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1. INTRODUCTION

Asymptotic coverage properties of confidence regions have been widely
studied, from both a frequentist and a Bayesian point of view. An interest-
ing issue in such studies is the determination of classes of matching priors
associated with those confidence regions. Welch and Peers (1963), Peers
(1965, 1968), Nicolaou (1993), Tibshirani (1989), and Dey and Mukerjee
(1993) have studied one-sided and two-sided intervals. DiCiccio and Stern
(1993, 1994) and Ghosh and Mukerjee (1993) have studied likelihood based
regions, i.e. different types of highest modified likelihood confidence
regions, with and without nuisance parameters. These studies are mainly
concerned with the frequentist and Bayesian asymptotic distributions of
modified likelihood ratio statistics. The above authors show that these sta-
tistics have frequentist and Bayesian Bartlett corrections to the order
O(n−3/2) or O(n−2). All these studies are restricted to nondiscrete observa-
tions.

When the observations are not discrete, i.e. when they satisfy the Cramer
condition, the methods used in these studies for the expansion of likelihood
based statistics are now well established. They are based on Laplace



approximations for Bayesian coverages and on Edgeworth or saddlepoint
continuous expansions for frequentist coverages. When the observations
are discrete random variables, however, there is no continuous Edgeworth
or saddlepoint expansion, as shown by Bhattacharya and Rao (1986).
Therefore, when the observations are discrete, we cannot apply the results
on the asymptotic expansions of the frequentist coverages of confidence
regions obtained in the strongly nonlattice case. Few results exist in discrete
setups. Yarnold (1972) obtains an expansion of the frequentist probability
that a sum of iid lattice random vectors, X ¥ Rp, belongs to smooth convex
sets of the form

C={X tS−1X [ c},

where S is the covariance matrix of X and c > 0. He proves that the prob-
ability of C is equal to the cth quantile of a chi-square random variable
with p degrees of freedom, Qp(c), plus a term proportional to the difference
between the number of lattice points in C and its volume, when properly
renormalized. This term was proved to be of order O(n−p/(p+1)) by Esseen
(1945). Bentkus and Götze (1995) improve on this result by showing that
this term is in fact of order O(n−1) when the dimension of X is large
enough, i.e. larger than 9. Siotani and Fujikoshi (1984) obtain the same
kind of result as Yarnold (1972) in the case of HPD regions for multi-
nomial observations, but do not exhibit the order of their error term.
Frydenberg and Jensen (1989) show, through simulations, that the Bartlett
corrections do not improve the accuracy of the chi-square adjustment to
the frequentist distribution of the likelihood ratio statistic for multinomial
observations.

In this paper we study HPD regions, with and without nuisance param-
eters. These regions are important Bayesian confidence regions, in particu-
lar from a decision theoretic point of view; see Robert (1994). We establish,
in Section 2, the existence of a continuous expansion of the frequentist dis-
tribution of the posterior likelihood ratio statistic in the general case, to
orders smaller than O(n−1/2). These orders depend on the dimension of the
parameter of interest p, i.e. if p \ 3 we prove that the uncertainty due to
the discrete nature of the observations can be bounded by a term of order
O(n−p/(p+2) log n). To get higher order expansions in order to make higher
order studies such as the determination of a class of matching priors, we
propose in Section 3 continuity corrections based on uniform random
variables, which induce greater accuracy for the frequentist distribution of
the HPD regions and we obtain asymptotic expansions of the frequentist
coverage of HPD regions to the order o(n−1) and O(n−3/2).

Bayesian calculations are obviously still valid when the observations are
discrete. We thus use the results obtained by DiCiccio and Martin (1991)
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on the Bayesian distribution of modified likelihood ratio statistics to obtain
the approximate expression to the order O(n−3/2) of HPD regions and to
determine the Bayesian coverages of the corrected HPD regions. It appears
that generally speaking, corrected HPD regions allow for both Bayesian
and frequentist Bartlett corrections. We deduce from these results matching
priors to the order o(n−1).

This determination of a class of matching priors is important since it
gives a way of comparing Bayesian and frequentist approaches. It is also a
technique to determine priors in a noninformative setup. Moreover this
study sheds light on the structure of HPD regions in the discrete case, in
particular by comparing the impact of the continuity corrections on the
frequentist and on the Bayesian coverages of the HPD regions; see
Section 3.3.

2. ASYMPTOTIC EXPANSIONS IN THE DISCRETE CASE

Let X1, X2, ... be a sequence of independent and identically distributed
random variables on Rk, with a common distribution Ph, where h=
(h(1), h(2)) ¥ G … Rk; h(1) ¥ Rp is the parameter of interest. We denote Xn=
(X1, ..., Xn) and Pn

h the distribution of Xn. Assume that Ph has a density
f(x; h) with respect to a discrete measure m and denote ln(h) the log-
likelihood. Let p be a prior density with respect to the Lebesgue measure
on G. HPD regions are defined by

Cp
a ={p1(h(1) | Xn) \ gn(a)},

and Pp[Cp
a | Xn]=a, where p1(h(1) | Xn) is the marginal posterior density

of h(1) and Pp[. | Xn] is the posterior distribution of h. Kass et al.
(1989) showed, using Laplace expansions on p1(h(1))=> e ln(h)p(h) dh(2)/
(> e ln(h)p(h) dh), that Cp

a is approximated, to the order O(n−2), by

{h(1); Wn(h(1)) [ kn(a)},

where Wn(h(1)) is the adjusted posterior likelihood ratio statistic:

