f(F 1 (8)) < o,

F,: supg_, ., |/"(F ")) <e, for some constant ¢ >0,

Fs:  F(x) is strictly increasing on [«, ],

Fg: f(x) is unimodal,

Fiiosup, oo FIXN1 = Fx) ()1 *(x)) < y, Tor some y >0,

Fs: A=limsup,| ., fix)<w, B=limsup,;, f(x)< o,

Fy: min(A4, B)>0,

Fi,: if A=0 (resp. B=0), then f is non-decreasing (resp. non-
increasing) on an interval to the right of « (resp. to the left of ), and

F,,: for sufficiently large n, f(F ~'(n ~'?i(n))) > ¢, where ¢ >0, and
l(n) is a slowly varying function of n with {n)""* <log n.

THEOREM 1. Let {X;:i€Z} be a strictly stationary real valued sequence
of random variables satisfying the strong mixing property with strong mixing
coefficient

a(n)y<€nt

Suppose that F,, F,, and Fy are satisfied. Then, there exists a Brownian
bridge defined on the same probability space as the above sequence with
covariance function I'(s,s"), 0 <y, 8" <1, and a positive constant A such that
with probability one

sup [f(F "(s)) Q.(s) — B,(s)| <(logn) "

O<s<

If we replace F; by milder conditions, then a Theorem 6 version of
Csorgd and Révész (1978) can be formulated as follows.

THEOREM 2. Let {X,:i€Z} be a strictly stationary real valued sequence
of random variables satisfying the strong mixing property with strong mixing
coefficient

x(n)<n 8.

Suppose that F,, F,, and F, are satisfied. Then there exists a Kiefer process
defined on the same probability space as the above sequence with covariance
Sfunction min(n, 0’y I'(s, s"), for 0<n, ' < oo, and 0< s, 8 <1, such that

sup |f(F ~'(s)) Q.(s) — K(s, n)/n"?| < (log n) %,

nTHgsgl—n#

for some 0 <y <dx, de (0, 1/4), and « (0, 1/120) and i = 1/3840.
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If, in addition to F,, F,, and F,, we assume that Fg and F, hold, then

sup |f(F~Ys)) O.(s)— K(s, n)/n'?| <(logn) *.

O<s<l

Remarks. (i) The polynomial order of the mixing coefficient is the same
as that used on Berkes and Phillip (1977), and consequently the results of
the previous theorems are of the same order as in Berkes and Phillip
(1977). (1) If, in addition to F,, F,, and F,, we assume that Fy, F|,, and
F), hold, then

sup |fIF () Q,(5) — K(s, n)/n'?| <(logn) %,

1y s <l —n'ln)

where 4 is as above.

The proof of this will be seen in the next section.

The next two theorems exploit the above results in showing how con-
fidence contours for the quantile measures are obtained. As they stand,
Theorems | and 2 do not provide an immediate confidence bound for the
quantile function; this is because they depend on the unknown function
1/f(F ~Ys)). For this reason, an estimator of 1/f(F ~'(s)) is required. The
estimator proposed in this study is shown to be strong consistent. But first,
two sets of assumptions are needed.

The proposed estimator is a Kernel-type, which is similar to that
suggested for the independence case by Csorgd and Révész (1984).

— U

1 K3
¢,,(s)=;:j0 K( h,

K(-) i1s a measurable Kernel-type function with the following assumptions

>dF"71(s)4

K,: K(-) is a density function, which is absolutely continuous on
(—oc, oo) vanishing outside of the interval (—1/2, 1/2),

Ky '3, xK(x)dx=0,
Ky: '3, x*K(x)dx < o, and
Ky sup_, oo |K'(X)] <.
For the sequence of constants {A,:ne N}, we assume the following:
H,: h,<(loglogn)"%/n"® and
H,: (logn)* <h,n'?/loglogn, where 4 is defined in Theorem 1.

With this preparation in mind, the third result is now in order.
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THEOREM 3. Let {X,:ie Z} be a strictly stationary real valued sequence
of random variables satisfying the strong mixing property with strong mixing
coefficient

a(ny<nt

Suppose that F,-F,, K,-K,, H, and H, are satisfied, then there exists a
Brownian bridge defined on the same probability space with E(B,(s}) =0,
E(B,(s), B,(s")=1Is,5"), for 0<s, 5 <1, and a positive constant A such
that with probability one

0.(s)— B,(s)| <(logn) ™%,

1
su
0 <A‘E 1 ¢,,(S)

and

lim P(F'(s)—n'2¢,(s)c<F~'(s)

ntoo
SF7Us)+n'"g,(s)c;0<s<1)=K(c),

where K(c) = P(supg <, < |B,(s)] <¢).

The above result is an analog of Kolmogorov’s classical theorem on the
Empirical distribution function. It should be pointed out that one-sided
intervals can also be deduced from the above result. Theorems 1 and 2 may
produce more direct and simpler confidence intervals for the quantile
measure F!(s) (the need of Kernel-type Estimator of 1/f(F~(s)) is
unnecessary), as can be seen below.

The following theorem is a Csérgé and Horvath (1990) analog for the
stationary case.

THEOREM 4. Let {X,;:1€Z} be a strictly stationary real valued sequence
of random variables satisfying the strong mixing property with mixing
coefficient

oafn)<nt

Then, for the sequence {5,=n"*, pe(0,dn), de(0, 1/4), x€(0, 1/120) and
ne N} of positive constants, the following statements

lim P(F (s—n~"2%)< F~Ys);,<s<1-6,),

ntoo

= lim P(F Y s)<F; Y s+n"%);6,<s<1-4,)

n-— oo

=P( sup B(s)<c),

0<sx1
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and

lim P(F ' (s—n"c)< F Y s)<F

n— oG

=P( sup |B(s)]<c),

0<s<

“Ns+n'%c), 0, <5<1-6,)

n

where B(s) is a Gaussian process with covariance function I(s,s'), 0<s,
s <1, hold true without assuming any further conditions on F.

