JOURNAL OF MULTIVARIATE ANALYSIS 54, 1-17 (1995)

Multivariate Liouville Distributions, IV
RaMESHWAR D. GupTA*

University of New Brunswick, St. John, Canada
AND

DonNaLD ST. P. RICHARDS'

University of Virginia

DEDICATED TO INGRAM OLKIN ON THE OCCASION OF HIS SEVENTIETH BIRTHDAY

We define a class of distributions, containing the classical Dirichlet and Liouville
distributions, in which the random variables take values in a locally compact
Abelian group or semigroup. These generalizations retain many properties of the
Dirichlet and Liouville distributions, including properties of the marginal and
conditional distributions and regression functions. We present a number of examples
illustrating the general theory. i€ 1995 Academic Press, Inc.

1. INTRODUCTION

Let us recall [15-18] that an absolutely continuous random vector
(X, .., X,)eR" has a multivariate Liouville distribution if its joint density
function is of the form

f<i x,)ﬁx?‘*‘, (L.1)
i=1

i=1
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where a,>0, i=1,..,n and /R, - R, is such that (1.1) is a density
function. In [ 15-18] we have treated various properties and applications of
the Liouville distributions, in statistical and probabilistic settings. In this
paper we introduce some broad generalizations of the densities (1.1), to
be also referred to as Liouville distributions. These generalizations retain
many characteristics of the Dirichlet and the Liouville distributions and
subsume virtually all classical examples of those distributions.

Initially, we were motivated to consider these generalizations because of
a basic observation about the proofs of many properties of the Dirichlet or
Liouville distributions. Let us illustrate this observation with an example.
In (1.1), choose n=3 and f(t)=c(l~0)*""', 0<r<l1, where ¢ is a
constant. Then (X, X,, X5)~ D(a,, a,, a,; a,), a Dirichlet distribution
with parameters a,, a,, a5, a,. Then it is well known, and not difficult
to prove, that the marginal distribution of (X,, X,) 1s also Dirichlet,
(X, X,)~ D(a,, ay; a; + a,). By writing out the joint density function of
(X, X5, X;), integrating over X, and analyzing carefully the evaluation of
the resulting integral, the reader will discover that at the heart of the proof
lies the well-known identity

ay—1 ay+as— 1

X x®#-1 x
* = s
Ia;) IMay) [Ilas;+ay)

(1.2)

x > 0, where * denotes convolution. Similar remarks apply when the problem
is to prove that the joint distribution of (X, X5+ X3) 1s D{(a,, a,+ a+; a4).
Further, it can be checked that the derivation of many other properties of
the Dirichlet distributions depend in a fundamental way on the identity
(1.2); these properties include the calculation of moments and even the
evaluation of the normalization constant for the Dirichlet densities.

This observation raises the possibility of replacing each monomial, x# ~ ',
in (1.1) by ¢,(x,). where the set of functions {¢,:a>0} satisfies the
convolution property

¢a\ * ¢a2:¢a|+ug (13)

for all a,, a,>0. To avoid some technical difficulties, we shall choose the
¢, to be probability densities; in the case of the densities (1.1), this
amounts to choosing ¢,(x)=x“"'e */I(a), x>0, and rewriting (1.1) in
the form

n n a—1,—x
f(Z x,<>. x*———-—in:) , (14)

where f(1) =(TT/_, I'(a,)) e'f(1).
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We define the new class of multivariate Liouville distributions in exactly
this manner, so that a Liouville density function will be one of the form

f(i x,-) fl é,.(x;),

i=1 i=1

where the densities ¢, satisfy (1.3). In fact, we will work with a set # of
densities ¢, (or probability measures z,), where the indices a belong to an
abstract Abelian semigroup 7, instead of only the positive real line R, and
the elements of & satisfy the convolution property (1.3). This construction
produces a large class of distributions because of the great lattitude we
enjoy in the choice of the densities ¢, or measures u,, and the semigroup
I. Moreover, we may as well attain maximum generality by allowing the
random variables X, .., X, to take values in a locally compact Abelian
group or semigroup. It is remarkable that, despite this rather abstract set-
ting, the resulting class of distributions retain many of the classical features
of the Dirichlet distributions. As we can expect from the above discussion,
marginal and conditional distributional properties are retained fully.