Wn(h(1))=2[ln(h̃)+log p̄(h̃) − ln(h̃(1)) − log p̄(h̃(1))].

h̃ denotes the posterior mode and h̃(1) the constrained posterior mode, i.e.
when h(1) is fixed, p̄ is

p̄(h)=p(h) det[J22(h)]1/2,

J22(h) being minus the (k − p) × (k − p) matrix of second order derivatives
of ln(h)/n taken with respect to the nuisance parameter h(2).
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It is well known that the adjusted posterior likelihood ratio is asympto-
tically distributed as a chi-square with p degrees of freedom to the first
order of approximation, both from a frequentist and from a Bayesian point
of view. In this section, we study the asymptotic behaviour of Pn

h[Cp
a ] and

more generally the asymptotic distribution of modified likelihood ratio
statistics such as the ones considered by DiCiccio and Stern (1994). We first
introduce some notations used throughout the paper. Let D denote the
differentiation with respect to h. More precisely, Dg(h) is the gradiant
vector of g, D2g(h) is the matrix of second derivatives of g, and so on. Set

Zn, 1=n−1/2 D log ln(h), Zn, j=n−1/2(D jln(h) − mn, j(h)), j=2, 3,

where mn, j(h)=Eh[D jln(h)]. We denote mijl=Eh[“
3 log fh(X)/“hi “hj “hl]

and I the Fisher information matrix per observation. We use matricial
notations throughout the paper; for any matrix A, we denote A rs, the
(r, s)th component of the inverse of A. A .1 is the vector whose rth compo-
nent is A r1, r [ k and A1.=(A .1) t is the transpose of A .1. I (1, 1) is the upper
left part of size p of the inverse of I and S is the inverse of I (1, 1). Similarly,
I (. , 1) denotes the k × p matrix whoses components are the I jl, j [ k and
l [ p and I (1, .) is its transpose. Set T=I(. , 1)SI (1, .) and N=I−1 − T.

We denote Zn, the vector whose components are the components of
(Zn, 1, Zn, 2, Zn, 3), which are linearly independent, as functions of X. In
other words, Zn is such that its covariance matrix is definite-positive. Let d
be the size of Zn. We assume that Zn is a lattice random vector and we
denote Ln its supporting lattice, Ln=n−1/2[;d

j=1 tjZ+xo], so (t1, ..., td) is
the basis of the lattice support of Zn, when n=1; let l be the determinant
of (t1, ..., td); see Bhattacharya and Rao (1986). S is the asymptotic
covariance matrix of Zn. Throughout this paper intervals in R, will be
denoted [a, b] and hypercubes in Rq will be denoted [a, b]q, for any
q ¥ N − {0} and any a, b ¥ R. Hence [a, b]=[a, b]1.

We assume usual regularity conditions, as in Bickel and Ghosh (1990).

Theorem 1. Under the above assumptions,

(1) if p \ 3,

sup
w ¥ R

+
|Pn

h[Wn(h(1)) [ w] − Qp(w)|=O(n−p/p+2 log n), (1)

where Qp is the q2
p cdf.

(2) If p=1, there exists a continuous expansion to the order o(n−1/2),
if and only if ,r, s [ k such that

I (1, .)ts

I (1, .)tr
¥ R − Q. [H]
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Note that the result (1) above is uniform in w. It is quite likely that a
better order of approximation could be obtained without this constraint. In
particular, we conjecture that better results can be obtained when w is not
too close to 0.

Condition [H] is quite natural. Indeed, when p=1, Cp
a can be approx-

imated by a confidence region in the form:

− `w/S [ I1.Zn, 1+OP(n−1/2) [ `w/S.

Therefore, condition [H] simply implies that if the main term (I1.Zn, 1) is
discrete but nonlattice (i.e. [H] is satisfied) then there is a frequentist
expansion to the order o(n1/2), whereas if it is lattice (i.e. [H] is not
satisfied) then there is no expansion to orders higher than O(n−1/2).

The proof of the first part of Theorem 1 is based on Prawitz’s inequality
(1972).

Proof of Theorem 1. The adjusted posterior likelihood ratio statistic can
be approximated, in terms of the random vector Zn; see DiCiccio and Stern
(1994).

Wn(h(1))=Z t
n, 1TZn, 1+

Z t
n, 1M(Zn) Zn, 1

`n
+2

Z t
n, 1Tb

`n
+O(n−1), (2)

where M(Zn) is linear in Zn and b=D log p(h)+D log det[I22(h)]/2.
Wn(h(1)) can then be considered, to the order O(n−3/2), as a function of Zn

and we shall denote indifferently, Wn(Zn) or Wn(h(1)). Let pn be the density
associated with the formal Edgeworth expansion of Zn (corresponding to
the continuous case) to the order O(n−3/2), i.e.

pn(x)= C
2

r=0
n−r/2Pr(−f: {q̄n, n}) (x),

where the functions Pr(−f: {q̄n, n}) are defined in Bhattacharya and Rao
(1986, Chap. 2, Lemma 7.2). In particular, P0(−f: {q̄n, n}) is the normal
density with null expectation and covariance matrix S, the asymptotic
covariance matrix of Zn. Continuous Edgeworth expansions imply that
when Cramer’s condition is satisfied, the frequentist asymptotic distribu-
tion of Wn, is, see Bhattacharya and Ghosh (1978),

Pn
h[Wn [ w]=F

R
d

pn(x) IWn(x) [ w dx+O(n−2).