The next result discussed here, which ties in with the proposed method,
is the randomly located tolerance interval. The general theory of construct-
ing prediction intervals for future observations was developed and
expanded in detail by Butler (1981). To give a fully detailed, self-contained
version of showing some weak convergence results similar to lemmas found
in Butler’s work (2.1, 2.3, etc.) under now dependence, we would have to
copy a few pages of detailed and essentially uninteresting calculations.
Also, Cho and Miller (1987) have produced some of these results under
strictly stationary uniform mixing sequences. Since this seems to be a some-
what unjustified addition, we assume that the reader is familiar with the
Butler (1981) and Cho and Miller (1987) studies, and merely point out
some results and ideas developed there and omit the proofs.

The class of 100a % tolerance intervals for X, is given by

(I3)=[F Y6, F'(0+)]:0<6< 1 —a}. (2.4)

The one which supports the smallest trimmed variance, (), say, of (2.4),
i.e., I(6*), is the chosen interval for predicting the one-step-ahead, X, . |,
future observation. Since F(-) is unknown, an estimator of 6*, 8* say, is
obtained by substituting F ~'(-) with £ '(-). The 100a % prediction interval
for X, ,, is then given by

(8% =[F\(8*), F ' (6* +a)]. (2.5)

The property, which can be verified by using Theorem 1 as in Cho and
Miller (1987), is expressed in the following corollary.

CorOLLARY 1. Let {X,:ieZ} be a strictly stationary strong mixing
sequence of real-valued random variables with strong mixing coefficient

a(n) <n 8
Suppose that F,~Fg are satisfied, then

(i) 6* — 8% in probability, and
(i) Pla)=P(F Y 0*)<X,,, <F Y (6*+a))—a in probability.
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Some numerical investigation of the coverage probability P,(a) is
discussed in the next section.

Discussion. The method provided in this study has the advantage of
being used directly without assuming any prior structure of the process
{X,;1eZ}. 1t is flexible and accurate and can be applied to a wide variety
of realistic situations. This is indicated by the numerical investigation given
below. Specifically, the corollary enables us to obtain nonparametric
prediction intervals without fitting parametrix models. Therefore we do not
have to worry about specification of the process X, , ;, when we have non-
Gaussian marginals such as exponential and Laplacian. This is because the
maximum likelihood estimator under exponential or Laplacian has a
boundary problem (see, ¢.g., Smith 1986). It might be argued that for an
autocorrelated process {X,;t€Z} the last observation X, may carry more
weight than X, _,, X,_,,.. as in the case of exponential smoothing.
However, exponential smoothing lacks the theoretical background, espe-
cially in assessing the forecast error (see, e.g., Chatfield, 1993). A Monte
Carlo simulation study in Fotopoulos et al. (1993) shows that the predic-
tion interval suggested in the above corollary performs well for an ARMA
(1, 1) process when the innovation process is drawn from a standard
Cauchy distribution, where the second moment does not exist. The use of
prediction intervals instead of point prediction is advocated in Keyfitz
(1972), Butler (1981), and Cho and Miller (1987), among others.

3. NUMERICAL INVESTIGATION IN PREDICTION

The class of strictly stationary processes is very broad. Obviously, the
one-sided linear processes expressed by the form

Xr= Z gizt~i (31)
i=0

is included in this class, if 3 g/ < oo and the sequence {Z,, icZ} is an
iid. with EZ,=0 and EZ? < . Further, by Corollary 4 in Withers (1981),
it can be shown that if the common density p(x), say, of an independently
and identically distributed sequence {Z,:ie Z} satisfies

(@) [lp(x)—p(x+y) dx<c|y|, where ¢ >0,
(b) EZ,=0, EL3=1,
(€) ¥ oge2"#0, for |z| <1 and g, <k, v>3/2,

then {X,:reZ} is also a strong mixing sequence with a(n) <n~¢, where ¢
depends upon the moment condition of Z;’s and v. Similarly, if, in addition
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to the above conditions, g, <e ** (instead of polynomial order), then the
conclusion remains the same, but now «(n) < e —"* and 4 depends upon the
moment conditions. However, if some of the conditions stated above are
violated, then there are counter examples that even if the process
{X,:teZ)} satisfies the one-sided linear form, it is not a strong mixing
sequence, le, X,=12X,_+Z,=%Y7,27Z,_,, where P(Z,=1)=
P(Z,= —1)=1/2 (see, e.g., Bradley, 1986), is not a strong mixing process.
It is apparent that when the innovative process {Z,:reZ} is an iid.
Gaussian process satisfying the above conditions, then one can show that
the sequence { X, : te Z} is strictly stationary strong mixing. Obviously, the
ARMA (p,q), p=0, ¢ 20 is a particular case of (3.1).

To see how this confidence interval for the one-step-ahead new observa-
tions works, we performed the simulation by generating observations from
AR(2)

X/=¢’1X14 +¢2X/-2+Z:
and ARMA(2, 1)
Xr=¢er-l +¢2X/a2+ZI—HZrAI’

respectively, where ¢,, #,, and 8 are the autoregressive and moving
average parameters and Z, is a Gaussian innovation with mean 0 and
constant vanance. The parameter values are selected within the triangular
region so that they satisfy the stationary condition given in Box and
Jenkings (1976).