Further motivation for studying the new family of distributions is
provided by the recent work of Barndorff-Nielsen and Jgrgensen [1] (cf.
Seshadri [28]). These authors introduce new classes of parametric models
on the unit simplex by conditioning independent generalized inverse
Gaussian random variables on their sum. We shall show that the models
in [1] can be derived from ours by choosing the densities ¢, from a con-
volution family of generalized inverse Gaussian densities and then condi-
tioning on their sum. In general, the process of conditioning a Liouville
vector on the sum of its components leads to distributions which can be
treated in depth using the general techniques presented here.

2. PRELIMINARIES

Let G be a locally compact Abelian (LCA) group, with addition as its
binary operation and its identity element denoted by 0. We assume through-
out that G is equipped with a Hausdorff topology and has a countable basis
of open sets. All background material on LCA groups needed here can be
located in Berg and Forst [3] or Heyer [20].

In some instances, we will take G to be a LCA semigroup instead of a
group. In these situations G will be a subset of a LCA group H and will
be endowed with the subspace topology. An example of this situation is the
case in which G is the space of real symmetric positive-definite rxr
matrices and H is the group of all real symmetric r x r matrices.
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With ¢ denoting a generic element of G we denote by dr the Haar
measure on G. We will assume that a particular normalization of the Haar
measure has been specified. Then for p > 1, we denote by L#(G) the space
of functions g: G — C for which

Lip
el i=( [ tewirar) <o

We denote by C,(G) the set of continuous functions g: G — C which vanish
at infinity; endowed with the usual supremum norm, C,(G) is a Banach
space. The dual of C,(G) is the Banach space (M,(G), {-|) of all bounded
Radon measures on G, where

lall = | ldu()l, e MyG).
G
For u,, p, € M,(G), the convolution u, * u, is defined by
#x*uz(g):=u gx+ y)du(x)duy(y), geCyG).  (2.1)
G

Clearly the convolution operation is commutative and ||z, * g,| < g, || - Il g2l
The convolution operator is also a bounded operator on L'G): For
geLY(G) and ye M,(G),

g*mx%=ng—yﬂwUm xeG, (2.2)

converges absolutely almost everywhere on G, g * u€ L'(G), and |lg » u; <
flglly- [l«ll. In the case in which g is absolutely continuous with respect to the
Haar measure, say, du(?) = g,(¢) dt, then (2.2) reduces to the convolution
of two functions,

g, * g.(x)= L gi(x—1) g,l1) dt, (2.3)

xeG. In particular, the integrability properties of g, * g, follow
immediately from the remarks above, viz., if g,, g.€ L (G) then also
g * & ¢€LY(G) ’

Let I be an abstract Abelian semigroup with addition as its binary
operation; but not necessarily containing an identity element, 0.

Throughout, we let # = {u,: ael} be a convolution family of probability
measures on G. That is, the elements of # are probability measures
indexed by I and p, * p,, =, .., for all a;, a,el If a measure u, e F is
absolutely continuous (with respect to the Haar measure dr) we denote the
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corresponding density function by ¢,. A broad class of examples arises
from the situation wherein F is a convolution semigroup of probability
measures or densities (cf. [ 2, p. 100; 3, p. 48; 12]). In these cases the index
set is I=R _; uy=¢,, the Dirac measure at the identity element, 0, in G;
and the map a~ u, is weakly continuous. This type of situation arises in
(1.4), where ¢, is the density of the gamma distribution with shape
parameter a.

Our first result is a generalization of the famous Liouville-Dirichlet
integral (cf. [7, p. 160; 9; 15; 24; 25]) to the setting of LCA groups.

2.1. THEOREM. Suppose that u, e F,i=1,..,n, and g: G - C satisfies

J, 1801 du(t) < o, (24)

where a=a,+ --- +a,. Then

IG"'L g (Z X.—) H d#a,»(xi)=f g(1) dp (7). (2.5)

i=1 i=1 G

Proof. Replacing x; by ¢, i=2,..,n, and x, + --- +x, by ¢, then the
left-hand side of (2.5) becomes

L"'JG g du,(t—ty—ty— - —1,) [T dug(1). (2.6)

i=2

From the definition of the convolution integral (2.3), it follows that the
integral with respect to 7,,..,1, in (2.6) is the (n~—1)-fold convolu-
tion, g, * p,, *---* u, . Then the conclusion follows from the semigroup
Property, o * oy =Ha 4> 41,8261 Finally, it follows from Fubini’s
theorem that the integral (2.5) exists under the stated condition (2.4). |

We will also need a generalization of the classical Weyl fractional
derivative.