ASYMPTOTIC PROPERTIES OF DISCRETE HPD REGIONS 5



However, Cramer’s condition is not satisfied in the discrete case. To
approximate Pn

h[Wn [ w], we thus use Prawitz’s (1972) inequality: let
K(t)=K1(t)+iK2(t)/(pt), with

K1(t)=1 − |t|, K2(t)=pt(1 − |t|)
cos pt
sin pt

+|t|, when |t| [ 1,

and K(t)=0 when |t| > 1; then -r > 0, for any distribution function F

F(x+) [
1
2
+V.P. F

R
exp(−ixt)

K(t/r)
r

f(t) dt, (3)

F(x − ) \
1
2

− V.P. F
R

exp(−ixt)
K(−t/r)

r
f(t) dt, (4)

where f(t) is the characteristic function associated with F, and V.P.
denotes Cauchy’s principal value (see Prawitz, 1972), i.e.

V.P. F
R

l(t) dt=lim
h a 0

F
|t| \ h

l(t) dt,

for a function l.
We denote Fn(w)=Pn

h[Wn [ w], fn(t) its characteristic function. Let
V̄=;d

i=1 tiUi and U=;k
i=1 tiUi, where U1, ..., Ud are iid uniform random

variables on [ − 1/2, 1/2]. Then Zn+V̄/`n is a continuous random
vector, and Gn(w), the distribution function of Wn(Zn,+V̄/`n), satisfies

Gn(w) − F
R

d
pn(x) IWn(x) [ w dx=O(n−1);

see Theorem 2.
Let gn(t) be the characteristic function associated with Gn(w). Since

Gn(w) is continuous, we obtain

Fn(w) − Gn(w) [
i

2pr
F

|t| [ r
e−itw 11 −

|t|
r
2 cos pt/r

sin pt/r
(gn(t) − fn(t)) dt

+
1
2r

F
|t| [ r

e−itw 11 −
|t|
r
2 (gn(t)+fn(t)) dt

+
i

2pr
F

|t| [ r
e−itx |t| (fn(t) − gn(t))/t dt,
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Fn(w) − Gn(w) \
i

2pr
F

|t| [ r
e−itw 11 −

|t|
r
2 cos pt/r

sin pt/r
(fn(t) − gn(t)) dt

−
1
2r

F
|t| [ r

e−itx 11 −
|t|
r
2 (fn(t)+gn(t)) dt

+
i

2pr
F

|t| [ r
e−itw |t| (fn(t) − gn(t))/t dt,

Note that the terms on the right hand side of the above inequalities are
real. We prove in Appendix 1 that when |t| rn=O(n/log n), |t| > n1/3 and
when rn=o(`n),

|fn(t)|=O(r−p/2
n ).

Let p \ 3, - |t| [ n1/3; we have

fn(t) − gn(t)=E{e itWn(Zn)[1 − exp(itU tT1/2Rn/`n+itU tTU/n+Mn/n3/2)]}

= −
t
n

E 5e itWn(Zn) 1 iU tTU
2

−
t(U tT1/2Rn)2

2
26 (1+O(t3n−1))

= −
t(itr(T) − tEn

h[Wne itWn]
24n

(1+O(t3n−1))

[
|t| |tr(T)+|tM||

24n
(1+O(t3n−1)).

Decomposing [ − H, H] into { − n1/3, n1/3}, {t; n1/3 < |t| < r/2} and {t;
r/2 < |t| < r}, we obtain that

|Fn(w) − Gn(w)| [ C 1r−p/2
n F

r/2

n1/3
t−1 dt+r−p/2

n +
1
r
2+O(n−1)

[ CŒ (r−p/2
n log n+r−1)+O(n−1),

where C and CŒ are independent of n and w. Conditions on r and rn imply
that the tightest choice is rn=n2/(p+2) and r=np/p+2 log n.

When p=1, the HPD region can be approximately expressed as a two-
sided interval to the order O(n−3/2). The term of order O(1) in Wn(h(1)) is
then ;k

r=1 I (1, .)Zn, 1/`I11, which is the same as the term of order O(1) for
the statistic involved in the confidence one-sided or two-sided intervals. In
the case of one-sided intervals, Rousseau (2000) proved that continuous
expansions to the order o(n−1/2) exist if and only if I (1, .)Zn, 1 is not a lattice
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random variable, that is, if and only if [H] is satisfied. The author’s
argument can be applied to this case, which implies the second part of
Theorem 1. L

Note 2.1. When p=2, it is known that at worst,

|Fn(w) − Gn(w)|=O(n−1/2).

It is, however, likely that when p=2 we obtain better results than when
p=1 and that |Fn(w) − Gn(w)|=o(n−1/2) rather than O(n−1/2).