Following the same procedure as in Cho and Miller (1987), we
generated the 151 observations using the RNNOR routine of IMSL, and
discarded the first 50 observations to minimize the effect of starting values.
Using the remaining 100 observations, we constructed the 90% P.I. leaving
the last observation to check the coverage. The coverage percentages were

TABLE 1
Coverage Percentage of One-Step-Ahead P.1., AR(2)

P 4 —18 —-15 ~-12 -09 —-06 —03 00 03 06 09 12 15 18
0.9 0.837
0.6 0.875 0.905 0.832
03 0.845 0.965 0912 0.867 0.855
0.0 0.890 0.897 0.885 0.887 0902 0917 0.857
—-0.3 0.887 0.897 0.872 0.895 0.892 0.880 0.885 0.892 0.867
—0,6 0.897 0.855 0.892 0902 0915 0885 0.875 0.887 0.890 0.892 0.870

—09 0855 0.865 0.887 0.862 0.880 0.875 0.895 0.880 0.882 0.887 0.900 0.855 0.89S5
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TABLE 1l
Coverage Percentage of One-Step-Ahead P.I, ARMA(2,1), #=04

d —18 -15 —-12 -09 —-06 —03 00 03 06 09 12 15 18

4>
0.9 0.837
0.6 0.875 0.900 0.867
0.3 0.872 0.892 0.897 0.870 0.860
0.0 0.872 0920 0502 0.897 0.882 0.915 0862
0.3 0.880 0.887 0.882 0.907 0.897 0.857 0.887 0905 0.875
0,6 0.880 0.870 0.8%0 0.882 0.907 0.890 0.885 0.880 0.890 0.897 0.875

09 0.860 0.877 0.892 0.852 0.882 0.890 0.915 0.875 0.885 0.892 0.885 0.872 0.892

obtained from 400 replications and are reported in Tables I and IL It is
observed that most of the coverage percentages ranged from 87 to 92 %,
which 1s similar to the result reported in Cho and Miller. Although we did
the simulation only for the AR(2) and ARMA(2, 1) processes, considering
that most of the time series data can be approximated by the low order
ARMA models, e.g., ARMA(p, q), p<2 and ¢ <2, we arrived at the same
conclusions as did Cho and Miller for ARMA(1, ¢), ¢ =0.

4. PrROOFS

Since {U,=F(X,):ieZ} forms a uniform on [0, 1] sequence of strictly
stationary random variables, and since the problem under uniformity can
be handled much more easily, the use of the following sequences is now
adopted.

{E.(s):0<s<1,ne N} is the uniform empirical distribution function,

{EY(s):0<s<]1, neN} is the uniform quantile function,

{U,(s)=n"*E,(s)—s5):0<s5<1, neN} is the uniform empirical
process,

{(Vis)=n"HE[(s)—s):0<s<1,neN} is the uniform quantile
process, and

{(R¥s)=Uys)+ V,(s):0<s<l,ne N} is the uniform Bahadur-
Kiefer process.

Proof of Theorem 1. In establishing Thoerems 1-4, we were aided by
some ideas found in Berkes and Philipp (1977), Csérgd (1983), Csoérgd and
Révész (1978), Philipp (1977), and Philipp and Pinzur (1980), but first we
start with some standard results. From the mean value theorem, it is
obvious that under F, the following result is in order:
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Q.(8)=n"2(F Ys)=F~'(s)), s€(0,1)
=nA(F~(E; '(s) = F(s)))
=n"E; \(s)=s)[f(F(0,.,)

T e

ValSHs = 0,,) /' (F ' (d,.0))

SFU8,.) SIF~HO, ) f(F~Ys))

= (V,(5) +e.(s)If(F'(s)), (4.1)
where 0, ,e(E; (s) A, E] ' vs), 6,,€(0,,vs, 8,,vs) and g,(s)=

VisWs—8,,) f'(F~ (8, N(F~(,,)) f(F'(6,,)). Here, the conven-

tions A and v used above mean a A b=min(a, b) and a v b =max(a, b),

respectively.
From the definition of RX(s), it then follows that

SF71(s5)) Q.(s) =V, (5) +&,(5)
= —U,(s)+ RX¥(s) +¢&,s), (4.2)

— V() N(s)) + Vn(s>{

=V ()f(F s+

which, in turn, yields

sup |f(F7s5)) Qu(s) = Bi(s)| < sup |U,(s)— B,(s)|

O<ws<1 O0<s<1

+ sup lefs)l+ sup |RY(s)l, (4.3)

O<s<l1 O<s<l

where B,(s)= — B,{s) is a Brownian Bridge.

It remains to show that under the condition stated in Theorem 1, each
of the terms in the right-hand side of (4.3) is, at most, of order (logn) %,
for some A>0.

For the first term, the result by Philipp and Pinzur (1980) (d=1) is
needed. It is stated as follows.

LemMa 1. Let {U;:ieZ} be a uniform on [0,1] strictly stationary
sequence of random variables satisfying the strong mixing condition with
mixing coefficient

a(n)€n=>7¢

for some €€(0, 1/4]. Let I(s, s') be the covariance function. Then, without
changing its distribution, we redefine the empirical process {U,(s):s¢€
[0,1], k2 0} of {U,:n€Z} on a richer probability space on which there
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exists a Kiefer Process {K(s, k) :s€[0,1], k =0} with a covariance function
F*(s, 80, U)y=min(e, ') 15, 5") and a constant . >0 depending only on e,
such that with probability one

sup sup |k'PU(s)—K(s, k)| <n'(logn) %

k<n s€[0.1]
For the latter result, it follows that

U (s)— K(A;,H:n)
n

= sup |U,s)—B,(s)] <(logn)~* as., (44)

O0gsg]

sup

O0ssx|

where B,(s)=n""?K(s,n) is a Brownian Bridge.