2.2. DeFINITION.  For ae ! and g: G — C, define
Weg(x) =] glr+x)dufr), x€G, (27)
G

as the Weyl fractional derivative of order a of g, whenever the integral
exists.
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Note that W is a convolution: W9 =/, * g, where j,(B)=u,(—B) for
any u,-measurable set B< G. Then it follows from earlier remarks on the
integrability properties of the convolution operator that W¢ is a bounded
linear operator on L!(G). We also note that from the Liouville-Dirichlet
integral (2.5) follows the semigroup property WO W= W+ g, a,el,
in fact, this property is equivalent to (2.5).

In the case in which G=R_, I=R,, and x, is absolutely continuous
with density function ¢(x) = x*"'e~*/I'(a), x >0, a > 0, the operator W* is
essentially the Weyl fractional derivative; hence it is injective. The same
holds when u, corresponds to the Gaussian distribution on R with mean 0
and variance a > 0, in which case W is the well-known Gauss-Weierstrass
transform. To study the injectivity of W* in the setting of LCA groups we
need a few more preliminaries.

Let G denote the dual (or character) group of G, consisting of all
continuous homomorphisms y of G into the torus T = {exp(,/ —16):
0 <6 <2r}. Recall that, by Pontryagin duality, G may be regarded as the
dual group of G; so it is customary to use the notation (¢, y), instead of
wt), for teG, yeG. For ye G and a probability measure x4 on G, the
Fourier transform of u is

Aty = | @7 duto)

It is well known that the Fourier transform, u — £, is injective and that

4]l < 1.

We now provide a sufficient condition on g, for the operator W to be
injective. This condition is satisfied, e.g., by any infinitely divisible distribu-
tion on R” and by the Wishart distribution.

2.3. PROPOSITION. Suppose that u,e F satisfies fi (y)#0 for all yeG.
Then W* is injective on L'(G).

Proof. For ge L'Y(G), ye G, and a e I, it follows by applying the Fourier
transform to the identity W9 =/, * g that W9(y) =//Z:(y) £(y). Since

) =pa.—7)#0 for all ye G then W9(y)=0 implies that $(y)=0 or
g=0, ae. Therefore W* is injective. |

3. GENERAL PROPERTIES OF THE LIOUVILLE DISTRIBUTIONS

3.1. DerFmNITION. Let X, .., X, be random variables taking values in G,
and & = {u,: ael} be a convolution family of probability measures on G.



MULTIVARIATE LIOUVILLE DISTRIBUTIONS, IV 7

Then (X,,.., X,) is said to have a Liouville distribution if its joint
probability measure is of the form

7( % ) 1T duatx (31)

=1 i=1

Xy, X, €G, where f1G-R,,and e #,i=1,.,n

When (3.1) holds, we write (X;,..,X,)~L,[f;a,,..,a,]. Using the
Liouville-Dirichlet integral (2.5), the following properties of the Liouville
distributions are obtained immediately. These results generalize some well-

known properties [ 15, Sections 4, 8] of the classical Liouville distributions,
and the proofs are standard.

3.2. PROPOSITION.  Suppose that (X, ..., X,)~L,[ f;a,, .., a,], | <r<n,
anda=a, ,+ --- +a,. Then

(i) (X,,.,X,)~L,[f,;a,,.,a,l], where f,(t)= W (1), teG.

(ii) The conditional distribution of (X,,,,...X,) given {X, =
Xy X,=x,}is L, _[g,;a,,1,.a,], where

g,(1) =f<t + é:} x,~>/f, <é:} x,-). (3.2)

In particular, conditioning on {X,=x,, .., X,=x,} is equivalent to condi-
tioning on {37_, X,=X"_, x;}.
(i) For h. G- R,

=(( 2, %)

whenever the expectation exists.

3 Xi=t) 10= | 8.0 H0) St+ 7). (33)

i=1

There are many other properties that follow this result. As an example,
and for future reference, suppose that the measures u, are all absolutely
continuous with density ¢, respectively, i=1, .., n. Then it follows from
Proposition 3.2(i), (i), that for I <r<n—1, the conditional density
function of (X, .., X,) given X, + --- + X, =1 1is

H:= 1 ¢a,-(xi)

¢——E¢a,+.+m+an(t*x1—xz— = X). (3.4)

We now obtain some characterizations of the Liouville distributions. The
proof of the following result is similar to the proof of [ 15, Proposition 9.1].
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3.3. ProposITION.  Let (X,, .., X,)~L,[[;a,, .., a,]. Then the following
are equivalent:

(1) The function f is multiplicative, ie., f(x+ y)=f(x) f{y), x, yeG.
(i) X, .. X, are mutually independent.
(ii1) There exists i, j with X; and X, mutually independent.