Note 2.2. Yarnold (1972) proved that for Xi, i=1, ..., n iid random
vectors in Rp having a lattice distribution with mean 0 and covariance
matrix V,

Pr 5 C
n

i=1
Xi/`n ¥ Bc

6− Qp(c)=O(n−p/p+1),

where Bc={x; x tV−1x [ c}. His approximation is better than ours, but he
studied the case of bounded smooth convex sets, whereas the HPD regions
is only approximately so. Indeed, when considered as a set of Zn’s, it is
neither bounded nor convex when we consider terms of order higher than
o(1). Even though this difference seems minor, the techniques used for that
kind of confidence regions are then much more involved.

Note 2.3. This result can be applied to any modified likelihood ratio
statistics such as those defined by DiCiccio and Stern (1994).

Note 2.4. Even though we have no proof on the nonexistence of con-
tinuous expansion to the order o(n−1), Theorem 1 and previous results on
the subject (Yarnold, 1972; Bentkus and Götze, 1995) seem to indicate that
no such expansion exists. When there exists an asymptotic expansion to the
order o(n−1/2), it is equal to the formal expansion derived from Qn (i.e. in
the continuous case), therefore DiCiccio and Stern (1994) and Ghosh and
Mukerjee (1993)’s results on matching priors for HPD regions in the
strongly non lattice case imply that no meaningful matching prior can be
obtained for HPD regions in the discrete case. To address this problem of
higher order expansions of the frequentist coverages of HPD regions, we
propose, in Section 3, continuity corrections.

3. CONTINUITY CORRECTIONS: A GENERAL METHOD

Since there is no result on continuous asymptotic expansions of the
frequentist coverage of HPD regions to orders higher than o(n−1/2), it is of
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interest to consider a family of corrected HPD regions such that an asymp-
totic expansion of its frequentist coverage can be obtained to the order
o(n−1), at least. This would allow us, in particular, to determine matching
priors to this order of approximation, i.e. meaningful matching priors.

The idea is to add a continuity correction based on a uniform random
vector to smooth the jumps in the likelihood.

3.1. Asymptotic Expansion of the Frequentist Coverage of HPD Regions

In the continuous case, Ghosh and Mukerjee (1993) and DiCiccio and
Stern (1994) have proved that penalized likelihood ratio statistics can be
Bartlett corrected, in terms of both their frequentist and their Bayesian
coverages, i.e. ,b1(h), bp

n such that

Pn
h[Wn(h(1)) [ w]=Qp(w)+

wqp(w) b1(h)
n

+O(n−2)

and

Pp[Wn(h(1)) [ w | Xn]=Qp(w)+
wqp(w) bp

n

n
+OP(n−2),

which is equivalent to the fact that the frequentist distribution of
Wn/(1+B(h)/n) and the Bayesian distribution of Wn/(1+bp

n /n) are chi-
square with p degrees of freedom to the order O(n−2). b1(h) and bp

n are
respectively the frequentist and the Bayesian Bartlett corrections of Wn. We
consider in this section corrected posterior likelihood ratio statistics that
have frequentist Bartlett correction to the order o(n−1).

Let qp be the density of the distribution Qp of a chi-square random vari-
able with p degrees of freedom. Set A the linear operator such that
A(Zn)=Zn, 2. Recall that Zn, 2 is a k × k symmetrical matrix, set V=A(V̄),
where V̄=;d

i=1 tiUi, Ui, i=1...d are d independent uniform random
variables on [ − 1/2, 1/2] and let U=;k

i=1 tiUi. In other words, V̄ is a
uniform random vector on the cube {v=;d

i=1 viti, |vi | < 1/2}. Let Hn(v, z):
[ − 1/2, 1/2]d × Rd

Q Rd be continuous in z and continuously differentiable
in v such that the support of V̄={;d

i=1 viti, |vi | [ 1/2} is the same as the
support of V̄+Hn(V̄, z)/`n for all |z| [ log n2 (to the order O(n−1)). This
condition is satisfied in particular, when:

(i) Hn(v, Z)=0 for all v on the boundary of [ − 1/2, 1/2]d and all
|z| [ log n2.

(ii) Hn(v, Z) is continuously differentiable in v.
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Assume also that

C
d

i=1
F

[ − 1/2, 1/2]d

“Hn, i(v, z)
“vi

dv=F
[ − 1/2, 1/2]d

h̄n(v, z) dv=0, -z ¥ Rd,

where Hn, i is the ith component of Hn, in the basis (t1, ..., td) and

h̄n(v, z)= C
k

j=1
vjt

t
j[Npn(z)]/pn(z)+hn(v, z t

1Tz1)+Op(n−1/2), (5)

Np is the gradient of p and v.t=;d
i=1 viti. DiCiccio and Stern (1994)

prove that Wn=R t
nRn+O(n−3/2), where

Rn=T1/2Zn, 1+
T1/2Zn, 2(2I−1 − T) Zn, 1

2 `n
+

T1/2M(Zn, 1)

`n
+

T1/2b

`n
+O(n−1),

with T1/2=S1/2I (1, .) ¥ Rp × k, and M(Zn, 1) is a matrix in Rk × k whose
components are linear functions of Zn, 1. Let

Z̄n=Zn+V̄/`n+Hn(V̄, Zn)/n;

corrected modified likelihood ratio statistics are then defined by

W̄n(V̄)=Wn(Z̄n)+OP(n−3/2) (6)