This completes the proof of the first term being bounded above by
{log n) %

For the following result, we first define /- R — R to be measurable, with
Y,=f(U,,U,,\,..), n=1. Then, by defining U'"(s) to be the uniform
Empirical Process formed by the sequence {Y,:ne N}, similar to U,(s),
Berkes and Philipp (1977) have shown the following resuit.

LEMMA 2. Under o j) < j %, the sequence {(2loglog n) ~'"2 U'"(s), n > 1}
of functions on [0, 1]x [0, 1] is with probability one, relative compact, in
the supremum norm, and has the unit ball B in the reproducing Kernel Hilbert
space H(I'*) as its set of limits, where I'*(s,s', 1, t')=min(z, ') I'(s, s"), for
0<s,s<l,and t,t'>0.

An implication of Lemma 2 is the fact that

limsup sup [U(s)|/(2loglogn)'?<ec  as. (4.5)

ntx O<s<1

for some constant ¢ > 0.
For f(U,, U,, ...)=U,, (4.5) 1s deduced to

limsup sup |U,(s)]/(2loglogn)'*<e, as. (4.6)

ntx O0<s<1

The following lemma is due to Babu and Singh (1978).

LemMma 3. If (4.6) holds, then

limsup sup |V, (s)|/(2loglogn)'?<e, as.,

nto o0gs<1

for the same constant ¢ defined in (4.6).
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Now, under F,, F,, and F,, there exists ¢, >0 such that

sup e, (s}

D<s=<1

= sup |V s~ 0.1/ (F T SHUAF 1S, AF 1,0

Das<1

e,V sup |V (s))2 (4.7)

O<s<l
Thus, using Lemma 3, it yields

sup e, (s)<n "?loglogn  as. (4.8)

Q<ws<1
It remains to evaluate how R}(s) behaves. We observe that

RY(s)=U\s)+ V,(s)

= U, ()~ UE, () +n"HE(E,\(s))—s).
Hence, from the definition of £, !(s) and Lemma 3, it follows that

sup |R}(s)]

D<s<

< sup U(s)=UJE ' (s)|+ sup n'?|E(E Ys))—s|

O<s<l O<s<1

< sup sup (U (s) =~ Uy D +n'72 as., (4.9)

D<s<l |r—s5] <cé

where 4,=n""(log log n)"2.

For the coming lemmas, the following definitions, notations, and results
are required.

Set n,=[2* "logk], for some 0<e<1/4 and let N, = {n:n=ny,
me+ 1 am o~ k=12 .} It is clear that A, '=n*/(loglogn,)""?
<2872 Set 8¢} ={jle2":j=0,1,2,.,¢2"—1; n=[k'"%2]}, for any
ke N. Now, for keN sufficiently large, there exists ne N,, such that
ne<n<ng,,. For |t—s|<ch, it follows that |t —s| <2~ 5" "721; there
exists 5;€ SY), such that |r—s;| <2771 and s -5, <2 K72,

By setting x,(s, ) =g, (1) —g(s) =1, 4(U;) —(z—s), it is clear that

n 2 |ULs) = Ul <n' 2 | U(5) = Uspl +0' 2 U = U, (s)l - (410)

683/51/1-3
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and

n'2 U, (s) = Uls))]

=2 xi{s;, )
<Y xsp o+ Y x(09)+] Y x(0,5)].  (411)
i<y n<is<n me<i<n
In conjunction with (4.10) and (4.11), it can be shown that
n'? sup sup U {s)— U, (1)|
0<s<l [r—s) <cds
<2  max sup | ) x.(s;,8)
l§j$c2“‘17m] si<s<siy1 ligm
+4 max sup Y X0, 5). (4.12)
ne<sn<neyt 0<s<! Imp<ign

The following lemma is the key result in determining the order of R}X(s).
This is due to Philipp (1977). In this work, the function f will be used in
the restrictive form f(U,, U,, ..)=U,.

LEMMA 4. Let H=0, N> 1 be integers and let R>= 1. Suppose that | =
t—s>= N2 and that a(n)<n=8% Then, as Nt o, for 0<s <1<,

o

where A( = 1), and « and B are positive constants (a=1/120, f=0.03).

H+ N

Y x(s1)

f=H+1

<exp(—6RI ~*loglog N) + R-*N~1+2,

= AR /%N log log N)‘/z)

The next two lemmas are similar to Lemmas 5.1 and 5.2 in Berkes and
Philipp (1977).

LEMMA 5. For a(j)<j~® and for any k sufficiently large, there exists
neN, and s;€ S} such that

Z x;(8;, %)

i<ng

P( max sup >n‘/2”')<exp(—k’1),

l<j<c2t! ™1 g sy

where A is a strictly positive constant depending only on ¢.
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Proof. For the most part, the analysis of the proof is based on
arguments similar to those presented in Lemma 5.1 of Berkes and Philipp
(1977). We thus prefer to proceed with the same notation.