In the following result, we assume that the Liouville distributions
are identifiable; that is, if the distributions L[ f;;4a,,..,a,] and
L[ f;; 4, .. a,] represent the same probability measure then f, = f, and
a,=a; forall i=1, .., n

3.4. ProrosiTiON. Let (X, .., X,)~L,[f;a,,..,a,] and suppose that
(X1, .. X, )~L,[f;a,,..a,] for some 1 <r<n. Then for each xe€ G,

Slix+1)=f(x) (3.5)

Sfor almost all (with respect to u,) te G. If f is continuous then, for each
xe€ G, (3.5) holds for each tesupp[u,], the support of u,.

Proof. Since (X, .., X,)~L,[ f:a,, .., a,] then, by Proposition 3.2(i),
(X, ... X,)~L[W?;a,,..,a,], where a=a,,,+ --- +a,. Since we are
also given that (X,,..X)~LJ[f, a,,..,a,] then, by identifiability,
S(r)=W<f(¢) for all te G; that is,

f(z):f fx+1)duft), xeG. (3.6)
G

The integral equation (3.6) has been studied extensively [27] and its
solution is known as the Choquet-Deny theorem. Applying the theorem of
[29] we obtain (3.5). |}

Note that the solution (3.5) of (3.6) requires only the minimal assump-
tions that G is an Abelian semigroup and f: G— R, is a bounded Borel
measurable function. If additional assumptions are made on G then an
explicit integral representation may be obtained for fin terms of the multi-
plicative functions on G (cf. [22;27]); we stress that these additional
assumptions are satisfied for all the semigroups appearing in the examples
of Section 4.

4. LiouviLLE DisTrIBUTIONS ON LCA GROUPS AND SEMIGROUPS

In this section, we consider various examples of semigroups 7/ and # and
groups or semigroups G, and we describe the related Liouville distributions.
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4.1. Poisson Distributions

Let G be a LCA group. There are several definitions of a Poisson
measure on G, resulting in numerous formulations of the corresponding
Liouville distributions [20, Chap. III]. For simplicity, we will work only
with the simplest notion of a Poisson measure on G.

Let x, be a fixed element of G and a > 0. For any x € G, let §, denote the
measure assigning unit mass to x. The Poisson measure associated with x,
and a is the measure

o 6;“0]'
uﬂ:e""<50+ Y ) (4.1.1)
j=1 I
Then it follows from (4.1.1) that
fa(y) =expla(e”™ —1)) (4.1.2)

for all y € G. Each measure u,, a > 0, is an example of a Poisson measure on
G. It also follows from (4.1.2) that the family {x,: a >0} is a convolution
semigroup of probability measures on G, called a Poisson semigroup.

Note that the Poisson measure y, is concentrated on elements of G of
the form 0, x,, 2x,, 3x,.., when x, is of infinite order, and then
pfjxo} =e %a’jj! for j=0,1,2,3, ... If x, is of finite order p, then g, is
concentrated on elements of G of the form 0, x4, 2x,, ..., (p —1)x,, and
then

I

. . a .
Kol jxo} =e Z e j=0,1,.,p—1L

I=j(modp) -

Thus, for Poisson measures Haps J = 1, ..., n, the measure

S+ - +x,) T1 dig (x) (4.13)
j=1

is an example of a Liouville distribution on Gx --- x G.

Many classical discrete distributions given in [21] are special cases of
the Liouville distributions (4.1.3). As examples, if we choose u, as the
standard Poisson distribution on Z, with mean parameter a and we
denote a, + --- +a, by «, then (4.1.3) is (i) the joint distribution of a set
of multinomial random variables in the case in which a =1 and f(t)=1!e,
teZ,; (i) the multivariate negative binomial distribution when
f(=e1+a) ¥ "I(N+1)/[(N),teZ,, where N>0; (iii) the multi-
variate logarithmic series distribution in the case in which f(¢)=
e*(1 +a) =" I'(1)/log(1 +a), te N.
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Another approach to defining Liouville distributions using Poisson-type
distributions is as follows. Let { be a fixed real number. For a >0, let u,
denote the generalized Poisson distribution with parameter (q, ). The dis-
tribution u, is supported on Z _, the semigroup of nonnegative integers
and has probability function