=Wn+2
U tT1/2Rn

`n
+2

Hn, 1(V̄, Zn) t TZn, 1

n
+

U tTU
n

+
Z t

n, 1TV(2I−1 − T) Zn, 1

n
+

Z t
n, 1T(M1(U)+M2(U)/3) Zn, 1

n
, (7)

where Hn, 1(V̄, Zn) represents the first k components of Hn(V̄, Zn) so that
Z̄n, 1=Zn, 1+U/`n+Hn, 1(V̄, Zn, )/n. Under the same assumptions as in
Section 2, we have the following result:

Theorem 2. (1) If p \ 2, then the corrected HPD regions

Cp
a (V̄)={W̄n(V̄) [ kn(a)}

satisfy

Pn
h[Cp

a (V̄)]=a+
b(h) wqp(w)

n
+

wqp(w) ;d
j=1 ;k

r, s=1 tj, rtj, sTrs

12pn
+o(n−1), (8)

where b(h)=b1(h) − bp
n +Op(n−1/2), w is such that Qp(w)=a and tj, r

denotes the rth component of tj in the canonical basis.

10 JUDITH ROUSSEAU



(2) If p=1, and if [H] is not satisfied then the frequentist coverage of
Cp

a (V̄) has a continuous expansion to the order o(n−1) if

hn(v, z t
1Tz1)=OP(n−1/2). (9)

The expansion is then

Pn
h[Cp

a (V̄)]=a+
b(h) wqp(w)

n
+

wqp(w) ;d
j=1 ;k

r, s=1 tj, rtj, sTrs

12pn
+O(n−3/2).

(10)

Note that this result is valid for any modified likelihood ratio statistics
such as those studied by DiCiccio and Stern (1994).

Note also that the frequentist coverage of these corrected statistics
allows for Bartlett corrections, which are equal to those obtained in the
continuous term, plus a term due to the discreteness of the observations.

The condition on Hn, is not so restrictive as it seems, and there are many
solutions to (5). In particular, functions such as

Hn(v, Zn)=− C
k

j=1

[v2
j − 1/4] t t

j S−1Zn+v2
j gj(z t

1Tz1)
2

tj (11)

satisfy (5), for any continuously differentiable functions gj’s. These are not
the only solutions.

Proof of Theorem 2. It is equivalent, to the order O(n−3/2), to express
Z̄n as Zn+Y/`n, where Y=;d

i=1 tiYi and Yi, i=1...d are continuous
random variables in [ − 1/2, 1/2], we denote h̃n the joint density of
(Y1, ..., Yd) conditional on Zn, and y.t=;d

i=1 yiti, then

Pn
h[Wn(Z̄n) [ w] − F

R
d

IWn(z) [ w pn(z) dz

=
l

nd/2 C
z ¥ Ln

F
[ − 1/2, 1/2]d

IWn(z+y.t/`n) (qn(z) h̃n(y)

− qn(z+y.t/`n)) dy dz+O(n−/2)

= −
l

nd/2 C
x ¥ Ln

IWn(z) [ w C
d

j=1

t t
jp

'

n (z) tj

24n

+
l

nd/2 C
x ¥ Ln

pn(z) F
[ − 1/2, 1/2]d

IB(z, y)
1 h̃n(y) − 1 −

y.t tNpn(z)

`n pn(z)
2 dy

+O(n3/2)
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= − C
d

j=1
F

R
d

IWn(z) [ w
t t

jp
'

n (z) tj

24n

+
l

nd/2 C
x ¥ Ln

pn(z) F
[ − 1/2, 1/2]d

IB(z, y)
1 h̃n(y) − 1 −

y.t tNpn(z)

`n pn(z)
2 dy

+O(n3/2), (12)

where

B(z, y)={Wn(z+y.t/`n) [ w < sup
y ¥ [ − 1/2, 1/2]d

Wn(z+y.t/`n)}.

Here pœn(z) denotes the matrix of second derivatives of pn(z) (wrt z). The
term defined by (12) has a continuous expansion to the order o(n−1/2), if

F
[ − 1/2, 1/2]d

IB(z, y)(h̃n(y) − 1) dy=O(n−1/2),

that is if h̃n(y)=I[ − 1/2, 1/2]d(1+h̄n(y, z)/`n), where >[ − 1/2, 1/2]d h̄n(y, z) dy
=0. If p \ 3 or if [H] is satisfied, we prove in Appendix B that

l
nd/2 C

x ¥ Ln

pn(z) F
[ − 1/2, 1/2]d

IB(z, y)
1 h̄n(y, z) − y.t t Npn(z)

pn(z)
2 dy

=F
R

d
pn(z) F

[ − 1/2, 1/2]d
IB(z, y)

1 h̄n(y, z) − y.t t Npn(z)
pn(z)

2 dy+o(n−1/2)

(13)

where

h̄n(y, z)= C
k

j=1
yjt

t
j

Npn(z)
pn(z)

+hn(y, z t
1Tz1).

If p=2, since no results are obtained in this case, see Note 2.1, we use
the corrections defined by (9), which leads to the same expansion of the
frequentist coverage of Cp

a (V̄), as in (10). L

We now consider the impact of the corrections on the posterior
coverages of the HPD regions.