For 0<s<s' <1 and integers P>0, Q= 1, call F(P, Q,s, ') =
ISF*r2,, x.(s,5")). Clearly,

F(P, Qs s"YXFKPQ,s,s)+FP Qs s"), for 0<s<s' <s"<1.
(4.13)

Put m=[k'"“(1/2+7y)] for some y € (0, 1/4)]. Then, for any se[s;,s;,,),
we have that

l ”
s=sj+;{ > I‘,Z‘”+H2""}, for r=[k'"%2],
v=r+1

where t,=0, or 1 and 6e[0, 1).
Since x,(s, 5') <x,(s, 8"} + (5" —s), for any h=0,1, ., 2" -1,

h2™"7 h+62"" 277 (h+1)277
F(P,Q, 2T hxO2 " ><F(P,Q. [#fD )+Q27"’c.
C 4 C C
(4.14)
By repeating (4.13), it follows that
m+1
F(P,Q.5,)< Y, FP QS Susr ) +0277c (4.15)
v=r+1

for any s, ,, $,,1.€S5,and v=v+1,.,m
In exactly the same way as Berkes and Philipp (1977), define ¢p(n)=
2A(nloglogn)'2, and define the events

Ek(v’ :x') = {F(O, ny, sa.v’ sa+ l‘v) 2 Z_av(ﬂ(nk)}

and

E= U U Elv, o).

r<vEm+!l 0<a<?2"
Hence, with H=0, N=n,, R=2¢, and /=2"", according to Lemma 4,
P(E v, a)) <exp(—6-2"loglog n;) +n; A
<exp(—3-2"logk)+n, " (4.16)
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This implies that

P(E)< ) 2"exp(—3-2"logk)+2"n;"

r<vsm+1

< Z exp( —2%log k) +n, 1727

v>r

2K (4.17)
Thus, on the complement of E,, it follows that with probability one
F(O,n,,s.,5)<24¢(n,) m}il 2% 4 p 27
v=r+1
<@lng) 2= +n;27

<n'?— .
This completes the proof of the lemma. [
For the preceeding result, define

SV={§—V-_k=O, 2”—1,v>1}

Next, we have the following result.

Lemma 6. For a(j) <j ~® and for k sufficiently large, there exists ne N,
such that

> nl(log ny)~*) <k,

Y xA0,5)

ne<i<sm

P{ max sup

npsn<ngyy 0<s<gl

where 4 is a strictly positive constant depending only on ¢.

Proof. The proof of this lemma is also highly dependent upon similar
arguments to those in (5.2) in Berkes and Philipp (1977). So, for these
reasons, we proceed with the same notation.

As before, we can express any n:n,<n<n,,,, in dyadic form as

n=n+ Yy p2=n+ Y p2/+627,
0</<gqg pP<jsq
where 8e [0, 1), p,=00r 1, p=((1/2—y) k' ~¢], and g = [log(rn, , , — 1)/
log2].
For any P> 0, 0 < Q < R (integers) and s, 5" : 0 < 5 < s" < 1, the following
subadditive property is satisfied.

FP,R s, s)<FP Q5 5)+FP+Q, R-0Q,s5) (4.18)
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Hence, for 0<s, s'<1 and n such that n, <n<n,,,. Applying (4.18), it
follows that

Fng,n—ng,s,s5)< Y Fla+h2/%,2,55)42°
p<j<q
where #,=0, 1, ..,297/— 1, for j=p+1, .., q. Since

5=y £,270= Y 1274627, e [0, 1),

v=1 vsm

where m is similar to that in Lemma 5, but now is related to j (for an exact
definition, see below). As in Lemma 5,

m+1

F(P5 Q> O,S)S Z F(P, sta,vasa+),v)Q2‘ma (419)
v=1

where s, ,, S,,1,€S5,, v=1,2,..,m+1, and 0<a<?"
Define the following events

Hh(v’ &, j, h) = {F(nk + hqu_j’ 2j’ srx,w sa+ l‘v)> 2—av21/8(j——q);30(2q)}

and

Hk= U U U U Hk(v, a,j, h)
p<isgvs(l/2+y)j O0<a<2" OSh<29/
By Lemma 4, with R=2 .2V NU-WDB FF—p, + p2/+1 N=2/, and
[=277
P(H(v, a, j, h))

<exp(—6- 2220/ = DI~ (UM o0 iy 4 7= (4= = (VOB — (1 +5),
Moreover,

P(Hk)< Z Z 2v2t1~jexp(_6,2aV+(1/2)(q~j)(1—(1/4)ﬁ) logj)

p<jgq v=(1/2+7y)j

+ Z Z 2v24~J3 ~ (@ =N~ (/4 F) - j(1 + §)

p<isqvs(i/2+y)j

< exp( -5 logp) +2 —p(1/2+ (5/4)B —y) + 2p/4

<k-2 (4.20)
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Hence, on H;, we have that with probability one

Fing +5,27%1,27,0,5)
< Z F(nk+hj2j+l’2j’ Sa.v’Sa+l.v)+2j‘j(]/‘/2+)v'

vi12+0)j
<¢(2q) Z 2~<xV4(l;’8)(q~j)ﬁ+21’(1/2~)')
v<{1/24 )/

&£ ¢(2q) A l¢/8)(q~jlll,

which yields

F(nk,n—nk,o, S)<(p(2") Z 2—»(1/8)“17/‘)/34_ Z 2j(1j2—';*)+n}(l/2)77

pP<jisq i<q

< (/7(2q) + 2q((1/2)~y) + n}(]/z)‘y
<n? (logn,) %, (4.21)

because @(29)? =29log g < n, . —n,<nk =<n, (logn,) "
This completes the proof of Lemma 6.

In connection with (4.9), (4.12), and Lemmas 5 and 6, it is shown that

sup |RX(s) <{logn)™*  for i>0. (4.22)

O<s< ]

Combining (4.4), (4.8), and (422), the proof of Theorem 1 is now
completed.

Proof of Theorem 2. The following preliminary discussion is necessary
for achieving the establishment of the theorem. First, some strong law
behavior of the weighted uniform-[0, 1] empirical process under stationary
and strong mixing is required. Let ¢ denote a preassigned non-negative
function on [0,1]. The functional form considered here is Y(s)=
(s{1 —s))~ 12 The weighted empirical process is then defined by

T.(s) = n"2Y(s)(E(s)—s), se[0,1].