ala+yx)<~ e 47 ¥x/x) for x=0,1,2, ..,

= 4.14
#alx} {0 for x>mwheny <0, ( )

and u,{x} =0 otherwise, where max(—1, —a/m)<y <1 and m (>4) is
the largest positive integer such that a + my > 0 in the case in which y < 0.
By [6, Theorem 14.1, p. 15], the convolution property u, * . =, ¢ a
holds for all a,, @, > 0. Then, proceeding as in (4.1.3), we obtain a Liouville
distribution on Z",.

4.2. Generalized Convolution of Mixtures of Exponential Distributions

Let Q denote the family of all nonnegative measures @ on R, such that
1 o
f (-1 do(t) < o, f (2dQ(1) < . (42.1)
0 1

Let I=[0, c)xQ; equipped with the binary operation, (a,, Q)+
(ay, Q) =(a,+a,, 0, + @,), I becomes an Abelian semigroup.

For (a, Q)el, a probability measure u, , on R, is a generalized con-
volution of mixtures of exponential distributions {gcmed) if the moment
generating function of u, , exists and is given by

1 1
Lh prss di, o x) =exp {Aa + Jm <t—_~1—;> a’Q(t)} (42.2)

for A<0. A general description of the class of gemed’s is provided by
Bondesson [4]. In particular, we note that the class of gcmed’s is closed
under convolutions, a result which follows immediately from (4.2.1) and
(4.2.2); and each u, 4 is infinitely divisible. Moreover, for the gcmed dis-
tribution g, , to be a mixture of exponential distributions it is necessary
and sufficient that a=0; and that the measure dQ(¢) be absolutely con-
tinuous with respect to Lebesgue measure, with a density function g()
satisfying g(¢) < 1.

Then, for gcmed distributions #a.05 J=1, ., n, the probability measure

S+ +x,) H dity, o,(x;) (42.3)

j=1

is an example of a Liouville distribution on R" .
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An important class of examples of gcmed’s are the generalized inverse
Gaussian distributions, denoted N~ (8, x, ), with probability densities of
the form

B2
(l///X) xﬂfle—(l[/x%—)(x")ﬂ

ZK/S(\/XT// )

for x>0, where K is a modified Bessel function of order g, >0, x>0,
and f e R. (To realize the distribution N7 (f, x, ¢) as a gcmed requires the
result [4, Remark 3.2] that a gcmed uniquely determines its “parameter”
(a, Q). It follows from [4, Eq. (3.4)] that a =0, but more work is required
to determine explicitly the measure Q [4, p. 53].)

Choosing the gcmed’s in (4.2.3) from the class of generalized inverse
Gaussian distributions (4.2.4), we obtain a Liouville distribution on R”",.
Next, we may construct a probability distribution on the unit simplex
in R, &={{(yy,.0 ¥u):¥;>0, i=1,..m y,+ -~ +y,=1}, by condi-
tioning the distribution of (X,,.., X,) on the sum X,+ -.- +X,, as
in (3.4); that is,

px; B, ¥)= (4.2.4)

(Yi, o Y)=(X), o X) | Xo4 - + X, =1. (42.5)

In [15], the marginal distribution of (Y,,.., Y,_,) would be called a
Liouville distribution of type II, the resulting distributions are themselves
Liouville distributions as defined within our abstract framework, and the
general theory applies. In particular, by Proposition 3.2, the marginal
distributions of subvectors of (Y, .., Y,,_,) belong to the same class.

When the X, in (4.2.5) are such that X,~ N~ (8, x;, ), that is, the X,
have a common Y parameter, then the resulting distributions on the
simplex & coincide with the distributions studied in [1, 28].