3.2. Bayesian Coverage of Cp
a (V̄) and Matching Priors

The Bayesian coverage of the corrected HPD region depends on the
function Hn(V̄, Zn). We recall that this function depends on h through
Zn=Zn(h). We prove that for the most natural choices of Hn, i.e. those
defined by (11), there exist Bartlett corrections for the Bayesian coverage.
Let T̂=T(ĥ), Ŝ=S(ĥ), and Ŝ1/2 be the definite positive square root of Ŝ.

12 JUDITH ROUSSEAU



Theorem 3. If Hn is defined by (11), the posterior coverage satisfies

Pp[W̄n(V̄) [ w | Xn]

=Qp(w) − wqp(w)
− pbp

n +B+;d
j=1 ;k

r, s=1 t̂j, r t̂j, sT̂rs/12
pn

. (14)

B is the term corresponding to Hn(V̄, Zn), which is given in Appendix C when
Hn satisfies (11).

The corrected modified likelihood ratio statistics allow for Bayesian
Bartlett corrections, which are equal to

n−1 1bp
n − B/p − C

d

j=1
C
k

r, s=1
t̂j, r t̂j, sT̂rs/12p2 .

Proof. To prove this result, we first determine the conditional proba-
bility Pp[W̄n(V̄) (1 − bp

n /n) | Xn, V̄]. Let y=`n (h − ĥ) and Ẑn, i=Zn, i(ĥ),
i [ 3. Then, if Jn denotes the empirical Fisher information matrix
(calculated at ĥ),

Zn, 1(h)j=−(Jn y)j+ C
k

i, l=1

Djilln(ĥ) yi yl

n3/2 +OP(n−1),

and

(Zn, 2)i, j=(Ẑn, 2)i, j+ C
k

l=1
yl(Di, jlln(ĥ)/n+DlI(ĥ)i, j)+OP(n−1/2).

Set

R1
n(U)=Rn+

T̂1/2U

`n
+

1
n

C
k

i=1

1“T1/2U
“hi

2
h=ĥ

.

Then,

W̄n(V̄)=R1
n(U) t R1

n(U)+
P(y, V̄)

n
− 2

Hn(V̄, y) T̂Îy
n

,

where P(y, V̄) is polynomial in y with degree 2 and is linear in V̄. Simple
calculations prove that R1

n(U) t R1
n(U) is distributed from a noncentral chi-

square distribution with p degrees of freedom and non-centrality parameter

d

n
=

1
n

||T̃1/2U+BR ||2
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to the order O(n−3/2), where BR is the posterior expectation of Rn; in other
words, |BR |2/n is the noncentrality parameter of Rn. Algebra on the condi-
tional characteristic function j(1)(t) leads to

j(1)(t)=E 5e itR1
n(U)t T1

n(U) 11+it
P(y, V̄

n
2 : Xn, V̄6

=
e itd/n(1 − 2it) − 1

(1 − 2it)p/2
51 −

a1(V̄+a −

1(V̄)
n

6+
2a1(V̄)

2n(1 − 2it)

−
(1 − 2it) a −

1(V̄)
n

+O(n−3/2),

where a1(V̄) and a −

1(V̄) are of order O(1) and linear in V̄, therefore those
terms disappear, when integrating over V̄. There only remains the noncen-
trality term. Assume that Hn is defined by (11), in other words, that it is a
linear function of Zn plus a function of Wn. Then we prove, in Appendix C
that there exists a function of V̄, B=OP(1), such that

j(2)(t)=
2it
n

E[e itR1
n(U) tR1

n(U)Hn, 1(V̄, y) T̂1/2Rn | Xn, V̄]

=
itB(V̄))

n(1 − 2it)(p+1)/2 .

Finally, integrating over v, we obtain that the characteristic function of
Wn(Z̄n) can be approximated by

jn(t)=
1

(1 − 2it)p/2+
it(bp

n +;k
j=1 t̂ t

jT̂t̂j/12+B)
2n(1 − 2it)p/2+1 ,

where B is given in Appendix C. Inverting the characteristic function, we
finally obtain (14). L

Note 3.2. When Hn is defined by (11), matching priors are defined by

;k
j=1 t t

jTtj

6p
+

B
p

=b(h)+OPh
(n−1/2)

(see Ghosh and Mukerjee (1993) and DiCiccio and Stern (1994) for the
expression of b(h)).

3.3. The Multinomial Case
Let X=(X1, ..., Xk) be a multinomial random vector, with cell proba-

bilities h=(h1, ..., hk) (;k
i=1 hi=1); the parameters of interest are k − 1

independent smooth functions of h:

g1=g1(h), ..., gk − 1=gk − 1(h).
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We have

Zn, 1(g)=n−1/2 C
k − 1

i=1
ēi C

k − 1

j=1

“hj

“gi

5Xj − nhl

hk
+ C

k − 1

l=1

Xl − nhl

hk

6 ,

where ē1, ..., ēk − 1 is the canonical basis in Rk − 1. Thus, Zn, 1 is a lattice
random vector, whose support is defined by

Ln= C
k − 1

i=1
tiZ/`n+x0, n

and

ti= C
k − 1

j=1

1 1
hi

“hi

“gj
+

1
hk

C
k − 1

l=1

“hl

“gj

2 ēj,

for i=1, ..., k − 1 and

x0, n=−n C
k − 1

i=1

1“hj

“gi
+

hj

hk
C

k − 1

l=1

“hl

gi

2 ēi.