In Lemma 2 of Berkes and Philipp (1977) it is established that for y(s)=1,
on a set of probability one, the sequence {(2loglogn)~'? U, (s)} is
relatively compact in the topology of uniform convergence on {0, 1] with
limit set the unit ball B in the reproducing kernel! Hilbert space H(I'*),
where I'*(s, s', n,n') =min(n, n') I'(s,s"). If y(-) is bounded on [0, 1], then
the result remains unchanged. On the other hand, if y is not bounded, we
should expect that relative compactness may occur only for those i’s which
are bounded on every interior interval of [0, 1]. We, therefore, have to
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focus our attention on the behavior of ¥ near 0 and 1. We consider the
weight ; defined by

— —1/2 1 —
lp()_{(s(l s)) if se[d,1-46]

otherwise.

Since , is bounded, the sequence {(2loglogn)~"2U.(s),n>3} is
relative compact in the topology of uniform convergence on {4, 1 —J]. We
then ask to know what happens if J is replaced by {4,,n>1} with §,]0
as n 7 oo. The following proposition is then in order.

PROPOSITION.  Under a(j)<j ™% the sequence {(2loglogn)'?y, u(s)
U,(s),nz3}, for some 0 <y <da, de (2, 1/4), and a € (0, 1/120), of random
functions on [0,1]? is with probability one relative compact, in the
supremum Rorm.

Remark. The proposition implies

limsup sup V,-.(s)(loglogn) =" |U,{s)|

nto se[0,1]

= lim sup sup [s(1—s)loglogn] ' |Us)I<c  as.

nto nt<s<l—n"#

(4.23)
for some u € (0, 1/480).

Discussion. Choose an increasing sequence {n;;k>1} of positive
integers such that n, T o almost exponentially. Next, for fixed k, we parti-
tion the unit interval se {0, 1] into 4, intervals [s;, s;,,) (I € j<d,), each
of length 1/d,, where d, =~ n[ for some positive small 7. Then,

Z(]3 '—nllc/ill;’nk“l(s ) nk+| ) _nk/Z'J/n_“(s U"k(Sj)

may be considered as the component Z(j, k) of random vector Z, e R%
The sequence {Z,,k>1} is the skeleton process of y,(s) U,(s), where
d,=n"%

We show as in Berkes and Philipp (1977), that oscillation of Y, (s5) U,(s)
over the rectangles {(s,n):5;<s<s;,1,n,<n<n .} is with probability
one <(logn)=* (A= 1/3840) uniformly for all j, with 1 £ j < d,. The latter
statement shows that in order to prove (4.23) we should investigate the
behavior of the skeleton process of ¥ (s) U,(s), since it contains all the
needed information about the process.

Set D(s,n)=n"y,;(s) U(s) = (5) X, <, x:(0,s). We choose n, as

n,=[25"*] for some small &> 0.

Put r, = [dk' ], d€(0, 1/4), and define s;=(j—1)27"%forj=1,2,.,2"
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It can be seen that for se [s;,5,,,) and n, <n<ng, o,

1D(s, 1) = D5y m)l <5, (5) | 2o Xilsys $)| + Vs, () L x(0,s)
+ s () =ta(s)l | X x:(0, )]

We need to show that

G(k)= max max sup | D(s, n) —Dl(s;, n,)l

msasn) 1SJS2% §€5<3541

is bounded above a.s. by n;? (log n,) " for some 4> 0.
We choose 6 in i 4(s) such that

d=2"%  forsome B<o.

It is required that s;e[d, 1 —4]; this implies that je [/, u, 1N Z, where
L, =2""P" and u, =251 —2"%%).

LemMMA 7. Under a{n)<€n~%, and for k sufficiently large,

P(_ max sup  (s(1—-5)"?)

el ulnZ sels; si+1)

Y xi(s5,8)

isng

> n(log nk)**) <k,

for some A >0, independent of k.

Proof. For sufficiently large k, set m=[12+7)k' %), 7e(0, 1/4];
then, in conjunction with (4.13) and (4.14), we observe that for
a.e[l,,u,]nZ, v=r+1,..,m+1, P>0,and 0>1

m+ 1
F(P, stjys)< Z F(Pa Q’avz‘-v’(av%—1)2-v)+Q2_‘m'

v=r+1

Define as before,
o(n)=2A(nlog log n)"?
E(v,0) = {F(0, n, a2 ", (a4 1) 27")> 27 #7727 Prp(n, }}
S {F(O, m 32, (x4 1)27") > 27480 ()}
= Ej(v, a), where B, + f =ua, the same as in Lemma 4,
and

E.= U U Eiv,2)SE,.

raveEm+l (<a<uy
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Now, as in Berkes and Philipp (1977), for P20, N=n,, R=2, and
B=27"

P(E (v,a)) <exp(—3-2% logk)+n,'2"

and

P(E)< Y  2exp(—3-2"logk)+n;'"?
r<v<m+1
form=[(12+y) k']
Hence, by the Borel-Cantelli Lemma

n

Y 278427 as

v=r+1

<n,*(log n)?, as. |

'ﬁa,,k(s)

Y, x.(s;,5)

i<y

<24¢(ny)

LemMma 8. Under a(n) <n™%, and for sufficiently large k,

2 x:(0,5)

ng<n

P( max sup d/(;"k(s)

ng<n<ngyl se[0,1]

> n,*(log nk)’*> <k™?

Jor some A independent of k.