4.3. Gauss Distributions

Let .#'(G) denote the family of probability measures on the LCA group
G Let ue .#'(G) be a Gauss measure (in the sense of Parthasarathy) [ 20,
p. 349 ff]. Further, let Q_(G) denote the set of all positive quadratic forms
on G. It is well known [20, Theorem 5.2.7, p. 353] that x is a Gauss
measure if and only if there exists a unique element (1, 0)e G xQ,(G)
such that g, the Fourier transform of u, is of the form

Ay =(t,y)e 2, yeG. (4.3.1)

From (4.3.1) it follows readily that the set of Gauss measures on G is
closed under convolutions. If we write u ~ %(t, @) whenever (4.3.1) holds,
then if 4, and u, are independent (in the sense that the underlying

random variables are independent) and u, ~ %(r,, ;) for j=1, 2, we have
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Uy ¥y~ + 15, @+ Q,). Now let I=GxQ ,(G), which is an Abelian
semigroup under addition. Then, for independent Gauss measures
ui~%0t, @), j=1, .., n, the probability measure

f(xl + +xn) I—[ d/"j(xl') (432)

j=1

is an example of a Liouville distribution on Gx --- x G.

In the classical case, where G = G'= R’, the parameters ¢ and Q play the
role of the mean vector and covariance matrix, respectively, and Q,(G)
may be identified with the space of real symmetric positive-semidefinite
r x r matrices. Thus, (4.3.2) is absolutely continuous if the “matrices” Q; are
all positive-definite, and then the corresponding density function can be
written in terms of the multivariate normal densities.

Other examples may be constructed starting with measures on G which
are Gaussian in the sense of Bernstein [ 20, p. 362]; or we can even restrict
G to be the torus T and choose the Gauss measures u, as the wrapped
normal distributions [ 20, p. 350].

4.4. Liouville Distributions on the Space of Positive-Definite
Symmetric Matrices

Let S, be the space of all r xr real symmetric matrices, and Q be the
cone of rxr real symmetric positive-definite matrices. For xe© and
J=1,..,r, let 4(x) denote the jth principal minor of x. Let p=(r+1)/2,
and set d, x=(det x) *dx, where dx denotes the Haar measure on the
LCA group S,.

For a=(a,, .., a,) € C’, define the generalized power function 4,: 2 — C
by

r—1
A (x) = (det x)* [] 4,(x)» %" (44.1)

i=1

The gamma function for the cone 2 is defined [11, 13] by

Iofa) :=J" e~ A (x)d, X, (44.2)

Q
whenever the integral converges absolutely. By [11, VIL1.1; 13,

Theorem 2.1, p. 22], the integral (4.4.2) converges absolutely if and only if
o satisfies

Rea;>(j—1)/2, Jj=1,.,r (44.3)
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Moreover, in this range, I'; i1s evaluated in terms of the classical gamma
function as

Fafo) =2y V2 [] Moy =3~ 1)). (4.44)

j=1

Define the convolution of two functions g1,> g, on Q by

grsi=] g0 ay-xdy (445)
s ¥

where the “interval” (0, y) consists of all x € 2 such that y — x e Q. Then it
follows from the results of Gindikin [ 13, Proposition 2.4, p. 24] that, for
ac R satisfying (4.4.3), the set of density functions

(x) e*tl’X

4, =,
¢a(x) :_Tn(a—)—(det x) , (446)

where x € 2, is a convolution family with respect to (4.4.5). Note that the
densities ¢, are generalizations of the Wishart distributions.

Thus, we obtain Liouville random variables (X, .., X,) with joint
density function

SO+ -+ x,) T da(x)), (44.7)

Jj=1
where x,, .., x,€ 2 and the vectors a,, .., a, € R” satisfy (4.4.3).
The following special cases of (4.4.7) have appeared in the literature:

(i) Choose each a; as a vector of the form a;=b,(1, .., 1), where
b,eR,j=1,..,n and

det(e — x)brr17#, xe(0,¢),

0, otherwise,

f00) ={

where b,,,>(r—1)/2 and ¢ is the rxr identity matrix. In this case,
(X,, .., X,) follows a matrix Dirichlet distribution [ 15, 24, 25]. As a further
special case, when n=1 we recover the multivariate beta distribution.

(it) Choose f to be either of the functions

_ [@u(x), xe(0,¢),
Silx) = {0, otherwise,
or f5(x) =g, (e + x), x € Q, for some a e R” satisfying (4.4.3). These distribu-
tions have been utilized in Bayesian statistical inference problems by
Guttman and Tan [19].
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(i) Let fix)=e""* xe, and each a; be of the form listed in (i).
In this case X, .., X, are mutually independent, and their marginal distri-
butions are Wishart distributions. In these examples, the parameters b; are
the “degrees of freedom” of the Wishart matrices. Note that the density
function of, say, X,, exists if and only if b, > (r—1}/2, and then the
characteristic function of X, is

E(e'™" ) =det(e — iw) ™, wes,. (44.8)

For b, € R, it is a theorem of Gindikin (cf. [ 11, 13,26]) that (44.8)is a
characteristic function if and only if &, belongs to the Wallach set W, =
{0,5, 1,2, (r—1)/2} U((r—1)/2, av). Proceeding as before, we obtain
examples of (non-absolutely continuous) Liouville random variables
(X, .., X,), where # is the set of all Wishart measures indexed by the
elements of F= W,.