It is very easy to check that Zn, 2 is linearly dependent on Zn, 1, as a function
of X, for any 1 − 1 transformation g. Thus in the multinomial case,
Zn=Zn, 1 and d=k − 1. The Fisher information matrix has the form

I(g)=
dh t

dg
I(h)

dh

dg
.

We obtained, see Theorem 1, in the purely discrete case a continuous
expansion to the order O(log nn−(k − 1)/(k+1)). To obtain expansions to the
order o(n−1), we thus consider a continuity correction in the form (11), and
more precisely,

Hn(v, Zn, 1(g))= − C
k − 1

j=1

[v2
j − 1/4] t t

jI(g)−1 Zn, 1(g)
2

tj

= − C
k − 1

j=1

[v2
j − 1/4]

2 `n
1Xj

hj
−

Xk

hk

2 tj(g).

The corrected posterior likelihood ratio statistic is equal to

W̄n(Z̄n)=Wn(h)+2n−1 C
k − 1

i=1
vi
1Xi

hi
−

Xk

hk

2

+ C
k − 1

i=1

[v2
i − 1/4]

2n
51 − n−1 1Xi

hi
−

Xk

hk

226 ,
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where

Wn(h)=2 1 C
k

i=1
Xi log[h̃i/hi]+log[p(h̃)/p(h)]2 .

Matching priors are then solutions of the following partial differential
equation:

b(g)=
1

3p
C

k − 1

j=1

1 1
hj

+
1
hk

2 .

For the canonical parametrisation (i.e. h), the above equation becomes:

1
3

C
k − 1

j=1
h−1

j +
(k − 1)

3hk
=2(k − 3) hk+k2 − 2k − 6

− C
k − 1

r=1

prrhr(1 − hr)
p

+ C
r ] s

prshrhs

p
+ C

k − 1

u=1

pu

p
(−1+khu).

Note in particular that the corrected likelihood ratio statistics has a
frequentist Bartlett correction which is different from b1(h) which is the
one obtained formally from the continuous case. If we understand the
continuity corrections as a representation of the effect of discretisation, it
might be an explanation for the nonefficiency of b1(h) observed by
Frydenberg and Jensen (1989).

APPENDIX A

Proof of Theorem 1: Upper Bound of |fn(t)| when |t| Is Large

Zn=;d
i=1 tizi, where zi ¥ Z/`n, i.e. z=(z1, ..., zd) represents the

coordinates of Zn in the basis (t1, ..., td). Recall that fn(z) is in the form

fn(t)=E[e itWn]

=E[e itZt
n, 1TZn, 1+itZt

n, 1TM(Zn) Zn, 1/`n]

where M is a matrix in the form

M=M1(Zn, 1)+M2Zn, 2+
Mn(Zn)

`n
,
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M1 is a linear function of Zn, 1 independent of n, M2 is a matrix inde-
pendent of Zn, and n and Mn are polynomial functions of Zn whose
coefficients are polynomial functions in n−1/2. We first study

fn, 1(t)=E[e itZt
n, 1TZn, 1].

Denote Xi(h)=D log fh(Xi) and Y1=;r
2
n

i=1 Xi(h), Y2=; (n+r
2
n)/2

i=r
2
n+1

Xi(h) and
Y3=;n

i=(n+r
2
n )/2+1 Xi(h). Then, we the following symmetrization inequality

as in Bentkus and Götze (1995),

|fn, 1(t)|2 [ E(|E[e itYt
1TY1/n+2itYt

1T(Y2+Y3)/n | Y2, Y3]|2)

=E[e itYt
1TY1/n − itȲt

1TȲ1/n+2itỸt
1T(Y2+Y3)/n]

[ E |E[e2itỸt
1T[Y2+Y3]/n | Ỹ1]|

=E[e2it/nỸt
3TỸ1],

where Ỹi is the symmetrization of Yi, i.e. Ỹi=Yi − Ȳi, with Yi and Ȳi, inde-
pendent and identically distributed. Ỹ3 and Ỹ1 are now independent and

E[e2it/nỸt
3TỸ1]=E[E[exp(2it/n(TỸ1) t X̃(h)) | Ỹ1]n/2 − r

2
n/2],

with X̃=X(h) − X̄(h), X(h) and X̄(h) iid with the same distribution as the
Xj(h)’s. Therefore the characteristic function of X̃(h), f̃1, satisfies for all
v ¥ Rk,

f̃1(v)=C
x̃

p̃(x̃) e ivtx̃= C
z ¥ L1

p(z) EX[e ivt(X − z)]

=f1(v) f1(−v)=|f1(v)|2.