Proof. For p=[{1/2—»)k'"*] and g=[log,(n,,,—n,)], and in
exactly the same way as 5.15-5.17 in Berkes and Philipp (1977), we may
write that for fixed &

s= Z g2 "= Z 6,27V +g2™",

1 iSvsm

form=[(1/24+9) k' *], and for P20, 0=1,and 0 < B < 1/4

Yo (s) F(P, Q,0,5) < 2-5(s) ( Y FP,Q 27 (0, +1)277) + sz'"),

v=1

where 2, e[l,,u,]nZ.
As before, we define the events

H\(v,a, j, h)
={F(n,+h2/+1 20,027, (a+1)277) > 2 #2809 29))
S{F(n,+h2" 127,027 (a4 1)27Y) > 2 218U -94p(29)}
=H,(v,a, j, h)
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H;('——— U U U U H;((V, asjs h)a

JjelpglnZ ve(1,{(12+1)j1nZ ac(hulnZ he[0,297/]NnZ

cH,
which is exactly as in Lemma 6. This completes the proof of the lemma. |
LEMMA 9. Under a(n) <n~%, and for sufficiently large n,

P( max sup |, (5) —¥,,(5)

Jellk.u]nZ selspsji]

x >n,'(/2(lognk)i><k‘2,

Z xi(oa Si)

i<y

Jor some >0, independent of k.
Proof. It is clear that m=[(1/2+y) k'~ ¢]

Z xi(o’ sj)

i<y

W (8) = W, (5))]

<2'//(>‘,,k(~5'j) F(O, Ry, 0, Sj)

m+1

<29, (0) { Y FOm, 27 (a, + 1)2-V)} +n27",
v=[pr]+1
where r =[dk'~¢].
The rest of the proof follows from Lemma 7. |
Combining Lemmas 7-9, the proof of (4.23), or the Proposition, is now
in order. An implication of {(4.23) is the following result. The proof of this

can be done using similar arguments to Lemma 2.3 in Babu and Singh
(1978).

CoROLLARY 2. [f (4.23) holds, then

lim sup sup (s(1 —s)loglogn) 2|V (s)|<c  as.,
ntoo nHas<l—n#

Sfor some 0 <y <da, de (0, 1/4), and a (0, 1/120).

With this preparation in mind, the proof of Theorem 2 follows. As in
Csorgd and Révész (1978),

SEDL
PETE)
(4.24)

|J(FY(s)) @uls) = V()| < (1/2) n 2V 3(s) f(F ~N(s))



STRONG MIXING PROCESSES 39
forée(san(s+n "2V (s),sv (s+n "2V (s)))and se[d,, 1 —5,] where

d,=n"*
In view of Corollary 2, (4.24) can be majorized by

'f(F_l(s)) Qn(s)— V,,(S)i

S(I/Z)n‘”zloglogn[s(l _S)]

Zi-¢)
_ lf’(F*‘(s))l}[f(F“(s))] 125
X[m VEFETe) Lar ey, e 4P

Arguing as in Csérgé and Révész (1978), all the bracketed terms are
bounded above by a constant.
Since

sup | f(F7'(5)) Q(s) + K(s, n)/n'?|

nTHes<l —nTH

< sup JAAFTIS) Qu(8) = Vols)

nHas<l—nH

+  sup [RY(s)]

nTH<s<l—n"#
+ sup |U(s) — K(s, n)/n'"?| as., (4.26)
nh<s<l —nH

and since the second and the third term in (4.26) are bounded above by
(logn)~* (see, eg., (4.22) and (4.4), respectively), the result follows
immediately.

For the second part of the theorem, it is sufficient to show that

sup [fIFH(s) Q) ~ V. (s) <(logn)*  as.  (4.27)

se[0.6,]1 w1 —6,.1]

We show the result only for s€ {0, d,]; similar arguments are applied for
the other tail.
As in 3.2.14 in Csdrgd (1983),

SIF~(s)

“RE ey 4

() Ou(s) — V()| < V(s)] ]1

where se[0,0,] and |s— & <n~ "2 |V, (s)I.
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Obviously, [1—f(F~"(s))/f(F '(¢))] is bounded because of the
additional conditions. As far as V,(s) is concerned, we have that

sup |V, ()] < sup |R¥(s)|+ sup  sup [U,(s)—U,(1), (4.29)
Q< s<dpy Q< s<dp Q<s<l [s—1l<dy
for 6,=n"*
Applying Lemmas 5 and 6 by replacing 4, with §,, the result shows that
sup |V, () <(logn)™*  as. (4.30)

Q<s<dy

This completes the proof of Theorem 2.

Proof of the Remark. As in the second part of the proof of Theorem 2,
we need to show that

sup |f(F7'(s)) Quls) = V,(s) < (logn)™*  as.

O<s<dy

It is clear that

(Lo
fF~Y(w)

where U,., is the kth order statistic of the uniform variates U,, .., U,,
se((k=1)/n, k/nlN [&,,6,], and e, =n""*I(n)~".

If s<U,,, then the right-hand side of (4.30) is bounded above, for
se[0,9,], by

ven (1 FIEN(s))

n'? <l +
-[ S(F ()
since f is non-decreasing to the right of a and (4.30).

On the other hand, if s = U, .,, then the right-hand side of (4.31) is boun-
ded by

AE(s) Q) ~Vols) =n2 [ )i (@31)

Ukin i s

)dus 21V,(s)] < (log m) ~,

5

Y (ﬂfll_(s_)) )
w2 Tyt
o e (R (s))
<n /ZJO (f(F“‘(s—u))+l)du as.

Substituting u =#n'?(log n) ~*, and since f is now decreasing to the right of
a, the result follows at once.
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Proof of Theorem 3. The sketch of the proof of this theorem is based
on three simple lemmas. Lemma 1 shows that the law of iterated
logarithms is satisfied for the quantile process; this, in turn, will play an
auxiliary role in showing a strong consistency of the Kernel-type estimator
of 1/f(F ~'(s)), which is shown in Lemma 3. Lemma 2 indicates how fast
the bias of this estimator approaches zero. We proceed as follows.