In closing this section, we use the hypergeometric functions of matrix
argument (cf. Muirhead [23]) to construct new examples of Liouville
distributions on Q.

(iv) Let , F, denote the confluent hypergeometric function on . Let
I={(x, ByeR?:a, f>(r—1)/2}, so that I is an Abelian semigroup under
addition. Further, let # denote the class of probability density functions
P p: 82— R, where for any (a, f)el,

(det X):(+ﬁ—1) e—?_:r,x

P p(x)= 3 (2T ) Filag a+ B x), xef2, (449)

where I, is the multivariate gamma function [23, p. 61]. The proof that
is a convolution family with respect to (4.4.5) is similar to the classical case
[8, p. 271]. Indeed, using results from [10; 14], it may be shown that the
Laplace transform of ¢, , is

j e . plx) dx = det( %w +e) Pdet(w+e) 2 we. (44.10)
£
Then the conclusion follows immediately from the convolution formula for
Laplace transforms. Moreover, since ¢, ; is a nonnegative function and the
right-hand side of (4.4.10) converges to 1 as w— 0 in the cone Q then it
follows that ¢, 4 is a probability density.

Finally, the corresponding Liouville distributions are as in (4.4.7).

5. CONCLUDING REMARKS

There are many other examples of Liouville distributions which we have
not covered here. For example, as noted earlier in Section 2, we may
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choose the class # to be any convolution semigroup on the space G, a
classical example would be the semigroup of stable distributions on R" (cf.
[3, p. 48] for a table of convolution semigroups on R). Other examples
arise when we choose G to be a symmetric cone [ 57; the resulting examples
would generalize those on the cone of positive-definite symmetric matrices.

Proceeding as in Section 4.1, we can construct additional classes of dis-
crete Liouville distributions. For example, let us choose the measure
Mg a,€Z ., to be the binomial distribution b(a;, p), so that the class
consists of binomial distributions with common probability of success p.
Further, choose f(t)=p~"(1—p)' ~*/(3), teZ,, where a=a,+ --- +a,.
Then the Liouville distribution (3.1) reduces to a multivariate hyper-
geometric distribution with parameters a,, ..., a,,.

In classical contexts, one method used extensively to construct multi-
variate distributions is the method of compounding (or mixing) [21,
Chap. 11.8]: Consider a random vector (Y, .., Y,,) with a given distribu-
tion, and a random vector (Z,, .., Z,) such that the conditional distri-
bution of (Z,,..,Z,) given (Y, .., Y,) is specified, then the method of
compounding amounts to calculating the (unconditional) distribution of
(Z,, .., Z,). Many of the examples in [21] deal with the situation where
both the marginal distribution of (Y, .., Y,) and the conditional distribu-
tion of (Z,, .., Z,) given (Y,, .., Y,) are special cases of Liouville distribu-
tions (or derived from Liouville distributions through the conditioning
process (3.4)); in particular, the two examples treated in [ 21, Chap. 11.8] are
of this form. Applied to the newly defined classes of Liouville distributions,
the method of compounding produces many new families of probability
distributions. As an example, suppose that the conditional distribution of
(Z,,...2,) given (Y,,..,Y,) is L,[f,Y,,..,Y,], where each u, is a
Poisson distribution with mean Y;, and the distribution of (Y, .., ¥,) ~
L.,g a,,..,a,], where the corresponding z, are gamma distributions with
shape parameter a,. Using the fractional calculus techniques to reduce the
multiple integrals to a single integral, we find that the unconditional
distribution of (Z,, ..., Z,) is

) noIa;+z;
f(zl+...+z,,)nz—(.!a—r(72.))’

i=1
where

_ f1)
T I(t4a;+ - +a,

fto )Lmrzyy’*“'*”'*""“g(y)dy-

By appropriate specialization of the functions fand g, we can recover many
of the formulas in [21, Chap. 11].

683/54,1-2
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