Using a Taylor expansion around zero of log |f1(z)|2=log f1(z)+
log f1(−z), where the logarithm of a complex number re ih, h ¥ ( − p, p] is
defined by

log r+ih,

we obtain, as in Bhattacharya and Rao (1986, Chap. 2)

n log |f1(2t(TỸ1)/n)|2=−Ỹ t
1TỸ1t2+ C

Ns+1/2M

|v|=2r; r=2

(−1) r qnv
n
n

(2r)! n2r − 1 +Rn,

where vn=2t(TỸ1) ¥ Rk, the qn’s denote the cumulants of X, for n=
(n1, ..., nk), |n| \ s+2 and vn

n=vn1
n, 1 · · · vnk

n, k. Since there exists a > 0 such that

v t
nvn \

1
8
: C

Ns+1/2M

|n|=2r; r=2

(−1) r qnv
n
n

(2r)! n2r − 1 +Rn
: , when |vn | < an,
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we have

|f1(2t(TỸ1)/n)|n − r
2
n [ exp 5−

Ỹ t
1TỸ1z2

2
6 , when |vn | < an.

This implies in particular that if |t| [ dn/log n, for some d > 0,

|E[e2it/nỸt
3TỸ1]| [ E 3exp 5−

Ỹ t
1TỸt2

2
64+Pn

h[|vn | \ an]

=
l2

r2k
n

C
m
a

¥ Z
k

jĨ(m
a

/rn) C
m
a

Œ ¥ Z
k

jĨ(m
a

Œ/rn) e−t2(m
a

− m
a

Œ)t T̃(m
a

− m
a

Œ)/2

× (1+O(r−1
n ))+O(n−2)

=
l

rp
n

(1+O(r−1
n ))+O(n−2)+O(n−2).

Therefore, when |t| [ dn/log n

fn, 1(t)=O(r−p/2
n ).

Using the same kind of calculation as in the symmetrization argument, see
also Bentkus and Götze (1995), we obtain that

|E[e itWn]|2 [ [E[e2it/nỸt
3TỸ1]+E[e2it/nỸt

3TỸ2]] (1+o(1)),

and

fn(t)=O(r−p/2
n ),

when |t| is large enough.

APPENDIX B

Proof of Expansion (13)

Let

Dn=
l

nd/2 C
z ¥ Ln

pn(z) F
[ − 1/2, 1/2]d

IB(z, v)hn(v, z t
1Tz1) dz

− F
R

d
F

[ − 1/2, 1/2]d
pn(z) IB(z, v)hn(v, z t

1Tz1) dv+o(n−1/2).
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Moreover, when z ¥ B(z, y), Wn(z)=w+OP(n −1/2)=z t
1Tz1+Op(n −1/2),

therefore

hn(v, z t
1Tz1)=hn(v, w)+(z t

1Tz1 − w) 1“hn(v, x)
“x

2
x=w

+OP(n−1).

We thus have:

Dn=F
[ − 1/2, 1/2]d

hn(v, w) 1Pn
h[Wn(Zn+vt/`n) [ w] − F

R
d

IB(z, v) pn(z) dz2 dv

+F
[ − 1/2, 1/2]d

1“hn(v, x)
“x

2
x=w

En
h [(z t

1Tz1 − w) IB(Zn, v)] dv+o(n−1). (15)

On B(Zn, v), when |Zn | [ log n2, |z t
1Tz1 − w| [ M log n2/`n; therefore

En
h [(z t

1Tz1 − w) IB(Zn, v)] [ M
log n2

`n
Pn

h[B(Zn, v)]

[ MŒ
log n2

n
,

where M and MŒ are positive constants. The first term of the right hand
side of (15) is dealt with as in Theorem 1 and is therefore a o(n−1/2). Hence,
Dn=o(n−1/2) and Eq. (13) is proved.

APPENDIX C

Calculation of j2(z)

We have

j2(z)=
2iz
n

E[e izR1
n(U) tR1

n(U)Hn, 1(V̄, y) T̂1/2Rn | Xn, V̄]

=
iz
n

C
k

j=1
[v2

j − 1/4] t̂ t
jŜ

−1E [Zn t̂ t
jT̂Jn ye itytJnT̂Jny | Xn, V̄]

−
iz
n

C
k

j=1
E [gj(V̄, y tJnT̂Jn y) e itytJnT̂Jnyt̂ t

jT̂Jn y | Xn, V̄]+O(n−31/2).
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The latter term of the right hand side is null due to symmetry arguments.
We thus obtain

j2(z)=
iz
n

C
d

r=1
C
k

l, j=1
C
p

a=1
[v2

j − 1/4] t̂ t
jŜ

. rDlzr(ĥ)

× t̂ t
j Î

.1Ŝ.aE[yl yae ityt
(1)Sy(1) | Xn, Z̄]

=
iz

n(1 − 2iz)p/2+1 C
d

r=1
C
k

l, j=1
[v2

j − 1/4] t̂ t
jŜ

.rDlzr(ĥ) t̂ t
jT̂

. l,

because Zn(h)=Zn(ĥ)+;k
l=1 DlZn(ĥ) (h − ĥ). Integrating over V̄ leads to

E[e izR1
n(U) tR1

n(U)Hn, 1(V̄, y) T̂1/2Rn | Xn]

=−
iz

6n(1 − 2iz)p/2+1 C
d

r=1
C
k

l, j=1
t̂ t

jŜ
.rDlzr(ĥ) t̂ t

jT̂
. l

and B is equal to

B=−
1
6

C
d

r=1
C
k

l, j=1
t̂ t

jŜ
. rDlzr(ĥ) t̂ t

jT̂
. l.
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