Calling upon Lemma 3, (4.8), and (4.2}, the following lemma is easily
formed.

LeMMA 10.  Under the same provisos of Lemma 2, there exists ¢ > 0, such
that

. FFEUN Q)]
- <
llrjlrigp 0 il:g , (loglogn)'?

The next result is a modified version of Csérgé and Révész (1984). Since
the proof of the following lemma does not differ much from Lemma 3 in
Csorgd and Révész (1984), it is omitted.

LemMa 11. Under K\-K,, H,, and F,-F,, the following result holds,

1t S—u 1 1
FL K( h >dF" Ty

n n

lim sup 4,72 sup

ntx O<s<1

for some constant ¢ > 0.

Next, we have the following.

LEMMA 12. Under K,-K,, H,, H,, and F,~F,, it follows that

172

1
C(F(s)

1
where ¢,(s) = (1/h,) J K((s —w)/h,) dF [ "(s) >0, and ¢ is a positive
constant. 0

P,(s)

li S
H:lTSa:-lp (log log n)'?, iI:E 1

<c a.s.,

Proof. Via the triangle inequality, it follows that

1 ! S—u . 1
oiilﬁj;K<ln)dF"“”'ﬂF”un
1 ! S—u " 1
e
1 s—u ) 1
# s [ [ () P |
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Invoking the fact that £, < (log log n/n)"® and Lemma 11, the second term
on the R.H.S. of the latter inequality tends to zero for sufficiently large n.
It remains to show that the other term is approaching zero with probability
one.

In connection with Lemma 10, it follows that for sufficiently large #,

L &(5E) a0 —F o)
[¥]

022 ko T\,
- e [ () 4
< e Ko e, K60

This completes the proof of Lemma 12. |
The rest of Theorem 2 follows from the triangle inequality.
- 0,(5)= B,(s)
Puls) " "
F~I
+f (F(s))

$als)

This completes the proof of the theorem.

|F(F~1(5)) @uls) — Bu(s)l <

1
— . (4
449~ T (432

Proof of Theorem 4. The steps required to show this theorem are
exactly the same as in Csorgd and Horvath (1990). The additional information
needed here is to show that

sup |B(s)] 10 as nfoo,

{0,841 [1—64,1]

where B(s) is a Gaussian Process with covariance function (s, s). This will
be accomplished below, but first some discussion.
For any 0 <n, <n, < --- define

Bi(s) = (K(s, 1y 4 1) — K(s, ) 1 — i)™, keN.

The sequence {B,(s), keN and se [0, 1]} is a Gaussian process with
independent increments and covariance function (s, s") (see, e.g., Lemma
6.1 in Berkes and Philipp, 1977).
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We need to show that, for se€[0,6,]u[1—46,,1], and for &,=n"* (u
introduced above), the process K(s, n)/n'” is bounded above almost surely
by a sequence of constants and tending to zero uniformly in s as n1 co.

We may write that for n, <n<n,,, and 5€[0,6,]u[1-6,,1],

k-1
K(s,n)=3 (n,,,— n)"* B,(s)+ (n—n,)'? B,(s), (4.33)

i=0

where B,(s)=(K(s, n) — K(s, n;))(n—n,) 172
LemMma 13, For sufficiently large n,

Sup IK(s, n)|/n'? <(logn)=*  as.

se(0,8, 701 ~dn1]

Proof. We show the validity of this result only for s€[0, §,]; the same
is applied for se[1—4,, 1]. It is easy to check that for 0<s<s' <1,

Mls,s)=Eg¥(s)+2 Y Egy(s) g.(s)

n=2

+EgXs)+2 Y Egils) guls)

n=2

_Eg%(& S') —2 Z Egl(s’ S') gn(s’ S’)

n=1

=02(0, 5) + 50, 8') — %(5, 5'),

where g,(s, 8') = I, (U, )} — (s' — ).
In conjuction with a<# % and Lemma 6 in Davydov (1970) for
0<s<s' <1,

a(s, 8) (s —s)(1 — (s —s))+ 10 i a(n)' ((s" = s)(1 — (5" —s)))lmtim

n=2
< (sr . 3)3/4'
The last statement follows by assuming that ry=4 and 1/r, + 1/r,=3/4.
Let {n,=[2*""1, keN, O<e<1/8)} be a sequence of integers and
{sp=s3;:5,=(j—1)/2* for r,=dak'~*}. It is clear that
{B(s): 0<s<0} 2 {X(u)=B*(u)— B*0), forue[0,17},

where B*(u) = B(s + u(s' — 5)) and for s' —s=9.
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By setting in the process, X(u), s;, and 5, , instead of 5 and ', it {ollows
that for 0 <y, o' <1,

E[(X(u)— X (/)] € Ju—u'|34 237,

Now, applying the same arguments as in Lemma 6.2 in Berkes and Philipp,
it follows that

P( sup |[B(s)| > (logn)™ )

O<s<27k

=P( sup |B(s)— B(s)|>(logn,) )

L ER |

=P( sup |X(u)|>logn,) )<k > (4.34)

Osuxl

Thus

k-
P( Y (n;.y—n) sup  |B(s)— B(s;)| > (log nk))'> <k~ (435

i=1 SHES K 8414

Next, applying Lemma 6.3 in Berkes and Philipp, for s€[0, 4,1, we have
that

P( sup sup |K(s, n) — K(s, n)| >n,(log n,) =) <k =2 (4.36)

s nE N, se[0,8,])

Hence, using the Borel-Cantelli theorem for both (4.35) and (4.36), the
proof of the lemma follows immediately. This proves Theorem 4. {
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